
Abstract
An overview over data parallel image processing rou-
tines is given. The focus of this tutorial is on real time,
low level image processing for parallel active vision sys-
tems. Image operator classes discussed are point opera-
tors, local operators, dithering, smoothing, edge
detection, morphological operators, and image segmen-
tation.

1. Introduction
Image processing is gaining larger importance in a vari-
ety of application areas. Active vision, e.g. for autono-
mous vehicles, requires substantial computational power,
in order to be able to operate in real time. Here, vision al-
lows the development of more flexible and intelligent
systems than any other sensor system. In addition, there
is also the need to speed up non-critical image processing
routines, e.g. in evaluating medical or satellite image da-
ta.
Basic image processing routines are very well suited for
synchronous parallel processing. While the era of large-
scale SIMD systems like Connection Machine [11] or
MasPar [9] may have passed, the concept may well be
used for small embedded systems. The ideal concept of
having one processor (ALU) per image pixel allows a
very simple and natural definition of image operations.
In this article, we would like to give an extensive over-
view of typical basic image processing operations, dem-
onstrating how they can be programmed in data parallel
mode.
The notation we use for synchronous parallel program-
ming is the author’s Parallaxis-III programming language
[3]. While the language’s syntax and semantics is defined
elsewhere [4] and shall not be repeated here, a small
number of basic features present in virtually all SIMD
programming languages shall be discussed shortly.

Active Set. All languages provide control structures to
select the set of active PEs for an operation. This is re-
quired, since in SIMD mode only one operation can be
executed by all PEs at a time – unless they are inactive.
Especially, PEs being exempted from an operation can-
not be used for performing another operation at the same
time. In Parallaxis, selecting the active set is implicit for
each selection- or loop-statement involving vector data in
its boolean condition. These conditions may also include
positional data, so PEs can easily be selected, e.g. by
their row and column number.

Processor Groups. Parallaxis, unlike some other SIMD
languages, allows the declaration of PE configurations

(groups of processors), together with their arrangement
in an n-dimensional cube. Static connections for data ex-
change between PEs may also be specified at compile
time, while dynamic connections may be added data-de-
pendent at run time. In the context of image processing, it
is sufficient to know that there are connections defined as
up, down, left, and right, to facilitate data exchange be-
tween PEs.
Data Exchange. Parallaxis provides three operations for
data exchange between PEs. In its simplest version, an
expression is created by moving data into the specified
direction of a previously defined connection. Parallaxis
prevents the appearance of undefined data at border PEs,
so for image processing, no special border treatment is
required.

Vector Reduction. Besides sequential data transfer be-
tween host and vector PEs, Parallaxis provides a reduc-
tion function, in order to reduce a vector value to scalar
value in logarithmic time – depending on the system ar-
chitecture. Operators used in reduction are either pre-
defined or implemented by the application programmer.

When we started working on parallel image processing,
we first took a look at conventional sequential low level
image processing routines, as defined in several text-
books [6],[7],[10]. There is quite a large number of basic
routines, which can be used as building blocks for larger
applications.

• Point Operators • Local Operators
• Global Operators • Histograms
• Edge Detection • Edge Thinning
• Corner Detection • Regions
• Hough Transform • Fast Fourier Transform
• Stereo Vision • Motion Detection
• Textures with Cooccurance

It turned out that each of these applications is very well
suited for an efficient synchronous parallel implementa-
tion. This led to the development of two textbooks [2],
[4].

2. Parallel Image Representation
We assume a two-dimensional array of PEs, large enough
to provides one PE per image pixel. In case of fewer PEs,
we can still have one “virtual PE” per pixel, with the op-
erating system or the compiler taking care of the iteration
required.
This architecture is reflected in our definition in Program
1. The actual PE field (and image) size is left open to be
specified by the application programmer. The symbolic
names right, left, up, down, and the four diagonals
may conveniently be used in subsequent data exchange

Tutorial in Data Parallel Image Processing
Thomas Bräunl

Dept. of Electrical and Electronic Engineering
Centre of Intelligent Information Processing Systems

The University of Western Australia, Nedlands, Perth WA6907
email: braunl@ee.uwa.edu.au

Published in: Australian Journal of Intelligent Information Processing
Systems (AJIIPS), vol. 6, no. 3, 2001, pp. 164–174 (11)

statements. As shown in Figure 1, the y coordinate grows
from top to bottom, in order to comply with standard im-
age file formats and screen graphics routines like X win-
dows.

We will now define the parallel image data types. Like in
sequential image processing, we distinguish between col-
or images, grayscale images, and binary images. Con-
stants for black and white have to be specified for each
type. Details can be seen in Program 2.

3. Point Operators and Local Operators
In the following, we will present a number of basic image
processing operators together with their data parallel im-
plementation. As we believe, the parallel notation will in
most cases be even simpler and more readable than its se-
quential counterpart. The typical header of a point opera-
tion looks like:

PROCEDURE xyz(img: VECTOR OF gray):
VECTOR OF gray;

Whereas the typical header of a local operation looks
like:

PROCEDURE xyz(img: grid OF gray):
grid OF gray;

In both cases, one grayscale image is converted into an-
other. Using the keyword VECTOR defines a parameter
of any vector data type, so this declaration is even more
general than the previously defined configuration grid.
As a logical consequence, local data exchange inside the
procedure is only possible if parameters use configura-
tion grid, whereas VECTOR hides the connection struc-
ture.

3.1 Point Operators
The simplest class of image operators are point operators.
A new pixel is computed as a function of the original pix-
el; no data of neighbor pixels is used. Therefore, point
operators do not have any data dependence and can be
easily expressed in parallel.
In some application areas, like medical imaging or the
processing of satellite data, images may stretch only over
a limited band of the grayscale. Therefore, these images
have low contrast and details are difficult to recognize
[1]. In order to improve contrast, the image’s grayscale
band can be stretched to full range (here 0..255). Figure 2
sketches the procedure.

Program 3 implements the general grayscale stretching,
using parameters g_min and g_max instead of con-
stants 0 and 255. First, the max and min grayscale values
of the whole image are determined by using the REDUCE
operation. Alternatively, these values could also have
been supplied as parameters to the procedure. Care has
been taken to avoid division by zero in case of a mono-
chromatic image. Then, in the RETURN statement, the
image is shifted in grayscale range by subtraction (img-
tmin) to range 0..(tmax-tmin). The division by
(tmax-tmin) shifts it to range 0..1, wile the multi-
plication with (g_max-g_min) brings it to range
0..(g_max-g_min). The final addition of g_min
stretches the image to the desired range g_min ..
g_max .

3.2 Average and Median
All following operators are local operators, that is in or-
der to compute one pixel, a number of neighbor pixels
also have to be taken into account. Several neighborhood
areas are possible, e.g. only left/right and up/down neigh-
bors (involving 5 pixel), a full 3×3 neighborhood (9), 5×5
(25) or up to 11×11 (121). Of course, the larger the neigh-
borhood considered, the more time-consuming will the
execution of these operators be. Access to neighbor pix-

Program 1: Processor configuration for image data

1 CONFIGURATION grid[*],[*];
2 CONNECTION
3 right:grid[i,j]<->grid[i ,j+1]:left;
4 up :grid[i,j]<->grid[i-1,j]:down;
5 up_l :grid[i,j]<->grid[i-1,j-1]:down_r;
6 up_r :grid[i,j]<->grid[i-1,j+1]:down_l;

Figure 1: Processor arrangement

Program 2: Data types

1 TYPE binary = BOOLEAN;
2 gray = [0..255];
3 color = RECORD
4 red, green, blue: gray
5 END;
6
7 CONST b_black = TRUE;
8 b_white = FALSE;
9 g_black = 0;

10 g_white = 255;
11 c_black = color(0, 0, 0);
12 c_white = color(255,255,255);

x

y

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

1 2 3 4

8765

9 10 11 12
up

down

rightleft

Figure 2: grayscale stretch

0 255

min. max. gray value in image

els is implemented by local data exchange in the data
parallel model.
A simple application of local operators are image
smoothing and noise reduction. The average operator
simply computes the average grayscale value of a pixel
and its neighbors. The basic operation for averaging is
adding the grayscale value of a pixel and all of its neigh-
bors. Figure 3 shows this for a 3×3 neighborhood.

While the naive procedure requires eight steps to ex-
change data with all neighbors, half of this time can be
saved by applying separation between x- and y-dimen-
sion. First, the neighbor pixels within a row are added,
then the partial result is moved between rows and is add-
ed to form the total sum. Separation can be applied for all
symmetric local operators. In general, a local n×n opera-
tor requires n2–1 steps, while separation reduces the cost
to 2*(n–1). The implementation of grayscale averaging
in Program 4 now becomes straightforward.
The median operator averages in a different way. Instead
of computing the local average, it selects the middle ele-
ment of a local neighborhood, sorted by their gray val-
ues. Instead of presenting the true median filter, we apply
a small simplification, which allows us to do a parallel
separation. We call this adapted filter “Fast-Median”.
While the true median computes the middle value of all
neighbors, our fast-median determines the middle (over
all rows) of the middle (over all columns) gray value.

Figure 4 explains the differences between average, medi-
an, and fast-median. It should be noticed that average is
much more sensitive to extreme-valued pixels than medi-
an. When applied to real word images, there is almost no
perceivable difference between median and fast-median.
Program 5 shows the implementation of fast-median.
Like for the previous operators, separation is used to save
execution time. First, the middle element within the same
line is used, then this partial result is moved across the
lines to find the middle element of the middle elements.
Sorting of three numbers is achieved simply by applying
compare-and-swap three times in a row.
Figure 5 shows the results of applying average and fast-
median operator to a noisy image. The noise has been ar-
tificially added by inserting black and white pixels at ran-
dom positions (“salt and pepper noise”).
While the average operator merely smears the error pix-
els over a larger area, the fast-median operator is actually
able to reduce the noise while preserving most of the im-
age resolution.

3.3 Dithering
Dithering is used to transform a grayscale image into a
binary image, while preserving some grayscale informa-
tion at the cost of losing some image resolution. Each
grayscale value of the original image is translated into a
pattern of binary values in the output image.

Program 3: grayscale stretch

1 PROCEDURE gray_stretch(img:
2 VECTOR OF gray; g_min,g_max: gray):
3 VECTOR OF gray;
4 (* stretch values to g_min..g_max *)
5 VAR tmax,tmin: INTEGER;
6 BEGIN
7 tmin := REDUCE.MIN(img);
8 tmax := REDUCE.MAX(img);
9 (* avoid division by 0 *)

10 IF tmin = tmax THEN INC(tmax) END;
11 RETURN (g_max-g_min) * (img-tmin)
12 DIV (tmax-tmin) + g_min;
13 END gray_stretch;

Figure 3: Separation of local operators

naive procedure

separation
8 steps

1. dim.: 2 steps 2. dim.: 2 steps

parallel

pa
ra

lle
l

Program 4: Local sum and average

1 PROCEDURE sum_3x3(img:
2 grid OF gray): grid OF INTEGER;
3 (* returns sum of local 3x3 area *)
4 VAR res: grid OF INTEGER;
5 BEGIN
6 res:= img + MOVE.right(img) (*hor.*)
7 + MOVE.left(img);
8 res:= res + MOVE.down(res) (*ver.*)
9 + MOVE.up(res);
10 RETURN res;
11 END sum_3x3;

1 PROCEDURE average_3x3(img:
2 grid OF gray): grid OF gray;
3 (* average value of 3x3 area *)
4 BEGIN
5 RETURN sum_3x3(img) DIV 9
6 END average_3x3;

Figure 4: Average and median

1 7 4
3 1 99
6 0 2

Average:
Median:
Fast-Median: middle(middle(1,7,4),middle(3,1,99),middle(6,0,2))

(1+7+4+3+1+99+6+0+2) / 9 ≈ 14
middle (0, 1, 1, 2, 3, 4, 6, 7, 99) = 3

Example

= middle(4,3,2) = 3

The simplest approach is ordered dithering [5]. Our par-
allel implementation uses 2×2 patterns, thus being able to
distinguish five different gray values as shown in Figure
6.

Program 6 implements ordered dithering in data parallel.
Please note, that only one quarter of all pixels is consid-
ered for this transformation, as activated by the initial
IF-selection. Therefore, it may be useful to perform an
average operator before applying ordered dithering. Ac-
cording to the patterns in Figure 7, the procedure deter-
mines by a pixel’s gray value which of the four fields
should be black (TRUE) and which should be white
(FALSE). Data exchange is done with the SEND proce-
dure, which differs from MOVE in the way that it does not
require the receiver to be active.

The same approach can also be applied for larger pat-
terns, e.g. 3×3 or 4×4. However, the complex algorithm

Figure 5: Original image, image with noise added,
average operator, fast-median operator

Figure 6: Dithering with 2×2 pattern

intensity 0 intensity 1 intensity 2 intensity 3 intensity 4
black white

Program 5: Fast-Median

1 PROCEDURE median_3x3fast(
2 img: grid OF gray): grid OF gray;
3 (* approximation: median in y-dir.
4 of median in x-direction *)
5 VAR a: grid OF ARRAY[1..3] OF gray;
6 BEGIN
7 a[1] := MOVE.left (img);
8 a[2] := img;
9 a[3] := MOVE.right(img);
10 (* sort 3 elems. with 3 comp/swaps *)
11 IF a[1] > a[2] THEN
12 swap(a[1],a[2]) END;
13 IF a[2] > a[3] THEN
14 swap(a[2],a[3]) END;
15 IF a[1] > a[2] THEN
16 swap(a[1],a[2]) END;
17 (* send median in x-dir. up/down *)
18 SEND.up (a[2],a[1]);
19 SEND.down(a[2],a[3]);
20 (* sort 3 elems. with 3 comp/swaps *)
21 IF a[1] > a[2] THEN
22 swap(a[1],a[2]) END;
23 IF a[2] > a[3] THEN
24 swap(a[2],a[3]) END;
25 IF a[1] > a[2] THEN
26 swap(a[1],a[2]) END;
27 RETURN a[2];
28 END median_3x3fast;

Program 6: Ordered Dithering

1 PROCEDURE dither_ordered(
2 img: grid OF gray): grid OF binary;
3 (* ordered dithering, 2x2 patterns *)
4 CONST thres = g_white DIV 5;
5 VAR res: grid OF binary;
6 BEGIN
7 IF ODD(DIM(grid,2)) AND
8 ODD(DIM(grid,1)) THEN
9 res := img < thres;
10 SEND.right (img < 3*thres,res);
11 SEND.down (img < 4*thres,res);
12 SEND.down_r(img < 2*thres,res);
13 END;
14 RETURN res;
15 END dither_ordered;

of Floyd-Steinberg error diffusion [5] is very hard to im-
plement in data parallel, because of its inherent sequen-
tial nature.
Figure 7 shows the result of applying 2×2 ordered dither-
ing to a grayscale image in comparison to simple thresh-
olding.

3.4 Edge Detection
Edge detection is a central task in low level image pro-
cessing. Edge points are characterized by a high local dif-
ference (gradient) in gray values. Edge strength and
direction may be used as features for subsequent image
processing. The idea behind this approach is that edges
usually (but by no means always) represent the outline of
objects in an image. Unfortunately, the reverse also isn’t
true in general. An alternate approach to object recogni-
tion is area-based image segmentation, which will be dis-
cussed later. Well known edge filters are Robert’s Cross,
Laplace, Sobel, Kirsch, Prewitt, and Marr-Hildreth [1],
[7], [10]. Here, we will discuss a data parallel version of
the Sobel operator.
The Sobel operator comprises two filters: one for detect-
ing horizontal edges and one for detecting vertical edges
(Figure 8). Combining both values in the same way as
transforming Cartesian coordinates to Polar coordinates
results in strength and direction of edges.
Our data parallel implementation of the Sobel filters in x-
and y-direction again makes use of the separability of
these filters. The naive implementation of Sobel-x would
be:

RETURN MOVE.down_l(img)
+ 2 * MOVE.left(img) + MOVE.up_l(img)
- MOVE.down_r(img)
- 2 * MOVE.right(img) - MOVE.up_r(img);

This would require six data exchange operations in a
eight-neighborhood. However, if we separate this two-di-
mensional filter into two single-dimensional filters, we
will need only four data exchange operations in a four-
neighborhood. Figure 9 demonstrates this filter separa-
tion by applying matrix multiplication. This approach
can be used for any local filter, provided that the filter
matrix can in fact be expressed as the product of two vec-
tors.

Program 7 shows the implementation of Sobel-x and So-
bel-y, Figure 10 shows the results. It is clear to see that
one filter only recognizes vertical edges, while the other
one recognizes only horizontal edges.
The already mentioned transformation of x- and y-edges
to Polar coordinates’ strength and direction is:

The data parallel implementation of these formulas is
identical to the sequential implementation of a single pix-
el, since this operation is required for every pixel in the

Figure 7: Ordered Dithering versus simple
thresholding

Figure 8: Sobel filter templates

Figure 9: Separation of Sobel template

Program 7: Sobel operator in x- and y-dimensions

1 PROCEDURE sobel_x_3x3(img:
2 grid OF gray): grid OF INTEGER;
3 VAR col: grid OF INTEGER;
4 BEGIN
5 col := 2*img + MOVE.up(img)
6 + MOVE.down(img);
7 RETURN MOVE.left(col)
8 - MOVE.right(col);
9 END sobel_x_3x3;

1 PROCEDURE sobel_y_3x3(img:
2 grid OF gray): grid OF INTEGER;
3 VAR row: grid OF INTEGER;
4 BEGIN
5 row := 2*img + MOVE.left(img)
6 + MOVE.right(img);
7 RETURN MOVE.down(row)
8 - MOVE.up(row);
9 END sobel_y_3x3;

–1

–1

1

2–2
1 –1–1

12

–2

1

Sobel-x Sobel-y

1– 0 1
2– 0 2
1– 0 1

 1

2
1

1– 0 1()⋅=

b dx2 dy2+= r dy
dx
------atan=

whole image and can be executed in parallel without re-
strictions. In Program 8, the Sobel-x and Sobel-y filters
are called as subroutines. Despite using the specified
square and square-root functions, the program has been
simplified to use the sum of the absolute values as a fast-
er approximation. Also, the edge direction has been re-
duced to 256 integer values.

Figure 11 now shows the final result of the Sobel edge
detection. Next to the original image is the edge strength;
stronger edges are represented by darker shades of gray.
In the lower left, thresholding has been applied to the
edge strength, leaving a binary image, e.g. for subsequent
application of morphologic operators (see below). Final-
ly, lower right shows the edge direction with the angular

4. Morphologic Operators
Morphology is the science of form, gestalt, and organiza-
tion, while the term originates from biology. In image
processing, morphologic operators operate on the outer
form of an object. While there are morphologic operators
for grayscale images [8], we will only discuss binary
morphologic operators.

Figure 10: Vertical and horizontal edges

Program 8: Sobel edge detection

1 PROCEDURE edges_sobel_3x3(
2 img: grid OF gray;
3 VAR strength,direction:
4 grid OF gray);
5 (* edge strength and direction *)
6 VAR dx,dy: grid OF INTEGER;
7 BEGIN
8 dx := sobel_x_3x3(img);
9 dy := sobel_y_3x3(img);

10 strength := limit2gray(
11 ABS(dx) + ABS(dy));
12 direction:= round((arctan2(
13 FLOAT(dy),FLOAT(dx))
14 + pi) / (2.0*pi)*255.0);
15 END edges_sobel_3x3;

Figure 11: Original, edge strength, thresh-
olding of edge strength, edge direction

4.1 Erosion and Dilation
The two basic morphological operators are erosion and
dilation. Erosion subtracts pixels from the border of an
object (objects are black = TRUE, background is white
pixels = FALSE), while dilation adds pixels to the outline
of an object. Both operators use a structure element as a
parameter, in order to find particular pixel patterns in an
image. Overlaying the original image with the structure
element, all black entries in the structure element have to
match with black pixels in the neighborhood of the pixel
examined, in order to produce a match. White entries in
the structure element have no meaning (don’t care), they
do not require white pixels in the neighborhood.
For binary images, the structure element is a binary pat-
tern of the filter size, e.g. a 3×3 matrix of 0s and 1s. The
simplest structure element therefore has nine back pixels
(1s) and no white pixel (0s) (see S1 below). Another ex-
ample is S2, with black pixels along the diagonal and
white pixels elsewhere. Structure element S3 can be used
to represent four-neighborhoods.

Erosion: If all black elements in the structure ele-
ment match the neighbors of a pixel, the
original pixel becomes black, if not it be-
comes white.

Dilation: If at least one black element in the struc-
ture element corresponds to a neighbor
pixel, the original pixel becomes black, if
not it becomes white.

Using another definition, erosion and dilation can be
found by shifting the whole image and using pixel-wise
set intersection (AND) and set union (OR). This ap-
proach is especially suited for data parallel processing. In
the following definition, A denotes the original image, S
is the structure element.

For symmetric structure elements, erosion and dilation
are again separable local operators.
Figure 12 shows the application of both operators with
structure element S1 (3×3 TRUE). Erosion almost com-
pletely deletes the object in the foreground and only
leaves object pixels (black) completely surrounded by
other object pixels. Dilation enlarges the object in fore-
ground by adding more black pixels to it.
Program 9 shows the data parallel implementation of ero-
sion and dilation. Here, the structure element S1 has been
implicitly assumed, instead of the more general approach
of passing it as a parameter. Calculation starts within
lines, then continues within columns.

4.2 Open and Close
Morphologic operators open and close are directly based
on erosion and dilation. They are simple sequences of the
two (again, A is original image, S is structure element):

Operation open deletes “fuzzy” boundaries of an object,
while close can be used to close small gaps within an ob-
ject. Program 10 shows the most simple implementation
of subsequent execution, while Figure 13 demonstrates
the effect of applying open and close to the same input
image as before.

S1

1 1 1
1 1 1
1 1 1

= S2

1 0 0
0 1 0
0 0 1

= S3

0 1 0
1 1 1
0 1 0

=

A S– MOVE v• A()
v S∈
∩=

A S⊕ MOVE v• A()
v S∈
∪=

Erosion

Dilation

Figure 12: Original, erosion, and dilation

Program 9: Erosion and Dilation

1 PROCEDURE erosion(
2 img: grid OF binary):
3 grid OF binary;
4 VAR res: grid OF binary;
5 BEGIN
6 res := img AND MOVE.left(img)
7 AND MOVE.right(img);
8 res := res AND MOVE.up(res)
9 AND MOVE.down(res);
10 RETURN res
11 END erosion;

1 PROCEDURE dilation(
2 img: grid OF binary):
3 grid OF binary;
4 VAR res: grid OF binary;
5 BEGIN
6 res := img OR MOVE.left(img)
7 OR MOVE.right(img);
8 res := res OR MOVE.up(res)
9 OR MOVE.down(res);
10 RETURN res
11 END dilation;

Open

Close

A ° S = (A O S) ⊕ S

A • S = (A ⊕ S) O S

Figure 14 demonstrates the results of morphologic opera-
tors erosion, dilation, open, and close on a larger natural
input image, which is the previously computed edge
strength threshold of the Sobel operator.

4.3 Fill and Connected
Further morphologic operators are the iterative filling of
object area or background area. This can be done by us-
ing the operators fill and connected. Both operators need
a starting position within the image. Connected iterative-
ly uses the operation dilation intersected with the image
foreground (objects = black pixels) until no more chang-
es occur. Fill works similar, but uses intersection with the
background instead of the foreground.
Operation fill fills all free space within an object (accord-
ing to the structure element), while operation connected
returns the connected component from the given starting
position.
The following iteration definition holds for fill applied to
image A:

fill0 := specified starting point
(usually background, i.e. FALSE)

fillk := dilation(fillk–1) ∩ A
Transforming this definition into a data parallel program
is simple (Program 11). The iteration is implemented as a

REPEAT-loop, while the termination condition has to
check whether no pixel at all has changed during the last
iteration. This is done by using reduction with AND,
comparing old and new image pixel-wise in parallel.
Care has to be taken, to assure that the loop will termi-
nate. As it is easy to see, the new image is generated by
applying dilation and intersection (AND with the com-
plement of the original image) to the old image. There-
fore, when starting from the background, each iteration
may add additional black pixels, but will never take ex-
isting black pixels away. This guarantees the termination
of the loop after a finite number of steps.

The following iteration definition holds for connected
applied to image A:

Program 10: Open and Close

1 PROCEDURE open(img:
2 grid OF binary): grid OF binary;
3 BEGIN
4 RETURN dilation(erosion(img))
5 END open;

1 PROCEDURE close(img:
2 grid OF binary): grid OF binary;
3 BEGIN
4 RETURN erosion(dilation(img))
5 END close;

Figure 13: Original, open und close

Figure 14: Original, erosion, dilation,
open and close

Program 11: Fill

1 PROCEDURE fill(img: grid OF binary;
2 start_x,start_y: INTEGER):
3 grid OF binary;
4 VAR grow, new_grow, not_img:
5 grid OF binary;
6 BEGIN (* init grow, start is TRUE *)
7 new_grow := (DIM(grid,1) = start_x)
8 AND (DIM(grid,2)= start_y);
9 not_img := NOT img;
10 REPEAT
11 grow := new_grow;
12 new_grow := dilation(grow)
13 AND not_img;
14 UNTIL REDUCE.AND(grow = new_grow);
15 RETURN grow
16 END fill;

con0 := specified starting point
(usually foreground, i.e. TRUE)

conk := dilation(conk–1) ∩ A
So the only difference to operator fill is the fact that here
the image is intersected with the original image instead
of the complement. Program 12 shows the data parallel
implementation of operator connected.

Figure 15 shows operators fill started at (12,5) and con-
nected started at (3,3) at an example. Fill fills an empty
space inside the top black object. Note the outside pixel,
only connected in a single point. This is a consequence of
the previously chosen structure element S1 (eight-neigh-
borhood). Using structure element S3 instead (four-
neighborhood), the operator would have stopped without
this extra pixel. Operator connected returned the lower
left triangle, which is clearly separated from the white
background.

4.4 Boundary and Skeleton
The morphological operation boundary is a very efficient
method to find the outline of an object. It is computed by
forming the difference between original image and its
erosion:

Program 13 displays boundary’s direct parallel imple-
mentation.

One possible definition of the skeleton operator has been
proposed in [7]:

Here, kS denotes k-times applying an operation (here:
erosion) with structure element S. The Union (OR func-
tion) is computed in an iteration until the iterated erosion
of A results in an empty (all white) image.

Program 14 shows the data parallel implementation of
this version of skeleton. Starting with an empty (all
white) image, the OR function computes the union opera-
tion in parallel within the WHILE loop. The loop contin-
ues while there is at least one pixel left. This condition is
again computed in parallel by using reduction. One vari-
able is used to “erose-down” the original image to an
empty (all white image), while another variable is used to
construct the resulting skeleton from an initially empty
image. Figure 16 illustrates the operation of operators
boundary and skeleton on the same input image as above.

Program 12: Connected

1 PROCEDURE connected(img:
2 grid OF binary;
3 start_x,start_y: INTEGER):
4 grid OF binary;
5 VAR grow, new_grow, not_img:
6 grid OF binary;
7 BEGIN (* init grow, start is TRUE *)
8 new_grow := (DIM(grid,1) = start_x)
9 AND (DIM(grid,2) = start_y);

10 REPEAT
11 grow := new_grow;
12 new_grow:=dilation(grow) AND img;
13 UNTIL REDUCE.AND(grow = new_grow);
14 RETURN grow
15 END connected;

Figure 15: Original, fill(12,5), connected(3,14)

Program 13: Boundary

1 PROCEDURE boundary(img:
2 grid OF binary): grid OF binary;
3 BEGIN
4 RETURN img AND NOT erosion(img)
5 END boundary;

Program 14: Skeleton

1 PROCEDURE skeleton(img:
2 grid OF binary): grid OF binary;
3 VAR skel, k_times: grid OF binary;
4 ready: BOOLEAN;
5 BEGIN
6 skel := b_white;
7 k_times := img;
8 WHILE REDUCE.OR(k_times) DO
9 skel := skel OR
10 (k_times AND NOT open(k_times));
11 k_times := erosion(k_times);
12 END;
13 RETURN skel
14 END skeleton;

Boundary(A) = A – (A O S)

skel A()∪

∪

Skeleton(A) =

= {(A O kS) − [(A O kS) ° S]}

5. Region-based Image Operators
All image operators in the previous sections worked with
single points or within a limited neighborhood. Now, we
want to take a look at region-based operators. An impor-
tant application in this context is the segmentation of an
image, that is the partitioning of an image in a number of
coherent pixel areas.

The following rules must hold for segmentation:

(a) A = ∪ Ri union of all regions covers the
whole image

(b) Ri is coherent

(c) Ri ∩ Rj = ∅ regions do not overlap
(d) P(Ri) = TRUE pixels within a region fulfil

uniformity condition

(e) P(Ri ∪ Rj) = FALSE
union of two regions does not fulfil
this condition

Here, predicate P defines the required uniformity of a re-
gion. It may involve gray values or other pixel or area
features. A rather simply implementation is to define uni-
formity by a maximum gray value difference between
pixels in a region.
In the following, we will transform a sequential approach
to region growing from [6] into a data parallel program.
The algorithm starts with a number of seed points, which
usually are placed at fixed distances in the image. E.g. in
Figure 17, every eighth row and column is chosen as a
seed point, so this makes 1/64th of all pixels to seed
points. Initially, all pixels belong to region zero (back-
ground).
An iteration follows, which terminates when no pixel
changes its region in the last loop execution. In each iter-
ation, each pixel sends its own gray value and region
number to its four nearest neighbors. If the difference to a
neighbor pixel’s gray value is less than a specified
threshold and the neighbor’s region number is higher
than the own one, then a pixel migrates to the neighbor’s
region. The latter condition is only required to guarantee
loop termination. Otherwise a pixel may cyclically mi-
grate to one or the other of two adjacent regions.
Figure 17 exemplifies the stepwise operation of region
growing. The original image of a car is small enough to
recognize individual pixels. Good to see are the seed
points, which have been set in an 8×8 raster. From these,
the regions spread over the image, while their corre-
sponding grayscales are only used to distinguish regions
– they do not correspond to the gray values of these pix-
els (false color representation). After a few iterations,
most of the image is already covered by regions, the final
iterations contribute only minor changes between neigh-
boring regions. The data parallel version of this algo-
rithm is described in detail in [4].

6. Conclusion and Future Work
We have demonstrated the usefulness of synchronous
parallel processing for real time image processing. We
have examined a number of low-level routines and their
data parallel implementation. Prominent application ar-
eas are active vision, especially for mobile robot systems,
and general imaging systems, which can gain consider-
able speedup by employing SIMD sub-systems. Ideally,
the use of a data parallel system would be transparent to
the user, who is simply using an image processing li-
brary. The translation of an existing sequential image
processing library to a parallel environment has to be
done only once. This can be performed by experts to en-

Figure 16: Original, Boundary, skeleton

Figure 17: Stepwise execution of region growing

sure optimal utilization of the parallel resources. The ap-
plication programmer himself does not have to deal with
parallel processing at all.
All presented parallel algorithms have been implemented
in Parallaxis and can be executed either on a data parallel
system or with the Parallaxis simulator on sequential
workstations. Future work will be the design of an SIMD
vision sub-system. Several different approaches are pos-
sible:

• Board Approach
consisting of 128 signal processors, designed with
an external ISA bus for PC integration

• Gate Array Approach
designing a general purpose SIMD system with 2-
dim. grid structure on a chip

• FPGA Approach
designing and analyzing the required structure of a
single ALU

Further details can be found in the research book [4],
from which the images, formulas and programs of this
publication have been taken.

7. Acknowledgments
The author would like to thank Stefan Feyrer, Wolfgang
Rapf, and Michael Reinhardt for implementing various
high level image processing routines, not discussed in
this article. Also acknowledged is the implementation
work of Hartmut Keller, Jörg Stippa and many others on
the Parallaxis programming environment.

8. References
[1] Ballard, D. , Brown, C., Computer Vision, Prentice

Hall, Englewood Cliffs NJ, 1982
[2] Bräunl, T., Parallel Programming, Prentice Hall,

Englewood Cliffs NJ, 1993
[3] Bräunl, T., Parallaxis-III – A Structured Data-Par-

allel Programming Language, Proceedings of the
First International Conference on Algorithms and
Architectures for Parallel Processing, ICA3PP-95,
Brisbane Australia, April 1995, pp. 43–52 (10)

[4] Bräunl, T., with Feyrer, S., Rapf, W., Reinhardt, M.,
Parallel Image Processing, Springer Verlag,
Heidelberg, 2000

[5] Foley, J., van Dam, A. , Feiner, S., Hughes, J., Com-
puter Graphics – Principles and Practice, 2nd Ed.,
Addison-Wesley, Reading MA, 1990

[6] Gonzalez, R., Woods, R., Digital Image Processing,
Addison-Wesley, Reading MA, 1992

[7] Jain, A., Fundamentals of Digital Image Process-
ing, Prentice Hall, Information and System Sci-
ences Series, Englewood Cliffs NJ, 1989

[8] Johansson, T., Image Analysis Algorithms on Gen-
eral Purpose Parallel Architectures, Ph.D. Thesis,
Centre for Image Analysis, Rapport Nr. 16, Univ.
Uppsala, Sweden, 1994

[9] MasPar Computer Corporation, MasPar Program-
ming Language (ANSI C compatible MPL) User
Guide, Software Version 2.2, MasPar System Docu-
mentation, DPN 9302-0101, Dec. 1991

[10] Nalwa, V., A Guided Tour of Computer Vision, Add-
ison-Wesley, Reading MA, 1993

[11] Thinking Machines Corporation, C* Programming
Guide Version 6.0, Thinking Machines System
Documentation, Nov. 1990

