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A Framework for Cognitive Agents 
 

 Joshua D. Petitt and Thomas Bräunl 
 
Abstract: We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-
board sensors, including vision, and does not rely on global sensor systems. The on-board embedded controller is sufficient to 
analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, 
map generation, or intelligent group behavior. Not being limited to the game of soccer and being completely autonomous, we are 
looking at a number of interesting scenarios. Robots can communicate with each other, e.g. for exchanging positions, findings of 
objects or just the local states they are currently in (e.g. sharing their current goals with other robots in the group). We are interested 
in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.  
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I. Introduction 
We have worked with small autonomous mobile robots 

for a number of years [1]. Their actuator and sensor hardware 
has evolved over the years in the same way as the operating 
system and the control software. Although our robots can be 
applied to many different applications, we have used them for 
playing robot soccer without global sensors [2] in a number of 
competitions over the years. Each competition “campaign” 
was programmed by a number of students and in the past fol-
lowed traditional hierarchical software architecture. 

In this paper, we present a different, behavior-based 
approach for autonomous robots, which can be used to imple-
ment arbitrary robot application scenarios. 
 

II. Robot Hardware 
Each of our robots comprises a microcontroller system 

(EyeBot) interfaced to a digital color camera, distance sensors, 
shaft encoders, compass, DC motors, servos, wireless module, 
and a graphics display. All image processing is done on-board. 
We are interested in research on autonomous mobile systems, 
so we took this clearly disadvantaged robot soccer approach 
instead of using a global overhead camera. 

We are using low-resolution images (160x120 in 24bit 
color) and have to restrict image processing complexity due to 
limited processor power. Frame grabbing can be done at 30 
frames per second (fps). However, depending on the detection 
algorithm used this will be reduced significantly. Self-
localization is an important task for our robots, since we do 
not use a global positioning system like an overhead camera. 
We rely on dead reckoning from a specified starting position 
and orientation. However, a robot will soon lose its exact 
position and orientation due to wheel slippage or - much 
worse - collision with another robot. Therefore, we integrated 
a digital compass to our robots. 

In the robot soccer application orientation is more 
important than position, because it guarantees that a robot is 
heading for the right goal. Its local infrared sensors can update 
the robot position whenever it gets close to one of the 
sidewalls or a corner. 

The camera mechanics was changed from tilting to pan-
ning in order to improve ball tracking. The camera can be 
moved sideways at a higher speed than the whole robot can 

turn, so this will allow us tracking of balls moving faster 
across a robot’s field of view than it would be possible with a 
static camera mount. 

An innovative wireless protocol allows a group of 
autonomous agents to communicate with each other. Each 
agent can become “master” and new incoming agents or 
leaving agents are handled automatically by this virtual token 
ring approach [3]. 
 
 

III. Distributed Behavior Model 
A behavior-based architecture for mobile agents has 

been suggested by Bräunl at Univ. Stuttgart in 1995 in [4]. 
This system by the name of “Rock&Roll” was successfully 
implemented in 1997 at UWA by Lampert/Bräunl and allowed 
robot-independent programming by selecting behaviors from 
a library list (Figure 1). Module libraries have been written for 
different robots (here: EyeBot, Soccerbot and Pioneer I robot), 
so all robot-specific implementation details are hidden from 
the application “programmer”. Actually, no programming in a 
stronger sense takes place at this user level, since only 
modules are selected from a list and linked on a canvas. 
Automatic code is then generated by the Rock&Roll system, 
depending on the selection of the actual robot model. 

Modules belong to the groups: sensor (yellow), compute 
(green), or actuator (red) and were all executed in parallel. 
Drawing links between the modules sets the actual data flow 
between modules. This will implicitly determine not only the 
data exchange, but also the synchronization of modules, since 
modules can “sense” new data coming in and use this for their 
internal calculations. 

What the Rock&Roll system does not have is a clear dis-
tinction between behaviors and arbitration. This we intend to 
solve with our new general “behavior toolkit” as shown in 
Figure 2. This new toolkit provides the basic framework for 
implementing any behavior-based system, whether following a 
centralized or a distributed control. One application of this 
framework is the “EyeMind Structure”, proposed by Petitt, 
which is discussed in more detail in the following chapters. 

 
 

IV. EyeMind Framework 
The EyeMind framework is a set of objects, written in 

C++, which can be extended to create complex behavior net-
works.  The objects, their functions and the application to our 
robot soccer team “CIIPS Glory” will now be described. 
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Many robots have been built around the “sense-think-
act” paradigm, with varying degrees of success. This follows 

the path of classical artificial intelligence since a plan is 
created from a set of inputs. Other researchers have discarded 
this idea and have created robots with essentially a “sense-act” 
paradigm.  These robots are termed “behavior-based” and 
have proven to be successful in dynamic environments. Other 
hybrid approaches have been implemented also with varying 
degrees of success. The commonalities between the two 
conventions are that in both models, the agent has 
intentionality [5] and the agent is embodied [6].  
Intentionality refers to the desire of the agent to manipulate its 
surroundings and embodiment means that the agent only has 
limited knowledge about its environment and that the agent 
can act on, or change, its surroundings.  In the previous 
sentence, the word “knowledge” was used rather loosely.  
There are still many questions about the true nature of 
knowledge and therefore it lacks a firm definition.  In this 
instance, let’s assume that knowledge is any information that 
the agent uses to control its actions. This means that 
knowledge could represent a semantic net, for the classical 
group, a set of neuron weights, for the connectionists, and/or 
direct sensor readings (analog or digital in representation), for 
the behaviorists. 

The drawback to the three approaches, classical, connec-
tionist, and behaviorist, is that the agent must either  
 

• Know explicitly how to accomplish every task it is 
given as well as carefully plan each task. 

• Know nothing explicit about its tasks, just learn the 
correct way to accomplish it. 

• Know nothing at all. 

 
 Fig. 1. Rock&Roll, Lampert/Bräunl 1997 
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The idea of a zero-sum physical game, like soccer, is a perfect 
way to expose the deficiencies of each approach.  The clas-
sical approach is often too slow to keep track of the progress 
of the game and a “good” plan now can easily turn into a 
“poor” plan later. From this point, the classical approach to AI 
will be referred to as the “reasoning” approach and the 
behavior-based approach will be termed the “reacting” 
approach. The connectionist approach, which in many ways is 
a reactive approach with complicated mappings of inputs to 
outputs, can be successful in negotiating dynamic 
environments (if there is no plan, then there is no plan to 
change), but cognition and reasoning are completely left out. 
The problem is that neither approach truly captures what most 
humans would consider intelligent behavior (the behaviorists 
might argue this point, but I think many would agree that the 
mental abilities of ants, fish, or even birds are too coarse for 
the ability to have success in a game). The rest of the 
discussion will be intent on resolving the differences between 
the two camps and to show that both are needed for the 
success of an intelligent agent and to present a model which 
incorporates both approaches. 

The real underlying difference in the reasoning versus 
reacting models is that the reasoning approach is roughly 
modeled after the cognition that takes place in our forebrain, 
or our conscious mental activities. Conversely, the reacting 
approach is modeled after the lower brain and brainstem or 
our unconscious mental activities which primarily include 
motor control. Freud [7], in an attempt to understand human 
thinking, developed a model of the human psyche which 
encompasses both the unconscious and conscious mental 
activates. He asserted that the mind could conceptually be 
divided into three parts, the id, ego and super-ego.  The point 
must be made that he did not consider each of these to be 
distinct processes, rather that they communicate and affect 
each other. 

Other researchers [8] have used three layer architectures 
in robot designs.  They have assigned names to the layers 
surch as skill layer, sequencing layer, planning layer and the 
controller, sequencer, deliberator.  The three-layered 
architecture described here uses the descriptors “id”, “ego”, 
and “super-ego”, following the nomenclature of Freud’s 
model of the mind. 

4.1 The Unconscious 
One of the more powerful features of the MC68332 is 

the availability of the timer processer unit (TPU).  The TPU 
has available 16 channels, which execute independant of the 
CPU.  The timers can be set to interrupt the CPU on regular 
intervals (1/100 msec.) and divert the CPU to execute a list of 
functions.  This means that the CPU time can be divided 
between the ‘conscious’ processes normally being executed 
and the ‘unconscious’ processes that are constantly 
interrupting the main processes in order to execute.  Because 
the TPU interrupts the CPU at regular intervals, the functions 
must execute quickly otherwise the interrupting function will 
be interrupted.  Thus, the functions are reserved for motor 
control which requires regular intervals for execution.  
 
Nodes, Lists, and Heaps 

Before continuing further with the explination of the 
unconscious, a few basic concepts must be addressed.  The 
fundamental data structure used in our architecture is a 
doublely-linked List class composed of Node elements. 
Derived from the Node class is the LockNode() class.  
This provides the functionality to ‘lock’ a node so it can only 

be accessed by another object which possesses the correct key. 
This allows for multiple threads of control to access shared 
resources. 
Sensor Input 

Full autonomy was the primary goal of this project.  
Each robot must be able to work independent from the group.  
Therefore, each robot must be equipped with all the facilities 
necessary for independence.  The most important sensor for 
each robot is the ccd camera. The 160x120 pixel 16-bit image 
provides each robot with rich information about its envi-
ronment. 

Each robot is also equipped with five distance sensors.  
Many robot designers use large numbers of distance sensors 
(sonar, infrared) mounted around the robot to detect obstacles.  
Sometimes the number can reach as high as twelve or twenty-
four.  The Glory have taken the opposite approach, instead of 
a large number of fixed sensors, our robots use only five 
position sensing devices (PSDs).  One is attached under the 
camera and two are mounted on the front of the robot, facing 
in the forward direction.  The last two PSDs are mounted on 
the front of the robot, facing outward.  This set-up is useful 
because the robot can track objects to its side, like walls or 
other robots. 

Sensor data are stored in objects derived from the 
Sensor class, which is derived from the LockNode class.  
This allows for the sensors be arranged in a list structure. 
Motor Output 

The EyeMind architecture defines an abstract class, 
Actuator, from which the DCMotor and Servo objects 
are derived.  Like the Sensor class, the Actuator class is 
also derived from the LockNode class.  The locking feature of 
the LockNode is especially important for the output to 
eliminate conflicting signals. 
Communications 

The Glory communicate through a 38,400 baud wireless 
communication module.  The communication is set-up in a 
virtual token ring network.  The highly dynamic, multi-agent 
environment that robot soccer presents lends itself to fast 
communication between robots.   
I/O Management 

The Id class provides the functionality for registering 
and managing all the sensors and actuators used by the agent.  
The Id contains lists of references for both actuator and sensor 
objects, from this point collectively referred to as I/O objects.  
Any object (later described as a behavior) that wishes to 
access an I/O object must first check to see that the object is 
registered with the Id.  If the sensor or actuator is registered, 
the Id will return the I/O object pointer to the behavior.  The 
behavior can then lock the sensor or actuator, so no other 
behaviors can access it.  Note that the sensors or actuators are 
not required to be locked after they are accessed.  For the case 
of the PSD object, it is perfectly acceptable for more than one 
behavior to access this object and request its current value.  
However, for other sensors or actuators, for example a DC 
motor, it is important that only one behavior be able to have 
access.  If the I/O object is not registered with the Id when the 
behavior requests a pointer to the I/O object, then the Id 
instantiates this object, initializes it, places it on the list of 
registered I/O objects and then returns a pointer to the I/O 
object. 
Behaviors 

A behavior is a mapping of sensor input to motor output 
through an arbitrary function. By combining simple behaviors, 
a robot can be engineered to assume a more complex, 
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intelligent-appearing behavior.  Robots that do simple tasks 
such as following light beams, to more complex problems like 
solving mazes and navigating dynamic enviornments, can be 
all be constructed, sometimes with no processing unit at all 
[9]. What they all have in common is a feedback loop between 
sensors and actuators and the ability for behaviors to sup-
pressed or excited.  The Glory architecture defines an abstract 
class called a Behavior, from which all other behaviors are 
derived. A generic behavior has an excitation input and an 
internal threshold value. The generic behavior also has an out-
put, which can be a single value or a vector of values.  When 
the behavior is excited, a excitation value is added to the 
current excitation value.  If the excitation value is greater than 
a threshold value, then the behavior is activated and it ‘fires’.  
The firing of the behavior can take many forms, from 
outputting directly to an actuator, requesting sensor input, to 
triggering another behavior. 

The Behavior object is almost identical to the model 
of a neuron used in many artificial neural networks (ANN), 
see Figure 3 for a diagram. The essential difference between 
the two objects is the delay between input and output through 
the function. For a typical ANN, the input signal is propagated 
through the layers in a synchronous fashion and the function 
immediately produces output that reflects the state of the 
inputs at that moment. With a Behavior there is a time delay 
between the input to the Behavior and the change sensed.  

This model may be arranged as a feed-back controller or 
as a subsumption unit.  Note by allowing representations for 
positive and negative infinity (defined as the largest and 
smallest floating point numbers allowed by the machine), then 
the behavior may be suppressed or excited by only one input.  
An ambiguity exists when a behavior is both excited and sup-
pressed by an “infinite” signal, for this case the behavior is 
suppressed. 

The Id class also registers and manages all behaviors that 
are currently executing.  The Id class retains a list of up to 
sixteen ‘root’ behaviors.  Each of these behaviors are excited 
by the timer processor unit (TPU) on set intervals.  The TPU 
interrupts the CPU, and causes the CPU to execute the list of 
root behaviors.  The root behaviors then either do nothing, or 
execute their specific Fire() function and propagate the 
signal through the network. 

4.2 The Conscious Ego 
States 

Another fundamental abstract class in the Glory 
architecture is the State class.  This class holds one piece of 
information, the desire to be satisfied.  In order to derive a 
specific State, two functions must be defined.  These are 
the Is(State* state) function and the Satisfy() 
function.  The Is(State* state) function will return an 
integer value corresponding to if the state given is the current 
object.  Note that this is defining an arbitrary measure, not 
actually comparing if the two objects are the same object.  

For example, a basic derived state is the PositionState 
which returns true if the PositionState object is within a 
certain radius of the PositionState which was passed in.  
The other function which must be defined, the Satisfy() 
function, is what gives the EyeMind architecture flexibility.   
The Ego can be thought of as a conflict resolution module.  
There are pointers to three lists of states in the ego, past states, 
desired states and current states.  It should be pointed out that 
this model does not have a single all encompassing state.  
Therefore the current status of the robot is determined by a list 
of sub-states, such as position, battery power, possession of 
the ball, etc. The basic algorithm for the ego is: 
 
while (desired_states) 
   for (each state) 
   { 
      if Criticise(past_states, 
                   current_states, 
                    desired_states) 
      { 
         LearnBad(superego); 
         RemoveState(state); 
      } 
      else if Satified(id) 
      { 
              LearnGood(superego); 
         RemoveState(state); 
      } 
      else state->Satisfy(); 
   } 
} 
superego->CreateStrategy(); 
 
 

The actual algorithm is slightly more advanced because 
it checks if any of the current states are the desired state.  It 
also sorts the desired states by their desire to be satisfied so 
that desired_states with a higher desire value get 
satisfied sooner. Notice the fourth line of the algorithm calls a 
function called Criticise().  For the agent to be fully 
autonomous and intelligent-appearing, it is imperative that the 
agent has a mechanism to determine when desired state is not 
being satisfied.  This is the function of the Criticise() 
procedure.  In the simplest case, the Criticise() function 
will check the timestamp of the desired state. This represents 
the time by which the desired state should be achieved.  If the 
current system time is smaller than the desired state 
timestamp, then the Criticise() function will return true 
and the desired states Satisfy() function will execute.  If 
the current system time is larger than the desired timestamp, 
then the Criticise() function will return false and a new 
strategy will be created. 

When the Satisfy() function is called by the Ego, a 
set of behaviors are evoked to try and satisfy the state.  For 
example, the PositionState will check to see if the 
Drive behavior is active, if it is then it will modify the 
desired position of the Drive behavior so that when the 
Drive behavior is executed, it will cause the robot to be 
closer to satisfying its states. 
The final line of the Ego algorithm calls the CreateStrat-
egy() function of the SuperEgo object, which will now be 
discussed.  

 

 
 

Fig. 3. Simple Summing Model of a Neuron 
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4.3 The Super Ego 
An important asset for an intelligent agent to have is the 

ability to plan ahead.  For an exciting game of soccer, the 
robots must be able to coordinate offensive and defensive 
plans, or plays.  This is easily incorporated into the EyeMind 
framework.  The SuperEgo class houses no real 
information, but provides the interface for higher-level 
algorithms, such as an expert system and adaptive critic. 

When the CreateStrategy() function is called, the 
list of desired states is concatenated with a list of states which 
correspond to the strategy, or the specific soccer play.  This 
method of control has an advantage over optimal control 
because the path is only roughly defined as a series of desired 
positions.  These points can be easily and quickly adapted, 
thereby adapting the overall path of the robot.  The movement 
from one point to the next however is accomplished with a 
reactive control method, allowing the robot to quickly respond 
to external events, like moving objects. 

Because the Ego, Super-ego, and Id run on different 
threads of execution, each can be effectively performed “at the 
same time”. Of course, each thread shares processing time 
with each of the other processes. This does allow for the robot 

to be planning while acting.  This is apparent in our actions as 
well, how often have you been doing a task, like walking to 
the bank, and thinking about something completely different?  
During that time you were probably planning about some 
future event or remembering past events and caring little about 
the current task of walking and avoiding obstacles on your 
mission. 
Strategy 

The coordination of movements between robots gives 
your team an obvious advantage over a “every man for 
himself” style of play.  However, a strategy can quickly 
change therefore this change should be quickly recognized 
between robots.  The strategy should not dictate an 
individual’s every movement.  This task is left to the 
individual.  What the strategy should determine is the overall 
movement of the team, as well as individual roles, such as 
offensive or defensive, forward, midfield, or fullback. 

The strategy module is located in the super-ego of the 
robot.  When the strategy function is called, the robot chooses 
a play out of a set playbook.  The playbook contains a list of 
four lists. 
 
 

 

Fig. 4. Diagram of EyeMind Architecture 
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Behavior Experiments 
Forming a feedback loop between a PSD and a 

servomotor creates an interesting behavior.  This relationship 
presented itself as a novel way to position a camera.  Various 
approaches have been tried for camera control.  Such 
approaches often deal with acquiring images from the camera 
and processing these images.  However, these approaches are 
often computationally intensive not feasible for real-time 
control.  Instead, a Behavior object which ties sensor data 
directly to camera movement without expensive overhead 
processing.  The result is a fast, robust control strategy that 
can be used for positioning a camera. 

The system that controls human eye movement is a very 
interesting subject.  While not fully understood, there are a 
few behaviors that the eyes perform instinctively that we have 
come to understand through observation.  The first is called 
saccade, which causes the eyes to constantly dart about, 
refreshing the mental image stored in our visual cortex.  The 
second behavior causes our eyes to steadily follow moving 
objects.  The third behavior causes our eyes to compensate 
for the movement of our head by moving in the opposite 
direction of our neck.   

The set-up is relatively simple.  A CCD camera is 
affixed to a common hobby servo.  Attached directly below 
acquire images, control the servo and read data from the PSD.  
The control law for this is then relatively simple.  Notice that 
the algorithm accomplishes two things.  First, the camera 
moves towards objects that are close to it.  Second, the 
decrement value causes all the values in the array to constantly 
go to zero, which simulates a forgetfulness mechanism in the 
array. This approach for controlling camera movement can 
successfully track slow moving objects, and causes the camera 
to favor toward objects that are close to the robot. 
 

VI. Conclusion 
We have presented a behavior-based approach for 

controlling mobile robot agents. What has been presented here 
is “EyeMind”, a “programmed” behavior-based system. 
However, as future work, we intend to implement the 
“Behavior Toolkit”, which allows “generation” of behavior-
based systems similar to our existing “Rock&Roll” system. 

The only drawback to the system shown here, for 
abstract agents, is the problem of assigning goals.  The game 
of soccer has an obvious main objective, to win the game. This 
is advantageous to the programmer of the system.  However, 
if we abstract the agent away from the game of soccer, what 
goals should it have? An even more important question is how 

does the agent acquire goals? One could easily imagine asking 
the agent, “What do you want to do today?” The ‘answer’ to 
this question can easily be pre-programmed or dynamically 
changed depending on the master’s instructions. But the self-
acquisition of goals is not such a straightforward task and, in 
the authors’ opinion, an agent that is able to do this could be 
considered cognitive. 
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