
Transactions on Control, Automation, and Systems Engineering

1

A Framework for Cognitive Agents

 Joshua D. Petitt and Thomas Bräunl

Abstract: We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-
board sensors, including vision, and does not rely on global sensor systems. The on-board embedded controller is sufficient to
analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation,
map generation, or intelligent group behavior. Not being limited to the game of soccer and being completely autonomous, we are
looking at a number of interesting scenarios. Robots can communicate with each other, e.g. for exchanging positions, findings of
objects or just the local states they are currently in (e.g. sharing their current goals with other robots in the group). We are interested
in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.

Keywords: adaptive control robot group, autonomous agent, behavior-based systems

I. Introduction
We have worked with small autonomous mobile robots

for a number of years [1]. Their actuator and sensor hardware
has evolved over the years in the same way as the operating
system and the control software. Although our robots can be
applied to many different applications, we have used them for
playing robot soccer without global sensors [2] in a number of
competitions over the years. Each competition “campaign”
was programmed by a number of students and in the past fol-
lowed traditional hierarchical software architecture.

In this paper, we present a different, behavior-based
approach for autonomous robots, which can be used to imple-
ment arbitrary robot application scenarios.

II. Robot Hardware
Each of our robots comprises a microcontroller system

(EyeBot) interfaced to a digital color camera, distance sensors,
shaft encoders, compass, DC motors, servos, wireless module,
and a graphics display. All image processing is done on-board.
We are interested in research on autonomous mobile systems,
so we took this clearly disadvantaged robot soccer approach
instead of using a global overhead camera.

We are using low-resolution images (160x120 in 24bit
color) and have to restrict image processing complexity due to
limited processor power. Frame grabbing can be done at 30
frames per second (fps). However, depending on the detection
algorithm used this will be reduced significantly. Self-
localization is an important task for our robots, since we do
not use a global positioning system like an overhead camera.
We rely on dead reckoning from a specified starting position
and orientation. However, a robot will soon lose its exact
position and orientation due to wheel slippage or - much
worse - collision with another robot. Therefore, we integrated
a digital compass to our robots.

In the robot soccer application orientation is more
important than position, because it guarantees that a robot is
heading for the right goal. Its local infrared sensors can update
the robot position whenever it gets close to one of the
sidewalls or a corner.

The camera mechanics was changed from tilting to pan-
ning in order to improve ball tracking. The camera can be
moved sideways at a higher speed than the whole robot can

turn, so this will allow us tracking of balls moving faster
across a robot’s field of view than it would be possible with a
static camera mount.

An innovative wireless protocol allows a group of
autonomous agents to communicate with each other. Each
agent can become “master” and new incoming agents or
leaving agents are handled automatically by this virtual token
ring approach [3].

III. Distributed Behavior Model
A behavior-based architecture for mobile agents has

been suggested by Bräunl at Univ. Stuttgart in 1995 in [4].
This system by the name of “Rock&Roll” was successfully
implemented in 1997 at UWA by Lampert/Bräunl and allowed
robot-independent programming by selecting behaviors from
a library list (Figure 1). Module libraries have been written for
different robots (here: EyeBot, Soccerbot and Pioneer I robot),
so all robot-specific implementation details are hidden from
the application “programmer”. Actually, no programming in a
stronger sense takes place at this user level, since only
modules are selected from a list and linked on a canvas.
Automatic code is then generated by the Rock&Roll system,
depending on the selection of the actual robot model.

Modules belong to the groups: sensor (yellow), compute
(green), or actuator (red) and were all executed in parallel.
Drawing links between the modules sets the actual data flow
between modules. This will implicitly determine not only the
data exchange, but also the synchronization of modules, since
modules can “sense” new data coming in and use this for their
internal calculations.

What the Rock&Roll system does not have is a clear dis-
tinction between behaviors and arbitration. This we intend to
solve with our new general “behavior toolkit” as shown in
Figure 2. This new toolkit provides the basic framework for
implementing any behavior-based system, whether following a
centralized or a distributed control. One application of this
framework is the “EyeMind Structure”, proposed by Petitt,
which is discussed in more detail in the following chapters.

IV. EyeMind Framework
The EyeMind framework is a set of objects, written in

C++, which can be extended to create complex behavior net-
works. The objects, their functions and the application to our
robot soccer team “CIIPS Glory” will now be described.

Manuscript received: 20 September 2002

Thomas Bräunl: Center for Intelligent Information Processing Systems,
 The University of Western Australia (braunl@ee.uwa.edu.au)
 http://robotics.ee.uwa.edu.au
Joshua Petitt: School of Mechanical Engineering,
 The University of Western Australia (petitj01@mech.uwa.edu.au)

Published at:
Transactions on Control, Automation, and Systems Engineering, ICASE: The Institute of Control, Automation and
Systems Engineers, KOREA, Vol. 2, No. 1, June, 2003, June 2003, pp. 1-8 (8)

2 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 1, January, 2003

Many robots have been built around the “sense-think-
act” paradigm, with varying degrees of success. This follows

the path of classical artificial intelligence since a plan is
created from a set of inputs. Other researchers have discarded
this idea and have created robots with essentially a “sense-act”
paradigm. These robots are termed “behavior-based” and
have proven to be successful in dynamic environments. Other
hybrid approaches have been implemented also with varying
degrees of success. The commonalities between the two
conventions are that in both models, the agent has
intentionality [5] and the agent is embodied [6].
Intentionality refers to the desire of the agent to manipulate its
surroundings and embodiment means that the agent only has
limited knowledge about its environment and that the agent
can act on, or change, its surroundings. In the previous
sentence, the word “knowledge” was used rather loosely.
There are still many questions about the true nature of
knowledge and therefore it lacks a firm definition. In this
instance, let’s assume that knowledge is any information that
the agent uses to control its actions. This means that
knowledge could represent a semantic net, for the classical
group, a set of neuron weights, for the connectionists, and/or
direct sensor readings (analog or digital in representation), for
the behaviorists.

The drawback to the three approaches, classical, connec-
tionist, and behaviorist, is that the agent must either

• Know explicitly how to accomplish every task it is
given as well as carefully plan each task.

• Know nothing explicit about its tasks, just learn the
correct way to accomplish it.

• Know nothing at all.

 Fig. 1. Rock&Roll, Lampert/Bräunl 1997

Central
Control

Sensors
B1 B2 Bn

User Master Control

B1 B2 Bn

MAX

Sensors incl.
User Input

Fig. 2. Behavior Toolkit with (a) centralized or
(b) local control

(a)

(b)

Transactions on Control, Automation, and Systems Engineering

3

The idea of a zero-sum physical game, like soccer, is a perfect
way to expose the deficiencies of each approach. The clas-
sical approach is often too slow to keep track of the progress
of the game and a “good” plan now can easily turn into a
“poor” plan later. From this point, the classical approach to AI
will be referred to as the “reasoning” approach and the
behavior-based approach will be termed the “reacting”
approach. The connectionist approach, which in many ways is
a reactive approach with complicated mappings of inputs to
outputs, can be successful in negotiating dynamic
environments (if there is no plan, then there is no plan to
change), but cognition and reasoning are completely left out.
The problem is that neither approach truly captures what most
humans would consider intelligent behavior (the behaviorists
might argue this point, but I think many would agree that the
mental abilities of ants, fish, or even birds are too coarse for
the ability to have success in a game). The rest of the
discussion will be intent on resolving the differences between
the two camps and to show that both are needed for the
success of an intelligent agent and to present a model which
incorporates both approaches.

The real underlying difference in the reasoning versus
reacting models is that the reasoning approach is roughly
modeled after the cognition that takes place in our forebrain,
or our conscious mental activities. Conversely, the reacting
approach is modeled after the lower brain and brainstem or
our unconscious mental activities which primarily include
motor control. Freud [7], in an attempt to understand human
thinking, developed a model of the human psyche which
encompasses both the unconscious and conscious mental
activates. He asserted that the mind could conceptually be
divided into three parts, the id, ego and super-ego. The point
must be made that he did not consider each of these to be
distinct processes, rather that they communicate and affect
each other.

Other researchers [8] have used three layer architectures
in robot designs. They have assigned names to the layers
surch as skill layer, sequencing layer, planning layer and the
controller, sequencer, deliberator. The three-layered
architecture described here uses the descriptors “id”, “ego”,
and “super-ego”, following the nomenclature of Freud’s
model of the mind.

4.1 The Unconscious
One of the more powerful features of the MC68332 is

the availability of the timer processer unit (TPU). The TPU
has available 16 channels, which execute independant of the
CPU. The timers can be set to interrupt the CPU on regular
intervals (1/100 msec.) and divert the CPU to execute a list of
functions. This means that the CPU time can be divided
between the ‘conscious’ processes normally being executed
and the ‘unconscious’ processes that are constantly
interrupting the main processes in order to execute. Because
the TPU interrupts the CPU at regular intervals, the functions
must execute quickly otherwise the interrupting function will
be interrupted. Thus, the functions are reserved for motor
control which requires regular intervals for execution.

Nodes, Lists, and Heaps

Before continuing further with the explination of the
unconscious, a few basic concepts must be addressed. The
fundamental data structure used in our architecture is a
doublely-linked List class composed of Node elements.
Derived from the Node class is the LockNode() class.
This provides the functionality to ‘lock’ a node so it can only

be accessed by another object which possesses the correct key.
This allows for multiple threads of control to access shared
resources.
Sensor Input

Full autonomy was the primary goal of this project.
Each robot must be able to work independent from the group.
Therefore, each robot must be equipped with all the facilities
necessary for independence. The most important sensor for
each robot is the ccd camera. The 160x120 pixel 16-bit image
provides each robot with rich information about its envi-
ronment.

Each robot is also equipped with five distance sensors.
Many robot designers use large numbers of distance sensors
(sonar, infrared) mounted around the robot to detect obstacles.
Sometimes the number can reach as high as twelve or twenty-
four. The Glory have taken the opposite approach, instead of
a large number of fixed sensors, our robots use only five
position sensing devices (PSDs). One is attached under the
camera and two are mounted on the front of the robot, facing
in the forward direction. The last two PSDs are mounted on
the front of the robot, facing outward. This set-up is useful
because the robot can track objects to its side, like walls or
other robots.

Sensor data are stored in objects derived from the
Sensor class, which is derived from the LockNode class.
This allows for the sensors be arranged in a list structure.
Motor Output

The EyeMind architecture defines an abstract class,
Actuator, from which the DCMotor and Servo objects
are derived. Like the Sensor class, the Actuator class is
also derived from the LockNode class. The locking feature of
the LockNode is especially important for the output to
eliminate conflicting signals.
Communications

The Glory communicate through a 38,400 baud wireless
communication module. The communication is set-up in a
virtual token ring network. The highly dynamic, multi-agent
environment that robot soccer presents lends itself to fast
communication between robots.
I/O Management

The Id class provides the functionality for registering
and managing all the sensors and actuators used by the agent.
The Id contains lists of references for both actuator and sensor
objects, from this point collectively referred to as I/O objects.
Any object (later described as a behavior) that wishes to
access an I/O object must first check to see that the object is
registered with the Id. If the sensor or actuator is registered,
the Id will return the I/O object pointer to the behavior. The
behavior can then lock the sensor or actuator, so no other
behaviors can access it. Note that the sensors or actuators are
not required to be locked after they are accessed. For the case
of the PSD object, it is perfectly acceptable for more than one
behavior to access this object and request its current value.
However, for other sensors or actuators, for example a DC
motor, it is important that only one behavior be able to have
access. If the I/O object is not registered with the Id when the
behavior requests a pointer to the I/O object, then the Id
instantiates this object, initializes it, places it on the list of
registered I/O objects and then returns a pointer to the I/O
object.
Behaviors

A behavior is a mapping of sensor input to motor output
through an arbitrary function. By combining simple behaviors,
a robot can be engineered to assume a more complex,

4 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 1, January, 2003

intelligent-appearing behavior. Robots that do simple tasks
such as following light beams, to more complex problems like
solving mazes and navigating dynamic enviornments, can be
all be constructed, sometimes with no processing unit at all
[9]. What they all have in common is a feedback loop between
sensors and actuators and the ability for behaviors to sup-
pressed or excited. The Glory architecture defines an abstract
class called a Behavior, from which all other behaviors are
derived. A generic behavior has an excitation input and an
internal threshold value. The generic behavior also has an out-
put, which can be a single value or a vector of values. When
the behavior is excited, a excitation value is added to the
current excitation value. If the excitation value is greater than
a threshold value, then the behavior is activated and it ‘fires’.
The firing of the behavior can take many forms, from
outputting directly to an actuator, requesting sensor input, to
triggering another behavior.

The Behavior object is almost identical to the model
of a neuron used in many artificial neural networks (ANN),
see Figure 3 for a diagram. The essential difference between
the two objects is the delay between input and output through
the function. For a typical ANN, the input signal is propagated
through the layers in a synchronous fashion and the function
immediately produces output that reflects the state of the
inputs at that moment. With a Behavior there is a time delay
between the input to the Behavior and the change sensed.

This model may be arranged as a feed-back controller or
as a subsumption unit. Note by allowing representations for
positive and negative infinity (defined as the largest and
smallest floating point numbers allowed by the machine), then
the behavior may be suppressed or excited by only one input.
An ambiguity exists when a behavior is both excited and sup-
pressed by an “infinite” signal, for this case the behavior is
suppressed.

The Id class also registers and manages all behaviors that
are currently executing. The Id class retains a list of up to
sixteen ‘root’ behaviors. Each of these behaviors are excited
by the timer processor unit (TPU) on set intervals. The TPU
interrupts the CPU, and causes the CPU to execute the list of
root behaviors. The root behaviors then either do nothing, or
execute their specific Fire() function and propagate the
signal through the network.

4.2 The Conscious Ego
States

Another fundamental abstract class in the Glory
architecture is the State class. This class holds one piece of
information, the desire to be satisfied. In order to derive a
specific State, two functions must be defined. These are
the Is(State* state) function and the Satisfy()
function. The Is(State* state) function will return an
integer value corresponding to if the state given is the current
object. Note that this is defining an arbitrary measure, not
actually comparing if the two objects are the same object.

For example, a basic derived state is the PositionState
which returns true if the PositionState object is within a
certain radius of the PositionState which was passed in.
The other function which must be defined, the Satisfy()
function, is what gives the EyeMind architecture flexibility.
The Ego can be thought of as a conflict resolution module.
There are pointers to three lists of states in the ego, past states,
desired states and current states. It should be pointed out that
this model does not have a single all encompassing state.
Therefore the current status of the robot is determined by a list
of sub-states, such as position, battery power, possession of
the ball, etc. The basic algorithm for the ego is:

while (desired_states)
 for (each state)
 {
 if Criticise(past_states,
 current_states,
 desired_states)
 {
 LearnBad(superego);
 RemoveState(state);
 }
 else if Satified(id)
 {
 LearnGood(superego);
 RemoveState(state);
 }
 else state->Satisfy();
 }
}
superego->CreateStrategy();

The actual algorithm is slightly more advanced because
it checks if any of the current states are the desired state. It
also sorts the desired states by their desire to be satisfied so
that desired_states with a higher desire value get
satisfied sooner. Notice the fourth line of the algorithm calls a
function called Criticise(). For the agent to be fully
autonomous and intelligent-appearing, it is imperative that the
agent has a mechanism to determine when desired state is not
being satisfied. This is the function of the Criticise()
procedure. In the simplest case, the Criticise() function
will check the timestamp of the desired state. This represents
the time by which the desired state should be achieved. If the
current system time is smaller than the desired state
timestamp, then the Criticise() function will return true
and the desired states Satisfy() function will execute. If
the current system time is larger than the desired timestamp,
then the Criticise() function will return false and a new
strategy will be created.

When the Satisfy() function is called by the Ego, a
set of behaviors are evoked to try and satisfy the state. For
example, the PositionState will check to see if the
Drive behavior is active, if it is then it will modify the
desired position of the Drive behavior so that when the
Drive behavior is executed, it will cause the robot to be
closer to satisfying its states.
The final line of the Ego algorithm calls the CreateStrat-
egy() function of the SuperEgo object, which will now be
discussed.

Fig. 3. Simple Summing Model of a Neuron

Transactions on Control, Automation, and Systems Engineering

5

4.3 The Super Ego
An important asset for an intelligent agent to have is the

ability to plan ahead. For an exciting game of soccer, the
robots must be able to coordinate offensive and defensive
plans, or plays. This is easily incorporated into the EyeMind
framework. The SuperEgo class houses no real
information, but provides the interface for higher-level
algorithms, such as an expert system and adaptive critic.

When the CreateStrategy() function is called, the
list of desired states is concatenated with a list of states which
correspond to the strategy, or the specific soccer play. This
method of control has an advantage over optimal control
because the path is only roughly defined as a series of desired
positions. These points can be easily and quickly adapted,
thereby adapting the overall path of the robot. The movement
from one point to the next however is accomplished with a
reactive control method, allowing the robot to quickly respond
to external events, like moving objects.

Because the Ego, Super-ego, and Id run on different
threads of execution, each can be effectively performed “at the
same time”. Of course, each thread shares processing time
with each of the other processes. This does allow for the robot

to be planning while acting. This is apparent in our actions as
well, how often have you been doing a task, like walking to
the bank, and thinking about something completely different?
During that time you were probably planning about some
future event or remembering past events and caring little about
the current task of walking and avoiding obstacles on your
mission.
Strategy

The coordination of movements between robots gives
your team an obvious advantage over a “every man for
himself” style of play. However, a strategy can quickly
change therefore this change should be quickly recognized
between robots. The strategy should not dictate an
individual’s every movement. This task is left to the
individual. What the strategy should determine is the overall
movement of the team, as well as individual roles, such as
offensive or defensive, forward, midfield, or fullback.

The strategy module is located in the super-ego of the
robot. When the strategy function is called, the robot chooses
a play out of a set playbook. The playbook contains a list of
four lists.

Fig. 4. Diagram of EyeMind Architecture

6 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 1, January, 2003

Behavior Experiments
Forming a feedback loop between a PSD and a

servomotor creates an interesting behavior. This relationship
presented itself as a novel way to position a camera. Various
approaches have been tried for camera control. Such
approaches often deal with acquiring images from the camera
and processing these images. However, these approaches are
often computationally intensive not feasible for real-time
control. Instead, a Behavior object which ties sensor data
directly to camera movement without expensive overhead
processing. The result is a fast, robust control strategy that
can be used for positioning a camera.

The system that controls human eye movement is a very
interesting subject. While not fully understood, there are a
few behaviors that the eyes perform instinctively that we have
come to understand through observation. The first is called
saccade, which causes the eyes to constantly dart about,
refreshing the mental image stored in our visual cortex. The
second behavior causes our eyes to steadily follow moving
objects. The third behavior causes our eyes to compensate
for the movement of our head by moving in the opposite
direction of our neck.

The set-up is relatively simple. A CCD camera is
affixed to a common hobby servo. Attached directly below
acquire images, control the servo and read data from the PSD.
The control law for this is then relatively simple. Notice that
the algorithm accomplishes two things. First, the camera
moves towards objects that are close to it. Second, the
decrement value causes all the values in the array to constantly
go to zero, which simulates a forgetfulness mechanism in the
array. This approach for controlling camera movement can
successfully track slow moving objects, and causes the camera
to favor toward objects that are close to the robot.

VI. Conclusion
We have presented a behavior-based approach for

controlling mobile robot agents. What has been presented here
is “EyeMind”, a “programmed” behavior-based system.
However, as future work, we intend to implement the
“Behavior Toolkit”, which allows “generation” of behavior-
based systems similar to our existing “Rock&Roll” system.

The only drawback to the system shown here, for
abstract agents, is the problem of assigning goals. The game
of soccer has an obvious main objective, to win the game. This
is advantageous to the programmer of the system. However,
if we abstract the agent away from the game of soccer, what
goals should it have? An even more important question is how

does the agent acquire goals? One could easily imagine asking
the agent, “What do you want to do today?” The ‘answer’ to
this question can easily be pre-programmed or dynamically
changed depending on the master’s instructions. But the self-
acquisition of goals is not such a straightforward task and, in
the authors’ opinion, an agent that is able to do this could be
considered cognitive.

References

[1] Th. Bräunl, B. Graf, Small Robot Agents with On-Board
Vision and Local Intelligence, Advanced Robotics,
vol. 14, no. 1, 2000, pp. 51–64 (14)

[2] Thomas Bräunl, Peter Reinholdtsen, Stephen Humble,
CIIPS Glory - Small Soccer Robots with Local Image
Processing, P. Stone, T. Bulch, G. Kraetzschmar (Eds.),
Robocup 2000: Robot Soccer World Cup IV, Springer-
Verlag Berlin Heidelberg, LNAI 2019, 2001, pp. 523-
526(4)

[3] Th. Bräunl, P. Wilke, Flexible Wireless Communication
Network for Mobile Robot Agents, Industrial Robot Inter-
national Journal, vol. 28, no. 3, 2001, pp. 220–232 (13)

[4] P. Levi, M. Muscholl, Th. Bräunl, Cooperative Mobile
Robots Stuttgart: Architecture and Tasks, Proceedings of
the 4th International Conference on Intelligent Autono-
mous Systems, IAS–4, Karlsruhe, März 1995, pp. 310–
317 (8)

[5] Dennett, D. C. (1981). True Believers: The Intentional
Strategy and Why It Works. Mind Design II. J.
Haugeland. Cambridge, The MIT Press: 57-79.

[6] Brooks, R. A. (1991). Intelligence without Representation.
Mind Design II. J. Haugeland. Cambridge, The MIT
Press: 395-420.

[7] Freud, S. (1947). The Ego and the Id. London, Hogarth
Press.

[8] Gat, E. (1998). Three-Layer Architectures. Artifical Intel-
ligence and Mobile Robots. D. Kortenkamp, R. P.
Bonasso and R. Murphy. Cambridge, The MIT Press:
195-210.

[9] R. Arkin, Behavior-Based Robotics, MIT-Press, Cam-
bridge MA, 1998

Thomas Braunl
is Associate Professor at the Uni-
versity of Western Australia,
Perth, where he founded and
directs the Mobile Robot Lab. He
received a Diploma in Informatics
in 1986 from Univ. Kaiserslaut-
ern, an MS in Computer Science
in 1987 from the University of
Southern California, Los Angeles,
and a PhD and Habilitation in
Informatics in 1989 and 1994,

respectively, from Univ. Stuttgart. Professor Bräunl’s
research interests are robotics, vision, graphics, and
concurrency. He is author of several research books and
textbooks and developed the EyeBot mobile robot family.

Joshua Petitt
received a B.S. in Mechanical
Engineering from the University
of Missouri-Rolla. His interests
are robotics, kinematics, control
theory and artificial intelligence.

