
The Autonomous Underwater Vehicle Initiative
– Project Mako

Thomas Bräunl, Adrian Boeing, Louis Gonzales, Andreas Koestler, Minh Nguyen, Joshua Petitt
The University of Western Australia
EECE – CIIPS – Mobile Robot Lab
Crawley, Perth, Western Australia

tb@ee.uwa.edu.au

Abstract—We present the design of an autonomous
underwater vehicle and a simulation system for AUVs as part
of the initiative for establishing a new international
competition for autonomous underwater vehicles, both
physical and simulated. This paper describes the competition
outline with sample tasks, as well as the construction of the
AUV and the simulation platform. 1

Keywords—autonomous underwater vehicles; simulation;
competition; robotics

I. INTRODUCTION
Mobile robot research has been greatly influenced by

robot competitions for over 25 years [2]. Following the
MicroMouse Contest and numerous other robot
competitions, the last decade has been dominated by robot
soccer through the FIRA [6] and RoboCup [5]
organizations. Most of these competitions involved
wheeled robots on well defined flat surfaces, with legged
robots only introduced a few years ago.

Choosing a competition environment similar to
conditions found in industrial applications will improve the
relevance of the research work performed. We intend to
create a new robotics initiative for autonomous underwater
vehicles (AUVs). This is a both interesting and challenging
research area with direct commercial applications and
existing industries in the Australian and Asian-Pacific
region. The initiative shall comprise competitions tied in
with international conferences, as well as design guidelines
for real AUVs and a public domain AUV simulation
system (SubSim), developed by the authors.

A related underwater competition has been organized
for a number of years by the Association for Unmanned
Vehicle Systems International (AUVSI) in North America
[1]. Our proposed competition concentrates on the
Australasian region, will introduce a number of different
competition events, and will create a common simulation
platform available for teams that cannot afford to build an
AUV.

1 Raytheon Australia has initiated and sponsored the

upcoming Australian AUV competition. Part of the
research presented in this paper has been sponsored by
Raytheon Australia.

II. AUV COMPETITION
The AUV Competition will comprise two different

streams with similar tasks
• Physical AUV competition and
• Simulated AUV competition

Competitors have to solve the same tasks in both
streams. While teams in the physical AUV competition
have to build their own AUV (see Chapter 3 for a
description of a possible entry), the simulated AUV
competition only requires the design of application
software that runs with the SubSim AUV simulation
system (see Chapter 4).

The competition tasks anticipated for the first AUV
competition (physical and simulation) to be held around
July 2005 in Perth, Western Australia, are described
below. All events will take place in a (physical or
simulated) swimming pool of Olympic size, whenever
possible. Specific rules regarding points being awarded,
timing, etc., will be published at a later stage.

Task 1: Wall Following
The AUV is placed close to a corner of the pool.
The task is to follow the pool wall without touching it.

The AUV should perform one lap around the pool, return
to the starting position, then stop.

Task 2: Pipeline Following
A plastic pipe (diameter and color to be specified) is

placed along the bottom of the pool, starting on one side of
the pool and terminating on the opposite side. The pipe is
made out of straight pieces and 90 degree angle pieces.
The AUV is placed over the beginning of the pipe close to
a side wall of the pool.

The task is to follow the pipe on the ground until the
opposite wall has been reached.

Task 3: Target Finding
The AUV is placed close to a corner of the pool. A

target plate with a distinctive texture (size and color to be
specified) will be placed at a random position within a 3m
diameter from the center of the pool.

Published at:
2004 IEEE Conference on Robotics, Automation, and Mechatronics (IEEE-RAM), Dec. 2004,
Singapore, pp. 446-451 (6)

The task is to find the target plate in the pool, drive the
AUV directly over it and drop an object on it from the
AUV’s payload container. (AUV’s without the ability to
drop a payload should just hover over the target plate).

Task 4: Object Mapping
A number of simple objects (balls and boxes, color and

sizes to be specified) will be placed near the bottom of the
pool, distributed over the whole pool area. The AUV starts
in a corner of the pool.

The task is to survey the whole pool area, e.g. using a
sweeping pattern, and record all objects found at the
bottom of the pool. The AUV shall return to its start corner
and stop there. In a subsequent data upload (AUV may be
taken out of the pool and a cable attached to its onboard
system), a map of some format should be uploaded that
shows location and type (ball or box) of all objects found
by the AUV.

Figure 1. Competition tasks

III. AUV HARDWARE
For constructing a new AUV prototype from scratch,

the mechanical and electrical systems of the AUV, as well
as its sensor equipment had to be designed and considered
simultaneously. This chapter presents a summary of the
design of the Mako AUV.

A. Mechanical and Electrical Design
A two-hull, four-thruster configuration was chosen for

the final design because of its significant advantages over
competing design proposals (see Figure 2). This design
provided the following:

• Ease in machining and construction due to its
simple structure

• Relative ease in ensuring watertight integrity
because of the lack of rotating mechanical devices
such as bow planes and rudders

• Substantial internal space owing to the existence of
two hulls

• High modularity due to the relative ease with
which components can be attached to the skeletal
frame

• Cost-effectiveness because of the availability and
use of common materials and components

• Relative ease foreseen in software control
implementation in using a four thruster
configuration when compared to using a ballast
tank and single thruster system

• Acceptable range of motion provided by the four
thruster configuration

• Ease in submerging with two vertical thrusters
• Static stability due to the separation of the centers

of mass and buoyancy, and dynamic stability due
to the simple alignment of thrusters with easily
identifiable centers of drag

Precision in controlling the vehicle and overall
simplicity were pursued in the mechanical design over
speed and sleekness. Although speed and sleekness are
desirable qualities in AUVs, there is no real need for these
as per the tasks required for the competition.

Figure 2. Design of AUV Mako
Simplicity and modularity were key goals in both the

mechanical and electrical system designs. The mechanical
design was made symmetrical to not only make
construction relatively straightforward, but to also simplify
software modeling. The materials chosen were common,
cost-effective and easily machineable. Only crucial
electronic components were purchased with improvisations
made for other components. With the vehicle not intended
for use under more than 5 m of water, pressure did not
pose a major problem. The Mako (Figure 4) measures 1.34
m long, 64.5 cm wide and 46 cm tall.

Task 1 Task 2

Task 3 Task 4

The vehicle comprises two watertight hulls machined
from PVC separately mounted to a supporting aluminum
skeletal frame. Two thrusters are mounted on the port and
starboard sides of the vehicle for longitudinal movement,
while two others are mounted vertically on the bow and
stern for depth control. The Mako’s vertical thruster diving
system is not power conservative, however, when a
comparison is made with ballast systems that involve
complex mechanical devices, the advantages such as
precision and simplicity that comes with using these two
thrusters far outweighs those of a ballast system.

Propulsion is provided by four modified 12V, 7A
trolling motors that allow horizontal and vertical
movement of the vehicle. These motors were chosen for
their small size and the fact that they are intended for
underwater use; a feature that minimized construction
complexity substantially and provided watertight integrity.

The starboard and port motors provide both forward
and reverse movement while the stern and bow motors
provide depth control in both downward and upward
directions. Roll and pitch is passively controlled by the
vehicle’s innate righting moment, though pitch can be
controlled by the stern and bow motors if necessary.
Lateral movement is not possible for the vehicle, however,
this ability is not necessary as the starboard and port
motors allow yaw control which permits movement in any
global horizontal direction. Overall, this provides the
vehicle with 4DOF that can be actively controlled. These
4DOF provide an ample range of motion suited to
accomplishing a wide range of tasks.

 Figure 3. AUV mobility

B. Controllers
The control system of the Mako is separated into two
controllers; an Eyebot microcontroller and a mini-itx PC
running Linux. The Eyebot controller runs at 33MHz and
comprises 512K of ROM as well as 2048K of RAM. This
controller’s primary purpose is in controlling the four
thrusters, that is, controlling the vehicle’s movement and
the AUV’s sensors. The mini PC comprises a Cyrix
233MHz processor, 32Mb of RAM and a 5GB hard drive.
Its function is to provide processing power for the
computationally intensive vision system.
Since the thrusters would be in continuous use while vision
and sonar systems were operational, it was logical to
distribute functions and control over two controllers. This
allows a more powerful and concurrent approach to
dealing with data and controlling the vehicle.

Motor controllers designed and built specifically for
the thrusters provide both speed and direction control.
Each motor controller interfaces with the Eyebot controller
via two servo ports. Due to the high current used by the
thrusters, each motor controller produces a large amount of
heat. To keep the temperature inside the hull from rising
too high and damaging electronic components, a heat sink
attached to the motor controller circuit on the outer hull
was devised. Hence, the water continuously cools the heat
sink and allows the temperature inside the hull to remain at
an acceptable level.

C. Sensors
The sonar/navigation system utilizes an array of

Navman Depth2100 echo sounders. One of these is used to
provide a crude, but effective depth sensor. An echo
sounder facing downwards on the vehicle allows for depth
feedback if the maximum water depth is known.

A low-cost Vector 2X digital magnetic compass
module provides for yaw or heading control. The small
module delivers high accuracy and interfaces with the
Eyebot controller via digital input ports.

A simple dual water detector circuit connected to
analogue-to-digital converter (ADC) channels on the
Eyebot controller is used to detect the unlikely but possible
event of a hull breach. Two probes run along the bottom of
each hull. This allows for the location (upper or lower hull)
of the leak to be known, therefore saving time in isolating
a leak. The Eyebot periodically monitors whether or not
the hull integrity of the vehicle has been compromised, and
if so immediately surfaces the vehicle.

To ensure adequate power is being supplied to the
vehicle, particularly to the motors, a simple power monitor
is used to detect when the voltage level drops to
unacceptable levels. This is essential as a low voltage will
result in the thrust characteristics of the motors drifting
from expected values, therefore compromising accurate
control of the vehicle. The power monitor is essentially a
voltage divider circuit that connects to an ADC channel on
the Eyebot. This allows the Eyebot to periodically monitor
the supply voltage and to surface the vehicle when it
senses a low voltage.

The sonar system for the Mako AUV consists of four
200 kHz depth sounder transducers that are used for boat
depth sensors. These transducers are ideal for use with the
AUV as they are relatively cheap and are capable of
performing depth sensing within a range that is similar to
many more expensive digital altimeters.

The transducers are placed on the bow, port and
starboard sides of the AUV and these will be used to
determine the proximity of obstacles to the AUV. One
sensor is pointing directly down for depth sensing, as
mentioned before. Currently, there are only provisions for
four of these sounder transducers but more transducers can
be employed as required with only minimal change to the
current design. The future use of more sensors can be used

to create an omni-directional view of the surrounding
environment.

Each of these transducers are linked to a control circuit
board that provides transmitter/receiver capabilities as well
as timing capabilities to enable each sensor to determine
the distance the AUV is from an obstacle in front of the
sensor. All data lines from the sensors are connected to
timing processor inputs (TPU channels) of the EyeBot
controller. As all the sensors emit and receiver a 200 kHz
frequency signal, there is a need to prevent collisions of
signals and erroneous reception of another sensor’s signal.
This contention issue is resolved by serializing sonar
measurements through the Eyebot controller.

Figure 4. AUV Mako

IV. AUV SIMULATION
There are many advantages to having a simulation

system for the AUV competition. Simulation allows
concurrent development of the hardware platform and
control software, reducing the time required to build a
complete solution. It also enables groups who have
financial or physical limitations (such as the lack of an
appropriately sized body of water) to compete. Finally,
simulations allow far greater control over the environment
in which the submarine is placed. This simplifies the
testing of a program’s performance in varied conditions.

A. Software design
The simulation software is designed to address a broad

variety of users with different needs, such as the structure
of the user interface, levels of abstraction, and the
complexity of physical and sensor models. As a result, the
most important design goal for the software is to produce a
simulation tool that is as extensible and flexible as
possible.

Therefore, the entire system was designed with a plug-
in based architecture from the ground up. Entire
components, such as the end-user API, the user interface
and the physical simulation library can be exchanged to
accommodate the users’ needs. This allows the user to
easily extend the simulation system by adding custom
plug-ins written in any language supporting dynamic
libraries, such as standard C or C++.

Further goals include ease of use, portability, execution
speed, and the resulting size of the distribution binary.
Figure 5 shows the basic architecture of the simulation

system. The simulation system provides a software
developer kit (SDK) that contains the framework for plug-
in development, and tools for designing and visualizing the
submarine. The software packages used to create the
simulator include:

wxWidgets [8] (formerly wxWindows) – A mature and
comprehensive open source cross platform C++ GUI
framework. This package was selected as it greatly
simplifies the task of cross platform interface development.
It also offers straightforward plug-in management and
threading libraries.

TinyXML [9] is a C++ XML parser. It was chosen over
other XML parsing packages as it is simple to use, and is
small enough to distribute with the simulation.

The user can select the physics libraries used by the
simulator. However the default physics simulation system
employed is the Newton Game Dynamics engine [10],
which implements a fast and stable deterministic solver.

Figure 5. SubSim software design

B. Physics Models
The underlying low-level physical simulation library is

responsible for calculating the position, orientation, forces,
torques and velocities of all bodies and joints in the
simulation. Since the low-level physical simulation library
performs most of the physical calculations, the higher-level
physics abstraction layer (PAL) is only required to
simulate motors and sensors.

The PAL allows custom plug-ins to be incorporated to
the existing library, allowing custom sensor and motor
models to replace, or supplement the existing
implementations.

1) Propulsion Model
The motor model implemented in the simulation is

based off the standard armature controlled DC motor
model [11]. The transfer function for the motor in terms of
an input voltage (V) and output rotational speed (θ) is:

V
K

Js b Ls R K2

Where:

J is the moment of inertia of the rotor,
b is the damping ratio of the mechanical system,
L is the rotor electrical inductance,
R is the terminal electrical resistance,

and K is the electro motive force const

The default thruster model implemented is based on the
lumped parameter dynamic thruster model developed by
D. R. Yoerger et al. [7].

The thrust produced is governed by:
Thrust = Ct Ω |Ω|
Where

Ω is the propeller angular velocity,
and Ct is the proportionality constant.
Simulation of control surfaces is also supported. The

model used to determine the lift from diametrically
opposite fins [12] is given by:

L fin
1
2

C L f
S fin e v e

2

Where: L fin is the lift force,
ρ is the density,
C L f is the rate of change of lift coefficient with

respect to fin effective angle of attack,
S fin is the fin platform area,

e is the effective fin angle,
ve is the effective fin velocity

2) Simple Propulsion Model

One of the design goals of the simulation system is to
ensure ease of use. To assist in accomplishing this goal, a
much simpler model for the propulsion system is also
provided, in the form of an interpolated look-up table. This
allows a user to experimentally collect input values and
measure the resulting thrust force, applying these forces
directly to the submarine model.

3) Sensor Models
The PAL already simulates a number of sensors. Each
sensor can be coupled with an error model to allow the
user to simulate a sensor that returns data similar to the
accuracy of the physical equipment they are trying to
simulate. Many of the positional and orientation sensors
can be directly modeled from the data available from the
lower level physics library. Every sensor is attached to a
body that represents a physical component of an AUV.

The simulated inclinometer sensor calculates its
orientation from the orientation of the body that it is

attached to, relative to the inclinometers own initial
orientation. Similarly, the simulated gyroscope calculates
its orientation from the attached body’s angular velocity,
and its own axis of rotation. The velocimeter calculates the
velocity in a given direction from its orientation axis and
the velocity information from the attached body.

Contact sensors are simulated by querying the collision
detection routines of the low-level physics library for the
positions where collisions occurred. If the collisions
queried occur within the domain of the contact sensors,
then these collisions are recorded.

Distance measuring sensors, such as echo-sounders and
Positional Sensitive Devices (PSDs) are simulated by
traditional ray casting techniques, provided the low level
physics library supports the necessary data structures.

A realistic synthetic camera image is being generated
by the simulation system as well. With this, user
application programs can use image processing for
navigating the simulated AUV. Camera user interface and
implementation are similar to the EyeSim mobile robot
simulation system [3].

4) Environment Model
Detailed modeling of the environment is necessary to

recreate the complex tasks facing the simulated AUV.
Dynamic conditions force the AUV to continually adjust
its behavior. E.g. introducing (ocean) currents causes the
submarine to permanently adapt its position, poor lighting
and visibility decreases image quality and eventually adds
noise to PSD and vision sensors.

The terrain is an essential part of the environment as it
defines the universe the simulation takes part in as well as
physical obstacles the AUV may encounter.

5) Error Models
Like all the other components of the simulation system,

error models are provided as plug-in extensions. All
models either apply characteristic, random, or statistically
chosen noise to sensor readings or the actuators control
signal.

We can distinguish two different types of errors:
Global errors and local errors. Global errors, such as
voltage gain, affect all connected devices. Local errors
only affect a certain device at a certain time. In general
local errors can be data dropouts, malfunctions or device
specific errors that occur when the device constraints are
violated. For example, the camera can be affected by a
number of errors such as detector, Gaussian, and salt and
pepper noise. Voltage gains (either constant or time
dependent) can interfere with motor controls as well as
sensor readings.

Peculiarities of the medium the simulation is running in
have to be considered, e.g. refractions due to glass/water
transitions and condensation due to temperature
differences on optical instruments inside the hull.

C. API
The simulation system implements two separate

application programmer interfaces (APIs). The first API is
the internal API, which is exposed to developers so that
they can encapsulate the functionality of their own
controller API. The second API is the RoBIOS API, a user
friendly API that mirrors the functionality present on the
Eyebot [4] controller found on the Mako.

The internal API consits of only five functions:
SSID InitDevice(char *device_name);
SSERROR QueryDevice (SSID device, void *data);
SSERROR SetData(SSID device, void *data);
SSERROR GetData(SSID device, void *data);
SSERROR GetTime(SSTIME time);
The function InitDevice initializes the device given by

its name and stores it in the internal registry. It returns a
unique handle that can be used to further reference the
device (e.g. sensors, motors).

QueryDevice stores the state of the device in the
provided data structure and returns an error if the
execution failed.

GetTime returns a time stamp holding the execution
time of the submarines program in ms. In case of failure an
error code is returned.

The functions that are actually manipulating the sensors
and actuators and therefore affect the interaction of the
submarine with its environment are either the GetData or
SetData function.

While the first one retrieves the data (e.g. sensor
readings) the later one changes the internal state of a
device by passing control and/or information data to the
device. Both return appropriate error codes if the operation
fails.

D. Example
The following example is written using the RoBIOS

API [4] and lets an AUV perform wall-following along its
left side. The submarine parameters, its sensors, the whole
simulation environment, as well as the simulation settings
are specified by XML files.

#include <eyebot.h>

int main() {
 PSDHandle psd;
 MotorHandle left_motor;
 MotorHandle right_motor;
 int distance, motor_speed;

 /* init the motors */
 left_motor= MOTORInit(LEFT_MOTOR);
 right_motor=InitDevice(RIGHT_MOTOR);
 /* init and start PSD, set cont. measurement */
 psd=PSDInit (LEFT_PSD);
 PSDStart(psd, TRUE);
 MOTORDrive(right_motor, 50); /* medium speed */
 MOTORDrive(left_motor, 50);

 while(1)
 { distance = PSDGet(psd); /* dist. to left */

 if (distance < 100) /* too close */
 MOTORDrive(left_motor, 90); /* turn R */
 else if (distance > 200) /* too far */
 MOTORDrive(right_motor, 90); /* turn L */

 else /* straight with med. speed */
 { MOTORDrive(right_motor, 50);
 MOTORDrive(left_motor, 50);
 }

 }
}

As mentioned above, the actual program is coded using
RoBIOS as API, however any API could be used. This
application can be compiled using a common C compiler.
RoBIOS is designed to work in the simulation as well as
on the actual robot. Note that for simplicity error checking
is omitted.

V. CONCLUSIONS
We have presented the outlines of a new robotics

challenge, an AUV competition for both physical and
simulated AUVs. These systems require numerous
onboard sensors and real-time navigation and decision
systems. The AUV competition will be a challenge for
years to come.

Our prototype AUV gives a guideline for interested
parties to build their own AUV, while the description of
the simulation system gives a preview of the system that
will be used to conduct the AUV simulation event. SubSim
offers a powerful, comprehensive, yet easy to use
simulation system for a variety of applications and users.
The AUV competition is just one application of the
simulation system. Due to our design philosophy, SubSim
offers high extensibility, flexibility and usability for AUV
simulation.

REFERENCES
[1] AUVSI and ONR's 7th International Autonomous Underwater

Vehicle Competition, http://www.auvsi.org/ competitions/water.cfm
[2] T. Bräunl, Research relevance of Mobile Robot Competitions, IEEE

Robotics and Automation Magazine, vol. 6, no. 4, Dec. 1999, pp.
32-37 (6)

[3] T. Bräunl, Embedded Robotics – Mobile Robot Design and
Applications with Embedded Systems, Springer-Verlag, Heidelberg,
2003

[4] T. Bräunl, UWA Mobile Robot Lab, http://robotics.ee.uwa.edu.au
[5] Proceedings of 7th RoboCup International Symposium, Padua, Italy,

2003
[6] Proceedings of the FIRA Robot World Congress 2003, Wien, Oct.

2003
[7] D. R. Yoerger, J. G. Cooke, J. E. Slotine, “The Influence of Thruster

Dynamics on Underwater Vehicle Behavious and Their
Incorporation Into Control System Design,” IEEE J. Oceanic Eng.,
vol 15, no. 3, pp. 167-178, 1991.

[8] WX Widgets, http://www.wxwidgets.org/
[9] Tiny XML, http://tinyxml.sourceforge.net/
[10] Newton Game Dynamics Engine, http://www.physicsengine.com/
[11] R.C. Dorf, R.H. Bishop, Modern Control Systems, Prentice-Hall,

2001, Ch. 4, pp174-223.
[12] P. Ridley, J. Fontan, P. Corke, Submarine Dynamic Modeling,

Australasian Conference on Robotics and Automation, 2003, CD-
ROM Proceedings, ISBN 0-9587583-5-2

