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Abstract—We present the design of an autonomous 
underwater vehicle and a simulation system for AUVs as part 
of the initiative for establishing a new international 
competition for autonomous underwater vehicles, both 
physical and simulated. This paper describes the competition 
outline with sample tasks, as well as the construction of the 
AUV and the simulation platform. 1 
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I. INTRODUCTION  
Mobile robot research has been greatly influenced by 

robot competitions for over 25 years [2]. Following the 
MicroMouse Contest and numerous other robot 
competitions, the last decade has been dominated by robot 
soccer through the FIRA [6] and RoboCup [5] 
organizations. Most of these competitions involved 
wheeled robots on well defined flat surfaces, with legged 
robots only introduced a few years ago. 

Choosing a competition environment similar to 
conditions found in industrial applications will improve the 
relevance of the research work performed. We intend to 
create a new robotics initiative for autonomous underwater 
vehicles (AUVs). This is a both interesting and challenging 
research area with direct commercial applications and 
existing industries in the Australian and Asian-Pacific 
region. The initiative shall comprise competitions tied in 
with international conferences, as well as design guidelines 
for real AUVs and a public domain AUV simulation 
system (SubSim), developed by the authors. 

A related underwater competition has been organized 
for a number of years by the Association for Unmanned 
Vehicle Systems International (AUVSI) in North America 
[1]. Our proposed competition concentrates on the 
Australasian region, will introduce a number of different 
competition events, and will create a common simulation 
platform available for teams that cannot afford to build an 
AUV. 

                                                           
1 Raytheon Australia has initiated and sponsored the 

upcoming Australian AUV competition. Part of the 
research presented in this paper has been sponsored by 
Raytheon Australia. 

II. AUV COMPETITION 
The AUV Competition will comprise two different 

streams with similar tasks 
• Physical AUV competition  and 
• Simulated AUV competition 

Competitors have to solve the same tasks in both 
streams. While teams in the physical AUV competition 
have to build their own AUV (see Chapter 3 for a 
description of a possible entry), the simulated AUV 
competition only requires the design of application 
software that runs with the SubSim AUV simulation 
system (see Chapter 4). 

The competition tasks anticipated for the first AUV 
competition (physical and simulation) to be held around 
July 2005 in Perth, Western Australia, are described 
below. All events will take place in a (physical or 
simulated) swimming pool of Olympic size, whenever 
possible. Specific rules regarding points being awarded, 
timing, etc., will be published at a later stage. 

Task 1: Wall Following 
The AUV is placed close to a corner of the pool. 
The task is to follow the pool wall without touching it. 

The AUV should perform one lap around the pool, return 
to the starting position, then stop. 

Task 2: Pipeline Following 
A plastic pipe (diameter and color to be specified) is 

placed along the bottom of the pool, starting on one side of 
the pool and terminating on the opposite side. The pipe is 
made out of straight pieces and 90 degree angle pieces. 
The AUV is placed over the beginning of the pipe close to 
a side wall of the pool. 

The task is to follow the pipe on the ground until the 
opposite wall has been reached.  

Task 3: Target Finding 
The AUV is placed close to a corner of the pool. A 

target plate with a distinctive texture (size and color to be 
specified) will be placed at a random position within a 3m 
diameter from the center of the pool. 
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The task is to find the target plate in the pool, drive the 
AUV directly over it and drop an object on it from the 
AUV’s payload container. (AUV’s without the ability to 
drop a payload should just hover over the target plate). 

Task 4: Object Mapping 
A number of simple objects (balls and boxes, color and 

sizes to be specified) will be placed near the bottom of the 
pool, distributed over the whole pool area. The AUV starts 
in a corner of the pool. 

The task is to survey the whole pool area, e.g. using a 
sweeping pattern, and record all objects found at the 
bottom of the pool. The AUV shall return to its start corner 
and stop there. In a subsequent data upload (AUV may be 
taken out of the pool and a cable attached to its onboard 
system), a map of some format should be uploaded that 
shows location and type (ball or box) of all objects found 
by the AUV. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Competition tasks 

III. AUV HARDWARE 
For constructing a new AUV prototype from scratch, 

the mechanical and electrical systems of the AUV, as well 
as its sensor equipment had to be designed and considered 
simultaneously. This chapter presents a summary of the 
design of the Mako AUV. 

A. Mechanical and Electrical Design 
A two-hull, four-thruster configuration was chosen for 

the final design because of its significant advantages over 
competing design proposals (see Figure 2). This design 
provided the following: 

• Ease in machining and construction due to its 
simple structure 

• Relative ease in ensuring watertight integrity 
because of the lack of rotating mechanical devices 
such as bow planes and rudders 

• Substantial internal space owing to the existence of 
two hulls 

• High modularity due to the relative ease with 
which components can be attached to the skeletal 
frame 

• Cost-effectiveness because of the availability and 
use of common materials and components 

• Relative ease foreseen in software control 
implementation in using a four thruster 
configuration when compared to using a ballast 
tank and single thruster system 

• Acceptable range of motion provided by the four 
thruster configuration 

• Ease in submerging with two vertical thrusters 
• Static stability due to the separation of the centers 

of mass and buoyancy, and dynamic stability due 
to the simple alignment of thrusters with easily 
identifiable centers of drag 

Precision in controlling the vehicle and overall 
simplicity were pursued in the mechanical design over 
speed and sleekness. Although speed and sleekness are 
desirable qualities in AUVs, there is no real need for these 
as per the tasks required for the competition. 

 

Figure 2. Design of AUV Mako 
Simplicity and modularity were key goals in both the 

mechanical and electrical system designs. The mechanical 
design was made symmetrical to not only make 
construction relatively straightforward, but to also simplify 
software modeling. The materials chosen were common, 
cost-effective and easily machineable. Only crucial 
electronic components were purchased with improvisations 
made for other components. With the vehicle not intended 
for use under more than 5 m of water, pressure did not 
pose a major problem. The Mako (Figure 4) measures 1.34 
m long, 64.5 cm wide and 46 cm tall. 
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The vehicle comprises two watertight hulls machined 
from PVC separately mounted to a supporting aluminum 
skeletal frame. Two thrusters are mounted on the port and 
starboard sides of the vehicle for longitudinal movement, 
while two others are mounted vertically on the bow and 
stern for depth control. The Mako’s vertical thruster diving 
system is not power conservative, however, when a 
comparison is made with ballast systems that involve 
complex mechanical devices, the advantages such as 
precision and simplicity that comes with using these two 
thrusters far outweighs those of a ballast system. 

Propulsion is provided by four modified 12V, 7A 
trolling motors that allow horizontal and vertical 
movement of the vehicle. These motors were chosen for 
their small size and the fact that they are intended for 
underwater use; a feature that minimized construction 
complexity substantially and provided watertight integrity. 

The starboard and port motors provide both forward 
and reverse movement while the stern and bow motors 
provide depth control in both downward and upward 
directions. Roll and pitch is passively controlled by the 
vehicle’s innate righting moment, though pitch can be 
controlled by the stern and bow motors if necessary. 
Lateral movement is not possible for the vehicle, however, 
this ability is not necessary as the starboard and port 
motors allow yaw control which permits movement in any 
global horizontal direction. Overall, this provides the 
vehicle with 4DOF that can be actively controlled. These 
4DOF provide an ample range of motion suited to 
accomplishing a wide range of tasks. 

 

 
 
 
 

 
 

   Figure 3. AUV mobility  

B. Controllers 
The control system of the Mako is separated into two 
controllers; an Eyebot microcontroller and a mini-itx PC 
running Linux. The Eyebot controller runs at 33MHz and 
comprises 512K of ROM as well as 2048K of RAM. This 
controller’s primary purpose is in controlling the four 
thrusters, that is, controlling the vehicle’s movement and 
the AUV’s sensors. The mini PC comprises a Cyrix 
233MHz processor, 32Mb of RAM and a 5GB hard drive. 
Its function is to provide processing power for the 
computationally intensive vision system.  
Since the thrusters would be in continuous use while vision 
and sonar systems were operational, it was logical to 
distribute functions and control over two controllers. This 
allows a more powerful and concurrent approach to 
dealing with data and controlling the vehicle. 

Motor controllers designed and built specifically for 
the thrusters provide both speed and direction control. 
Each motor controller interfaces with the Eyebot controller 
via two servo ports. Due to the high current used by the 
thrusters, each motor controller produces a large amount of 
heat. To keep the temperature inside the hull from rising 
too high and damaging electronic components, a heat sink 
attached to the motor controller circuit on the outer hull 
was devised. Hence, the water continuously cools the heat 
sink and allows the temperature inside the hull to remain at 
an acceptable level. 

C. Sensors 
The sonar/navigation system utilizes an array of 

Navman Depth2100 echo sounders. One of these is used to 
provide a crude, but effective depth sensor. An echo 
sounder facing downwards on the vehicle allows for depth 
feedback if the maximum water depth is known. 

A low-cost Vector 2X digital magnetic compass 
module provides for yaw or heading control. The small 
module delivers high accuracy and interfaces with the 
Eyebot controller via digital input ports. 

A simple dual water detector circuit connected to 
analogue-to-digital converter (ADC) channels on the 
Eyebot controller is used to detect the unlikely but possible 
event of a hull breach. Two probes run along the bottom of 
each hull. This allows for the location (upper or lower hull) 
of the leak to be known, therefore saving time in isolating 
a leak. The Eyebot periodically monitors whether or not 
the hull integrity of the vehicle has been compromised, and 
if so immediately surfaces the vehicle. 

To ensure adequate power is being supplied to the 
vehicle, particularly to the motors, a simple power monitor 
is used to detect when the voltage level drops to 
unacceptable levels. This is essential as a low voltage will 
result in the thrust characteristics of the motors drifting 
from expected values, therefore compromising accurate 
control of the vehicle. The power monitor is essentially a 
voltage divider circuit that connects to an ADC channel on 
the Eyebot. This allows the Eyebot to periodically monitor 
the supply voltage and to surface the vehicle when it 
senses a low voltage. 

The sonar system for the Mako AUV consists of four 
200 kHz depth sounder transducers that are used for boat 
depth sensors. These transducers are ideal for use with the 
AUV as they are relatively cheap and are capable of 
performing depth sensing within a range that is similar to 
many more expensive digital altimeters.  

The transducers are placed on the bow, port and 
starboard sides of the AUV and these will be used to 
determine the proximity of obstacles to the AUV. One 
sensor is pointing directly down for depth sensing, as 
mentioned before. Currently, there are only provisions for 
four of these sounder transducers but more transducers can 
be employed as required with only minimal change to the 
current design. The future use of more sensors can be used 

 



to create an omni-directional view of the surrounding 
environment. 

Each of these transducers are linked to a control circuit 
board that provides transmitter/receiver capabilities as well 
as timing capabilities to enable each sensor to determine 
the distance the AUV is from an obstacle in front of the 
sensor. All data lines from the sensors are connected to 
timing processor inputs (TPU channels) of the EyeBot 
controller. As all the sensors emit and receiver a 200 kHz 
frequency signal, there is a need to prevent collisions of 
signals and erroneous reception of another sensor’s signal. 
This contention issue is resolved by serializing sonar 
measurements through the Eyebot controller. 

 
Figure 4. AUV Mako  

IV. AUV SIMULATION 
There are many advantages to having a simulation 

system for the AUV competition. Simulation allows 
concurrent development of the hardware platform and 
control software, reducing the time required to build a 
complete solution. It also enables groups who have 
financial or physical limitations (such as the lack of an 
appropriately sized body of water) to compete. Finally, 
simulations allow far greater control over the environment 
in which the submarine is placed. This simplifies the 
testing of a program’s performance in varied conditions. 

A. Software design 
The simulation software is designed to address a broad 

variety of users with different needs, such as the structure 
of the user interface, levels of abstraction, and the 
complexity of physical and sensor models. As a result, the 
most important design goal for the software is to produce a 
simulation tool that is as extensible and flexible as 
possible.  

Therefore, the entire system was designed with a plug-
in based architecture from the ground up. Entire 
components, such as the end-user API, the user interface 
and the physical simulation library can be exchanged to 
accommodate the users’ needs. This allows the user to 
easily extend the simulation system by adding custom 
plug-ins written in any language supporting dynamic 
libraries, such as standard C or C++. 

Further goals include ease of use, portability, execution 
speed, and the resulting size of the distribution binary. 
Figure 5 shows the basic architecture of the simulation 

system. The simulation system provides a software 
developer kit (SDK) that contains the framework for plug-
in development, and tools for designing and visualizing the 
submarine. The software packages used to create the 
simulator include: 

wxWidgets [8] (formerly wxWindows) – A mature and 
comprehensive open source cross platform C++ GUI 
framework. This package was selected as it greatly 
simplifies the task of cross platform interface development. 
It also offers straightforward plug-in management and 
threading libraries. 

TinyXML [9] is a C++ XML parser. It was chosen over 
other XML parsing packages as it is simple to use, and is 
small enough to distribute with the simulation. 

The user can select the physics libraries used by the 
simulator. However the default physics simulation system 
employed is the Newton Game Dynamics engine [10], 
which implements a fast and stable deterministic solver.  

Figure 5. SubSim software design 

B. Physics Models 
The underlying low-level physical simulation library is 

responsible for calculating the position, orientation, forces, 
torques and velocities of all bodies and joints in the 
simulation. Since the low-level physical simulation library 
performs most of the physical calculations, the higher-level 
physics abstraction layer (PAL) is only required to 
simulate motors and sensors.  

The PAL allows custom plug-ins to be incorporated to 
the existing library, allowing custom sensor and motor 
models to replace, or supplement the existing 
implementations. 

1) Propulsion Model  
The motor model implemented in the simulation is 

based off the standard armature controlled DC motor 
model [11]. The transfer function for the motor in terms of 
an input voltage (V) and output rotational speed (θ) is: 
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Where: 

J is the moment of inertia of the rotor, 
b is the damping ratio of the mechanical system, 
L is the rotor electrical inductance, 
R is the terminal electrical resistance, 

and K is the electro motive force const 

The default thruster model implemented is based on the 
lumped parameter dynamic thruster model developed by 
D. R. Yoerger et al. [7]. 

The thrust produced is governed by: 
Thrust = Ct Ω |Ω| 
Where  

Ω is the propeller angular velocity, 
and Ct is the proportionality constant. 
Simulation of control surfaces is also supported. The 

model used to determine the lift from diametrically 
opposite fins [12] is given by: 
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Where: L fin  is the lift force, 
ρ is the density, 
C L f  is the rate of change of lift coefficient with 

respect to fin effective angle of attack, 
S fin  is the fin platform area, 

e  is the effective fin angle, 
ve  is the effective fin velocity 

 
2) Simple Propulsion Model 

One of the design goals of the simulation system is to 
ensure ease of use. To assist in accomplishing this goal, a 
much simpler model for the propulsion system is also 
provided, in the form of an interpolated look-up table. This 
allows a user to experimentally collect input values and 
measure the resulting thrust force, applying these forces 
directly to the submarine model. 

3) Sensor Models 
The PAL already simulates a number of sensors. Each 
sensor can be coupled with an error model to allow the 
user to simulate a sensor that returns data similar to the 
accuracy of the physical equipment they are trying to 
simulate. Many of the positional and orientation sensors 
can be directly modeled from the data available from the 
lower level physics library.  Every sensor is attached to a 
body that represents a physical component of an AUV. 

The simulated inclinometer sensor calculates its 
orientation from the orientation of the body that it is 

attached to, relative to the inclinometers own initial 
orientation. Similarly, the simulated gyroscope calculates 
its orientation from the attached body’s angular velocity, 
and its own axis of rotation. The velocimeter calculates the 
velocity in a given direction from its orientation axis and 
the velocity information from the attached body. 

Contact sensors are simulated by querying the collision 
detection routines of the low-level physics library for the 
positions where collisions occurred. If the collisions 
queried occur within the domain of the contact sensors, 
then these collisions are recorded.  

Distance measuring sensors, such as echo-sounders and 
Positional Sensitive Devices (PSDs) are simulated by 
traditional ray casting techniques, provided the low level 
physics library supports the necessary data structures. 

A realistic synthetic camera image is being generated 
by the simulation system as well. With this, user 
application programs can use image processing for 
navigating the simulated AUV. Camera user interface and 
implementation are similar to the EyeSim mobile robot 
simulation system [3]. 

4) Environment Model 
Detailed modeling of the environment is necessary to 

recreate the complex tasks facing the simulated AUV. 
Dynamic conditions force the AUV to continually adjust 
its behavior. E.g. introducing (ocean) currents causes the 
submarine to permanently adapt its position, poor lighting 
and visibility decreases image quality and eventually adds 
noise to PSD and vision sensors.  

The terrain is an essential part of the environment as it 
defines the universe the simulation takes part in as well as 
physical obstacles the AUV may encounter.  

5) Error Models 
Like all the other components of the simulation system, 

error models are provided as plug-in extensions. All 
models either apply characteristic, random, or statistically 
chosen noise to sensor readings or the actuators control 
signal. 

We can distinguish two different types of errors: 
Global errors and local errors. Global errors, such as 
voltage gain, affect all connected devices. Local errors 
only affect a certain device at a certain time. In general 
local errors can be data dropouts, malfunctions or device 
specific errors that occur when the device constraints are 
violated.  For example, the camera can be affected by a 
number of errors such as  detector, Gaussian, and salt and 
pepper noise. Voltage gains (either constant or time 
dependent) can interfere with motor controls as well as 
sensor readings. 

Peculiarities of the medium the simulation is running in 
have to be considered, e.g. refractions due to glass/water 
transitions and condensation due to temperature 
differences on optical instruments inside the hull. 



C. API 
The simulation system implements two separate 

application programmer interfaces (APIs).  The first API is 
the internal API, which is exposed to developers so that 
they can encapsulate the functionality of their own 
controller API. The second API is the RoBIOS API, a user 
friendly API that mirrors the functionality present on the 
Eyebot [4] controller found on the Mako. 

The internal API consits of only five functions: 
SSID InitDevice(char *device_name); 
SSERROR QueryDevice (SSID device, void *data); 
SSERROR SetData(SSID device, void *data); 
SSERROR GetData(SSID device, void *data); 
SSERROR GetTime(SSTIME time); 
The function InitDevice initializes the device given by 

its name and stores it in the internal registry. It returns a 
unique handle that can be used to further reference the 
device (e.g. sensors, motors).   

QueryDevice stores the state of the device in the 
provided data structure and returns an error if the 
execution failed. 

GetTime returns a time stamp holding the execution 
time of the submarines program in ms. In case of failure an 
error code is returned. 

The functions that are actually manipulating the sensors 
and actuators and therefore affect the interaction of the 
submarine with its environment are either the GetData or 
SetData function. 

While the first one retrieves the data (e.g. sensor 
readings) the later one changes the internal state of a 
device by passing control and/or information data to the 
device. Both return appropriate error codes if the operation 
fails. 

D. Example 
The following example is written using the RoBIOS 

API [4] and lets an AUV perform wall-following along its 
left side. The submarine parameters, its sensors, the whole 
simulation environment, as well as the simulation settings 
are specified by XML files.  
 
#include <eyebot.h> 

int main() { 
  PSDHandle psd; 
  MotorHandle left_motor; 
  MotorHandle right_motor; 
  int distance, motor_speed; 
 
  /* init the motors */ 
  left_motor= MOTORInit( LEFT_MOTOR ); 
  right_motor=InitDevice(RIGHT_MOTOR); 
  /* init and start PSD, set cont. measurement */ 
  psd=PSDInit (LEFT_PSD); 
  PSDStart( psd, TRUE ); 
  MOTORDrive(right_motor, 50); /* medium speed */ 
  MOTORDrive(left_motor,  50); 
 
  while(1) 
  { distance = PSDGet(psd);  /* dist. to left */ 

 if (distance < 100)      /* too close */ 
   MOTORDrive(left_motor,  90); /* turn R */ 
 else if (distance > 200)      /* too far */ 
   MOTORDrive(right_motor, 90); /* turn L */ 

 else          /* straight with med. speed */ 
 { MOTORDrive(right_motor, 50); 
   MOTORDrive(left_motor,  50); 
 } 

  } 
} 
 

As mentioned above, the actual program is coded using 
RoBIOS as API, however any API could be used. This 
application can be compiled using a common C compiler. 
RoBIOS is designed to work in the simulation as well as 
on the actual robot. Note that for simplicity error checking 
is omitted. 

V. CONCLUSIONS 
We have presented the outlines of a new robotics 

challenge, an AUV competition for both physical and 
simulated AUVs. These systems require numerous 
onboard sensors and real-time navigation and decision 
systems. The AUV competition will be a challenge for 
years to come. 

Our prototype AUV gives a guideline for interested 
parties to build their own AUV, while the description of 
the simulation system gives a preview of the system that 
will be used to conduct the AUV simulation event. SubSim 
offers a powerful, comprehensive, yet easy to use 
simulation system for a variety of applications and users. 
The AUV competition is just one application of the 
simulation system. Due to our design philosophy, SubSim 
offers high extensibility, flexibility and usability for AUV 
simulation. 
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