
..........

Developer Manual

Guide to Library Implementation

1 Content

1 CONTENT..1

2 TERMINOLOGY...2

3 LIBRARY IMPLEMENTATION..3

4 COMPONENT IMPLEMENTATION ..4

2.1 SETTING GRID SIZE AND GRID LOCATIONS ...5

2.2 STORAGE PART ..6

5 COMPONENT GRAPHICAL REPRESENTATION ...7

5.1 OVERRIDING WRAPPER ROTATION AND FLIPPING FUNCTION...9

5.2 EXTENDING ROTATABLEFLIPPABLEWRAPPERPAINTED ...10

6 COMPONENT PROPERTIES ..13

7 COMPONENT TYPES ..14

7.1 WIRE SPLITTER..14

7.2 DIGITAL DEVICE ..16

2

2 Terminology

We use following names to represent standard Java classes:

• String – java.lang.String

• Exception – java.lang.Exception

• Point – java.awt.Point

• Dimension – java.awt.Dimension

• Rectangle – java.awt.Rectangle

• Component – java.awt.Component

• Container – java.awt.Container

• Frame – java.awt.Frame

• Graphics – java.awt.Graphics

• Color – java.awt.Color

• Image – java.awt.Image

• Applet – java.applet.Applet

Also following names are used to represent ReTrO classes:

• Wrapper – sim.Wrapper

• RotatableFlippableWrapperPainted – sim.RotatableFlippableWrapperPainted

• GuiFileLink – sim.GuiFileLink

• GuiEngineLink – sim.GuiEngineLink

• MainWindow – sim.MainWindow

• CentralPanel – sim.CentralPanel

• RunShortcut – sim.RunShortcut

• Grid – sim.Grid

• SimException – sim.SimException

• Junction – sim.lib.wires.Junction

• JunctionList – sim.lib.wires.JunctionList

• WireList – sim.lib.wires.WireList

• Wire – sim.lib.wires.Wire

• BufferedContainer – sim.util.BufferedContainer

• EnginePeer – sim.engine.EnginePeer

• EngineException – sim.engine.EngineException

• Data – sim.engine.Data

• NodeList – sim.engine.NodeList

• EnginePeerList – sim.engine.EnginePeerList

Furthermore, following names are used to represent ReTrO interfaces:

• EngineModule – sim.engine.EngineModule

• SplitterModule – sim.lib.wires.SplitterModule

3

3 Library Implementation

In ReTrO each digital component is represented by a separate Java class. When ReTrO loads a new library

it will first look for files with .lib extension. These files are simple text files that contain list of fully

qualified name for components’ classes.

The format of .lib files is as follows:

RETRO_Library|#Name|#Number|#Class1|#Class2|# … |#ClassN|#

where

• “RETRO_Library” – tells ReTrO that this is a component library

• ‘|’ and ‘#’ – are Wrapper.SEPARATOR and GuiFileLink.BLANK static characters

respectively. ReTrO uses these characters to separate string parameters in the file.

• Name – name of a library that will be shown to user

• Number – number of components in this library

• Class1, Class2, … , ClassN – fully qualified names of components’ classes

Example of library file content is shown below:

RETRO_Library|#Example|#2|#sim.lib.gates.GateAND|#sim.lib.gates.GateOR|#

Note that fully qualified name of a class tells ReTrO all it needs to know about it. For above example, a

class name sim.lib.gates.GateAND tells ReTrO following things:

• Component belongs to Java package sim.lib.gates

• Component class file is GateAND.class

When ReTrO loads sim.lib.gates.GateAND, it will first determine whether package sim.lib.gates is

installed on user’s computer. If it is, ReTrO will load required classes from that package. Otherwise it will

look for them in directory where ReTrO is installed inside /sim/lib/gates/.

In summary – when you implement a new library for ReTrO you should:

1. Supply .lib file that tells ReTrO where to look for new components

2. Supply appropriate .class files to ReTrO

4

4 Component Implementation

All components in ReTrO extend Wrapper class and must implement its following methods:

• public Image getIcon()

Returns an Image object, which is used as an icon for

- button on Component Bar

- component’s property window

Although there is no constraint imposed on image size, it is strongly recommended to use

28x28 pixels image to preserve ReTrO looks.

If icon image is loaded from a file, then getIcon() should call a static function

GuiFileLink.getImage(String fileName) to load it. This method return an Image object

created from a file specified by fileName parameter.

• public Wrapper createWrapper()

Creates a new instance of component to be inserted into circuit model

• public Wrapper createWrapper(Point gridPosition)

Creates a new instance of component and sets its grid position to location indicated by

parameter gridPosition.

• public String getBubbleHelp()

Returns a String object, which is used as a text for

- help bubble message for button on Component Bar

- title in component’s property window

In addition each component must implement a constructor with no input parameters. This constructor is

used by ReTrO to set up initial component’s instance to access above methods.

Components should avoid directly using IO functions so that they can be used in both stand-alone and

applet versions of ReTrO. However, if this is necessary then components can determine whether ReTrO is

running as an applet using static Applet parameter MainWindow.MASTER. This field contains an applet

that is running ReTrO. If it is equals to null then ReTrO is running as a stand-alone application.

5

2.1 Setting grid size and grid locations

It should be noted that Wrapper class is a special type of Component class. ReTrO uses its own grid

coordinates to position and size components. These must be explicitly converted to pixel coordinates so

that Wrapper instances can be displayed on the screen.

Wrapper instances keep track of their grid location and size using two parameters:

1. gridLocation – Point type parameter that holds component’s grid position

This variable can be accessed using Wrapper function getGridLocation()

2. gridSize – Dimension type parameter that holds component’s grid size

This variable can be accessed using Wrapper function getGridSize()

Wrapper has following functions to perform task of coordinate conversion:

• public void setGridLocation(int x, int y)

Updates gridLocation parameter and sets actual Wrapper location using Component method

setLocation(int x, int y).

• public void setGridSize(int gridWidth, int gridHeight)

Updates gridSize parameter and sets actual Wrapper size using Component method

setSize(int width, int height).

By default all components in ReTrO fully occupy their grid cells. However, it is possible to implement

components that partially occupy their grid cells by overriding above functions. This might require the

knowledge of grid cell’s size in pixels, which can be obtained from current active Grid using a following

statement

CentralPanel.ACTIVE_GRID.getCurrentGridGap()

Component grid size may vary depending on its parameters. However, all components should have default

parameter settings and therefore all components should have a default size. ReTrO initializes components

to their default size through Wrapper function

• protected void initializeGridSize()

Sets component size to default value. All components must implement this function.

6

2.2 Storage part

Wrapper automatically handles storage and retrieval of components grid location and grid size.

Components must implement following functions to store any additional parameters with circuit model:

• public int getNumberOfSpecificParameters()

Returns number of parameters to be stored or loaded

• public String getSpecificParameters()

Returns a string representation of component’s parameters with following format

Param1|Param2| … |ParamN|

where

- Param1, Param2, … , ParamN are string representation of parameters

- ‘|’ is Wrapper.SEPARATOR static character. ReTrO uses this character to

separate string parameters in the file representation.

• public void loadWrapper(String[] specificParameters) throws SimException

Initializes component’s parameters from array of strings, which correspond to Param1,

Param2, … , ParamN. This method throws a SimException when these parameters have a

wrong format.

If component does not have any additional parameters to be stored, above function still have to return

some parameters to ReTrO. For example:

• getNumberOfSpecificParameters() might return 1

• getSpecificParameters() might return “null”

Note that in this case, when component is loaded via loadWrapper(String[] specificParameters) its input

variable will be [“null”].

7

5 Component Graphical Representation

Wrapper class extends Container class. This means that Wrapper graphical representation can contain

Component object (buttons, choices, etc) that can be used to interact with the user.

By default components that extend Wrapper can not be rotated and flipped. These components must

implement following graphic related functions:

• public void scale()

This function notifies component that user has scaled the circuit diagram. All necessary

adjustments required to correctly display component on screen are made at this point.

• public void changeColor(Color c)

Graphical representation of components should have some part that can change color to

indicate that component has been selected by user. This function tells component what color

those parts should be.

• public void paint(Graphics g)

Paints graphical representation of component to screen via Graphic object. The format of this

function must be as follow:

public void paint(Graphics g)

{

if(this.isVisible())

{

// Paint procedures

}

}

It is not recommended to draw Image object in this function as it considerably slows down

ReTrO performance. Instead, this function should use drawing functions provided by Graphic

object.

Above functions might require the knowledge of grid cell’s size in pixels, which can be obtained from

current active Grid using a following statement

CentralPanel.ACTIVE_GRID.getCurrentGridGap()

8

Associated with each component is a set of input and output pins. In ReTrO pins are implemented as

Junction object. Each component must implement following functions to handle its pins:

• public boolean canDrop()

Determines whether component can be placed on the grid using static function

boolean Wrapper.canDropJuncion(int gridX, int gridY, int nodes)

where gridX – x coordinates of the pin in grid reference plane

gridY – y coordinates of the pin in grid reference plane

nodes – bus size of the pin

This function returns true if component can be placed on the grid. Otherwise it returns false.

• public void droped()

Places component’s pins on the grid using static function

Junction Wrapper. setPinAt(int gridX, int gridY, int nodes)

where gridX – x coordinates of the pin in grid reference plane

gridY – y coordinates of the pin in grid reference plane

nodes – bus size of the pin

Above function returns Junction object allocated to component’s pin. It is the responsibility of

each component to keep track of its Junction objects.

• public void selected()

Notifies all component’s pins that this component is no longer connected to them using

Junction function removePin().

This function also changes component’s appearance to indicate that it has been selected. It is

recommended to use Wrapper function changeColor(Color.green) to preserve ReTrO looks.

• public void checkAfterSelected()

Checks whether Junction objects associated with component’s pin should be removed from the

grid after component have been selected. This is done by calling static function

void Wrapper.checkPin(Junction pin)

9

Wrapper has two variables that handle rotation and flipping

1. angle – an integer that indicates the rotation angle

2. isFlipped – a boolean that indicates whether component is flipped or not

Rotation and flipping can be implemented in two ways:

1. Overriding Wrapper rotation and flipping function

2. Extending RotatableFlippableWrapper class

5.1 Overriding Wrapper Rotation and Flipping Function

In this method components that wish to be rotated and flipped must override following functions:

• public boolean canFlip()

Indicates whether this component can be flipped

• public void setFlipped(boolean newFlip)

Sets component’s isFlipped to new value

• public void flipHorizontal()

Flips component about vertical axis. This involves adjusting component’s angle and isFlipped

parameters

• public void flipVertical()

Flips component about horizontal axis. This involves adjusting component’s angle and

isFlipped parameters

• public boolean canRotate()

Indicates whether this component can be rotated

• public void setAngle(int newAngle)

Sets component’s angle to new value

• public void rotateLeft()

Rotates component anti-clockwise. This involves adjusting component’s angle.

10

• public void rotateRight()

Rotates component clockwise. This involves adjusting component’s angle

• public void restoreAngleFlipped(int oldAngle, boolean oldFlip)

Restores parameters angle and isFlipped to values prior to component selection. It is

responsibility of each component to keep those values.

When component’s parameters angle and isFlipped are changed, component is responsible to repaint itself

on the grid. Grid class in ReTrO extends BufferedContainer object to speed up its graphical

performance. BufferedContainer provide three functions to handle its screen drawings:

1. eraseComponent(Component comp, boolean update)

Erases comp image from the buffer. This change is redrawn to the screen if update is true.

2. paintComponent(Component comp, boolean update)

Paints comp image to the buffer. This change is redrawn to the screen if update is true.

In addition Grid provide a following function to redraw buffer content on the screen:

• blitWorkplaceToScreen(Rectangle clip)

Redraws the content of buffer bounded by clip to screen. Active grid can be accessed by

ReTrO’s objects through static parameter CentralPanel.ACTIVE_GRID

It should be noted that this method of implementing rotatable and flippable components requires

components to explicitly store any information relevant to rotation and flipping. This also includes angle

and isFlipped parameters.

5.2 Extending RotatableFlippableWrapperPainted

In this method components that wish to be rotated and flipped extend

RotatableFlippableWrapperPainted class. This class implements rotation and flipping as shown on

Figure 1. There are totally eight possible positions that each component can take. These positions can be

completely described using angle and isFlipped parameters.

It should be noted that RotatableFlippableWrapper class handles storage of angle and isFlipped

parameters automatically.

11

(b) flipped modules

(a) normal modules

0o 90o 180o 270o

Figure 1: rotation and flipping of modules.

Unlike normal Wrapper components RotatableFlippableWrapper modules do not have to implement

following functions unless totally necessary:

• public void scale()

• public void changeColor(Color c)

Instead of implementing function paint(Graphics g), RotatableFlippableWrapper modules must

implement following paint functions corresponding to position shown on Figure 1:

• protected void paintNormal_0(Graphics g)

• protected void paintNormal_90(Graphics g)

• protected void paintNormal_180(Graphics g)

• protected void paintNormal_270(Graphics g)

• protected void paintFlipped_0(Graphics g)

• protected void paintFlipped_90(Graphics g)

• protected void paintFlipped_180(Graphics g)

• protected void paintFlipped_270(Graphics g)

Unlike normal implementation of paint(Graphics g) above methods are not required to check whether

component is visible or not before proceeding to paint functions.

12

Instead of implementing function canDrop(), RotatableFlippableWrapper modules must implement

following similar functions corresponding to position shown on Figure 1:

• protected boolean canDropNormal_0()

• protected boolean canDropNormal_90()

• protected boolean canDropNormal_180()

• protected boolean canDropNormal_270()

• protected boolean canDropFlipped_0()

• protected boolean canDropFlipped_90()

• protected boolean canDropFlipped_180()

• protected boolean canDropFlipped_270()

Instead of implementing function droped(), RotatableFlippableWrapper modules must implement

following similar functions corresponding to position shown on Figure 1:

• protected void dropedNormal_0()

• protected void dropedNormal_90()

• protected void dropedNormal_180()

• protected void dropedNormal_270()

• protected void dropedFlipped_0()

• protected void dropedFlipped_90()

• protected void dropedFlipped_180()

• protected void dropedFlipped_270()

In addition RotatableFlippableWrapper modules must implement following function:

• protected void adjustToChanges()

Adjust component’s size, position and any other parameters after component rotation or

flipping. Note that this function is not required to update its changes on the screen – ReTrO

does this automatically.

13

6 Component Properties

Each component can have a property dialog for users to change its parameters. To implement this,

components must override following Wrapper functions:

• public boolean hasProperties()

Returns true if component have a property dialog. Returns false otherwise.

• public Component getPropertyWindow()

Returns a Component object that contains necessary choices and buttons to be displayed on

property dialog

• public void respondToChanges(Component property)

Adjusts component’s parameters based on settings of dialog and buttons of Component

object used in property dialog

Note that Component object used in property dialog must be implemented as a separate class with

appropriate function to retrieve the state of its buttons and choices. This class must override following

Component function so that it can be displayed correctly:

public Dimension getPreferredSize() – returns size of panel in pixels that is necessary in order to

display its continent correctly

Additionally each component can have a set of commands that user can issue to it. These commands are

accessed by users through a pop-up menu, which appears when user clicks the right mouse button on

component. To implement this, components must override following Wrapper functions:

• public int getNumberOfMenuItems()

Returns number of commands implemented by component

• public String getMenuItemName(int index)

Each command is numbered from 0 to N-1, where N is a total number of commands. This

function returns the name of command with number indicated by index parameter.

• public void respondToMenuItem(String itemName)

Respond to command with name indicated by itemName parameter

14

Implementation of component’s property and commands requires overriding of following Wrapper

function:

• public void restoreOriginalProperties()

Restores component’s parameters to values prior to component selection. It is responsibility of

each component to keep track of those values.

7 Component Types

There are two types of components in ReTrO:

1. Wire splitters – combine/split wires and buses

2. Digital devices – produce digital outputs form digital inputs

7.1 Wire Splitter

Although ReTrO allows users to create circuits with buses, at simulation level it only uses single-bit

nodes. During simulation buses are considered as a collection of single-bit nodes.

To avoid confusion ReTrO does not allow wires that carry different number of bits to be directly

connected to each other. Connection of these wires is handled by wire splitters. Like all components wire

splitters have pins implemented as Junction objects. Wire splitters simply interconnect single-bit nodes of

its Junction objects with each other.

Single-bit nodes in ReTrO are implemented as Node objects. Before each simulation ReTrO first groups

all wires directly connected to each other. ReTrO then allocates appropriate number of Node objects to

each of those groups. The result is a set of all single-bit nodes present in the circuit.

Associated with each Node object is a list of Wire and Junction objects that form corresponding node.

Similarly associated with each Junction is a set of Node objects allocated to it.

When ReTrO initially creates nodes from interconnected wires, it ignores the connection pattern of wire

splitters. As a result there might be several Node objects created for the same single-bit node. The function

of wire splitters is to remove this redundancy. This process consist of three steps:

1. Remove redundant Node object from a complete set of all nodes

2. Allocate appropriate Node object to junctions that forms redundant Node object

3. Add wires and junctions that form redundant Node object to appropriate Node object

15

All wire splitters must implement SplitterModule interface with following function

• public void mergeNodes(NodeList nodeList)

Removes node duplication from a complete set of nodes nodeList

Implementation of above function usually uses following functions:

• Node functions

- WireList getWires()

returns list of wires that forms this node

- JunctionList getJunctions()

returns list of junctions that forms this node

- void addWire(Wire w)

add a wire to list of wires that forms this node

- void addJunction(Junction j)

add a junction to list of junctions that forms this node

• Junction functions

- NodeList getNodes()

returns list of nodes allocated to this junction

• NodeList functions

- void removeItem(Node n)

remove node from the list

- Node getItemAt(int index)

returns node located at certain position in the list

- void changeItem(int index, Node n)

replaces the content of the list at certain position with a new value

- int indexOf(Node j)

returns position of a node in the list

• WireList functions

- Wire getItemAt(int index)

returns wire located at certain position in the list

- int getSize()

returns number of wires in the list

16

• JunctionList functions

- Junction getItemAt(int index)

returns junction located at certain position in the list

- int getSize()

returns number of junctions in the list

7.2 Digital Device

ReTrO uses Wrapper objects to model devices and wires on schematic diagrams. During simulation wires

and junctions are converted to Node objects. Similarly digital devices are converted to EnginePeer

objects.

Data in ReTrO is modeled by Data object with following functions:

- boolean getValue()

returns the logical value of data

- boolean isUndefined()

returns true if data is invalid and false otherwise

The exchange of data between EnginePeer objects is modeled by Signal object, which has following

constructor:

Signal(boolean value, double t, boolean isUndefined, EnginePeer source, int pin)

where value – logical value of data

t – time when signal was generated

isUndefined – indicates whether data on signal is undefined

source – component that generated the signal

pin – output pin of source component where signal is generated

Signal that indicates the start of node floating has following constructor:

Signal(double t, EnginePeer source, int pin)

where t – time when signal was generated

source – component that generated the signal

pin – output pin of source component where signal is generated

17

Wrapper objects that model digital devices must implement EngineModule interface. This interface

handles simulation part of digital devices and has following functions:

• public void createEnginePeer(EnginePeerList epl)

Creates EnginePeer objects to represent digital devices. These must be inserted to list of all

EnginePeer objects in simulation epl using its function insertItem(EnginePeer p). Note that each

device can have more than one EnginePeer object.

EnginePeer class has following constructor

EnginePeer(int inputs, int outputs, EngineModule parent)

where inputs – number of input pins

outputs – number of output pins

parent – EngineModule object that created this EnginePeer object

Once EnginePeer object is created, Node objects corresponding to its pins must be assigned. This

can be done using following EnginePeer functions:

- setInputPin(int inPin, Node n)

assigns node n to input pin at position inPin

- setOutputPin(int outPin, Node n)

assigns node n to output pin at position outPin

It is responsibility of each component to keep tracks of Junction object that correspond to its pin.

The list of Node objects allocated to Junction object can be extracted using its function:

NodeList getNodes()

Above function returns a NodeList object that contains allocated Node objects, which are sorted

by their significant position. In other words, the node at the beginning of the list is the least

significant and the node at the end of the list is the most significant. These can be extracted using

NodeList function:

Node getItemAt(int significantBit)

18

• public void evaluateOutput(double t, Data[] in, EnginePeer p) throws EngineException

Evaluate the state of EnginePeer object p at simulation time t. Data at input pins of p at simulation

time t is contained in array in.

Normally this function is called when the data on component’s input pins has been altered.

However, components can scheduled a wake up time that forces ReTrO to call this function again.

This can be done using EnginePeer function:

setWakeUp(double time)

EnginePeer object can schedule three types of signal transactions on their output pins1:

1. Normal transaction

- normalTransaction(int index, Signal s)

schedules signal s at output pin index

2. Clear-all transactions

- setOutputPinValue(int index, boolean v, double t)

schedules valid signal with value v at time t on output pin index

- setOutputPinUndefined(int index, double t)

invalidates data on output pin index at time t

- floatOutputPin(int index, double t)

floats pin index at time t

3. Clear-uncompleted transactions

- clearUncomplitedTransaction(int index, Signal newData)

schedules signal s at output pin index

• public void reset()

This function notifies component that simulation has been stopped. Any required clean up after

simulation are performed at this point.

1 See Section 4.4 of “Hardware Simulation Kit in Java” thesis for more details.

19

• public Wrapper getParentWrapper()

Returns Wrapper object that is managing this EngineModule interface

Note that components can schedule signal transactions and wake up times at any time during simulation.

For example, component can do this when user clicks on it. Note that in this case it is responsibility of

component to keep track of EnginePeer object that it has allocated for simulation. For these purposes the

simulation time can be obtained from GuiEngineLink static parameter using following statement:

RunShortcut.LINK.getRealTime()

When necessary components can repaint themselves on the grid at any time during simulation. Grid class

in ReTrO extends BufferedContainer object to speed up its graphical performance. BufferedContainer

provide three functions to handle its screen drawings:

1. eraseComponent(Component comp, boolean update)

Erases comp image from the buffer. This change is redrawn to the screen if update is true.

2. paintComponent(Component comp, boolean update)

Paints comp image to the buffer. This change is redrawn to the screen if update is true.

In addition Grid provide a following function to redraw buffer content on the screen:

• blitWorkplaceToScreen(Rectangle clip)

Redraws the content of buffer bounded by clip to screen. Active grid can be accessed by

ReTrO’s objects through static parameter CentralPanel.ACTIVE_GRID

