
Eyebot image processing primitives
Petter Reinholdtsen <pere@td.org.uit.no>, 2000-01-17

This document covers image processing functions available in Eyebot RoBIOS version
2.3 internal patch level g. It tries to give the reader a good start to use the available
primitives as effective as possible. It is based on the RoBIOS source code, to make sure
the function descriptions are as accurate as possible.

Introduction

Eyebot image functions handle 4-bit gray scale images and 24 bit color images. There are two defined
image types, available when including "eyebot.h":

#define imagecolumns 82
#define imagerows 62
BYTE image[imagerows][imagecolumns]; /* 5084 bytes */
BYTE colimage[imagerows][imagecolumns][3]; /* 15252 bytes */

The image dimensions are 80 rows and 60 columns with one border row on all sides. The color
images are RGB images with red as byte 0, green as byte 1 and blue as byte 2.

The memory layout of the image types makes this the fastest way to loop thru the image components:

image img;
int row, column;
for (row = 1; row < imagerows-1; row++)
 for (column = 1; column < imagecolumns-1; column++)
 process_pixel(img[row][column]);

Note that pixels coordinates go from 1 to imagerows-2 and imagecolumns-2 inclusive to skip the
border pixels.

This loop might sometimes be faster, but it process the left and right border pixels as well.

image img;
int pos;
for (pos = imagecolumns; pos < imagecolumns*(imagerows-1); pos++)
 process_pixel(img[0][pos]);

The RoBIOS kernel has a number of image processing functions available. I will here group them into
camera, color, grey-scale and LCD display functions. They are part of the Camera (CAM), Image
Processing (IP) and LCD module

In addition to the kernel functions, the libimprov library provides a number of image operations.

Camera functions
#include "eyebot.h"

int CAMInit (int zoom);

int CAMGetColFrame (colimage * buf, int convert);
int CAMGetFrame (image * buf);

int CAMMode (int mode);
int CAMGet (int *bright, int *off, int *cont);

1 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

int CAMSet (int bright, int off, int cont);

Eyebot/RoBIOS currently supports three different cameras; Greyscale QuickCam, Color QuickCam
and EyeCam (color). The first Eyebots used Greyscale QuickCams, while later models used Color
QuickCams. The latest model uses a locally designed EyeCam, as the older QuickCams are no longer
produced, and the specifications for the newer QuickCams are impossible to get from Logitec.

Both QuickCam and EyeCam use the same lenses, and these lenses can be replaced to change
viewing-angle. Currently we have 33, 41, 43 and 47 degree lenses. When changing lens on the
camera, make sure to get the camera back to focus. Focusing is done by moving the lens back or
forward by turning it in the socket. The width of the EyeCam base is 1/6 inch.

The following code will grab one image from the camera:

#include "eyebot.h"

int camversion, resval, resval2;
image img;
colimage colimg;

while (INITERROR == (camversion = CAMInit(NORMAL)))
 OSWait(CAMWAIT);

if (NOCAM == camversion)
 LCDPutString("No camera");
else if (BWCAM <= camversion && camversion < COLCAM)
 resval = CAMGetFrame(&img);
else if (COLCAM <= camversion && camversion < 0x20)
 resval = CAMGetColFrame(&colimg, 0); /* color image */
 resval2 = CAMGetColFrame((colimage*)&img, 1); /* grey image */

if (0 != resval)
 LCDPutString("CAMGet{Col}Frame() failed");

CAMInit() accepts parameter WIDE, NORMAL or TELE, to change the zoom of the camera. This
parameter is used by grey-scale QuickCam only. CAMInit() might fail the first times, and the while
loop make sure the camera is initialized anyway. The version numbers returned from CAMInit() are:

0 Greyscale QuickCam

16 Color QuickCam

17 Eyebot

CAMGetFrame() returns a 80x60 4-bit grey-scale image. The bits occupy the lower 4 bit of an 8-bit
BYTE.

CAMGetColFrame() returns a 24-bit color image if the second parameter is 0, and a 4-bit grey-scale
image if the second parameter is 1. Each grab function returns as soon as the next complete image is
ready. The QuickCam grey scale delivers 20 frames per second. The QuickCam color frame rate is
normally 6.5 frames per second. The EyeCam is stable on 3.7 frames per second, using ~270000
microseconds to grab one frame.

2 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

Two sample 24bit color images taken from the same position. Left is from QuickCam with
wide lens, Right is from EyeCam with narrow lens. Images are 3x the original size.

CAMGet(), CAMSet() and CAMMode() can be used to change the current camera settings.
CAMMode() is used to enable or disable autobrightness in the camera. Disabling autobrightness
currently only works with QuickCam. CAMGet() and CAMSet() is used to change the brightness and
color/grey adjustment parameters. They can currently only be used with the QuickCam. The
CAMInit() parameter is only used on grey scale QuickCam.

Color image functions

Color images are 82x62 including pixel border. The pixels are 24-bit RGB (3 x 8 bit), as fetched from
the color camera.

IPColor2Grey

#include "eyebot.h"

int IPColor2Grey (colimage *src, image *dst);

This function converts a color image to 4-bit grey-scale images. Pixels are converted using the
following approximation (division by 4 is faster then division by 3): grey level = (R+2*G+B)/4.

Converted from color to grey-scale.

There is currently no way this function might fail, so it should always return 0. The function uses
~9200 microseconds on the Eyebot and ~350 microseconds in the simulator.

Grey-scale image functions

Grey-scale images are 82x62 including pixel border and 4-bit grey level values. The lower 4 bit of the

3 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

pixel BYTE are used.

IPDither

#include "eyebot.h"

int IPDither (image *src, image *dst);

Converts every second grey-scale pixel and every second
row to a 2x2 black and white pattern. It starts in upper left
corner (*src)[1][1] and writes the corresponding pattern to
(*dst)[1-2][1-2]. The patterns are given in the table to the
right. The border pixels are not touched.

Converted from grey-scale to 2x2 dithered.

There is currently no way this function might fail, so it should always return 0. The function uses
~4400 microseconds on the Eyebot and ~0.31 microsecond in the simulator.

IPLaplace

#include "eyebot.h"

int IPLaplace (image *src, image *dst);

Edge detection using the Laplace operator on each pixel using a 3x3 pixel mask.

 0 -1 0
result = abs (-1 4 -1)
 0 -1 0

Result of Laplace operator.

Grey level Pattern Grey level Pattern

0-3
00
00

10-12
01
11

4-6
00
10

13-15
11
11

7-9
01
10

4 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

There is currently no way this function might fail, so it should always return 0. This function uses
~21000 microseconds on the Eyebot and ~0.11 microsecond in the simulator.

IPSobel

#include "eyebot.h"

int IPSobel (image *src, image *dst);

Edge detection using the Sobel operator on each pixel using a 3x3 pixel mask.

 -1 0 1 -1 -2 -1
result = [abs (-2 0 2) + abs (0 0 0)] / 3
 -1 0 1 1 2 1

Result of Sobel operator.

There is currently no way this function might fail, so it should always return 0. This function uses
~35000 microseconds on the Eyebot and ~0.42 microsecond in the simulator.

IPDiffer

#include "eyebot.h"

int IPDiffer (image *source1, image *source2, image *destination);

Calculate the grey level difference and store result in destination. The following formula is used for
each pixel:

destination = source1 - source2;
if (destination < 0)
 destination = -destination;

5 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

The result of 'Sobel' minus 'Laplace' operator.

There is currently no way this function might fail, so it should always return 0. This function uses
~8200 microseconds on the Eyebot and ~0.11 microsecond in the simulator.

LCD image display functions

The LCD can display a black and white image with geometry 128x64 or convert a 82x62 grey-scale
image (excluding the border pixels) to black and white before displaying it in the upper left corner of
the LCD display.

LCDPutImage

#include "eyebot.h"

int LCDPutImage (BYTE bwimg[(128/8)*64]);

Write a 128x64 black/white image on the LCD display. Each byte is 8 pixel values. The bytes are
printed left to right, top to botton. The bits in each byte are printed in right to left order. I.e the bits of
the first two bytes in the array are printed in this order: |76543210|76543210|

There is currently no way this function might fail, so it should always return 0. This function uses
~5500 microseconds on the Eyebot and ~20000 microsecond in the simulator.

LCDPutGraphic

#include "eyebot.h"

int LCDPutGraphic (image *img);

Converts and writes a 4-bit gray scale image in the upper left corner of the black and white LCD
display. The border pixels are not written. If the grey level is 0-7, the LCD pixel is inverted. If it is
8-15, the pixel is left as it is. If the LCD is cleared before the image is displayed, this will give a simple
printout of the image.

There is currently no way this function might fail, so it should always return 0. This function uses
~13000 microseconds on the Eyebot and ~20000 microsecond in the simulator.

Image processing speed

Timings are done on 35 MHz Eyebot Mk3 using RoBIOS v2.3g. The simulator ran on Pentium 133
MHz MMX. ms is time in microseconds, ips is iterations per second when run in a loop.

6 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

Simulator Eyebot

Function name ms ips ms ips

CAMGetColFrame() n/a n/a 270000 3.7

IPColor2Grey() 350 2900 9200 110

IPDither() 0.31 3200000 4400 230

IPLaplace() 0.11 9100000 21000 49

IPSobel() 0.42 2400000 35000 28

IPDiffer() 0.11 9100000 8200 120

LCDPutImage 20000 50 5500 180

LCDPutGraphic 35000 29 13000 76

References

Eyebot RoBIOS library documentation, T. Bräunl, K. Schmitt, T Lampart 1998.
http://www.ee.uwa.edu.au/~braunl/eyebot/ftp/ROBIOS/library.html

Eyesim - Eyebot simulator, N. Tay, E. Nichols, G. Ong 1999.
http://www.ee.uwa.edu.au/~braunl/eyebot/sim/sim.html

Digital Image Processing, R. C. Gonzales and R. E. Woods, Addison-Wesley 1992

Changelog

2000-01-17 Removed some spelling errors and corrected the size of the eyecam base.

2000-01-10 First version released to the public.

7 of 7 9/02/00 16:37

Eyebot image processing primitives http://ciips.ee.uwa.edu.au/~pere/mypapers/eyebot-ip/

