
Camera calibration for CIIPS Glory soccer programs 1998/1999

Petter Reinholdtsen <pere@td.org.uit.no>

2000-01-23

1 Purpose of this paper

The image processing functions in the CIIPS Glory
soccer programs for year 1998 and 1999 uses lookup
tables to determine distances. These lookup ta-
bles depends on the cameras physical position, the
servo configuration on the hardware description ta-
ble and the lens view angle. The tables assume a
tilting camera.

The original programs ran on Eyebot robots with
Color Quickcam, and the current tables reflect the
settings which was valid then. The current robots
have different HDT settings, some of them have dif-
ferent lenses and others use different cameras (Eye-
Cam).

This document gives a short description on how
to calibrate the tables. The method was developed
by Birgit Graf for her diploma Thesis.

2 Camera focusing

Before the camera can be used, we need to make
sure the lens is in focus. Focusing is done by turn-
ing the lens in it’s socket. The QuickCam lenses can
be turned right away, while the
EyeCam lenses need to have
a screw on the side unscrewed
before they will move.
The simplest way to focus the
cameras is to connect them to
a PC to see the color images at
full framerate. By using a sim-
ple pie drawing with 5 degree
black and white arcs, focusing

Figure 1: Focus pat-
tern

is done by turning the lense until the blurry center
is as small as possible. Figure 1 gives an example
of this pattern.

3 Lookup tables

The soccer code uses two lookup tables to calculate
different distances and pixel widths. Each table has
tree different settings, reflecting the tree camera an-
gles used; middle=0, up=1 and down=2. The two
tables are used for horizontal and vertical calcula-
tions.

3.1 The horizontal yfact table

The horizontal table yfact[3][imagerows] gives
the multiplication factor for each row to convert
pixels to meters. It can be used to convertmmeters
to p pixels on a given row. campos is the numeric
representation of current camera position.

p =
m

yfact[campos][row]
(1)

This is used to predict the ball width in pixels
when searching for the ball in the images.

It can also be used to convert pixels to meters.
This assumes that the camera is mounted in the
center of the robot, and calculates pixels to the
left or to the right of the robot axes. The field
pixel located at (xpos,ypos) will then be located
my meters to the left or right of the robot.

my =
imagecolumns

2
−1−ypos×yfact[campos][xpos]

(2)
The yfact table is generated using a rectangular

white or light sheet of paper, placed perpendicular
to the view direction. The robot is placed on the
soccer field, and the paper is placed in the upper
center of the image. The camera servo must be
set to the correct angle. Check servos.c for the
correct values.

Make sure the paper is visible in the upper rows
of the image, and that the edges are visible. Take

1



a snapshot. Move the robot closer to the paper.
The paper will now cover rows further down in the
image. Take a new snapshot. Continue with this
procedure until all rows are covered. You will need
tree sets of snapshots, one for each camera servo
setting. To take snapshots I used the ImACam eye-
bot program. This will produce PPM images and
upload them to the PC.

Using these images, you then measure the pixel
width of the piece of paper for each row in the im-
age. This width, p, is then used together with the
paper width, w, to calculate the yfact value, fy.

fy =
w

p
(3)

To measure the pixel width, I used xv to display
the image, ’>’ to enlarge the image and the middle
mouse button to read the pixel width.

3.2 The vertical x2m table

To find the distance to the robot along the view
direction, the soccer programs uses the table
x2m[3][imagerows]. It translates from pixel row
to distance in meters from the camera. To make
this table, the distance to the edge of a sheet of
paper is measured, together with the row number
it appears in. This needs to be done for each row,
and for each camera servo setting.

To find the distance mx from the robot, a simple
table lookup is performed:

mx = x2m[campos][xpos] (4)

4 Interpolation

When the measured values are collected, one can
use various tools to find a formula which closely
matches the measured values. I used Mathematica,
with the help of Thomas Hanselmann, to interpo-
late one reading into a polynomial.

From the dataset, I made a textfile dataXY.txt
with the coordinates (x,y) as s space separated list:
“x1 y1 x2 y2 ...”.

I then used the following Mathematica com-
mands to make the formula. You might have to
adjust the parameters to Fit to generate a more
accurate formula.. The datafile must have all val-
ues on one line to make Mathematica happy.

dataXY = ReadList["data.txt",
{Number, Number},
RecordLists -> True][[1]];

func = Fit[dataXY, {1, x, x^1.1}, x];
ymax = Max[Transpose[dataXY][[2]]];
pOriginal = ListPlot[dataXY,
PlotJoined->True,
PlotRange->{{0,61},{0,ymax}},
PlotStyle->{Hue[0.1]}];

pFit = Plot[func, {x,0,62},
PlotRange->{{0,61},{0,ymax}},
PlotStyle->{Hue[0.6]} ];

Show[pFit,pOriginal]; func

5 The hard way

The best way to do such camera calibration would
be using a mathematical model for the camera, tak-
ing the known properties of the camera and the
servo into account. If we make sure the HDT con-
tains enough information to calibrate the cameras,
the programs should be more generic and adapt
better to changing settings. I hope to find time to
investigate this further.

Appendix A

Complete Postscript file to make lens focus pattern.

%!PS-Adobe-1.0
%%Title: Camera lens focusing sheet
%%Creator: Petter Reinholdtsen <pere@td.org.uit.no>
%%CreationDate: 1999-12-04
%%BoundingBox: 13 14 574 575
%%Pages: 1
% Place this in front of the camera, and change
% focus until the black center spot is as small
% as possible. The camera should then be in
% focus.
/cm { 28 mul } def .00001 setlinewidth
% Center of circle
10.5 cm 10.5 cm translate
% scale 1 to fill page
10 cm 10 cm scale
newpath 0 0 1 0 360 arc stroke
36 { newpath 0 0 moveto
0 0 1 0 5 arc closepath fill 10 rotate

} repeat showpage

2


