
University of Applied Sciences Koblenz
Department of Electrical Engineering

Prof. Dipl.-Inf. H. J. Unkelbach
University of Western Australia

School of Electrical, Electronic and Computer Engineering
Prof. Dr. rer. nat. habil. T. Bräunl

Diplomarbeit

Control for a Biped Robot with
Minimal Number of Actuators

Antonio Pickel

Student # 494902

November 2002 - May 2003

Abstract

III

Antonio Pickel

Abstract

In this thesis, a control for a minimal biped robot is presented. With a height of about

40cm, this robot is quite small, but this is his advantage. Conventional robots used for

scientific investigation are often quite large, placing demands on resources such as

external power supply and require complex handling of both hard- and software aspects.

In contrast, smaller robots are much cheaper, less complex to handle, and require fewer

resources. Therefore, minirobots are investigated in different research areas, for

example the biped walking field. These robots provide the opportunity to scale

developed solutions to larger platforms.

The robot used for this research was the first prototype with this mechanical

construction and was never before programmed and tested. Consequently, the design

and the mechanical construction had to change several times during the course of the

project. The mechanical changes made, took a long time, as is typical for a prototype,

and thus the main focus of this thesis are the mechanical, electrical, and control

engineering aspects. After the design of these parts was finished, the software part could

be implemented for the system.

Acknowledgements

IV

Antonio Pickel

Acknowledgements

First, I like to thank my supervising Prof. H. Unkelbach from my home university,

whose support made it possible to realize this thesis.

I also would like to thank The University of Western Australia, and specially Prof. T.

Bräunl for giving me the opportunity to do my research and write my thesis in his

facilities. Without his offer and assistance, this thesis would not have come into

existence.

Many thanks also to the electronic and mechanical workshop of the UWA, for helping

me to build and change the robot.

Last, but not least I would like to thank Jochen, Jia, Christoph, Siddharth and Norman

for their advice during this thesis, and for the good times we have had working together.

Table of Contents

V

Antonio Pickel

Table of Contents

1. Synopsis.. 1

2. Introduction .. 2

2.1. Why biped robots?.. 2

2.2. Basics of two legged walking.. 3

2.2.1. Gait phases.. 4

2.2.2. Static and dynamic balance... 5

2.2.3. Walking and running .. 7

2.3. Review and research... 8

2.3.1. Legged machines .. 8

2.3.2. Actuators used for biped robots .. 11

2.3.3. Sensors used for bipeds... 13

3. Mechanical design.. 14

3.1. Theory .. 14

3.2. Leg design and mechanism .. 15

3.3. Moving mass system ... 17

3.4. Foot design... 21

3.5. Prototypes and actual design ... 22

4. Hardware and Software.. 24

4.1. The EyeBot .. 24

4.2. Actuators.. 25

4.3. Sensors ... 27

4.4. Software environment .. 30

5. Modelling and Simulation.. 32

5.1. Theoretical analysis of the legs .. 34

5.2. Experimental analysis of the model .. 37

5.3. Choice of a controller for close loop control... 42

5.4. Simulation with WinFACT.. 44

5.4.1. Implementation of the model.. 44

5.4.2. Implementation of a controller ... 45

Table of Contents

VI

Antonio Pickel

5.4.3. Optimisation of parameters ...46

5.5. Realization of the close loop control with C++ ...49

6. Static balancing control ..51

6.1. Centre of mass ...51

6.2. Sensor feedback ...56

6.2.1. Feet feedback...56

6.2.2. Inclinometer feedback ...57

6.2.3. Position feedback of the moving mass..58

6.3. Implementation of close loop control for static balance59

7. Dynamic balancing control ..61

7.1. Zero moment point..61

7.2. Design of a close loop control for a walking gait ..62

8. Software architecture..63

8.1. System components ...63

8.2. Diagram of the process structure...65

8.3. Diagram of the leg control structure ...67

9. Evaluation and future work ..68

10. Conclusion ..70

11. Appendices..71

Appendix A: Figure Index and sources..71

Appendix B: References...73

Appendix C: Faulhaber Specification Sheets ..74

Appendix D: Seika Inclinometer Data Sheets..77

Appendix E: Reflective object sensor Data Sheet ...80

Appendix F: Sensor PCB and Circuit ..82

Appendix G: Dual Motor Drive Data Sheet...83

Appendix H: 8 Channel serial 10 bit ADC Data Sheet84

Appendix I: Added C++ functions..88

Declaration ..92

Acronyms

VII

Antonio Pickel

Acronyms

• ADC: Analog Digital Converter

• API: Application Programming Interface

• CCD: Charged Coupled Device

• CIIPS: Centre for Intelligent Information Processing Systems

• COM: Centre of Mass

• DOF: Degrees of Freedom

• I/O: Input Output

• LCD: Liquid Crystal Display

• LTI: Linear Time-Invariant

• MHz: Mega Hertz

• MIT: Massachusetts Institute of Technology

• MMS: Moving Mass System

• NPCM : Normal Projection of the Centre of Mass

• PCB: Printed Circuit Board

• PID: Proportional, Integral and Derivate (controller)

• PWM: Pulse Width Modulation

• RAM: Random Access Memory

• RGB: Red, Green, Blue

• RoBIOS: Robot Basic Input Output System

• ROM: Read Only Memory

• SDK: Software Development Kit

• TPU: Timer Processing Unit

• UWA: University of Western Australia

• ZMP: Zero Moment Point

Acronyms

VIII

Antonio Pickel

1. Synopsis

1

Antonio Pickel

1. Synopsis

Biped robots may open a field for a new generation of machines. They may one day

replace manpower in areas where dull or hazardous tasks are to be carried out,

autonomously explore the deep-sea grounds or the surface of the Mars and personally

assist people in their every day life. Thus, robotics may be considered as one of the

prospective key technologies of the 21st century.

However, biped robots are typically complex in design, having numerous degrees of

freedom (DOF). This is because of the complexity of the human walk and the desire to

design bipeds that mimic human walking, or even running. Consequently, numerous

motors are used to provide the robot with as much mobility as possible, which tends to

make the biped heavy, expensive and difficult to build up an apt controller. Furthermore,

because of the complex controller, powerful hardware is needed to calculate the

algorithm in real time. For this biped, a planar leg mechanism was constructed, with each

leg actuated by one DC motor. This makes it easier to control even if it has not the

mobility as a complex biped robot.

In the next chapters, I will give an overview over the actual results of the research in this

field so far. I will provide a brief synopsis of the human gait to point out the complete

problem. In addition to this, the next point to mention is the special requirements for the

mechanical construction and the used technologies.

2. Introduction

2

Antonio Pickel

2. Introduction

In general, the stability of walking machines decreases according to the number of legs.

Consequently, at the beginning of the development the only robots that could stand

upright had four or more legs, like their examples in nature. However, the biggest

challenge is biped walking like that of a human being, which was improved over many

centuries of evolution. Since approximately 1980, the research has been more focussed

on biped walking.

2.1. Why biped robots?

The human beings and almost all on land living animals use legs for locomotion.

However not many machines were built using legs for movement. The reasons therefore

are the complex design and control. Nevertheless, the main advantage of waking

machines is that in contrast to wheeled robots, they do not need a customized

environment. They could be able to move in an environment that is only accessible by

human beings. In theory not only walking but also running, jumping, climbing or even

swimming could be implemented. In contrast, wheeled machines need a relative planar

terrain and enough space to avoid obstacles. Bipeds use different support areas for

carrying their weight and getting grip and are in the ideal case as fast and flexible as a

human. Using this flexible support on the ground, a large adaptability is achieved. The

legs can also be considered as an individual suspension system whereby the upper part of

the body moves forward on another trajectory as the feet. Decoupling the legs from the

rest of the body allows carrying payload smooth through a rough terrain. Both types of

robots are designed for a specified environment: The wheeled robots are more efficient

on a planar surface whereas walking machines have an advantage on all other terrains.

2. Introduction

3

Antonio Pickel

The operational area of robots, especially with two legs, is the natural setting of humans.

The human body has, because of his anatomy, an exceptionally manoeuvrability which is

perfect exploited for his locomotion. Thus, he can adapt to a new environment with

minimal effort.

2.2. Basics of two legged walking

To understand the topic of the biped walking an overview of a human model will be

shown. For the reason that most of the humanoid robots use the human body as paragon,

it is suggestive to use the same terminology as for the human anatomy. There are three

basic planes referred to as frontal (or coronal), sagittal and transversal as shown in

Figure 2.1. [1]

Figure 2.1: The three anatomic planes: frontal, sagittal and transversal

2. Introduction

4

Antonio Pickel

2.2.1. Gait phases

Walking is a cyclic movement consisting of two main phases, which alternates on both

legs (see Figure 2.2 and 2.3).

During the double support phase (I), both feet are in contact with the ground. In this

phase, the body has a stable position because of the wide support area on the ground. The

system enters this state with the heel strike (IV) and exits it with the toe off (II)

movement.

During the single support phase, only one foot is in contact with the floor. In this state,

the centre of mass (COM) of the system rotates like an inverted pendulum above the

contact point. Meanwhile the swing leg moves forward (III) to touch the ground again

and enter the other phase.

Figure 2.2: Leg position during one-half cycle

 Figure 2.3: The cyclic phase rotation of biped walking

I II III IV

Right
leg

Left
leg

double
support

double
support
phase

toe
off

swing
phase

swing
phase

heel
strike

toe
off

heel
strike

I

III

II

IV

2. Introduction

5

Antonio Pickel

The COM of a walking human oscillates continuously four centimetres up and down and

simultaneously left and right. The point is located in the hip (see Figure 2.4). For the

development of a walking gait, there are three important parameters (see Figure 2.4): the

step length (d), the step height (f) and the step period [2]. The controller can use these

parameters to stabilize the gait. They also affect directly the speed and the position of the

entire system.

Figure 2.4: Side view of the movement of the legs during a walking gait

2.2.2. Static and dynamic balance

Walking can be divided into two main groups: walking with static balance and walking

with dynamic balance.

During a static walk the normal projection of the centre of mass (NPCM) always stays in

between the boundaries defined by the feet. If both feet are on the ground, the NPCM has

to be within the polygon determined by the outer corners of the biped feet. If only one

foot is in contact with the ground, the NPCM has to be within the area of this foot. While

the movement is slow enough, the system dynamics can be ignored. Static walking

assumes that if the system’s motion is stopped at any time, it will stay in a stable position

indefinitely. However, the speed achieved using static walk is not that high and the

efficiency is far away from the human walking speed.

COM

2. Introduction

6

Antonio Pickel

To introduce the semi-dynamic and the dynamic walk, another terminus has to be

explained. The Zero Moment Point (ZMP) is the point on the ground where the sum of all

moments on the robot is equal to zero. During a dynamic movement, normally this point

has to be within the boundaries of the feet exactly as the NPCM during a static movement

[3].

The semi-dynamic walk is similar to the static walk except short periods of time, in

which the whole system tends to be unstable and the ZMP can exceed the stability region

provided by the feet. The body may be falling during this part of the gait, and unless the

feet are positioned correctly, it could fall to the ground.

A dynamically stable biped, by comparison is one that moves through unstable positions

in its walking gait, and needs to intelligently adjust and plan its movements to remain

stable at any given time. In this walking gait, the ZMP can also move outside the

supported region for a finite amount of time, but is generally in constant movement, thus

the feet are in continuous motion.

Human being and animals rarely use static walk. To achieve better results with respect to

speed and efficiency some kind of controlled instability must be introduced to become

more similar to the paragon of nature.

2. Introduction

7

Antonio Pickel

2.2.3. Walking and running

The locomotion for bipeds can be divided into two main groups, walking and running.

The actual research on this field concentrates principally on walking. The two forms have

very different characteristics, according to the movement. However, the main difference

is the contact of the feet with the ground. During walking at least, one foot is on the

ground at all times, and during the double support phase even two. Whereas while

running only one foot touches the ground simultaneously. Furthermore there are only

short period in which the foot has ground contact followed by a long time span with

ballistic movement.

Running has a few advantages. The most important advantages are the higher velocity

and the high efficiency. Running allows an elastic energy recovery during the jump

phase. Therefore, a running robot must have an elastic mechanism to absorb the kinetic

energy and give it back in the right moment.

2. Introduction

8

Antonio Pickel

2.3. Review and research

2.3.1. Legged machines

“Only if a robot is able to move free in our environment, he will one day be able to be a

real help for human being and carry the name humanoid robot”. With this sentence

Honda’s robot Asimo (Advanced Step in Innovative Mobility) was presented in 2001 to

the world (see Figure 2.5). He was the improved successor of Honda’s P2 and P3 which

were build in the lately 90’s. With a weight of 43kg, he is much lighter than his

predecessors are and that is one of the most important advantages. This robot is the result

of about 14 years of research and approximately 10 prototypes. ASIMO can walk

continuously while changing directions, taking every step smooth and natural. He also

has the ability to climb up and down a flight of stairs [4].

Figure 2.5: The humanoid robot ASIMO

The research of legged machines begun in the early 80’s and the Massachusetts Institute

of Technology (MIT) Leg Laboratory was one of the first in developing a variety of

walking, running or jumping machines.

120 cm

2. Introduction

9

Antonio Pickel

The first Leg Lab robot was the Planar One-Leg Hopper (see Figure 2.6) [5]. It had just

one leg with a small foot. It was designed to explore active balance and dynamic stability

in legged locomotion. It was controlled with a simple three-part algorithm.

Figure 2.6: Planar One-Leg Hopper from the MIT (Raibert, M. H. 1980-82)

Following machines were built to show that actively balanced dynamic locomotion could

be accomplished with simple control algorithms. The 3D One-Leg Hopper (see Figure

2.7), for example hopped in place, travelled at a specified rate, followed simple paths, and

maintained balance when disturbed.

Figure 2.7: 3D One-Leg Hopper from the MIT (Raibert, M. H. 1983-84)

2. Introduction

10

Antonio Pickel

The research group around M. Raibert at the MIT showed that a one legged robot could

stay upright with active balance, using separate control algorithm for hopping and

forward movement. Furthermore, he showed that the jumping-technology could easily be

upgraded to a biped running.

At the University of Western Australia (UWA) at the department of Electrical, Electronic

and Computer Engineering the research group around T. Bräunl had a breakthrough in

1998 with the design of robot called “Johnny Walker” (see Figure 2.8, left) [6]. The robot

used nine servos and an onboard 32-bit Controller. Each leg had 4 degrees of freedom

(DOF) and with this robot, an investigation of different dynamic walking gaits was

possible.

Figure 2.8: Walking bipeds Johnny walker, Jack Daniels and Andy

The main problem encountered on this first prototype was the heavy frame. The

consequence was a heavy robot, which required high torques to move the legs. This

problem was eliminated on another prototype called Andy (see Figure 2.8, right). The

whole design was revised and for better liberty of action, the robot was provided with

five DOF per leg. The result was a much lighter and flexible robot. Actual research is

now taking place on this walking machine with promising results.

2. Introduction

11

Antonio Pickel

2.3.2. Actuators used for biped robots

Walking machines need actuators for leg movement. Usually the actuators provide a

torque to move a joint. This is the cheapest and easiest way this can be done is by using a

simple DC motor. For the dynamic and controller aspects, this is the simplest way to

realize actuation, since the current is directly proportional to the delivered torque of the

motor. On the other hand, configuring a single joint with numerous motors providing it

with several DOF could be very complicated.

Given that a single joint of a human being cannot move more than a maximum angle of

300°, the idea of using servos as actuators is obvious. A servo can provide high torques

despite having a small size. In addition, the positioning is very accurate being able to

reach every angle exactly and to hold this position regardless which torque is acting on it.

The power consumption of such an actuator is nearly the same as for a DC motor.

Nevertheless, the maximum speed of a servo is limited by the gearbox and the speed of

the motor inside and therefore they are not as fast as a motor.

Both actuators can provide a rotary DOF, but for translatory movement without any

gearbox or crank, hydraulic or pneumatic actuators are the better choice. These actuators

like pneumatic cylinder were used by the MIT for their robots for locomotion.

Besides all these actuators, there is research on specially designed actuators for this

application field, which are similar to human muscles. The muscles in a human body

exert a force in a certain direction while being contracted. Joints are often controlled by

contraction of various muscles at the same time. The “Air Muscle” (see Figure 2.9) [7] is

an attempt to use this technology for mechanical systems. The Air Muscle consists of a

rubber tube covered in tough plastic netting, which shortens in length like a human

muscle when inflated with compressed air at low pressure. It has a very high power-to-

weight ratio, as the air-muscle itself has a weight of only 10g. This makes it especially

useful for weight-critical applications. Furthermore, they have an immediate response, so

the movement will be very smooth and natural. They also can be operated when twisted

axially, bent round a corner, and need no precise aligning. The disadvantage of such a

system is the need of additional devices such as control valves or pressure sensor gauges

and of course, the compressed air needed to operate the muscles. If all this must be placed

2. Introduction

12

Antonio Pickel

on an autonomous robot, the robot will consequently be very heavy. Another problem is

the difficult control of such a system. The more DOF the system has the more complex

the control for it will be. Beside these aspects, this system comes as close to the human

muscle as any other system.

Figure 2.9: Different types of air-muscles

2. Introduction

13

Antonio Pickel

a) b) c) d)

2.3.3. Sensors used for bipeds

In order to achieve a dynamic balance for a walking robot, the use of sensors is

inevitable. For a closed loop control, it is indispensable to obtain feedback from the

actual joint position and alterations of the COM. Simplifying, knowing the position of the

different joints, the acceleration and the inclination of the different parts of the system,

the COM and even the ZMP can be calculated.

A variety of different sensors (see Figure 3.1) is used in a biped robot depending on the

desired feedback value. An inclinometer (a) measures the angle of the system attached to

it. The gyroscope (b) is able to deliver a change of orientation of the system.

Accelerometers (c) are used when the acceleration of the system is needed as feedback.

Most bipeds also use micro switches attached at the feet to have a feedback when the foot

is on the ground. Using several pressure sensors (d) distributed on foot surface, not only

the ground contact of the foot is known, but also enough data is available to calculate the

COM.

Figure 3.1: Different type of sensors: Inclinometer a), Gyroscope b), Accelerometer c),
Pressure Sensor d)

From the previous research, it was found that most of the robots are increasing in

complexity and therefore control of the whole system would be more difficult to

implement. Therefore, a simple biped leg mechanism was designed at the School of

Mechanical Engineering at UWA, using just one actuator per leg. Because of this, the

whole construction is much simpler than any other system and it is easier to implement

walking control using just a few sensors as feedback.

3. Mechanical design

14

Antonio Pickel

3. Mechanical design

3.1. Theory

The mechanical design of this biped robot was made by a final year student of

mechanical engineering at the UWA as a bachelor thesis. The student designed the

construction according to calculations made, using statics and dynamics to obtain a model

of the system [8].

For the feet model, a two-dimensional system was enough, so the forces could be broken

up into their rectangular components. The torque was calculated, knowing the force

acting on a determinate point. The following universal equations where adapted to make

the different calculations:

Force: θcos⋅= FFx θsin⋅= FFy

=

x

y

F
F

arctanθ 22
yx FFF +=

Torque: dFM ⋅=

The sum of all forces and torques acting on the system must be zero at every time to keep

in equilibrium:

 ∑ = 0F ∑ = 0M

The equations were applied to this problem and the system was modelled using Matlab to

calculate the different matrices.

The mobility of the system was calculated using the Grübler/Kutzbach Mobility equation

for the planar case and for up to two DOF:

 () 21213 ffnMob −−−⋅= equation 3.1

 n = Number of elements which can rotate with respect to the base
 f1 = Number of joint with 1 DOF
 f2 = Number of joint with 2 DOF

3. Mechanical design

15

Antonio Pickel

3.2. Leg design and mechanism

The different dimensions of the parts concerning the leg mechanism had been calculated

and modelled in Matlab. Figure 3.2 shows a schematic illustration of the leg movement.

Figure 3.2: Schematic illustration of the leg mechanism

This mechanism produces a leg motion using bars, sliders and a crank to provide an

active hip, knee and ankle joints. If link 1 rotates at a constant speed in an anti-clockwise

direction, the slider, which is fixed with a slider pivot close to the middle of the slider,

can force link 3 and 4 to move in a motion similar to a stepping foot.

The total number of moving elements is six: two bars, the crank, the slider, the foot and

the slider pivot. While the number of joint with one DOF is seven, the number of joints

with two DOF is zero. Inserting these values in the equation of Grübler/Kutzbach

(Equation 3.1), the resulting total number of DOF per leg is one.

1
base

Ground

1

2

4

3

1. Crank
2. Slider
3. Upper leg part
4. Lower leg part

Slider pivot

3. Mechanical design

16

Antonio Pickel

A kinematic analysis of the model was performed to estimate the walking path of the

biped. The final dimensions and positions of each part could be optimized using this

model.

After choosing the materials for each part, weight estimation could be done for each leg.

Furthermore, the weight of the rest of the system was estimated, to calculate the

maximum required torque.

The final design of the leg mechanism is shown in

Figure 3.3 (here with the curved foot prototype). To

keep the weight down, the material for most parts

was Perspex (density: 1.18g/cm³). Some components

were chosen to be metallic for reasons of stiffness.

Although, using aluminium, which has a density of

2.71g/cm³, the weight gain was tolerable. Because

humans have a weight distribution of around 32% in

the legs, the robots mass distribution comes close to

this, having about 30% of the total mass in the legs.

The joints for this mechanism had to be

manufactured carefully to minimise friction forces

while moving. However, any undesired movement

from the joint could complicate the whole control for

the robot. Therefore, the aluminium joints in the leg

were made with accuracy and inserted within the

holes of each Perspex part. To fix this joint and

prevent any lateral movement, screws were attached

to the insert from either side. To lubricate the inserts,

plastic grease was applied.

 Figure 3.3: Leg mechanism

3. Mechanical design

17

Antonio Pickel

Motor 1

Motor 2

3.3. Moving mass system

During a biped walk, at least one leg is moved at a time in a pattern to produce a motion.

This pattern modifies the relative position of the links to one another and thus the mass

distribution of the whole system. This means that during a walking gait the COM is in

constant motion and changes its position through unstable position if it is not

compensated. The theory of the balancing of this robot is, having an inertial mass, which

can act as a counterweight. The COM could be shifted in such a way, that any unstable

position is followed by a stable position, predicting the trajectory of the system and

moving the mass before it happens. The role of this mass is to provide some inherent

stability in the robot due his inertia and to generate counter-moments by moving when

required. The moving mass was proposed on the top of the system because of the higher

the inertial mass is above the ground, the larger the change of the COM while moving it

to its limits.

Figure 3.4: First prototype of the moving mass system

3. Mechanical design

18

Antonio Pickel

Motor 1 Motor 2

Different prototypes of this moving mass system were created in order to improve both

stability and control of that part of the system. In the first prototype, (see Figure 3.4) the

moving mass consists of the controller and the battery pack itself. Two DC motors were

used to move the mass to a desired position. Thus, this arrangement had two DOF; One to

rotate and the other to roll the mass. This system had a big disadvantage because the two

movements were not pan-tilt independent and it would have been difficult to implement

software control for such an arrangement.

A schematic illustration of the second prototype is shown in Figure 3.5. The mass was

also actuated by two DC motors and with this arrangement, the two DOF were pan-tilt

independent. However, using this arrangement, the motors had to provide a constant

torque on the weight, to keep the robot upright. The mass could be modelled as a kind of

a two axis inverted pendulum, and therefore the close loop control algorithm would be

quite extensive. The computation time would take to long, because not only the mass had

to be kept upright but also it had to be moved to certain points in real-time, to balance the

robot. The fact that this system was not linear, because the trajectory of movement in

each DOF was a semicircle, also aggravates the real time computation. Furthermore, the

power consumption of this system was unreasonable, having two motors, which had to

provide continuously a high torque, and reaching the limits of one movement, the torque

needed was even higher.

Figure 3.5: Schematic illustration of the second prototype of the moving mass system

3. Mechanical design

19

Antonio Pickel

For the next prototype, the mass itself was changed. The controller was no longer part of

the moving mass system because it would cause problems not only reading the display or

using the buttons when the robot is in motion, but also the connections between the

different parts and the controller would be affected. Therefore, the controller was fixed on

the front plate of the robot (see chapter 3.5). After calculating the COM and the changes

of it needed (see chapter 6.1 for further details), to keep the robot in a stable position, the

moved mass was changed in position and objects. The mass now consisted of the motor,

the battery pack and different mechanical parts needed for the movement. With this

arrangement, we lose one DOF, but at this stage, it was better to see how the system

reacts with this mass and than add another DOF for the moving mass. As shown in Figure

3.6, the system was now linear to the axis in which it can be moved. This would be

greatly advantageous. In addition, the required torque could be reduced, because no mass

needed to be raised. The motor is fitted in a sliding bet (see Figure 3.7), which uses three

ball bearings for a smooth frictionless movement through a notch on the hip plate of the

robot. A pinion gear is fixed on the axle of the motor and in order to move the sliding

bed, a rack is mounted on the upper part of the robot. The movement of the sliding bed is

confined by two screws, which act like a limit stop for it. The actual design of the

counterweight is shown in Figure 3.8. The maximal mass displacement is about ± 91mm

from the centre and the weight of the counterweight is about 360g. The details of this

mass displacement are described in Chapter 6.1.

Figure 3.6: Moving mass system of the third prototype

3. Mechanical design

20

Antonio Pickel

battery

motor sliding

pinion gear

bracket
ball bearings

Figure 3.7: Side view of the sliding bed and the moving mass

Figure 3.8: Actual design of the moving mass system

rack

moving mass

notch

sliding bed

3. Mechanical design

21

Antonio Pickel

3.4. Foot design

The foot design was also changed a few times,

starting with an attempt of a round foot (see Figure

3.9). At the MIT Leg Lab, many robots using

curved or balled feet are able to balance on the

spot. The only restriction to keep in mind is that

the radius of the foot had to be less than the radius

of the curvature of the walking path. However,

during the test, this design causes a few problems.

The control of the balance had to be very fast, to

keep the system stable, because all position where

unstable.

Figure 3.9: Curved foot prototype

An alternative foot was proposed and built in

order to fix these problems. The ground plate of

this passive1 foot design shown in Figure 3.10

is made out of aluminium and the small block is

made out of rubber. The support block is

capable of propping up the robot when the foot

touches the ground and the lower leg leans back

on the block. With this arrangement, the robot

had larger support area and a better control of

the foot having positions where the required

torque is not that high to keep it upright.

Figure 3.10: Actual passive foot

1 The movement of this foot is not independent, because it has only a passive DOF

3. Mechanical design

22

Antonio Pickel

3.5. Prototypes and actual design

According to the previous chapters, the design of the whole robot changed many times.

Therefore, the modelling and the controlling had to be changed as well, in order to adapt

the model and the program to the new hardware. Each modification made improvements

in the stability and the controlling properties. The Figures 3.11-3.14 show the evolution

of this biped robot and the changes proposed and explained in the chapters before.

Figure 3.11: Prototype 1 Figure 3.12: Prototype 2

3. Mechanical design

23

Antonio Pickel

Figure 3.13: Prototype 3 Figure 3.14: Prototype 4

41cm

4. Hardware and Software

24

Antonio Pickel

4. Hardware and Software

4.1. The EyeBot

The EyeBot (see Figure 4.1) is a resourceful controller equipped with the 32-bit

microprocessor 68332 from Motorola. The controller runs at a speed of up to 33 MHz

and has a ROM of about 512kB. The different user programs can be stored in the RAM

with a maximum capacity of 2048kB. For the user interface, there are four free

programmable “softkeys” for user inputs and a Liquid Crystal Display (LCD) with

128x64 pixels for user output. The controller has a variety of ports including serial,

parallel and several I/O pins. The processing capacity of the controller is also sufficient

for most image processing tasks using a CCD colour camera as input, which can provide

32-bit RGB images at a resolution of 60*80 pixels. The ability to operate up to 12 servos

or 4 motors with encoders makes it perfect for experiments with all kind of robots.

Figure 4.1: The EyeBot controller

4. Hardware and Software

25

Antonio Pickel

4.2. Actuators

The actuators used in this robot are conventional DC motors (see Figure 4.2) provided

with gearboxes and incremental magnetic shaft encoders. The gearbox with a

transmission ratio of 54.6:1 provides enough torque to move the legs from every position,

regardless which force is acting on the leg. Ignoring the properties of the gearbox, the

maximum torque is:

NmNmTrT io 1993.073.0005.06.54maxmax ≈⋅⋅=⋅⋅= −− η equation 4.1

The values are taken from the Faulhaber datasheets (Appendix C)

Ti-max= maximum torque input

To-max= maximum torque output

r = gearbox ratio

=η efficiency

Figure 4.2: Faulhaber DC Motor2224R006S with inbuilt gearbox and encoders

The gearbox and the shaft encoders are integrated in the motorcase, so the motor size

does not increase that much. These magnetic encoders are used for indication and control

of both shaft velocity and direction of rotation as well as for positioning. The supply

voltage for the encoder, the DC-Micromotor and the two-channel output signals are

interfaced through a ribbon cable with connector. To connect the motors with the EyeBot,

a small adapter PCB had to be built, because the pinout was incompatible.

4. Hardware and Software

26

Antonio Pickel

0V

6V

0V

6V

0V

6V

0V

6V

0V

6V

0V

6V

t

clock

0%

16%

50%

83%

100%

The EyeBot has a Dual Motor drive onboard (see Appendix G), which can be controlled

via software routines implemented in the BIOS of the robot (RoBIOS). To control two

more motors, an extra PCB with another motor drive has to be attached to the controller,

using the free Servo connectors as I/O and power supply. The output for the motors is

made via a pulse width modulation (PWM) (see Figure 4.3). The voltage output is

modulated using a PWM signal, with a clock speed of 8 kHz or even16 kHz. Using this it

is possible to control the speed of the motor very accurately, because the voltage is

proportional to the speed of the motor.

Figure 4.3: PWM signal at different values

Nevertheless, for an accurate closed loop position control of the motors, the actual current

must be available. The current of a motor is proportional to the provided torque.

Therefore, to maintain a certain position, the current needed must be known and

controlled to provide a specific holding torque. The difficulties concerning this topic are

explained in Chapter 5.

4. Hardware and Software

27

Antonio Pickel

ticks7.9
1°

4.3. Sensors

To keep the robot as simple and cheap as possible, only a few sensors are used at this

stage of development. The main information is provided by the encoders integrated in the

motors (see Figure 4.2). They are two channel magnetic incremental sensors with 64 lines

per revolution (see Appendix C for further details). Consequently, with the gearbox (gear

transmission ratio = 54.6), attached to the motor, 3494.4 ticks mean one revolution of the

shaft. This is a very precise feedback, because the accuracy is about .The

counter can be read out at every point of the user program, using a special function

provided by the RoBIOS.

However, because these sensors are incremental and not absolute, they must be reset at a

defined position to have the absolute position of the feet. Once the feet are in a defined

position, the counter of the encoders can be reset. Therefore, another sensor was needed

to give feedback of the position for calibrating reasons. A small PCB was built, which

was attached on the side plates of each leg. The components of the circuit were on the

bottom of the PCB, whereas the sensor itself was fixed in a socket on the top of the board

(see Figure 4.4). The OPB608B from Optek (see Appendix E for further details) is a

reflective object sensor and consists of an infrared emitting diode and a NPN silicon

phototransistor mounted aside on parallel axes. The phototransistor responds to radiation

from the emitter only when a reflective object passes within its field of view. At this stage

of development, the circuit for this consist of several resistors and a capacitor as low pass

filter (see Appendix F for further details). Nevertheless, if necessary, the circuit could

easily be upgraded, because it was developed with an additional Schmitt-Trigger circuit

after the transistor output, to have a value-discrete output. These sensors were connected

to the digital inputs of the EyeBot and could be read out by a RoBIOS function.

To have a defined mark, which could be identified by the sensor, a slot was cut into the

crank and the sensor was placed in such a way, that it could detect the slot (see Figure

4.5). Now it was possible to program a calibrating routine, in which the motor was moved

to this position and the counters of the encoders reset. After having reset the counters the

position of the feet were absolute. Reading the values of the encoders, the position could

be determined.

4. Hardware and Software

28

Antonio Pickel

slot

PCB with sensor

Furthermore, two inclinometers (see Figure 4.6) where proposed to measure the angle of

the robot. The two sensor where mounted in such a way, that they could provided the

changes of the angle of the frontal plane in respect to the vertical(pitch) and the changes

of the angle of the sagittal plane in respect to the vertical (roll). The sensors N3 from

Seika (see Appendix D for further details) have a maximum measuring angle of ±30°,

which is quite enough for this kind of application. This analog sensor has a voltage offset

of 2,47V and sensitivity of .Thus, the operating range of this output is about

from 2.02V to 2.92V.

These sensors are connected to the analog inputs of the EyeBot. A single chip from

Maxim MAX192 (see Appendix G for further details), integrated on the EyeBot, is used

as analog digital converter (ADC) for these proposes. It has a built-in multiplexer, a T/H

switch and a comparator and, can manage up to eight inputs. It has an accuracy of 10 Bits

and has an internal 4,096V reference. Nevertheless, the time required for the T/H to

acquire an input signal is a function of how quickly its input capacitance is charged. If the

input signal’s source impedance is high, the acquisition time lengthens and more time

must be allowed between conversions. This results as a problem, because at higher

speeds, the comparator was not able to deliver the right value while changing the

channels. If the channel to read stays the same, the value was always correct, but if the

Figure 4.4: PCB with optical sensor Figure 4.5: Side plate of one leg with slotted
crank and optical sensor PCB

°
mV15

4. Hardware and Software

29

Antonio Pickel

channel changes every time, as is the case if more than one sensor is attached to the

inputs, the returned value from the ADC was not reliable. Thus, a software routine had to

be implemented, that waits a certain time, to ensure that the correct data was returned

form the ADC. The details of this software fix will be explained in Chapter 6.2.2.

 Figure 4.6: Inclinometer

4. Hardware and Software

30

Antonio Pickel

4.4. Software environment

The Eyebot can be programmed in assembler or in C/C++. The built-in BIOS, so-called

RoBIOS, provides several C functions to access the different I/O and the connected

hardware. The list of all the C functions integrated in the RoBIOS can be found at [6].

The user programs for the EyeBot are compiled on a PC, running Linux or Windows with

a special for the Motorola 68332 modified version of the open source GNU C/C++

compiler. The program can be written with any kind of text editor and than be compiled

and linked using the special commands of the compiler. Using a serial connection, the

program can be downloaded to the RAM of the EyeBot. Once downloaded, it can be

executed or stored in the ROM of the controller.

However, the compiler had not worked in the past with Windows XP. Nevertheless, the

compiler should run under this operating system to be compatible to future software and

upcoming operating systems.

The main problem was that Windows XP no longer supports real 16-Bit applications.

While running such an application, the operating system simulates an old DOS

environment with other memory distribution and the compiler had problems in allocating

stack memory. The result was a stack allocation error. The original compiler was built in

a real 16-Bit environment, compiling all libraries in this environment, and therefore the

program wants the memory distribution of a real 16-Bit environment. Thus, running in a

simulated environment, the compiler did not have the same conditions and was not able

to compile.

Therefore, the source code of the GNU compiler, including all libraries, had to be

compiled in a new environment similar to the one for Windows XP 16-Bit applications.

Another open source program called Cygwin was able to provide a simulated UNIX

environment under a Windows operated PC. The main part consists of a dynamic link

library (DLL) that acts as a UNIX emulation layer providing substantial UNIX API

functionality. Furthermore, different tools, ported from UNIX, provide a UNIX/Linux

look and feel. After installing this program on a Windows XP machine, it was possible to

compile the source code of the GNU C/C++ compiler under a simulated 16-Bit

environment. Other difficulties were mastered in order to achieve a working compiler.

4. Hardware and Software

31

Antonio Pickel

Furthermore, the modifications for the 68332 microcontroller had to be made to ensure

that the compiled program would operate on the EyeBot. Therefore, all the libraries

concerning the compiling and the linking also had to be adapted.

The new compiler and the new libraries were integrated with the other EyeBot libraries

and header files. To ensure that the compiler would work on different machines, the

compiler was tested on different platforms with the result that it works on almost every

Windows operating system. The different batch files had to be adapted in order to be

compatible to the DOS nomenclature and after having verified the whole bundle, an

installation package for windows machines could be created. The package was created

with the freeware tool Installer2Go and tested on different platforms.

To improve the user-friendliness, the compiler can now also be executed from any Win32

text editor, using specific batch files. After editing the C or C++ files in this Win32

application, the user does not need to leave the application and change to the command

prompt to compile and link the files. The output of the DOS environment, in which the

compiler is operating, can also be logged and displayed in the Win32 text editor. Even the

download can be integrated into a Win32 text editor using a particular batch file.

The effort to rebuilt this compiler was rewarded with a user-friendly SDK that saves time

while programming and makes it easier to work with, because it more similar to other

SDK’s. Furthermore, the ability to run on new operating systems makes it future-proof.

5. Modelling and Simulation

32

Antonio Pickel

5. Modelling and Simulation

The structures and parameters of a system are normally described by mathematical

models. Most of the methods used for the control system technology are based on these

models. Once a model of a specific system is built, the system can be analysed,

synthesized and optimized using just the model of it. If the model is accurate enough, the

simulated controller can be implemented in the system, to create a precise close loop

control of the complex system.

To get information about the structure of the system, there are two different types of

procedures:

The theoretical analysis is based on the physical principles. These are essentially the laws

of conservation of mass, energy and momentum and the laws of dynamic balance. The

parameters itself depend on the physical properties of the system. The main precondition

is a qualitative conceivability of different physical processes in the system. Knowing the

system, the different laws can be applied and the system can be described as a qualitative

model. Once the characteristic parameters of the system values are known, the equation

can be formulated and the system-parameters can determined. In most case, the resulting

model can be simplified and the number of differential equations can be reduced.

Using the experimental analysis, a model can be determined from measured input- and

output-values. Having additional information, a convenient model of the system-structure

can be defined. Then, the parameters can be extracted out of the known input and output

values and the model. Usually, the model must be reviewed and adjusted where required.

The problem while trying to model a complex system like this robot is to manage the

nonlinearity of the system. Most of the methods can only be applied, if the system is

linear. Therefore, most systems must be considered as linear at the operating point and

then the system can be modelled.

5. Modelling and Simulation

33

Antonio Pickel

To construct a model of this robot the complexity of it was reduced. The problem was

simplified to the legs. After having a working controller for the legs, the other parts of the

system could be implemented. In order to achieve an exact model of the legs both

methods explained before where applied and compared. After this, a proper controller

could be simulated and its parameters improved. Finally, the controller could be

programmed and integrated in the main program of the system.

5. Modelling and Simulation

34

Antonio Pickel

5.1. Theoretical analysis of the legs

The main advantage of this method is that the system do not need to exist yet, it can be

applied during the development period. The analysis provides information about the inner

structure of the system and the real state equation. The disadvantage is that the model is

normally very complex if an accurate model is desired. In addition, usually not all

variables can be determined exactly and thus the model will be imprecise.

To start the analysis, the actuator of the whole system is modelled. The actuator for the

legs is a DC motor and therefore the system must be analysed using the model of a motor.

The moment equation describes the mechanical part of the system:

)()()()()(tMtMtMtM
dt

tdJ LFMAtot −−==⋅
ω equation 5.1

=totJ total moment of inertia
=ω angular velocity
=AM moment of acceleration
=MM moment of the motor
=FM moment of friction
=LM load moment

Applying this equation to the actual problem keeping in mind that the system, consisting

of the two dc motors, has two input and two output values, the following equations result:

5. Modelling and Simulation

35

Antonio Pickel

[])()(1)(
11

1

1 tMtM
Jdt

td
TM −=

ω equation 5.2

[])()(1)(
22

2

2 tMtM
Jdt

td
TM −=

ω equation 5.3

=1ω angular velocity of the left leg
=2ω angular velocity of the right leg
=1J total moment of inertia of the left leg
=2J total moment of inertia of the right leg
=1TM total moment of friction of the left leg (111 LFT MMM +=)
=2TM total moment of friction of the right leg (222 LFT MMM +=)

with)()(tuKtM MM ⋅= equation 5.4

and)()(trtM CT ω⋅= equation 5.5

 =MK constant of the motor
 =u armature voltage
 =Cr attenuation coefficient

Assuming that two equal motors have the same motor constant the equation 5.2 and 5.3

can be expressed as follows:

 [])()(1)(
111

1

1 trtuK
Jdt

td
CM ω

ω
⋅−⋅= equation 5.6

 [])()(1)(
222

2

2 trtuK
Jdt

td
CM ω

ω
⋅−⋅= equation 5.7

 1u = armature voltage of the left motor
 2u = armature voltage of the right motor
 =1Cr attenuation coefficient of the left motor
 =2Cr attenuation coefficient of the right motor

5. Modelling and Simulation

36

Antonio Pickel

∫)(1 tω&

1Cr

)(01 tω

1

1
JMK)(1 tω

)(1 tMT

)(1 tM M
−

1u

∫

)(02 tω

2

1
JMK)(2 tω

)(2 tMT

)(2 tM M
−

2u

2Cr

)(2 tω&

According to equation 5.6 and 5.7 the block diagram looks as follows:

Figure 5.1: Block diagram of the two legs

At this point, a theoretical model for both legs was built using the differential equation of

the motor. The next step would be to determine the different constants of the system.

However, the difficulties were that some constants could not be measured, because the

adequate measuring instruments were not available or a calculation of it would be too

time-consuming. Therefore, some constants were approximated and, using the

experimental analysis explained in the next chapter, optimized. Nevertheless, the friction

constant is not constant at all. The force acting on one leg changes depending on the

position of the foot. This fact will be explained and considered further on, when the

controller is designed in the simulation. In addition, the momentum constant is non-

linear and depends on the speed of the motor. Thus, a desired operating point must be

defined and at this point, a linear approximation can be done. The desired motor speed

will be defined in the next chapter having regard to the advantage and disadvantage of the

different speeds.

Another point to be considered is the input voltage. The model illustrated in Figure 5.1

only works ideal, if the input voltage is a continuous value. However, the motor drive of

the EyeBot provides a PWM signal at a high frequency as input voltage for the motor,

which also can have a nonlinear influence on the system. Therefore, this has to be

integrated in the simulation in order to obtain a good model of the system.

cr

MK

5. Modelling and Simulation

37

Antonio Pickel

5.2. Experimental analysis of the model

The advantage of this kind of analysis is that there is no need to understand the physical

interrelationship of the system to obtain a model of the system. Furthermore, the resulting

mathematical model and its transfer function are in most cases of a low order.

Nevertheless, the system must already exist to use this method and it provides no

information about the inner state of it.

To find an appropriate model of the system using the experimental analysis, the system

must be without kinetic energy. At time t=0 a signal uy will be applied to the input [9].

This is equivalent to applying the step function to the input.

)()(0 tEutu yy ⋅= equation 5.8

s
usu yy

1)(0 ⋅= equation 5.9

To identify the structure of the system, the progress of the output)(tx is measured and

this step response is compared with other step responses from known transfer elements.

The transfer function of the system would look as follows:

)(
)()(
su

sxsG
y

S = equation 5.10

For a linear time invariant (LTI) system the input is proportional to the output.

Consequently, only one measurement is necessary to determine the function. However, if

the system is not linear, multiple measurements must be taken in order to obtain enough

information to find a linear approximation of the system [10].

Therefore several measurements with one motor at different speed where taken to achieve

an adequate step response. Only one motor is researched in this chapter, because the

model of the second motor would be equal to the one obtained.

5. Modelling and Simulation

38

Antonio Pickel

A small program was created that generated the step function for the motor and logged all

the data of the output. That means that the motor was abruptly turned on and the leg starts

moving for about 2sec. Meanwhile the position of the motors was determined with the

encoders and the data obtained from the encoder was stored in an array. The sampling

frequency of the system was about 100Hz because the interrupt-function, in which the

program runs, was called every 0.01 seconds. This had to be considered later on because

the controller is slightly different in a sampling system. The logged data was then transfer

with serial connection to the computer and stored in a file. Finally, the file was imported

to Excel and the needed calculations were made. The measurements were taken at a speed

of 20%, 30%, 50%, 70%, and 80% of the PWM. Furthermore, different weights were

applied to the leg in order to change the force acting on the system. All the results were

analysed and for each step response, a transfer function was determined applying the

63%- and the tangent-method. This approximation is normally used for lag dead time

systems and systems with motors as actuators can often be described with such a model.

The constructed model was accurate enough, as the comparison with the theoretical

model will show.

The determination of the transfer function will be shown at the step response at a speed of

80% of the PWM. This point was chosen as the operation point for following reasons.

The system will be fast enough for a dynamic walk, the torque provided by the motor was

high enough to keep the leg in motion albeit the counterforce acting on it, and there was

still a speed reserve if the leg had to move faster in order keep a stable dynamic walk.

5. Modelling and Simulation

39

Antonio Pickel

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5

t

v

s
ticks

01.0

[s]

∞∆x

1T TT

Figure 5.2: Step response at 80% of the PWM with tangent method parameters

The transfer function of a lag dead time system is shown in equation 5.11:

sTTe
sT

k
sG −⋅

⋅+
=

11
)(equation 5.11

 =k proportional gain
 T1 = integral time
 TT = dead time

To obtain the parameters of the transfer function, a different calculation had to be made:

y
xk
∆
∆

= ∞ equation 5.12

 =∆ ∞x delta output after infinite time
 =∆y delta input

5. Modelling and Simulation

40

Antonio Pickel

s
ticks

01.0

The input voltage was 80% of the PWM and the output can be read out of Figure 5.2 with

a value of 85 .The parameter T1, also read out from Figure 5.2 is about

0.039s. The dead time TT is about 0.014s. For further calculations, the unit will be

omitted to provide a better overview.

0625.1
80
85

==k equation 5.13

With these values, the transfer function can be written as follows:

se
s

sG ⋅−⋅
⋅+

= 014,0

02,01
0625.1)(equation 5.14

This is the system transfer function for one leg. The system can now be modelled and

simulated in a software environment. A proper controller can be chosen, and its stability

tested and improved.

Another possibility that was chosen to determine the transfer function of the system was

the use of the software WinFACT. The module Ida from WinFACT is able to

approximate a given step response and calculate its transfer function. Figure 5.3 shows

the step function and the response of the system (both displayed dashed). The step

response of the system shows a periodic disturbance added to the systems output which

has his origin in the different forces acting on the leg while moving. The solid line in

green was the approximation generated by WinFACT. The calculated transfer-function of

the approximation is shown in equation 5.15. The result is quite similar to the one found

using the tangent method. This consolidates the point of view that the dead time of this

system is quite short.

se
s

sG ⋅−⋅
⋅+

= 01.0

02,01
07.1)(equation 5.15

5. Modelling and Simulation

41

Antonio Pickel

 t
[s]

s
ticks

01.0
[%]

x(t) y(t)

Figure 5.3: Step-function, step-response and approximation of it using WinFACT

Having the information of both theoretical and experimental analysis, the whole system

can be simulated with a generated level of accuracy. The unknown parameters from the

theoretical analysis can now be found out, approximating the step-response of theoretical

model to the one of the experimental.

The different controller designs for a close loop control can now be tested and after

finding a suitable design for this special system, its parameters can be optimized.

5. Modelling and Simulation

42

Antonio Pickel

5.3. Choice of a controller for close loop control

Different types of control methods are available. Depending on the application, some are

more appropriate than others are. In this chapter, different controller types advantages

and disadvantages are described in order to explain the reason for the used type for this

particular system.

Like usual for systems with several inputs and outputs, a controller concept at the state-

space is chosen. This powerful tool to design a controller is normally chosen for such

systems because an analysis with the classic methods would result in a high order model

and a complex transfer function. However, the peculiarity of this special system is that it

is a compound of two similar single systems, one for each leg. Only a few parameters

differ. That means that it can be considered as two independent systems. Therefore, a

controller design using classic methods was chosen, simulating two independent

controllers, one for each leg. Furthermore, a simpler controller would also keep the

computation time low.

Having a sampling system, the use of a dead-beat control is suggestive. The controller

can be designed in such a way that at a given time the output has the exact value of the

desired value. The controller transfer function is chosen in a way such, that the poles of

the system will be compensated at a finite time. The minimal time that can be chosen,

depends on the order of the system and the sampling period. Nevertheless, the dead-beat

controller has the problem that it will deliver high values of the correcting variable. If the

actuator is not able to provide such high values, the finite time of the controller has to be

extended. Because the operating point was chosen at about 80% of the maximal output,

the finite time of this controller has to be long, to avoid an output above 100%. However,

such a long control time was not desired and therefore the dead-beat control was

discarded.

Finally, the decision to take a PID-control as the control algorithm was taken. This

controller is comparatively easy to implement and the computation time would be short.

5. Modelling and Simulation

43

Antonio Pickel

Another point to keep in mind is the values to be controlled. The difficulty of this is, that

the speed and the position of the legs needs to be controlled. The only feedbacks provided

by the actuators are the counters of the encoders. From this information, the position and

the actual speed (calculating the difference between two positions) can be extracted.

However, the actual current is not available and that complicate trying to keep an exact

position. The actual flowing current is proportional to the torque provided by the motor.

Therefore, for accurate positioning only a specific torque and no movement of the motor-

shaft is required.

It was discovered, that for the dynamic walking the best way to control the legs is to keep

a 180° phase-shift between the legs. That means, that the movement of one leg,

independent form the actual speed and the force acting on it, has to be at any given time a

half turn behind the other leg. The biped would then have at any given time a defined feet

position, no matter if it is stopped or in motion. Consequently, the control for the

counterweight would be easier, because it has no regard to the actual speed of the legs.

The difficulty of this kind of leg control is that the position has to be controlled using the

speed as the manipulated variable. The controller had to be able to maintain the speed and

phase-shift position of the legs.

5. Modelling and Simulation

44

Antonio Pickel

5.4. Simulation with WinFACT

The simulation of the leg model was done with the module BORIS from WinFACT. The

elements can be easily added, tested and the step response evaluated. Furthermore, the

built controller can be optimized using the different optimizations parameters.

5.4.1. Implementation of the model

First, the model of the theoretical design (see chapter 5.1) is built using the standard

element of BORIS (see Figure 5.4). The desired value is the speed, and it can be altered

using the PWM signal. Thus, the input is the voltage of the motor and the output is the

angular velocity. The constant of the system, specially the friction constant is estimated

knowing the step response from the experimental model. By comparing and

approximating the step response of the model shown in Figure 5.4 with the simulated step

response, the response of the experimental model and all the unknown values can be

determined.

Figure 5.4: Block diagram of the open loop system

5. Modelling and Simulation

45

Antonio Pickel

5.4.2. Implementation of a controller

After having the exact parameters of the whole system, the controller can be

implemented. Figure 5.5 shows the block diagram of the system with a close loop control

for each leg. Two independent PID controllers are integrated, but because they are

controlling identical systems, they have the same parameters. To generate the interaction

between both legs systems, the difference of the positions (taking into account the 180°

phase shift) from each leg was built. After multiplying this value with a constant, it was

given back to the input of each system. Hence, the needed feedback from each system

was applied to the input of both. In addition, a disturbance affecting the output of each

subsystem was added (the disturbance of the real system can be seen in Figure 5.3). This

disturbance reproduces the counterforce acting on each leg. Because of the foot

movement is nearly on an elliptic trajectory, the force acting on it can be estimated as a

sinusoidal oscillation. Therefore, the disturbance was provided by a waveform generator,

which produces a sinusoidal signal. To realize the PWM voltage, the input was provided

by a waveform generator.

Figure 5.5: Block diagram of the close loop control of the system

5. Modelling and Simulation

46

Antonio Pickel

5.4.3. Optimisation of parameters

The parameters of the PID-controller were optimized using different methods. The classic

methods used for this kind of controller are for example the rules from Chien, Reswick,

Hrones, or from Ziegler and Nichols. Furthermore, there are other methods like the

amplitude optimum or the symmetrical optimum. They all have tables on which the

parameters of the controller can be calculated. They used different techniques and diverse

methodology at the frequency domain, to get to those rules.

However, depending on the system, not al the methods can be applied. For this system,

the rules from Chien, Reswick, Hrones were applied. Although, with this scheme, the

controller may tend to overshoot, it was utilized because of its ability to provide a robust

and fast controller for first order systems, even if the system leaves the linearised

operation point. The main thing is that the controller had to be fast, in order to keep the

legs at the desired position even if the speed would temporally be very high. Therefore,

an overshoot was tolerated.

The transfer function of a PID-controller is shown in equation 5.16:

⋅+

⋅
+⋅= sT

sT
ksG d

i
p

11)(equation 5.16

 =pk proportional gain
 =iT integral time
 =dT differential time

Following parameters for the controller were determined using the rules (the unit are

omitted for a better overview):

02.2
014.00625.1

025.02.12.1 1 ≈
⋅

⋅
=

⋅
⋅

=
T

p Tk
Tk equation 5.17

 028.0014.022 =⋅=⋅= Ti TT equation 5.18

 0059.0014.042.042.0 ≈⋅=⋅= Td TT equation 5.19

5. Modelling and Simulation

47

Antonio Pickel

After having applied this method, the parameters were fed to the two controllers of the

simulated system and the systems response was analysed (see Figure 5.6). The red curve

is the left leg, the blue is the right leg and the green is the error position. After 0.1s, the

sinusoidal disturbance for both legs was turned on, with a phase shift of 180° for one leg,

to simulate the different leg movement. The diagram shows that the controller can rapidly

achieve the desired speed of 80 and is able to keep this value stable even if a disturbance

is present.

Figure 5.6: Step response using a close loop control with activated disturbance

The controller factors could be improved by using the optimisation function of

WinFACT. After entering the optimisation parameters, the program was able to improve

the controller parameters. The program uses a genetic algorithm and after a desired

number of generations, it finishes the improvement process. The result is mostly an

enhancement of the controller parameters as the graph in Figure 5.7 shows.

t
[s]

s
ticks

01.0

v

5. Modelling and Simulation

48

Antonio Pickel

Figure 5.7: Step response using the optimized close loop control with activated
disturbance

The system now reacts even faster to changes of the desired value. Now the rise time is

nearly half of the time as it was before optimizing. Furthermore, the disturbance

compensation still works accurately enough.

The optimized parameters for the PID controller are finally:

95.3=pk 015.0=iT 005.0=dT

s
ticks

01.0

v

t
[s]

5. Modelling and Simulation

49

Antonio Pickel

5.5. Realization of the close loop control with C++

After having built a precise controller for this model, it could be converted into a

software control algorithm. Therefore, the continuous system has to be transformed into a

sampling system.

Consequently, the controller itself has to be transformed. The common equation for an

analog PID-controller is shown in equation 5.20

⋅++⋅= ∫ dt

tdx
Tdttx

T
txkty d

dd
i

dp
)(

)(1)()(equation 5.20

 =dx error value

Converting the continuous values to discrete values and the integrals and differentials

into differences, the algorithm looks like follows:

⋅+⋅

+−−

 +⋅+= −−− 2,1,,1 211 kd

d
kd

d

i
kd

d
pkk x

T
T

x
T
T

T
Tx

T
T

kyy equation 5.21

 yk = actual output
 yk-1 = output one step previously
 =kdx , actual error value
 =−1,kdx error value one step previously
 =−1,kdx error value two steps previously

T = sampling time

During desired-value steps, the differential component of the algorithm can achieve high

values that can lead to oscillations of the whole system. Thus, an algorithm, which only

acts on the desired value and not on the error value can minimise this. That means that for

the D- component of the algorithm, xd is substituted by the desired value x. Equation 5.22

shows the modifications.

 +⋅−⋅−⋅+−⋅+= −−−−− 212,1,,1 2 k

d
kk

d
kd

i
kdkdpkk x

T
T

xx
T
T

x
T
Txxkyy equation 5.22

5. Modelling and Simulation

50

Antonio Pickel

In the program all the needed variables were added and initialized, and a function

feetcontrol was created. An extract of the function is shown below, including the data

acquisition, the calculation of the needed values and the calculation of the outputs for the

motors. This control function was called in an interrupt routine every 10ms (for further

details see Chapter 8). A few values had to be adapted or modified, in order to improve

the controller properties when the system is far away from the operation point, and

therefore nonlinear. At this stage the algorithm comprises only the P- and I- components

of the controller to avoid high overshooting provided by the D-component.

Nevertheless, the result of this algorithm was that the legs of the robot keep moving at a

desired speed and at the desired phase shift, regardless the forces acting on the leg. If the

counterforce was for any reason to high for the motor to keep the speed and the leg was

stopped, then the other leg stopped immediately, because in order to keep the balance of

the robot, the position takes priority over the speed of the legs.

 // get inputs
 p_l = QUADRead(qH[0]);
 p_r = QUADRead(qH[1]);

 // get speed
 s_l = (p_l_old - p_l)*5 / SCALE;
 s_r = (p_r_old - p_r)*5 / SCALE;

 // error position
 e_p_l = (p_l_old - p_r_old);
 e_p_r = (p_r_old - p_l_old);

 // error speed and error position
 e_s_l = w_s_l - s_l - (e_p_r * e_pp); // clickspersec
 e_s_r = w_s_r - s_r - (e_p_l * e_pp); // clickspersec

 // calculate outputs
 o_l = (o_l_old + Kp *((e_s_l- e_s_l_old) + (c_1 * (e_s_l_old))));
 o_r = (o_r_old + Kp *((e_s_r- e_s_r_old) + (c_1 * (e_s_r_old))));

 // outputs to motor
 MOTORDrive(mH[0], - (Round ((o_l<100) ? ((o_l>0) ? o_l: 1):100)));
 MOTORDrive(mH[1], - (Round ((o_r<100) ? ((o_r>0) ? o_r: 1):100)));

 // variables to old
 p_l_old = p_l;
 p_r_old = p_r;

 o_l_old = Limit ((int)(o_l),100, 0);
 o_r_old = Limit ((int)(o_r),100, 0);

 e_s_l_old = e_s_l;
 e_s_r_old = e_s_r;

Code 5.1: Extract from the PI-control algorithm

6. Static balancing control

51

Antonio Pickel

6. Static balancing control

6.1. Centre of mass

After a suitable control of the leg movement was programmed, the program for the total

control system could be designed. First, a static balancing control was proposed. Only if

the system was able to maintain a stable position, regardless which forces were acting on

it, dynamic control was suggestive. A very important point to keep the balance of a biped

robot is to know where the actual centre of mass is. The static stability can than be

measured from the system’s kinematic configuration. The static stability margin (SM) is

the shortest distance between the projected centre of mass of the system and the

boundaries of the support polygon formed by the convex hull of the supporting feet [11].

The principal defects of static stability measures, though, are that they do not take into

account velocity, inertial effects, and the influence of the swinging legs and their future

ground contact.

To determine the exact position of the COM, measurements with different positions of

the counterweights were made. The results of these calculations were also used to change

the design of the robot and to determine the convenient weight of the moving mass and

the adequate position of it.

To calculate the COM of any given object the density distribution and the dimension

must be known.

∫
∫ ⋅

=
dxxm

dxxmx
xs

)(

)(

∫
∫ ⋅

=
dyym

dyymy
ys

)(

)(

∫
∫ ⋅

=
dzzm

dzzmz
zs

)(

)(
 equation 6.1

Most of the objects have homogeneous density or at least it can be approximated so,

which simplifies the calculation (see Equation 6.2)

V
Vx

xs
∑ ∆⋅

=
V

Vy
ys

∑ ∆⋅
=

V
Vz

zs
∑ ∆⋅

= equation 6.2

6. Static balancing control

52

Antonio Pickel

For easier calculations, the equations were adapted to areas (see equation 6.3), in order to

calculate the positions of the COM at the frontal plane and the sagittal plane separately.

A
Ax

xs
∑ ∆⋅

=
A

Ay
ys

∑ ∆⋅
=

A
Az

zs
∑ ∆⋅

= equation 6.3

 Table 6.1: Measured weights for the prototype 4

The individual parts of the robot were weighed (see Table 6.1) and the COM of each part

was calculated. This allows, the entire COM to be calculated. The calculation were made

using Excel. Drawings of the frontal and sagittal plane of the prototype 4 were made at a

scale of 1:2, and added to the graphs, in order to have a better overview of the location of

each point. By moving different parts of the system or changing their weight, it was

possible to view the alterations of the position of the COM instantly, without the need to

test the real system. This saved not only time but also mechanical work, and the prototype

could be directly adapted to the calculated and optimised system. It was also possible to

see the effect of the moving mass system. The calculations were also made for the

moving mass system moved to the left and right limiter to figure out the displacement of

the COM.

Part Material Quantity Single Mass [g] Total Mass [g]

Motor 3 130 390

Eyebot 1 238 238

Foot Aluminium 2 32 64

Battery + bracket 1 160 160

Cograil Steel 1 138 138

Cogwheel Steel 1 22 22

Motor bracket Aluminium 1 72 72

Optical sensor 2 6 12

Inclinometer 1 24 24

Side plate Perspex 2 38 76

Hip plate Perspex 1 92 92

Leg Mechanism Perspex + Aluminum 2 58 116

Controller bracket Perspex 1 20 20

Total Mass 1424

6. Static balancing control

53

Antonio Pickel

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

Individual COM
Entire COM
Displaced COM

[cm]
x

[cm]

y

Figure 6.1: Graph of the frontal mass distribution and COM position (scale 1:2)

6. Static balancing control

54

Antonio Pickel

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12[cm]
z

y

[cm]

Individual COM
Entire COM

Figure 6.2: Graph of the sagittal mass distribution and COM position (scale 1:2)

6. Static balancing control

55

Antonio Pickel

As Figure 6.1 shows, the COM can be moved about 0.75 cm in each direction using the

moving mass. The COM can be displaced in such a manner, that the NPCM of it is in

between the support area of a single foot. That means that the whole robot could be

balanced on a single foot if this is needed.

The Figure 6.2 shows that the mass distribution was designed in such a way, that the

NPCM is nearly always in between the support area of the foot. If necessary, the position

of the battery bracket can be changed forwards or backwards in order to alter the COM in

the Z-axis.

After knowing the position of the COM, the control for the system could be designed to

keep this point in between the support area. Thus, several sensor feedbacks had to be

considered, processed and interpreted the right way for an apt close loop control.

Once the COM of the system is known, the relation between this point and the angle of

roll could be determined. As the angle of roll stays in direct relation with the position of

the COM at the sagittal plane, this value could be easily used to control the moving mass,

because a real time computation of the actual COM would take a lot of computation time

and this angle could easily be provided by an inclinometer. The advantage of this method

is, that enough computation time is still available.

6. Static balancing control

56

Antonio Pickel

6.2. Sensor feedback

The various sensors used with this robot are mentioned before in chapter 4.3. In this

section, a short overview of the signal input and signal processing is provided.

6.2.1. Foot feedback

As mentioned in Chapter 4.3 two different sensor feedbacks were available from the legs.

The main information is provided by the built-in encoders of the motors. Each motor uses

two of the 16 available TPU channels of the 68332 microcontroller, to allow for

bidirectional measurement. The number of ticks is stored in an array, which can be

retrieved via a RoBIOS function. The accuracy of these counters is very high, and thus

makes them suitable to determine not only the actual position but also the actual speed of

each leg mechanism, by means of finite difference approximation.

On each leg an optical sensors was attached similar to those described in Chapter 4.3.

This sensor was attached to the EyeBot via the digital I/O pins of it. The signal could be

obtained by using another RoBIOS function. The function reads the entire low-level I/O

latches, and the user has to mask out the bit of the desired channel to acquire the actual

value. However, these sensors were only needed while the calibration of the legs was in

progress. A function was created, which comprises the whole calibrating process. This

function is called before starting the interrupt function (see Chapter 8). For an accurate

calibration, each leg was moved slowly and separately and the optical sensor was

monitored. When the slot in the crank passes through the sensor, the encoder counters

were reset. The exact position of the legs was now available at any given time.

For a static balance control of the robot, the exact position of the feet was crucial. The

feet position had to be kept before the moving mass system could be controlled to change

the total COM of the system. To keep the exact position of the feet, the controller for the

feet, described in chapter 5 was fed with the desired value 0 and the actual position of the

feet was read out. Supplying the motors with the controller-calculated PWM signal, the

motor provides just enough torque to maintain the actual position.

6. Static balancing control

57

Antonio Pickel

6.2.2. Inclinometer feedback

In Chapter 4.3 the purpose of the inclinometers was explained. Several difficulties were

encountered because the inclinometers are attached to the analog input of the EyeBot. To

obtain a reliable value of the inputs while changing the channel, a certain latency time

had to be implemented. A function was created which returns the value of the desired

input. The function waits the required time, before the value is read and returned. This is

realized by reading the input more than once and doing this until it is ensured that the

ADC delivers the right value.

For a better overview of the actual position, using the inclinometer values, the actual

pitch and roll angle was displayed on the display of the EyeBot. The angle was calculated

in a function especially programmed for this, because the inclinometers only provided an

analog signal, which was stored in a variable. This routine calculates the middle of

measurement range, estimates this as 0°, and multiplies this value with the digit to degree

ratio of the inclinometer. Until the inclinometer was not fixed rigidly to the robot, a

calibrating function was programmed to determine the point were the angle was exactly

0°. Furthermore, a graphical representation in form of a slider, which moves from side to

side according to the actual angle of the robot, was shown on the display to have a coarse

overview of the value.

6. Static balancing control

58

Antonio Pickel

6.2.3. Position feedback of the moving mass

To have the actual position of the moving mass, the encoder for this motor was used. As

mentioned before, these sensors are incremental and not absolute. Hence, a function was

programmed to calibrate the moving mass before starting the control, because no sensors

were attached at the limiters, which could provide the information that the counterweight

has arrived at the maximum position. The function was called before the interrupt

function was started (see Chapter 8). In this function, the moving mass is moved slowly

to one end and the actual speed is computed. If the actual speed is zero, the mass has

arrived at the limiter. Then the counter is reset and the mass is moved to the other end

until the speed is again zero. Finally, the actual value of the counter is divided by two and

this value is the centre of the total movement. The mass is moved to this position and the

counter is reset again. At this moment the mass is located in the middle, the counter is

zero and the function exits returning the value of the maximal movement in both

directions.

Now a closed loop control for the mass system was easy to implement, since the system

was symmetric and the zero value of the counter was definitely at the centre. The actual

position was also displayed on the EyeBot screen using a slider with a cross to represent

the mass. This offers a better overview for the user and the certainty that the real position

coincides with the calculated position.

6. Static balancing control

59

Antonio Pickel

6.3. Implementation of close loop control for static balance

After having initialized and calibrated the various parts of the robot, a proper control

algorithm could be designed and implemented. For the foot movement the control was

already finished and only the desired had to be set to zero. The position was read and this

position was maintained using the control algorithm for each leg. The initial position of

the feet was irrelevant, because after once having calibrated the feet, the position is

refreshed instantly before the controller starts.

For the moving mass system, a controller had to be added in order to use the values of the

inclinometer that supplies the roll of the biped robot. As the values of the inclinometers

are analog, they can be easily stored and processed.

Two functions were added to the project concerning the moving mass. The first function

WeightMove is for positioning, and can be used by any other function just to move the

mass to a defined position. The function needs the position to move to, the desired speed

to move at, and the maximum positions to which the mass can be moved in both

directions (this value is provided by the calibration function of the moving mass). The

function drives at the desired speed toward the desired point and while getting close to

this point, the speed is reduced until arriving at this point. This function is a compromise

between speed and accuracy. If the time to move to a certain position has to be short, the

speed has to be high. However, the faster the mass is, the harder it is to achieve precisely

the desired position, because of the high kinetic energy the mass possesses. Thus, the

speed is also an input of the function.

The other function is the controller for the moving mass system. For a static balance, a

simpler controller was conceptualized, for the reason that the movement did not need to

be as fast as for dynamic control. The accurate position of the mass was also not crucial,

because every movement of the mass produced oscillations on the entire system and this

was undesired. Hence, every needless movement was avoided and only if the system was

getting unstable, a movement was taken into consideration. The easiest way to realize

such a control was to build up a set of rules that look quite similar to set of fuzzy rules.

As shown in example Code 6.1, depending on the actual angle of the system, the function

6. Static balancing control

60

Antonio Pickel

WeightMove is called with different parameters. For small angles (<2°) the controller

does nothing in order to avoid an unnecessary movement and resulting vibrations. The

parameters needed for this function are the actual angle of roll and the maximum position

in which the mass can be moved in both directions. The second value is needed to avoid

the movement against the limiter. If the mass has reached the limiter, the motor will not

try to move further on.

void WeightControl (double angle_lr, int max)
{
 // rules for weight movement for static balance

 if (angle_lr > 2.0 && angle_lr <3)
 WeightMove (QUADRead(qH[2]) - 150 , max, 50);
 if (angle_lr > 3 && angle_lr <5)
 WeightMove (QUADRead(qH[2]) - 500 , max, 70);
 if (angle_lr > 5 && angle_lr <7)
 WeightMove (QUADRead(qH[2]) - 1000, max, 80);
 if (angle_lr > 7)
 WeightMove (QUADRead(qH[2]) - 2000, max, 100);

 if (angle_lr < -2.0 && angle_lr > -3)
 WeightMove (QUADRead(qH[2]) + 150 , max, 50);
 if (angle_lr < -3 && angle_lr > -5)
 WeightMove (QUADRead(qH[2]) + 500 , max, 70);
 if (angle_lr < -5 && angle_lr > -7)
 WeightMove (QUADRead(qH[2]) + 1000, max, 80);
 if (angle_lr < -7)
 WeightMove (QUADRead(qH[2]) + 2000, max, 100);
}

After implementing these functions in the project, the controller function for the mass

was added into the interrupt routine (see Chapter 8). The result was a very stable

balancing of the robot, once the different parameters were adapted and timing problems

were overcome. The robot can balance on different inclined surfaces regardless of the

feet actual position. Even if an external force is acting on it, the robot is able to keep

balance until a certain point. Slow changes of the forces acting on the system can be

compensated very well, though for very fast changes, the controller still has to be

improved.

Code 6.1: Rules for weight movement for static balance

7. Dynamic balancing control

61

Antonio Pickel

7. Dynamic balancing control

7.1. Zero moment point

An often-used stability criterion for dynamic balancing is the usage of the ZMP. As

mentioned before, it is the point on the ground where the sum of all moments is equal to

zero. The ZMP can be calculated knowing the gravity of the whole system and the

weight, position, and the acceleration vector of the different point-masses [12]. If the

acceleration equals zero, the ZMP has the same position as the NPCM. As it is for a

stable balance with the COM, the ZMP is constrained to lie within the ground support

polygon to avoid the robot falling while moving. While both feet are in contact with the

ground, the polygon is determined by the outer corners of the feet. During the single

support phase of a walking gait, the support polygon is provided only by the one foot

with ground contact. As the system becomes unstable, this point will lie on the boundary

of the support polygon. While performing a dynamic walk, this point can lie outside these

boundaries for shorter periods, but has to return into a stable position to restore the

balance of the system.

7. Dynamic balancing control

62

Antonio Pickel

7.2. Design of a close loop control for a walking gait

As realized in chapter 7.1, the ZMP provides enough information to build a close loop

control for the robot walking gait. However, the calculation of the ZMP is very

computationally intense. Thus, a real-time computation on the controller itself is beyond

question. This would make the movement too slow and the computation time would

nearly be totally consumed by the algorithm. As done before for the COM, using the

relationship between the angle and the position of the COM, a sensor like an

accelerometer could be used to watch the acceleration of the COM and approximate the

actual position of the ZMP.

At this stage of development, the robot was not tested under these conditions, because of

time limitation. In addition, an accelerometer was not tested on this robot. Nevertheless,

the next step to go would be to implement another sensor and investigate the relationship

between the actual acceleration supplied by this sensor and the position of the ZMP. If

this is established, an appropriate control algorithm could be designed using the same

methods applied for the static balance. Finally, the design of the moving mass system

could be adapted, in order to provide the system with another DOF, and the designed

controller could be implemented in the existing software architecture.

8. Software architecture

63

Antonio Pickel

8. Software architecture

In this chapter a brief overview of the software functions and the system architecture is

given. From the flow charts, the calling sequence and the relationship between the

functions are visualized.

8.1. System components

Starter & main
program

RSinit RSpaintRScali RSmath RScontrol

Figure 8.1: Diagram of the project structure

As Figure 8.1 shows, there are six different main software modules. Up to now, the

different modules contain the functions that can be called from any other function. Error

management is also included in each function to intercept any errors during these phases

and report these to the user, using the display as an interface. In the future, it is better to

embed these functions in classes, in order to achieve a better protection of the private

segments of each function and achieve a better interaction between the different modules.

8. Software architecture

64

Antonio Pickel

The RSinit module comprises functions to initialize and release the motors and the

encoders. RScali provides functions to calibrate the different elements of the robot such

as the legs, the inclinometers and the moving mass system. The RSmath module includes

additional functions for specific calculations such as round, limit or even a fast sinus and

cosines calculation using a look up table. RSpaint offers several supplementary functions

for displaying objects like circles or crosses on the LCD of the EyeBot.

8. Software architecture

65

Antonio Pickel

8.2. Diagram of the process structure

Figure 8.2: Flowchart of the actual process structure

no key
pressed

Start

Initialize IR, motor, encoder,
variables

Calibrate moving mass system

Calibrate legs

Calibrate inclinometer

Initialize display features and
menu

start interrupt
(called after every 10ms)

calculate and display actual angle
and moving mass position

if key pressed
store value

acquire actual leg position

start weightcontrol and hipbalance

start feetcontrol

if key 4 or
IR Stop pressed?

release IR, motor, encoder

Stop

no

yes

key 1 pressed

key 2 pressed

8. Software architecture

66

Antonio Pickel

Figure 8.2 shows the actual program sequence, with two independent controller-

applications that the user can chose between by using either the soft buttons or the IR

control unit. First, all needed systems are initialized and calibrated. After this, the

interrupt function is started. The important values are displayed on the screen and

refreshed every 10ms. The user can choose between the leg movement and the static

balance control. The leg movement only uses the leg controller at a desired speed of 80%.

This application is to be upgraded, because in the future it should comprise the dynamic

control, which means an additional controller for the moving mass system. The static

balance control, as mentioned in Chapter 6, uses the leg controller and another controller

for the moving mass system.

8. Software architecture

67

Antonio Pickel

8.3. Diagram of the leg control structure

Figure 8.3: Flowchart of the leg control algorithm

To give a better overview of the leg control algorithm, Figure 8.3 shows the detailed

sequence of the executions of the different elements. This chart is just a general idea of

how the sample algorithm is integrated in the system. The actual sequence varies a little,

because other supplementary functions have been added. The added functions have been

omitted in Figure 8.3 in order to minimise complexity.

Start

Initialize the parameters
of the controller

Start interrupt
(called ever 10ms)

acquire leg position

Calculation of the actual
speed and error values

Execute the PI-
algorithm

store recursive values

Output the values to the
motors

interrupt time
expired?

yes

no

9. Evaluation and future work

68

Antonio Pickel

9. Evaluation and future work

The designed close loop control algorithm for the leg movement is efficient and fast. The

result is satisfying and the algorithm does not take much computation time, so that

enough time is available for other applications. The controller for the moving mass

system for the static balance also is kept manageable and it seems to perform better than

expected. At this point, for the static balance of the robot only a few adaptations had to be

done, in order to improve the control.

Concerning the dynamic control, there was not enough time to design such a software

control algorithm, because a lot of time was spent not only on the development of the

mechanical part, but also designing and testing the different sensors. However, using the

current mechanical design this control would not properly work. This means that further

improvements have to be done regarding the moving mass system and the foot design.

Having only one DOF for the moving mass would cause many problems if the system

tends to fall forwards or backward while performing a walking gait.

With references to the foot design, this could be improved by using a spring for returning

the foot to a reference position, during the period where the leg is not in contact with the

ground. This could also be realised by placing another rubber block in front of the ankle

joint, limiting the movement of the passive foot.

Weight reduction is also a point to keep in mind while improving the system. The weight

of the current design could be reduced without loosing the stiffness and robustness of the

frame design by removing excess material.

9. Evaluation and future work

69

Antonio Pickel

The filter circuit of the analog sensors also needs to be improved, since the software

control of the robot is a sampling system and aliasing has to be avoided. At this point, a

capacitor is connected at the output of the inclinometers as a simple low pass.

Nevertheless, in order to ensure that the right value is read by the system a more complex

filter has to be added, whose frequency is at least the double the sampling frequency of

the controller.

Until now, the structure of the software was kept as simple as possible, because the

hardware changed several times and the program had to be adapted every time. As future

work, the software part has to be enhanced. The functions have to be encapsulated in

classes and additional error management has to be included.

10. Conclusion

70

Antonio Pickel

10. Conclusion

In this thesis, I presented the close loop control I developed for a biped robot with

minimal number of actuators. At the moment, the project is still not finished and different

elements still need to be changed and improved. For static balance, the control was

finished, but taking into account the development time of the mechanical part, the

dynamic control and finally the dynamic walking could not be finished during my

research.

Several methods from different fields of electrical engineering, such as control

engineering, measurement engineering or computer sciences were applied successfully to

achieve the attained results. First results showed that the principle of this walking

machine is by far not as previously estimated, and gives confidence that this robot can

one day perform a walking gait. Thus, the success of the project will lie in the hands of

whoever will use my research and resolves to continue the studies and apply the changes

I suggested.

11. Appendices

71

Antonio Pickel

11. Appendices

Appendix A: Figure Index and sources

Figure 2.1: The three anatomic planes: frontal, sagittal and transversal3

Figure 2.2: Leg position during one-half cycle..4

Figure 2.3: The cyclic phase rotation of biped walking ..4

Figure 2.4: Side view of the movement of the legs during a walking gait5

Figure 2.5: The humanoid robot ASIMO ..8

Figure 2.6: Planar One-Leg Hopper from the MIT (Raibert, M. H. 1980-82)9

Figure 2.7: 3D One-Leg Hopper from the MIT (Raibert, M. H. 1983-84)..........................9

Figure 2.8: Walking bipeds Johnny walker, Jack Daniels and Andy10

Figure 2.9: Different types of air-muscles ...12

Figure 3.1: Different type of sensors: Inclinometer a), Gyroscope b), Accelerometer c),

Pressure Sensor d)..13

Figure 3.2: Schematic illustration of the leg mechanism...15

Figure 3.3: Leg mechanism ...16

Figure 3.4: First prototype of the moving mass system...17

Figure 3.5: Schematic illustration of the second prototype of the moving mass system...18

Figure 3.6: Moving mass system of the third prototype ..19

Figure 3.7: Side view of the sliding bed and the moving mass ...20

Figure 3.8: Actual design of the moving mass system ..20

Figure 3.9: Curved foot prototype ...21

Figure 3.10: Actual passive foot ..21

Figure 3.11: Prototype 1 ..22

Figure 3.12: Prototype 2 ..22

Figure 3.13: Prototype 3 ..23

Figure 3.14: Prototype 4 ..23

Figure 4.1: The EyeBot controller ...24

Figure 4.2: Faulhaber DC Motor2224R006S with inbuilt gearbox and encoders25

Figure 4.3: PWM signal at different values...26

Figure 4.4: PCB with optical sensor ..28

11. Appendices

72

Antonio Pickel

Figure 4.5: Side plate of one leg with slotted crank and optical sensor PCB....................28

Figure 4.6: Inclinometer ..29

Figure 5.1: Block diagram of the two legs ..36

Figure 5.2: Step response at 80% of the PWM with tangent method parameters39

Figure 5.3: Step-function, step-response and approximation of it using WinFACT.........41

Figure 5.4: Block diagram of the open loop system..44

Figure 5.5: Block diagram of the close loop control of the system...................................45

Figure 5.6: Step response using a close loop control with activated disturbance..............47

Figure 5.7: Step response using the optimized close loop control with activated

disturbance...48

Figure 6.1: Graph of the frontal mass distribution and COM position (scale 1:2)............53

Figure 6.2: Graph of the sagittal mass distribution and COM position (scale 1:2)54

Figure 8.1: Diagram of the project structure ...63

Figure 8.2: Flowchart of the actual process structure..65

Figure 8.3: Flowchart of the leg control algorithm ...67

11. Appendices

73

Antonio Pickel

Appendix B: References

[1] Kamphausen, Jörg; Zweibeiniges Gehen, Seminar Roboter im Alltag,
Department of computer sciences, University of Dortmund, Germany, Available
from (15.04.03):
http://ls1-www.cs.uni-dortmund.de/~asg/asg/Paper/SeminarRIA02/kamphausen.ausarbeitung.pdf

[2] Dienelt, Martin; Neuere Entwicklungen auf dem Gebiet humanoider Roboter,

Wie humanoide Roboter laufen; Department of Robotics, University of München,
Germany, Available from (15.04.03):
http://wwwsiegert.informatik.tu-muenchen.de/lehre/seminare/hs_ss02/WalkingRobots.pdf

[3] L.Kun, Andrew; A sensory-based adaptive walking control algorithm for

variable speed biped robot gaits, University of New Hampshire, England 1997

[4] Humanoid Robot ASIMO; Honda Motor Co, Available from (15.04.03):
 http://www.honda-p3.com/english/html/asimo/frameset2.html

[5] Massachusetts Institute of Technology (MIT) Leg laboratory,

Available from (15.04.03):
 http://www.ai.mit.edu/projects/leglab/robots/robots-main.html

[6] Mobile Robot Lab, Department of electrical and electronic engineering,

University of Western Australia, Australia, Available from (15.04.03):
 http://robotics.ee.uwa.edu.au/

[7] Air Muscles, Shadow Robot Company Ltd., Available from (15.04.03):
 http://www.shadow.org.uk/products/airmuscles.shtml

[8] Jungpakdee, Kitirat; Design and construction of a minimal biped walking

mechanism, School of Mechanical Engineering, University of Western Australia,
Australia, 2002

[9] Lutz, H.;Wendt W.; Taschenbuch der Regelungstechnik,

Publisher Harri Deutsch (2002)

[10] Ogata, Katsuhiko; Modern Control Engineering,
Prentice Hall (1990)

[11] Hardt, Michael; von Stryk, Oskar; Increasing stability in dynamic gaits using

numerical optimization, Simulation and Systems Optimization Group, Universitiy
of Darmstadt, Germany, Available from (17.04.03):

 http://www.sim.informatik.tu-darmstadt.de/publ/download/2002-ifac-hardt-vonstryk.pdf

[12] Streuer, Manuel; Vision Guided Virtual Walking Machine, Department of

Robotics, University of München, Germany, Available from (17.04.03):
 http://wwwsiegert.informatik.tu-muenchen.de/lehre/seminare/hs_ws0203/steurer_final.pdf

11. Appendices

74

Antonio Pickel

Appendix C: Faulhaber Specification Sheets

(extract)

11. Appendices

75

Antonio Pickel

11. Appendices

76

Antonio Pickel

11. Appendices

77

Antonio Pickel

Appendix D: Seika Inclinometer Data Sheets

11. Appendices

78

Antonio Pickel

11. Appendices

79

Antonio Pickel

11. Appendices

80

Antonio Pickel

Appendix E: Reflective object sensor Data Sheet

11. Appendices

81

Antonio Pickel

11. Appendices

82

Antonio Pickel

Appendix F: Sensor PCB and Circuit

The connection diagram illustrated below shows the actual circuit of the optical sensor.

The picture below shows the component side of the PCB.

220Ω 10kΩ

10nF

OPB608B

Gnd

Vcc =5V

Vout

22mm

11. Appendices

83

Antonio Pickel

Appendix G: Dual Motor Drive Data Sheet (extract)

11. Appendices

84

Antonio Pickel

Appendix H: 8 Channel serial 10 bit ADC Data Sheet

11. Appendices

85

Antonio Pickel

11. Appendices

86

Antonio Pickel

11. Appendices

87

Antonio Pickel

11. Appendices

88

Antonio Pickel

Appendix I: Added C++ functions

In this section, the most important functions added and their usage are listed. When

necessary, an error management is also implemented in the function and the error is

displayed on the LCD of the EyeBot.

LCD Output

void LCDCircle(int x, int y, int rad)
Input: x, y position of the centre of circle

rad is the radius of the desired circle
Output: NONE
Semantics: Prints a circle on the LCD with the centre at x,y and the radius of

rad (This function uses the MySin an the MyCos functions, which
needed the lookup-table implemented in file RSmath.c)

void LCDCross(int x, int y, int val)

Input: x, y position of the centre of the cross
val is the value of the pixel operation code
 0= clear pixel
 1= set pixel
 2= invert pixel

Output: NONE
Semantics: Prints a cross on the LCD with the centre at x,y and pixel code of

val

void LCDDeg(int x, int y, int val)

Input: x, y position of the centre of the degree sign
val is the value of the pixel operation code
 0= clear pixel
 1= set pixel
 2= invert pixel

Output: NONE
Semantics: Prints a degree sign on the LCD with the centre at x,y and pixel

code of val

11. Appendices

89

Antonio Pickel

Math functions

float MySin(int angle)
Input: Angle that is to be calculated the sinus from
Output: Sinus of the input
Semantics: Fast calculation of a sinus using the lookup-table implemented in

the file RSmath.c (Accuracy of 2 values per degree!)

float MySin(int angle)

Input: Angle that is to be calculated the cosinus from
Output: cosinus of the input
Semantics: Fast calculation of a cosinus using the lookup-table implemented in

the file RSmath.c (Accuracy of 2 values per degree!)

int Limit(int x, int uplimit, int dolimit)
 Input: x, value to be limited
 uplimit, value of the upper limit
 dolimit, value of the lower limit
 Output: limited value
 Semantics: Builds the limit of value, if this value exceeds the limits

int Round(double x)
 Input: x, value to be rounded
 Output: rounded value
 Semantics: Calculates a rounded int out of a float

int AnalogSensor (int x)
 Input: x, value of the channel to be read out
 Output: actual value of the analog input channel

Semantics: Returns the value of the desired analog input channel waiting the
need time for the ADC to ensure a reliable value

float Sen2Angle (float value)
 Input: value to be transformed into an angle
 Output: angle of the inputted analog value

Semantics: Returns the angle of the analog value inputted

11. Appendices

90

Antonio Pickel

Initialization

void QuIni()

Input: NONE
Output: NONE
Semantics: Initializes the Quad-encoders of the three used motors

void MoIni()

Input: NONE
Output: NONE
Semantics: Initializes the three used motors

void MOQuRelease()

Input: NONE
Output: NONE
Semantics: Releases the three used encoders and the motors

Calibration

void CaliFeet()

Input: NONE
Output: NONE
Semantics: Calibrates the legs using the optical sensors to reset the encoders at

a defined position

void CaliIncl()

Input: NONE
Output: NONE
Semantics: Calibrates the inclinometer (Until the sensor is not attached firmly

to the robot, this calibration is inevitable)

int CaliWeight()

Input: NONE
Output: Maximal value of the possible movement in both directions
Semantics: Calibrates the moving mass system resetting the encoder of the

motor at the centre of the system and returns the value of the
maximal movement in both directions

11. Appendices

91

Antonio Pickel

Control

void FeetControl()
Input: NONE
Output: NONE
Semantics: Starts the controller for the movement of both legs with the

parameters specified in the function init

void HipBalance (int p_f_l, int p_f_r)

Input: position of the left and the right leg
Output: NONE
Semantics: Starts the controller for the movement of both legs with the

parameters specified in the function init but with the speed zero.
The inputted position will be tried to hold.

void WeightMove(int pos, int max, int speed)

Input: position to be moved the mass
maximal possible position
desired speed at which to be moved the mass

Output: NONE
Semantics: Moves the moving mass to desired position at a desired speed.

void WeightControl (double angle_lr, int max)

Input: value of the actual angle
 maximal possible position
Output: NONE
Semantics: Starts the controller for the moving mass system for static control.

0. Declaration

92

Antonio Pickel

Declaration

I hereby declare that this submission is my own work and that I only used the referenced

aids.

Perth,

Antonio Pickel

