

University of Applied Sciences Koblenz

Department for Electrical and Information Engineering

Prof. Dipl.-Inf. H.J. Unkelbach

University of Western Australia

School of Electrical, Electronic and Computer Engineering
Prof. Dr. rer. nat. habil. T. Bräunl

Diplomarbeit

Balancing of a Biped Robot

Using Force Feedback

Jochen Zimmermann

Student # 494881

J. Zimmermann Abstract

 I

ABSTRACT

This thesis presents an active balance control for a fully autonomous bipedal robot. The

robot has 10 kinematic degrees of freedom and is driven by servos. The Denavit-

Hartenberg-Notation was applied to describe the machine’s kinematics. Force sensors in

the feet are used to gather information on the masses’ gravitational distribution. To

stabilise the walker, a closed loop PID control was implemented in an interrupt using

the force sensors’ feedback. The software is designed in an object-orientated layered

architecture to provide effective future-work integration. The robot is able to balance on

a moving level surface.

KURZFASSUNG

In dieser Diplomarbeit wird eine aktive Balanceregelung für einen völlig autonomen

zweibeinigen Roboter präsentiert. Das System besitzt 10 kinematische Freiheitsgrade

und der Roboter wird mittels Servos bewegt. Die Denavit-Hartenberg-Notation wurde

angewendet, um die kinematischen Zustände des Gerätes zu beschreiben. Kraftsensoren

in den Füßen liefern Daten über die Schwerkraftverteilung der Massen. Um die

Gehmaschine zu stabilisieren, wurde eine PID-Regelung implementiert, die in einem

Interrupt läuft und rückgekoppelte Daten der Kraftsensoren verarbeitet. Die Software

wurde objektorientiert und in Schichten aufgebaut, um zukünftige Erweiterungen zu

vereinfachen. Der Roboter ist in der Lage, auf einem sich bewegenden Untergrund zu

balancieren.

Acknowledgements J. Zimmermann

 II

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Prof. Thomas Bräunl who gave me the

opportunity to work on this project at the University of Western Australia.

I also would like to thank Prof. Heinz Unkelbach not only for supervising this project

from my home university in Koblenz, but also for his support and advice throughout the

whole project. Only his support made it possible to realise this project.

For his assistance during verifying the mathematical result, I would like to thank Prof.

Armin Saam.

Many thanks to the UWA staff for their assistance and for helping me to orientate in the

department.

Taking the decision about carrying out this project was easier with the advice of my

family and my friends in Germany. Thanks!

Last, but not least, I want to say many thanks to Adrian, Antonio, Christoph, Jia and Sid

for their support and for the good times we had together during the work on our

projects.

J. Zimmermann Table of Contents

 III

TABLE OF CONTENTS

ABSTRACT..I

KURZFASSUNG...I

ACKNOWLEDGEMENTS.. II

TABLE OF CONTENTS ...III

ABBREVIATIONS ...VI

TABLE OF FIGURES... VII

INDEX OF TABLES..VIII

1. INTRODUCTION ... 1

2. RELATED RESEARCH.. 2

2.1. BIPED PROJECTS AT CIIPS .. 2

2.2. COMMERCIAL PROJECTS ... 4

3. BALANCING AND WALKING ... 6

3.1. DEFINITIONS ... 6

3.2. BALANCING .. 8

3.3. WALKING.. 9

4. PROVIDED HARD- AND SOFTWARE .. 11

4.1. EYEBOT-CONTROLLER ... 11

4.2. ROBOT HARDWARE-SETUP ... 12

Table of Contents J. Zimmermann

 IV

4.3. ROBIOS AND APPLICATION PROGRAMMING INTERFACE ..15

4.4. SOFTWARE DEVELOPMENT..17

4.5. CHANGES IN HDT ...18

5. ADAPTED DENAVIT HARTENBERG NOTATION...21

5.1. MATHEMATICAL BASICS AND CONVENTIONS..21

5.2. DENAVIT HARTENBERG NOTATION ...23

5.3. COORDINATE SYSTEMS ...26

5.4. TRANSFORMATION MATRICES...28

6. MASS DISTRIBUTION AND CENTRE OF GRAVITY...33

6.1. FORCE GAUGING AND PROCESSING ...33

6.2. LINK MASSES AND POSITIONS ...36

6.3. CALCULATION OF THE NPCM ...38

7. CONTROL SYSTEM ..41

7.1. DATA CAPTURE...41

7.2. CONTROL LOOP FREQUENCY AND SAMPLE PERIOD...42

7.3. CONTROL ALGORITHM ..44

7.4. CONTROL LOOP ...46

8. SOFTWARE SYSTEM ARCHITECTURE ...49

8.1. SYSTEM STRUCTURE ...49

8.2. SINGLETON CLASSES ...50

8.3. CLASS STRUCTURE ..52

J. Zimmermann Table of Contents

 V

9. IMPLEMENTATION .. 54

9.1. LINEARALGEBRA-CLASS .. 54

9.2. FEET-CLASS.. 54

9.3. SERVO-CLASS ... 55

9.4. DENAVITHARTENBERG-CLASS ... 55

9.5. DISPLAY- AND USERINPUT-CLASS.. 57

9.6. CONTROL-CLASS .. 57

9.7. BEHAVIOUR-CLASS... 59

10. TESTING .. 60

11. FUTURE WORK ... 61

12. CONCLUSION... 63

REFERENCES... IX

FIGURE SOURCES ...XI

APPENDIX A – DOCUMENTATION OF DEVELOPED CODE.. XII

APPENDIX B – USED SOFTWARE .. XXVI

DECLARATION ...XXVII

DECLARATION ...XXVII

Abbreviations J. Zimmermann

 VI

ABBREVIATIONS

Abbreviations used in this thesis in order of appearance:

UWA University of Western Australia

CIIPS Centre for Intelligent Information Processing Systems

DOF Degree of Freedom

COM Centre of Mass

COF Centre of Force

NPCM Normal Projection of Centre of Mass

ZMP Zero Moment Point

RoBIOS Robot Basic Input Output System

HDT Hardware Description Table

API Application Programming Interface

RCS Reference Coordinate System

BCS Body Coordinate System

PWM Pulse Width Modulation

L## Joint on Left Leg

R## Joint on Right Leg

#H# Joint in Hip

#K Joint in Knee

#A# Joint in Ankle

##B Bending Joint (Forward-Backward)

##S Sideway Joint (Left-Right)

SOAR Safe Operational Area

Joint Notations:
The first letter
distinguishes the leg, the
second one names the
position of the joint, the
third refers to the moving
direction.

J. Zimmermann Table of Figures

 VII

TABLE OF FIGURES

Figure 2.1: Johnny Walker.. 2

Figure 2.2: Jack Daniels.. 3

Figure 2.3: Rock Steady.. 4

Figure 2.4: ASIMO... 5

Figure 2.5: Shadow Robot .. 5

Figure 3.1: Pitch, Roll, and Yaw .. 6

Figure 3.2: Supported Area... 7

Figure 4.1: EyeBot Controller .. 11

Figure 4.2: Andy Droid (front view) .. 12

Figure 4.3: Andy Droid’s left foot .. 13

Figure 4.4: Andy Droid (side view).. 13

Figure 4.5: Gauging Circuit .. 14

Figure 5.5: Rotational Directions.. 20

Figure 5.1: Link Length .. 23

Figure 5.2: Link Twist .. 24

Figure 5.3: Joint Distance ... 24

Figure 5.4. Joint Angle ... 24

Figure 5.5: Coordinate Systems Left Leg... 26

Figure 5.6: Coordinate Systems Right Leg... 27

Figure 6.1: Toe-Setup ... 33

Figure 6.2: Centre of Force per Foot .. 34

Figure 6.3: Measured NPCM.. 38

Figure 6.4: Influence of Slopes... 39

Figure 7.1: Multiplexed A/D Conversion ... 41

Figure 7.2: PID Controller Structure .. 44

Figure 7.3: Control Algorithm Flow Chart ... 45

Figure 7.4: Control Loop .. 47

Figure 8.1: Layered System Structure .. 49

Figure 8.2: Class Structure.. 53

Index of Tables J. Zimmermann

 VIII

INDEX OF TABLES

Table 5.1: Denavit Hartenberg Algorithm ..25

Table 5.2: DV-Parameters Left Leg..26

Table 5.3: DV-Parameters Right Leg..27

Table 5.4: Substitutions and Distribution of Trigonometrical Functions........................32

Table 6.1: Single Weights ...36

Table 6.2: Moving Masses ..37

J. Zimmermann 1. Introduction

 1

1. INTRODUCTION

In 1921, Czech playwright Karel Čapek (1890 - 1938) published his best-known work

“R.U.R.” (“Rossum’s Universal Robot”). This play featured machines, which had been

created to simulate human beings. From this time on, the word robot, which Čapek

derived from the Czech word robota (which stands for: work, slave) became more and

more common as a synonym for electrically controlled mechanical devices. The idea of

machines having the ability to work for humans came true. From the middle of the last

century, different types of robots have been developed. During the 1980s, assembly

robots became very popular in industry. These were the predecessors for the next

generation of robots. Technological progress in computer technologies not only made

both hardware and software affordable, but also increased computational power

allowing more complex algorithms in combination with sensors that provided robots

with autonomy. A few years later, Čapek’s fiction of human-like robots appeared to

now be a vision for researchers.

‘Intelligent’ and behaviour driven machines seem to be a challenge that many

researchers like to accept. Out of the variety of behaviours that arise from imitating a

human being, one of the most basic skills of man seems to be one of the most complex

at the same time: walking. As many other robots, walking machines are designated to

do tasks that could or should not be done by humans because of dangerous

environments, reliability aspects or simply cost-effectiveness. Nevertheless, the more

interesting intention in this focus is probably the stimulating task of walking as an end

in itself. Starting with non-human-like structures, such as four legged walkers or large

feet, researchers attempted to deal with the problem of instability. Although stable

walking machines have been constructed in this way, this did not satisfy the desire to

create a robot that could give the impression of being human-like. However, at high

budgets nothing is impossible as proven by Honda’s ASIMO [1], a highly sophisticated

biped with the ability to walk. However, the use of a high number of sensors and

actuators entails expensiveness. Realisations at low costs in this field are still not

achieved.

The objective of this project is to research walking with a bipedal robot, called Andy

Droid. It is a low cost bipedal robot with few sensors and actuators.

2. Related Research J. Zimmermann

 2

2. RELATED RESEARCH

It was intended to develop essential features that provide functional basics for further

work to establish a dynamic walk. Some projects with different robots have been carried

out in the past and still are in progress.

2.1. BIPED PROJECTS AT CIIPS

At the Centre for Intelligent Information

Processing Systems (CIIPS) at School of

Electrical, Electronic and Computer

Engineering at the University of Western

Australia (UWA) several projects have been

carried out on bipedal robots. Most of them

aimed at walking, as this is a basic skill of

bipeds.

The first biped developed at CIIPS was

Johnny Walker. It has 9 degrees of freedom:

each leg is bendable in its ankle, knee, and hip

and it can be rotated in the hip. An additional

servo is situated in the torso allowing the

robot to bend sideways. All actuators are

servos and the upper body consists of an

EyeBot-Controller and a digital camera. The

torso servo is used to displace the centre of

mass to the left or right.

 Figure 2.1: Johnny Walker

As an open loop controlled walking did not bring the desired success, a modification of

the first biped was developed. The next model had arms, which could only be moved

forwards and backward. This brings two more degrees of freedom and now the centre of

mass could be shifted from the front to the back. The rest of the design of this new

J. Zimmermann 2. Related Research

 3

robot, named Jack Daniels, was similar to the former design. In addition, the camera

had been removed to lower the centre of mass and stabilize the machine.

 Figure 2.2: Jack Daniels

The next robot’s design removed the torso’s servo and the turning servos in the hip. The

ankles obtained one more degree of freedom, allowing the robot to bend sidewards. In

total, this robot, Andy Droid, was smaller than the first two designs and had 12 DOF.

However, its arms had been attached to the robot for aesthetical reasons. During this

project they were removed to save weight.

This thesis’s research focused on the Andy Droid robot. Therefore, it is described in

more detail in a later chapter.

An exceptionally different design is also currently being investigated. All robots until

now were driven by servos. Rock Steady is driven by DC motors. Its mechanical

structure is able to generate a gait in each leg driven by only one motor.

2. Related Research J. Zimmermann

 4

A third motor is mounted behind the controller display to carry a weight from left to

right and thereby relocate the centre of mass. Thus, Rock Steady has only 3 degrees of

freedom in total. The structure is made of light plastic, which makes this robot

especially light.

 Figure 2.3: Rock Steady

2.2. COMMERCIAL PROJECTS

As mentioned in the introduction, one of the most sophisticated walking bipeds is

ASIMO, developed by Honda Motor Company. As the internet page [1] says, the 1.2m

tall ASIMO has 24 DOF, 5 in one arm, 1 in each hand and 6 per leg. The 6 DOF of one

leg are a combination of the following joints: ankle front-back, ankle left-right, knee

front-back, hip front-back, hip left-right, and hip rotate. The joints are driven by servos.

ASIMO weights 43 kg and is controlled by an onboard controlling unit. It carries an

autonomous power supply in its backpack. Each foot has a six-axis foot-area sensor and

the torso contains gyroscopes and acceleration sensors.

J. Zimmermann 2. Related Research

 5

The robot is able to walk, it has a wide operating angle with his arms and hands and can

imitate several human behaviours to interact with humans directly. Moreover, it also has

a Japanese speech recognition system onboard.

 Figure 2.4: ASIMO

A different design is the Shadow Robot, developed by Shadow Robot Company Ltd. Its

skeleton is made of wood to provide flexibility and

its actuators are so-called air-muscles. In short, it is a

flexible tube, which shortens when it is filled with

air, similar to a balloon. The structure is closely

orientated to the human skeleton, e.g. connecting the

air-muscles to the joints by strings, which act as

ligaments. The force of an air-muscle is detected by

strain gauges at one end of the muscle. Under each

foot, five pressure sensors detect the distribution of

the robots centre of mass and a potentiometer

determines the angle of each joint.

Additional sensory data is gathered from mercury tilt

sensors to provide information on the balancing state

of the walker.

This robot is only able to walk two steps.

 Figure 2.5: Shadow Robot

3. Balancing and Walking J. Zimmermann

 6

3. BALANCING AND WALKING

3.1. DEFINITIONS

This chapter defines some fundamental terms and notations needed for the discussion of

bipedal walking and balancing.

Orientation Angles:

The global orientation of a vehicle, aircraft, vessel, or walking machine can be

expressed in three angles called pitch, roll, and yaw. These orientations are commonly

used in aviation and navigation but their clearness makes them feasible for walkers also.

Figure 3.1 shows their definition.

 Figure 3.1: Pitch, Roll, and Yaw

Later in this thesis, pitch will mean a deflection of the centre of mass to the front or to

the back. In this case, the body’s bottom-up axis is no longer vertical but tilted. On the

other hand, a roll-angle means that the body’s axis is tilted either to the left or to the

Front

Right

Top

Roll

Pitch

Yaw

J. Zimmermann 3. Balancing and Walking

 7

right. Yaw is not needed, as it describes the global moving direction, as does a compass.

This angle is irrelevant for stability considerations; it is only needed for global

navigation.

Supported Area:

The supported area or supported polygon is the area surrounded by the corners of the

feet. This area is elementary for stability considerations. The following figure illustrates

the definition.

 Figure 3.2: Supported Area

Centre of Mass (COM):

The Centre of Mass or Centre of Gravity is the defined by the gravity of a body. The

total gravity is equal to sum of the gravities of its mass-elements. The total gravity

results in the Centre of Mass.

Mathematically expressed, this means:
i i

i
COM

i
i

r m
r

m

⋅
=
∑
∑

G
G .

3. Balancing and Walking J. Zimmermann

 8

Centre of Force (COF):

Here, the COF is defined for the measured forces acting on one foot. The mean value of

all single forces on a foot can be represented by one resulting force. This force is

evoked by the gravity on the foot. The mathematical definition is similar to the centre of

mass:
i i

i
COF

i
i

r F
r

F

⋅
=
∑
∑

G
G but this point is always situated in the plane area between the foot

and the subsurface.

Normal Projection of the Centre of Mass (NPCM):

The NPCM is the point on the subsurface where the COM is perpendicularly projected

on.

Zero Moment Point (ZMP):

According to Ian J. Marshall’s thesis [14], “the Zero Moment Point (ZMP) is the point

on the ground surface about which the sum of all the moments of active forces is equal

to zero.” It is identical to the NPCM as long as the robot is standing still.

3.2. BALANCING

The walking machines presented in the last chapter have many different features.

Nevertheless, all of them have one thing in common. They have been developed to

perform primarily one task: walking. All of them use feet that are in a proportion to

their height similar to human beings. There have been many, relatively simple designed

robots that were able to walk without any sensors and high-technology controlling units

at all. However, their design is very different to that of humans. Some of them had more

than two legs; others had feet supporting a very large area. Both features provided

stability in standing and walking but these robots did not look like humans. Before

starting to walk, a biped should be able to stand stable. This ability is called balancing.

This word is related to balance, which is defined by the Encyclopaedia Britannica [13]

as follows:

“Instrument for comparing the weights of two bodies, usually for scientific purposes, to

determine the difference in mass. “

http://www.britannica.com/ebc/article?eu=396786

J. Zimmermann 3. Balancing and Walking

 9

The task, balancing, which has to be fulfilled by a robot, is compensating the effects on

its stability, from the forces acting on its body parts. The result would be a stable stand.

For the detection of the static situation, pressure or tilt sensors under the feet are

suitable as well as gyroscopes. For dynamics, acceleration sensors would be needed.

3.3. WALKING

Once having gained stability, the robot can take its first steps. First, it has to be decided

which kind of walking should be performed as there are generally three different ways:

static and dynamic walking, and running.

Static Walking:

As long as the normal projection of the centre of mass (NPCM) is inside the supported

area, the robot is always stable. This means, that it could rest in this position at its actual

joint angles, without toppling down. It is significant for this type of walking that the

gaits look “mechanical”, because the body has to be shifted from the left to right over

relatively wide ranges to move the centre of mass above the supported area of the foot

that is attached to the ground. To make sure, that the NPCM is always within the

mentioned area, the dynamic influences must reduced. This slows down the forward

velocity of the walker. Static walking is characterised by different phases. One half-

cycle is sequenced in the “double support phase” when both feet are resting on the

ground surface, the “swing phase” when one foot is lifted and swung to the front. This

phase is followed by the next double support phase.

Dynamic Walking:

The elementary value to control dynamic walking is the Zero Moment Point. The

NPCM is allowed to be outside the supported area as long as the statement above is

fulfilled. Freezing a robot during this walk would bring the walker to an unstable

condition. During dynamic walking, the ZMP must be inside the boundaries of the

supported area. Otherwise, it is dynamically unstable. The walking phases are the same

as in a static walk.

3. Balancing and Walking J. Zimmermann

 10

Running:

Running is a kind of dynamic walking at a high velocity. The underlying mathematical

requirements are the same as those for dynamic walking. Yet, the phases are different:

One cycle comprises a single support phase during which the opposite foot swings to

the front. During the following phase both feet are lifted and the whole walker is in a

ballistic movement which is absorbed by the next single support phase.

J. Zimmermann 4. Provided Hard- and Software

 11

4. PROVIDED HARD- AND SOFTWARE

4.1. EYEBOT-CONTROLLER

The EyeBot is a controller designed for small, mobile, and autonomous robots.

Implementations in wheeled, legged, and flying robots already exist. The intention for

autonomous robots is obvious after a closer look at the technical features: A 32-bit

microcontroller (Motorola 68332) runs at 25MHz to 33MHz. 2MB RAM and 512KB

EEPROM provide memory for system and user programs. On board, there are two

motor drivers, one parallel, and two serial ports. Each eight digital in- and outputs and

eight analog inputs can be used for sensor or actuator control. Furthermore, 16 timing

processor I/Os can be used, e.g. to drive servos. Everything is mounted on a double-

layered printed circuit board, where a 128x64 pixel LCD and 4 buttons act as user

interface. It has also has an interface for either a colour or a greyscale camera with

onboard image processing. A speaker and a microphone provide audio features. In

addition, an IR receiver can be connected and via a radio module, communication to

other controllers or a PC can be established. Average power consumption of the

controller is 235mA at 7.2V. The specifications presented in this chapter correspond

with [2].

The picture on the right shows the

controller board in front view. The LCD

shows RoBIOS information after system

start-up.

Figure 4.1: EyeBot Controller

4. Provided Hard- and Software J. Zimmermann

 12

4.2. ROBOT HARDWARE-SETUP

In addition to the controller itself, the robot in total consists of 10 servos that form two

legs. The servos are connected by aluminium links. The feet are formed by three metal

strips each, which are stellately attached to the lower central end of each leg. The servos

are powered separately by an additional nickel-cadmium battery, which is carried

between the controller’s lithium-ion battery and the EyeBot controller on top of the

robot, all borne on an aluminium construction, which is mounted on top of the servos,

which make up the hip. Figure 2 shows the robot:

 Figure 4.2: Andy Droid (front view)

Upper Body

Hip (2 Servos)

Thigh (each 2 Servos)

Shank (each 1 Servo)

Foot (each 1 Servo)

90°- twisted

Aluminium Link

Aluminium Link

Metal Stripes

J. Zimmermann 4. Provided Hard- and Software

 13

The total height of the robot is approximately 350mm, when both legs are straightened.

The width at the hip is 130mm while the outer tips of the feet spread over 210mm when

the legs are stretched out. From front to back, it extends 85mm at the top and at 130mm

at each foot. The total weight (including both battery packs) is 1440g.

 Figure 4.3: Andy Droid’s left foot

 Figure 4.4: Andy Droid (side view)

Each of the three metal strips for each foot, henceforth referred to as toes, has a strain

gauge on its top, connected in a bridge. Thereby, the deflection of a toe is expressed as a

voltage, which is A/D-convertible by the analog inputs.

Lithium-Ion Battery

Nickel-Cadmium Battery

Metal Toes with
Inbuilt Strain Gauges

4. Provided Hard- and Software J. Zimmermann

 14

The ten servos used for the legs are all of the type HS-945MG from the American

manufacturer HITEC. A servo is driven by a square wave pulse and according to its

specifications [4]: the nominal range of the pulse is from 900µs to 2100µs. The refresh

frequency is 50Hz. The length of the pulse defines the angle of the servo. The centre

position is at a pulse length of 1500µs. The operating angle is given by 67.5° per 600µs.

However, the range has been extended to ±72° that means a range from 860µs to

2140µs. The reasons will be explained in Chapter 4.5. The dead bandwidth is said to be

4µs, which results in a minimal angular resolution of 0.45°. The servos do not have a

feedback of the actual position.

The strain gauges are connected in 6 Wheatstone quarter-bridges with temperature

compensation as follows:

 Figure 4.5: Gauging Circuit

RSG-M here is the strain gauge that is stretched, when a spring metal stripe is bent. RSG-C

is not glued to and thus not influenced by the metal but just by the temperature. In that

way, the total influence of temperature to the measured voltage Vd is eliminated. In

addition to this, the bridge voltage is amplified with an AMP04 on a small PCB

mounted directly on the toe. The amplification is out

d

V
V 200≈ . The circuit has a low pass

filter with a cut-off frequency of 5.3 kHz. Finally, the voltage has a zero offset of about

+1V and a range of approximately 200mV. The data is transformed with a 6-channel

multiplexed A/D converter.

VCC Vd

RSG-M

 RSG-C

R

R

J. Zimmermann 4. Provided Hard- and Software

 15

4.3. ROBIOS AND APPLICATION PROGRAMMING INTERFACE

The EyeBot’s basic input output system, called RoBIOS, provides an operating system

that makes all hardware accessible and controls the EyeBot. It includes an Application

Programming Interface (API) in the programming language C. This API comprises

functions to access different features and hardware:

- Key Input

- IR Remote Control

- LCD Output

- Servos

- Analog-Digital Converter

- Timer

- Multi Tasking

- Semaphores

- System Functions

- Download and RS232

To complete the list of available function-groups, the following are mentioned but not

used in the developed software, as the robot does not use the according hardware:

- Motors

- Image Processing

- Position Sensitive Detector

- Camera

- Audio

- V-Ω Driving Interface

- Bumper and Infrared Sensors

- Latches

- Parallel Port

- Radio Communication

- Compass

A complete list of all routines can be found on the EyeBot-Homepage.

4. Provided Hard- and Software J. Zimmermann

 16

To adapt a different hardware setup to the controller, the so-called Hardware

Description Table (HDT) declares, which hardware is connected to the controller and in

which way it has to be accessed. E.g., if a robot has a DC motor and a servo, these have

to be named in the HDT. Furthermore, the output port for the PWM-driven motor has to

be assigned as well as the input port of the encoder. A servo can here be adjusted by

setting its pulse width and position. In modelling, where many servos are used, this is

done by analog trimmers on the remote control.

Since there are no analog trimmers and due to the way the servos are driven, the entries

in the HDT are as follows:

servo_type _NAME = {VER, CH, TIMER#, PERIOD, START, STOP};

The struct servo_type gets an instance _NAME. VER just names the drivers version,

CH defines the TPU channel to be used for the output signal, TIMER# assigns a timer

that repeatedly (PERIOD) generates the edges of the needed square impulse that lasts

from START to STOP. The final entry of this servo is done with the code shown below.

Here HDT_entry_type is again a struct with an array of instances named HDT. This

assigns the previously defined servo_type _NAME to its SemanticName as a

SERVO.

HDT_entry_type HDT[] =

{

…,

{SERVO,SemanticName,"TestNameString",(void *)&_NAME},

…,

}

J. Zimmermann 4. Provided Hard- and Software

 17

4.4. SOFTWARE DEVELOPMENT

User programs can be written in C/C++ or Assembler. The source code then is compiled

with a cross compiler, which is derived from the GNU GCC C/C++ compiler. After

linking and compressing the produced so-called hex-files, these can be downloaded to

the controller via serial connection.

It should be mentioned that the existing compiler did not work under Windows XP.

Therefore, Antonio Pickel recompiled the cross compiler under Windows XP using the

Linux emulator CygWin.

As the EyeBot is an embedded system, it does not provide the advantages of an

integrated development environment. Although a debugging mode exists on the

controller PCB, the background debugger software via parallel port did not work.

Software development in this way is much more time consuming because error

searching during runtime was reduced to status printings on the display.

4. Provided Hard- and Software J. Zimmermann

 18

4.5. CHANGES IN HDT

As explained in chapter 4.2., the servos are controlled with a square pulse signal. The

range of this signal, from START to STOP, is divided in 256 equidistant steps by the

RoBIOS’ servo-driver. The minimum servo angle could be reached by calling the user-

function SERVOSet1) with ‘0’ as parameter. ‘255’ drives the servo to its maximum

angle. Before the changes as described in this section, the servo settings in the HDT

were chosen to limit the physical angle of the servo with START and STOP. Thereby,

the highest angular resolution was expected.

For example: a servo has a safe operating range of ±15°, the START and STOP should

have been set to 1366.6 sµ and 1633.3 sµ , which is, according to chapter 4.2,

ssSTOPSTART µµ 6001500/ 5.67
15 ⋅= °
°∓ . This resulted in uncertainties:

1. START and STOP are of integer type and thence could only be nearest value,

here 1367µs and 1633µs. RoBIOS itself calculates the actual angle using the following

algorithm:

STARTSTOPrange −=

angledesiredrangeangle _⋅=

256/anglehightime =

STARThightimehightime +=

2. Line 3 shows the linear interpolation. The angle is divided by 256. This again is

an integer division. Angle is the product of range and desired_angle, where the latter is

an integer value between 0 and 255. Therefore, just in the case if range is dividable by

256 without remainder, the resulting hightime has no error. This means in the example:

26613671633 =−=range and accordingly 1256/266 ==hightime instead of

approximately 1.04.

1) see App. A – Servos and Motors

J. Zimmermann 4. Provided Hard- and Software

 19

3. Keeping range small should increase the resolution compared to bigger ranges.

In the given example, the minimum step length in the servos signal is

consequently ss µµ 04.1256/266 ≈ . Nevertheless, the servo’s specification mentions a

dead bandwidth of 4µs, which means that the servo would not move until the signal

length is not increased or decreased by this time.

4. Giving one servo a smaller range than another one also brings another problem.

Once having routines to drive a servo at a desire speed, unequal ranges result in

different angular velocity. This is because an increase of a servo’s “software” position

of for example 100 (out of 255) in a special interval, forces the one with the smaller

range to drive a small angle, whereas the other one drives a greater angle in the same

time. In addition, a “software” angle of e.g. is 50 results in a different physical angle for

servos with different ranges.

Solution: The problem concerning the first issue is obvious: only use integer values.

The next one is solved by using START and STOP values with a difference, which is

dividable by 256 without remainder. The third solution is to make sure, that the

previously stated range exceeds 4 times 256 so that a change in the value in the software

results in a change of the servo’s physical position. The solution to the last problem

simply requires the same range setting for all servos.

The following term expresses the valid terms that will fulfil all four requirements:

}range n 256 n , n 4 Servos= ⋅ ∈ ≥ ∀N .

The statements above were done by using n=5, to ensure the servos dead bandwidth of

4µs is exceeded. This results in a range of 1280µs, which means centre ± 640µs. Thus

the range is ±72°. Uncertainties in the servos’ centres positions can be adjusted by

experimentally correcting these in the HDT without violating the requirements above.

4. Provided Hard- and Software J. Zimmermann

 20

The normal rotational direction of the servos is clockwise. RoBIOS allows the inversion

of the direction by simply exchanging the START and STOP value. The directions have

been chosen in the following way:

 Figure 5.5: Rotational Directions

The letters refer to the joint’s position. L and R stand for left and right leg, B stands for

bend, whereas S stands for sideways. H means hip, K is knee, and A is ankle. Hip and

ankle joint sideways turning directions are chosen in a way that a parallel movement

around the same angle of all four R/LHS and R/LAS produces a parallel sideway swing.

Bending joints are directed to bend a leg forward while increasing the angles. The

directions have also been adapted to fit the demands in section 5.3.

The adaptation of the strain gauges to the controller does not need to be entered into the

HDT, because the 8-channel A/D converter is mounted on the controller board directly

and hence is always included in the RoBIOS. Filtering and adapting the sensory data

has to be done in a user program.

255 255 00

255255 00

LAB

LK

LHB

RAB

RK

RHB

LAS

LHS

2550

2550

2550

RAS

RHS

0 255

0 255

0 255

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 21

5. ADAPTED DENAVIT HARTENBERG NOTATION

5.1. MATHEMATICAL BASICS AND CONVENTIONS

For better understanding, it is necessary to give some short explanations on the

notations and mathematical basics used in this chapter.

To characterise a body with non-exiguous dimensions in space mathematically, its

position, extensions, and orientation are sufficient. Usually, Cartesian coordinate-

systems are used in which a particular point is described with a vector:

() pppp
p
p
p

p XT
zyx

z

y

x GG
==

= . (5.1)

Using multiple coordinate systems requires a method to describe a vector’s affiliation.

Therefore the ante-supra index names the coordinate system a vector is described in, as

shown in (5.1), where X is the coordinate system. This coordinate system is further

referred to as the reference coordinate system or RCS. To specify the orientation of a

body, another coordinate system has to be fixedly assigned to the body. This one is

called the body coordinate system or BCS. Having both of these, the position can be

expressed as a translation of the origin of the body coordinate system in the reference

coordinate system. The orientation is a rotation of the BCS compared to the RCS.

Rotations are calculated with matrices: BCS
RCSRCSRCS pRp ,0
KK ⋅=′ . In terms of coordinate

transformation, a vector in a BCS can be expressed as a vector in the body’s RCS as the

result of the rotation in between the both systems: pRp BCSRCS
BCS

RCS KK ⋅= . As seen, the ante-

sub index of the rotation matrix shows the source system to which the vector on the

right must belong. The ante-supra index of R names the destination system in which the

resulting vector is expressed. Translations are trivial. Again, in terms of

transformations, a translation is the directed distance of the BCS’ origin, seen from the

RCS’: ptp BCSRCS
BCS

RCS KKK += . Here, the ante-sub index says that this translation transforms

from the thereby referred system to the one named in the ante-supra index.

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 22

Now, a characterisation of a body is complete with a set of a rotation matrix and a

translation vector, both relative to one reference coordinate system. This set is called

frame ()0pRF X
U

X
U

K= (5.2).

As seen before, a translation is mathematically an addition of two vectors, whereas a

rotation is a multiplication of a vector and a matrix. To combine both and make the

calculation more manageable, the frame can be extended by so-called homogeneous

coordinates that simply extends the frame by the vector { }1000=h
G

. The frame

becomes a square matrix:

=

10
0

T

X
U

X
UX

U
pR

F K
K

 (5.4.)

The upper left 3x3 elements contain the rotation matrix, the upper three elements of the

right column are the translation. In the case of no translation at all, theses three are zero:

() ()

=

10
0

Trot
R

T K
K

α
α and if there is only translation, the rotational square becomes a 3x3

identity matrix: ()

=

10Ttrn

pI
pT K

K
.

So, if FX
U means a transformation from U to F, then concatenated transformation is a

sequential multiplication of system-to-system transformations:

FFFF C
D

B
C

A
B

A
D ⋅⋅= . (5.5)

This tool makes the calculation of multi-body systems feasible.

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 23

5.2. DENAVIT HARTENBERG NOTATION

Anthropomorphic robots generally are made up of links that are connected by each one

joint to their preceding and subsequent links. The origin herein is a base coordinate

system. Joints could be of rotational or translational character. Each joint has one degree

of freedom (DOF). Therefore, a concatenation of n+1 links by n joints means in total n

DOF. Andy Droid has 5 servos in each leg and as a servo represents a rotational joint,

Andy in total has 10 DOF.

 Denavit and Hartenberg first introduced the quadruple { }i i i ia , ,d ,α θ to describe robot

kinematics. As Dieter Kraft explains in [5] (Chapter 1.1.2.), these kinematic parameters

are divided into two groups: link parameters and joint parameters. The first group

comprises link length and link twist, which are determined by the mechanical

construction and are thus invariant. The latter group defines the joint distance, which is

the drooping of a translational joint and the joint angle, which is the deflection of a

rotational joint.

Link Parameters:

Link i is the interconnection of the joints gi and gi+1. The shortest distance of both skew

joint axes is the distance between both root points of their common normal. It is called

link length ai.

 Figure 5.1: Link Length

The origin of link i’s coordinate system { }iiii zyxX = is congruent with the root

point of the common normal in the axis of gi+1. Likewise, link i-1’s coordinate origin

{ }1111 −−−− = iiii zyxX lies in the foot point of the common normal at the gi side.

ai

gi+1

gi

xi

gi+1

gi

zi

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 24

xi-1

gi+1

gi

yi-1

zi-1
z’i-1

zi

αi
zi-1

z’i

xi-1

yi-1

zi-1

di

xi-1

yi-1

zi-1

zi

xi

yi

x’i-1

y’i-

θi
θi

The angle covered by the coordinate axes zi and zi-1, when shifting Xi into Xi-1 along ai,

is called link twist αi.

Figure 5.2: Link Twist

Joint Parameters:

These parameters refer to possible movements and are variable. The distance between

the origin of the coordinate system Xi-1 and the root point of the common normal on gi is

referred to by joint distance di. This is the degree of freedom of a translational joint.

Figure 5.3: Joint Distance

Of more importance in the case of Andy is the so-called joint angle θi, which represents

the variable of rotational joints. The rotation of link i in joint gi rolls axis xi-1 into xi by

moving it by θi.

Figure 5.4. Joint Angle

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 25

According to Denavit Hartenberg, all links have to be labelled from zero to n, beginning

in the base body. The concatenated link chain comprises n+1 links, connected by n

joints and establishes a set of 4n parameters, out of which n parameters are variable,

stating, that no joints are translational and rotational joints at the same time. Joint i

connects link i-1 with link i. Dieter Kraft proposes the following algorithm:

Step Operation
1. Labelling Labelling the joints from 1 to n.

2. Base
Define base coordinate system { }0000 zyxX = in the base body,
so that moving axis 1 and coordinate axis z0 are collinear.
Align zi-axis2) in moving direction of joint i+1.
Choose origin of coordinate system Xi in
- intersection of zi- and zi-1-axis or
- intersection of common normal (zi-1 → zi) and zi-axis.
Determine xi-axis either

- ortho normal to both z-axes2) ()
ii

ii
i zz

zzx
×
×

±=
−

−

1

1 or

- along common normal, if both z-axes are parallel.

3. Joint
Coordinate

Systems
∀ (1 ≤ i ≤ n-1)

Complete right-handed coordinate system with yi-axis ()
ii

ii
i xz

xzy
×
×

= .

Link length ai is the distance between the intersection of zi-1-axis with
xi-axis and the origin of the coordinate system Xi, along xi-axis. 4. Link

Parameter
∀ (1 ≤ i ≤ n) Link Twist αi is the angle, around xi-axis, that turns zi-1-axis into zi-

axis.
Joint distance di is the distance between the origin of Xi-1 and the
intersection of its zi-1-axis and xi-axis, along zi-1-axis. 5. Joint

Parameter
∀ (1 ≤ i ≤ n) Joint angle θi is the angle around zi-1-axis that turns xi-1-axis into xi-

axis.
 Table 5.1: Denavit Hartenberg Algorithm

The following section shows the application of this algorithm to Andy.

2 Determination is not one-to-one.

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 26

5.3. COORDINATE SYSTEMS

Applying the Denavit Hartenberg Algorithm means, every joint has to be provided with

a coordinate system. Figure 5.5 shows the left leg:

 Figure 5.5: Coordinate Systems Left Leg (left: front view, right: side view)

i Link Joint ai/[mm] αi/[°] di/[mm] θi/[°]
0 Hip none 0 0 0 0
1 90° Joint HB-HS Hip-Side 35 90 0 HS
2 Thigh Hip-Bend 60 0 0 HB
3 Shank Knee 65 0 0 KN
4 90° Joint AB-AS Ankle-Bend 35 90 0 AB
5 Foot Ankle-Side 0 0 0 AS

 Table 5.2: DV-Parameters Left Leg

All z-axes are pointed in the direction, so that they perform a right-screw in

mathematical term. This provides the possibility to use the servos’ angles as shown in

Chapter 4 Section 5.

1

2

3

4

5

z2

z3

z1
x0

x2

x3

x1

x4/x5

y0

y4/y5

z0

z4/5

x0

x2

x3

x1

x4/x5

y1

y2

y3

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 27

The right leg’s coordinate systems and parameters:

Figure 5.6: Coordinate Systems Right Leg (left: side view, right: front view)

i Link Joint ai/[mm] αi/[°] di/[mm] θi/[°]
0 Hip none 0 0 0 0
1 90° Joint HB-HS Hip-Side 35 90 0 HS
2 Thigh Hip-Bend 60 0 0 HB
3 Shank Knee 65 0 0 KN
4 90° Joint AB-AS Ankle-Bend 35 90 0 AB
5 Foot Ankle-Side 0 0 0 AS

 Table 5.3: DV-Parameters Right Leg

The last two coordinate systems of both legs have the same origin, but X5 is moved by

joint 5, whereas X4 is attached to joint 4. The variable parameters are the joint angles.

The positions shown in Figure 5.5 and Figure 5.6 mean that all angles are 0°.

Seemingly, the results for both legs are the same, but the angles are generally different

as the two legs are usually not in the same position.

1

2

3

4

5

z2

z3

z1
x0

x2

x3

x1

x4/x5

y0

y4/y5

z0

z4/5

x0

x2

x3

x1

x4/x5

y1

y2

y3

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 28

5.4. TRANSFORMATION MATRICES

To express coordinate system Xi in Xi-1 the previously determined parameters can be

used to calculate the transformation with each two translations and rotations. According

to [5], the following matrix transforms from Xi to Xi-1:

() () () ()1

cos cos sin sin sin cos
sin cos cos sin cos sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i ii
i i i i i

i i i

a
a

T rot trn d rot trn a
d

θ α θ α θ θ
θ α θ α θ θ

θ α
α α

−

− ⋅ ⋅ ⋅
 ⋅ − ⋅ ⋅ = ⋅ ⋅ ⋅ =

 (5.6)

Using the results from 5.3. the link-to-link transformations are identical for both legs:

⋅−
⋅

=

1000
0010

sin35cos0sin
cos35sin0cos

0
1

HSHSHS

HSHSHS

T
θθθ
θθθ

 (5.7)

⋅
⋅−

=

1000
0100

sin600cossin
cos600sincos

1
2

HBHBHB

HBHBHB

T
θθθ
θθθ

 (5.8)

⋅
⋅−

=

1000
0100

sin650cossin
cos650sincos

2
3

KNKNKN

KNKNKN

T
θθθ
θθθ

 (5.9)

⋅−
⋅

=

1000
0010

sin35cos0sin
cos35sin0cos

3
4

ABABAB

ABABAB

T
θθθ
θθθ

 (5.10)

 −

=

1000
0100
00cossin
00sincos

4
5

ASAS

ASAS

T
θθ
θθ

 (5.11)

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 29

The transformation matrix from foot to hip is the concatenated transformation from

link-to-link: ∏
=

−=
5

1

10
5

i

i
iTT . This results in:

0
5

35

R

cA

cAScABcKNcHBcHS sASsABsKNcHBcHS
sABcKNcHBcHS

cASsABsKNcHBcHS sAScABcKNcHBcHS
cABsKNcHBcHS

cAScABsKNsHBcHS sAScABsKNsHBcHS
sABsKNsHBcHS

cASsABcKNsHBcHS sASsABcKNsHBcHS
cABcKNsHBcHS

sASsHS cASsHS

T

− −
+

− +
−

− +
+

+ +

=

35
35
35
65
65
60
35

BcKNcHBcHS
sABsKNcHBcHS
cABsKNsHBcHS
sABcKNsHBcHS
cKNcHBcHS
sKNsHBcHS
cHBcHS
cHS

cAScABcKNcHBsHS sASsABsKNcHBsHS
cASsABsKNcHBsHS sAScABcKNcHBsHS
cAScABsKNsHBsHS sASc
cASsABcKNsHBsHS
sAScHS

−
−
−
+
−
+
+

− −
− +
−
−

35
35
35
35
65
65
60
35

cABcKNcHBsHS
sABsKNcHBsHS

sABcKNcHBsHS cABsKNsHBsHS
cABsKNcHBsHS sABcKNsHBsHS

ABsKNsHBsHS
sABsKNsHBsHS cKNcHBsHS

sASsABcKNsHBsHS
cABcKNsHBsHS sKNsHBsHS

cAScHS
cHBsHS
sHS

cAScABcKNsHB
cASs

−
−

+ −
− +

+
+ −

−
+
+

−

35
35
35
35
65
65
60

0 0 0 1

sABsKNsHB
cABcKNsHB

sASsABsKNsHB sABcKNsHB
cABsKNcHB

ABsKNsHB sAScABcKNsHB cABsKNsHB
sABcKNcHB

cAScABsKNcHB sAScABsKNcHB sABsKNcHB
cKNsHB

cASsABcKNcHB sASsABcKNcHB cABcKNcHB
sKNcHB
sHB

−
+
+

− +
+

+ − +
+

+ − −
+
+

 (5.12)

To save space, Cosine (cos) is abbreviated with c and Sine (sin) with s. Due to the

symmetry, only one matrix had to be calculated for both legs. The matrix above, as well

as Formula 5.7, refers to a hip (base) coordinate system with an origin in the hip servo’s

axis. The elements of matrix 5.12 are obviously in a way symmetric. Applying the

following trigonometrical theorems ()γδγδγδ ±=⋅⋅ cossinsincoscos ∓ and

()γδγδγδ ±=⋅±⋅ sinsincoscossin repeatedly, reduces the 231 trigonometrical

functions of 5.12 to only 39.

() () ()
()()

()

() () ()
()()

()
0
5

35 1

65 60

35 1

65 60

c AB KN HBcAScHSc AB KN HB sAScHSc AB KN HB
cHSs AB KN HB cHS

sASsHS cASsHS c KN HB cHB

c AB KN HBcASsHSc AB KN HB sASsHSc AB KN HB
sHSs AB KN HB sHST sAScHS cAScHS c KN HB cHB

 ⋅ + + ++ + − + +
 + + ⋅
 + + + + +
 ⋅ + + ++ + − + +
 + + ⋅= − − + + +

() () ()
()
()

35

65 60
0 0 0 1

s AB KN HB
cASs AB KN HB sASs AB KN HB c AB KN HB

s KN HB sHB

+ +
+ + − + + − + + + + +

 (5.13)

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 30

Introducing a new base coordinate system, which is the same for both legs and lies in

between the two former ones, only needs a few changes in the matrix. Element (4,1)

must be extended by a constant value, which specifies a displacement along the former

base coordinate system’s yi-axis to its new position in the middle of the hip. Not only

are transformations from one foot to the hip needed, but also vice versa. Therefore, the

matrix shown above must be inverted. In addition to this, matrices translating from

shank to hip, and from thigh to hip are necessary. These matrices are also needed in

both directions, bottom-up and top down.

This brings up a set of twelve matrices: Foot-to-Hip, Shank-to-Hip, and Thigh-to-Hip,

all of them for the left and the right leg, and all inverted. Below, all matrices are shown,

to point out the similarities:

Foot-to-Hip with common-base extension:

() () ()
()()

()
() () ()

()()
()

35 1

65 60

35 1

65left
right

Hip
Foot

c AB KN HBcAScHSc AB KN HB sAScHSc AB KN HB
cHSs AB KN HB cHS

sASsHS cASsHS c KN HB cHB

c AB KN HBcASsHSc AB KN HB sASsHSc AB KN HB
sHSs AB KN HB sHST sAScHS cAScHS c KN HB

 ⋅ + + ++ + − + +
+ + ⋅

 + + + + +

⋅ + + ++ + − + +
+ + ⋅= − − + +

() () ()
()
()

28
60

35

65 60
0 0 0 1

cHB

s AB KN HB
cASs AB KN HB sASs AB KN HB c AB KN HB

s KN HB sHB

± +

+ + + + − + + − + + + + +

 (5.14)

Hip-to-Foot:

() () ()

()()
()
()

() ()

35 1

60 65

28

left
right

Foot
Hip

c AB KN HB
cAS

c AB KN cABcAScHSc AB KN HB cASsHSc AB KN HB
cASs AB KN HB

sASsHS sAScHS cASsHSc AB KN HB
sAScHS

sAScHSc AB KN HB sASsHSc AB KN HBT sASs AB
cASsHS cAScHS

 ⋅ + + +
− ⋅

 + + ++ + + + + +
+ − + +

−

− + + − + += −
+ −

∓

()

()()
()

()

() () ()
()

()
()()

35 1

60 65

28

35

60 65

28

0 0 0 1

c AB KN HB
sAS

c AB KN cAB
KN HB

sASsHSc AB KN HB
cAScHS

s AB KN HB

cHSs AB KN HB sHSs AB KN HB c AB KN HB s AB KN sAB

s AB KN HB sHS

 ⋅ + + + ⋅ + + + + +
 − + +

−

− + +
 + + + + − + + − + −
 + +

∓

∓

 (5.15)

J. Zimmermann 5. Adapted Denavit Hartenberg Notation

 31

Shank-to-Hip:

() () () () () () () ()()
() () () () () () () ()()

() () () ()

c c c s s c 65c 60c 35

s c s s c s 65c 60c 35 28

s c 0 65s 60s
0 0 0 1

left
right

Hip
Shank

HS HB KN HS HB KN HS HS HB KN HB

HS HB KN HS HB KN HS HS HB KN HB
T

HB KN HB KN HB KN HB

 ⋅ + − ⋅ + ⋅ + + +

⋅ + − ⋅ + − ⋅ + + + ± = + + + +

 (5.16)

Hip-to-Shank:

() () () () () () ()() ()()
() () () () () () ()() ()

() () ()

c c s c s c 28s 35 60c 65

c s s s c s 28s 35 60s

s c 0 28c
0 0 0 1

left
right

Shank
Hip

HS HB KN HS HB KN HB KN HB KN HS KN

HS HB KN HS HB KN HB KN HB KN HS KNT
HS HS HS

 ⋅ + ⋅ + + − + ⋅ ± + + +

 − ⋅ + − ⋅ + + + ⋅ ± + +=

− ±

 (5.17)

Thigh-to-Hip:

() () () () () () ()()
() () () () () () ()()

() () ()

c c c s s c 60c 35

s c s s c s 60c 35 28

s c 0 60s
0 0 0 1

left
right

Hip
Thigh

HS HB HS HB HS HS HB

HS HB HS HB HS HS HB
T

HB HB HB

 ⋅ − ⋅ ⋅ +

⋅ − ⋅ − ⋅ + ± =

 (5.18)

Hip-to-Thigh:

() () () () () () ()()
() () () () () () ()()

() () ()

c c s c s c 28s 35 60

c s s s c s 28s 35

s c 0 28c
0 0 0 1

 ⋅ ⋅ − ⋅ ± + −

− ⋅ − ⋅ ⋅ ± + =

− ±

left
right

Thigh
Hip

HS HB HS HB HB HB HS

HS HB HS HB HB HB HST
HS HS HS

 (5.19)

All matrices show a small number of different trigonometrical functions, which are used

in altered combinations. Substitutions can reduce the number of trigonometrical

calculations by using pre-calculation and a look up table (see chapter 9).

5. Adapted Denavit Hartenberg Notation J. Zimmermann

 32

The following table shows which functions are needed in which matrices.

Trig. Function Sub (5.14) (5.15) (5.16) (5.17) (5.18) (5.19)
cos(HS) a x x x x x x
sin(HS) b x x x x x x
cos(HB) e x x x x
sin(HB) f x x x x
cos(KN) e’ x
sin(KN) f’ x
cos(AB) e’’ x
sin(AB) f’’ x
cos(AS) i x x
sin(AS) h x x
cos(KN+HB) o x x x
sin(KN+HB) p x x x
cos(AB+KN) o’ x
sin(AB+KN) p’ x
cos(AB+KN+HB) u x x
sin(AB+KN+HB) v x x

Table 5.4: Substitutions and Distribution of Trigonometrical Functions

This table illustrates that, although sixteen different substitutions exist, only a maximum

of ten are needed at any given time. The red ellipses point out the altering dependencies

between forward and backward calculation; blue rectangles indicate invariants. This

table is later used to generate efficient source code.

The coordinate systems and matrices derived in this chapter provide a compact method

to calculate the positions of all links for Andy Droid relative to each other and in the

coordinate system which fits the current problem best. The results above do not provide

the opportunity to derive angles from given positions, because this problem is not one-

to-one according to the given hardware setup. Dynamics are also not considered.

However, the robot’s masses and their distribution will be investigated in the next

chapter.

J. Zimmermann 6. Mass Distribution and Centre of Gravity

 33

6. MASS DISTRIBUTION AND CENTRE OF GRAVITY

This chapter will discuss the way in which the masses of the single moving bodies of

the robot affect the total centre of mass. There are two different ways how the normal

projection of the centre of mass (NPCM) can be determined. One method is recording

the NPCM from the physical robot, and the other is by calculating it without having

sensory feedback.

6.1. FORCE GAUGING AND PROCESSING

The foot force sensors not only provide the opportunity to measure the force or detect

the ground contact, but they also can be used to determine the load distribution for each

foot.

As illustrated in Figure 4.3 in Chapter 4, each foot of the robot is constructed from three

spring metal strips to which amplified strain gauges are attached. The borders of these

toes form a triangle. Now the force on each toe can be determined with the sensors and

the ratio of the values to each other give the centre of force in this triangle.

Figure 6.1: Toe-Setup

The illustration above shows both feet schematically, as seen from underneath the robot.

This means, the left part in this picture represents the right foot and vice versa. The

walking direction is against the direction of the z-axis. The toes are arranged in a star, so

y5

6

z5

4
1

2

3

z5

y5

5

6. Mass Distribution and Centre of Gravity J. Zimmermann

 34

that they form a triangle of support. Thus, each foot creates a triangular safe operational

area (SOAR). The polygon formed by the corners of both feet is a hexagon. While both

feet are attached to the ground, the safe operational area extends to the area surrounded

by this hexagon.

Figure 6.2: Centre of Force per Foot

The main hypothesis for balancing states: the robot is statically stable as long as the

normal projection of the centre of mass is in the area surrounded by the polygon, which

is formed by the feet’s corners.

This hypothesis was confirmed by A. L. Kun in his dissertation on “A Sensory-Based

Adaptive Control Algorithm for Variable Speed Biped Robots” [6].

Figure 6.2 shows the two triangles formed by the toes and the hexagonal SOAR (grey-

striped area). The analog-to-digital converted measurements are mathematically

processed. Firstly, the offset is taken by reading the values from the A/D-Ports when the

robot is not attached to the ground. Secondly, the average value of all toes is determined

while the robot stands on his feet. At this time, no additional force other than the robot’s

own gravitation should be exerted. Furthermore, only the difference between the actual

value read and the offset is processed. This removes long term offset-drift influences.

The values mentioned later all refer to this difference.

y5

6

z5

4

5

1

2

3

z5

y5

J. Zimmermann 6. Mass Distribution and Centre of Gravity

 35

To calculate the centre of force of each foot, a value is measured, which represents the

length of a vector in the same orientation as the associated physical toe. The three

vectors again construct a triangle, but a virtual one. As the measured value equals the

mean, the length of this vector is the same as the physical toe itself. The strain gauges

are assumed linear, so that the length of the vector is linearly expanded with the value.

The physical centre of force is represented by the result of this calculation, as it is the

centre of gravity of the virtual triangle.

 act .,Toe
3

x1
COF Toe,phys.3 x

Toe 1
v v

=

= ⋅ ⋅∑G G (6.1)

The equation shown in (6.1) explains how the centre of force of each foot is calculated.

Figure 6.2 illustrates the same. The striped red triangular area shows the virtual

triangles, whose centres of gravity are marked with a red cross. The right side shows the

state, when the average force is exerted on all toes. The left side demonstrates the state

when the centre of mass on the right leg is displaced.

Remark: The relationship between the change of the resistance of the strain gauges and

the measured voltage in a quarter-bridge is d

CC

V R 1 R
V 4R 2 R 4 R

∆ ∆
= ≈ ⋅

+ ∆
 as long as ∆R is

small compare to R. When the bending radius itself is not too small, so that the relative

change in length of the spring metal is nearly constant all over the measured length,

then the strain of the gauges is constant. The ratio of relative resistance change to strain

is called the k-factor. This factor depends on the gauge itself. This means:

1 1
4 4

∆
≈ ⋅ = ⋅ ⋅ εd

Bridge

V R k
V R

 is linear as long as strain ε is linear. For a detailed derivation,

see [7]. The k-factor of the used strain gauges was not determinable and because of the

lack of the appropriate measuring equipment, an exact calibration of the toes could not

be performed. As mentioned above, only differences were processed, relative to the

average values. The measured values were assumed linear.

The effect of both feet’s COFs on the NPCM of the whole robot will be explained in

section 3 of this chapter.

6. Mass Distribution and Centre of Gravity J. Zimmermann

 36

6.2. LINK MASSES AND POSITIONS

The last section described how the centre of force could be derived from the foot

sensors, for each foot. This section illustrates how the masses are arranged in a way in

which the centre of mass can be determined without requiring any sensors.

The robot comprises a large number of single moving masses. The first simplification

assumed is that the wiring is not considered but its mass is distributed statistically to the

rest. This simplification is justified, as the mass of the wiring is negligible compared to

that of all other bodies. The masses of the controller and the servos have been taken

from their technical specification. As far as it was possible to disassemble the robot, all

other single parts have been weighed. Parts like the toes and mounts were calculated by

their volume and the specific weight of the material. The following table shows the

determined weights:

EyeBot Controller 190g

Batteries 320g

Servo 56g

Upper Body’s Mount and Wiring 131g

Thigh’s Mount and Wiring 35g

Shank’s Mount and Wiring 7g

Foot’s Mount, Wiring and Toes 52.5g

90°-Link (Hip-Thigh and Shank-Foot) 12.5g

 Table 6.1: Single Weights

The complete robot showed a mass of 1440g on a scale. The accuracy of the scale used

was 2g. The calculated weights have been adapted so as to reach the total mass

measured.

As mentioned above the number of independently moving bodies was reduced. In

addition, the 90°-links also had a small mass. Thus, their mass was also distributed to

their neighbouring bodies.

J. Zimmermann 6. Mass Distribution and Centre of Gravity

 37

This results in the following masses:

Upper Body Batteries, 2 Servos, Controller, Mount 765.50g

Thigh 2 Servos, Mount 153.25g

Shank 1 Servo, Mount 69.25g

Foot 1 Servo, Mount, 3 Toes 114.75g

 Table 6.2: Moving Masses

The masses shown in Table 6.2 are not to been seen as real, but of statistical character

which represents the distribution over the whole robot. Therefore, it is justified to use

the values in an unrealistic level of preciseness.

Once having determined the masses, the centre of each mass has to be assigned. This

was done in the way that all positions in each coordinate direction had been added after

multiplying it by its weight. Nevertheless, the centres of mass are more of an estimated

character. The positions are related to the coordinate system that is fixed to the moving

body. This results in the following vectors:

Foot: 5
Foot

left
Leg

right

12
V 10

18

 = ±

JG
 ⇒ 0 0 5

Foot Foot5V T V= ⋅
JG JG

Shank: 3
Shank

left
Leg

right

15
V 0

17

−
 =

JG

∓
 ⇒ 0 0 3

Shank Shank3V T V= ⋅
JG JG

Thigh: 2
Thigh

left
Leg

right

30
V 0

17

−
 =

JG

∓
 ⇒ 0 0 2

Thigh Thigh2V T V= ⋅
JG JG

Body: 0
Body

HipCentre

60
V 0

31

−
 =
 −

JG

The total centre of mass is as follows: 0 0
total ii

itotal

1V m V
m

= ⋅∑
JG JG

. (6.2)

6. Mass Distribution and Centre of Gravity J. Zimmermann

 38

6.3. CALCULATION OF THE NPCM

Having gathered the centre of force of each foot, as described in Section 6.1.,

calculation of the total projection of the centre of mass (NPCM) is simplified. The plane

on which the toes of one foot rest is situated 28mm in positive direction of the x-axis of

a foot. If the foot rests on the subsurface, then this is coplanar to the y-z-plane. The

bending of the spring metal stripes is neglected. The centre of force now is a distinct

vector in each foot’s coordinate system made up of the distance in x-direction as

mentioned and its components in y- and z- direction as shown in Figure 6.2.

In the trivial case, when one foot is lifted, the NPCM is identical with the centre of force

of the foot that rests on the ground. As long as both feet are attached to ground, the

NPCM lies on the line that connects both centres of force. Therefore, both vectors are

transformed into one coordinate system. The missing information is the distribution of

the load between both feet. Therefore, the sum of all toe-sensor values of one foot must

be in proportion to the total of all sensor values.

() ()right
NPCM right left right left right right left

left right left right

s 1v v v v s v s v
s s s s

= + ⋅ − = ⋅ ⋅ + ⋅
+ +

G G G G G G (6.3)

Figure 6.3: Measured NPCM

y5

z5

leftvG
rightvG

left rightv v−G G

J. Zimmermann 6. Mass Distribution and Centre of Gravity

 39

According to Chapter 6.2., the calculated centre of mass is 0 0
total ii

itotal

1V m V
m

= ⋅∑
JG JG

.

Now the resulting NPCM is, as its name says, the normal projection of this vector to the

ground plane. Without any further information on the absolute tilt or pitch angle of the

robot this could not be done. As long as the ground plane is horizontal, it is sufficient to

project the previously calculated centre of mass to the foot plane. This is done by

transforming it into the foot’s coordinate system and replacing the vector’s x-value by

28, which means that it is projected into the plane x5=28 (normal form of a plane).

Obviously, it has to be given in the coordinate system of the foot, which is attached to

the ground.

Figure 6.4: Influence of Slopes

As the figure above shows, the NPCM derived from the sensors and the calculated one

are identical when the ground plane is horizontal. The example on the right shows a

sloped surface and the robot in a stable position where the force on both feet is the

d

h

φ

φ

6. Mass Distribution and Centre of Gravity J. Zimmermann

 40

same. In this case, only the sensored NPCM is realistic because the calculated version is

not normally projected but orthogonal to the surface. This has a nice side-effect: Figure

6.4 names the length d, which simply is the y-component of the difference of both

NPCMs. As marked in the figure, dsin
h

ϕ = , where h is the x-component of the centre

of mass vector in a foot coordinate system. At the same time, φ is the angle between the

slope and the horizontal in the rolling (sidewards) direction. The same could be

calculated for the pitch angle by exchanging y- with z-components. This could make

inclinometers obsolete.

As mentioned before, the servos do not have feedback and thus, their actual position

must be trusted. They have an internal loop-back controller to hold the position but each

gearbox has a backlash. These backlashes add up to tolerances that make both

calculations incorrect. Flexibilities in the links caused problems as well and, thus, the

links had to be exchanged with stiffer ones. Their weight did not increase because the

former ones were made from steel, whereas the new ones are made from aluminium.

But the uncertainties caused by the gearboxes still cannot be removed as the calculation

of the total centre of mass is concerned. In the case of the measured NPCM, the system

is relatively robust. The reason being that the supported area (hexagon) of the feet is

large when compared to the robot’s height and width. This allows tolerances in

controlling the NPCM to a stable position.

J. Zimmermann 7. Control System

 41

7. CONTROL SYSTEM

With the results from the previous chapter there is a value well suited for a control loop.

The measured NPCM represents global information on the robot’s state as discussed

before. The control algorithm presented in this chapter was designed according to

“Taschenbuch der Regelungstechnik“[9], Chapter 11 „Digitale Regelungssysteme“. All

performance tests on API and user functions have been carried out by running the

corresponding function in a loop repeatedly. The setup was an EyeBot MK4, running at

33MHz with RoBIOS 5.1 in 2MB RAM. Time stamps were taken from the internal

timer and the overheads caused by the loops were taken into consideration as well.

7.1. DATA CAPTURE

As digital control systems act on analog control plants, some adaptations have to be

made. Especially the data flow has to meet some requirements. This section discusses

some problems concerning data validity.

As mentioned before, the data from the strain gauges are A/D converted. The 10-bit

A/D converter works on an 8-channel multiplexer. The structure diagram is shown

below, or see data sheet [10] for detailed information.

Figure 7.1: Multiplexed A/D Conversion

To get a value by calling the API-function OSGetAD(channel_#), the single-chip

module is forced to switch to the desired channel and retrieve the value. As the input

circuit of the inbuilt sample circuit contains a capacitor, it takes some time to get this

capacitor charged, before the hold-latch disconnects the outer circuit. This time is not

only determined by the time constant of the input impedance of the A/D converter, but

also of the output impedance of the measured circuit which is the strain gauge amplifier

AMP04 (Analog Devices) itself. According to the data sheet of this instrumentation

A

D

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7

Strain Gauge 1
Strain Gauge 2
Strain Gauge 3
Strain Gauge 4
Strain Gauge 5
Strain Gauge 6

Digital Value

7. Control System J. Zimmermann

 42

amplifier ([11], page 14, figure 31) the output impedance is below 20Ω and therefore

negligible. The A/D converter needs some time to acquire the correct voltage:

AZ Source INt 9 (R R) 16pF 9 (20 5k) 16pF 730ns= ⋅ + ⋅ = ⋅ Ω + Ω ⋅ ≈ (according to its data sheet

[10] page 8, upper left paragraph “Track/Hold”, in this setup). The call of one

OSGetAD(channel_#) takes 20 times as long. Yet, tests have shown, that without any

changes on the measured bridge, it takes at least 3 times as long as one reading to

retrieve the correct value. During normal operation, it is assumed to wait at least ten

times the duration of one call between switching to the channel and reading the value

assumed to be valid.

This means a latency of at least 150µs. As there are 6 strain gauges to read and the

channel must not be switched during one wait-state, it takes 900µs to read the strain

gauges in total. Performance tests with the method that captures data and processes it, in

order to make it available for the calling function, have shown that the time

consumption is variable. In total, a pre-processed data capture of all sensors with the

wait-states mentioned before, takes up to 6ms. This means that the maximum possible

sampling frequency on one strain gauge is 1
S 1000µsf 1kHz= = . Faster sampling requires a

different A/D converter.

Actually, the low-pass filter, which is built in the amplification circuit has a filter-

frequency of
EXT

1
LP 2 100k Cf 1.061kHzπ⋅ Ω⋅= = as EXTC 1.5nF= . This means that the gauges

are under-sampled and aliasing could occur, if the measured signal carries the respective

frequencies. Thus, the low pass filter frequency has to be set to at most 500Hz.

7.2. CONTROL LOOP FREQUENCY AND SAMPLE PERIOD

As RoBIOS allows calling interrupt routines at a maximum frequency of 100Hz, the

shortest period of the control loop could be 10ms. Nevertheless, as the computing time

consumption of the control loop is between 10ms and 13ms, the interrupt should run at

a maximum of 50Hz. This should provide nearly the same computation time for higher-

level applications.

To establish a quasi-continuous digital control loop, it is necessary that the sampling

time is short, compared to the dominating time-constant of the control plant. The ratio

of both should be 10, which means minimal 10 times over-sampling. Therefore, the

maximum frequency of the control plant must be reduced by shortening the low-pass

J. Zimmermann 7. Control System

 43

bandwidth again. Regarding Shannon’s theorem and the demand of 10 times over-

sampling,
!

CL Shannon Max,Plant Low Passf 10 f 20 f 20 f −= ⋅ = ⋅ = ⋅ (7.1). This means, the highest

frequencies required by the controller are below 2.5Hz. Improving the performance

would only be possible by either reducing the time consumption of the controller

software or increasing the computation power of the hosting controller.

The time consumption of the control loop, as mentioned above, is taken while the loop

used the maximum servo speed available. If one intends to smooth the servos’

movements, it should be noted that reducing the speed increases the time consumption

of the whole control loop. The speed is reduced by inserting pauses in the driving

commands that must return before other computations can be performed. Consequently,

the available computation time for higher-level applications is reduced and easily

suppressed at all, as interrupt-routines have higher priority.

The function, which calculates the subsurface slope angle should not be called within

the control loop, as it is not necessary and consumes about 40ms computation time.

7. Control System J. Zimmermann

 44

7.3. CONTROL ALGORITHM

According to Taschenbuch der Regelungstechnik [9], Chapter 11.2.4.3, a control

algorithm for PID-controllers can be derived from the analog standard PID controller.

Figure 7.2: PID Controller Structure

The differential quotients are replaced by discrete difference quotients. The input-

output-relation ∑∑
=

−
=

− +=
M

i
ki

N

i
kdik yaxby

1
1

0
1, uses the rectangular approximations

k k 1x xx
T

−−
≈� and k k 1 k 2

2

x 2x xx
T
− −− +

≈�� . This leads to the standard PID control

algorithm:

V V V
k k 1 R d,k d,k 1 d,k 2

N

T T TTy y K 1 x 1 2 x x
T T T T− − −

 = + ⋅ + + ⋅ − + ⋅ ⋅ + ⋅

 (7.2).

P R dy (t) K x (t)= ⋅

d
D R V

dx (t)y (t) K T
dt

= ⋅ ⋅

I R d
N

1y (t) K x (t)
T

= ⋅ ⋅ ∫
xd(t) y(t)

J. Zimmermann 7. Control System

 45

The algorithm can be programmed according to the following flow chart:

Figure 7.3: Control Algorithm Flow Chart

START

k 1 k

d,k 2 d,k 1 d,k

y y
x x x

−

− −

=
= =

Start of Sample Period

Capture Data and

Read Desired Value

Calculate y
k
or •y

k

Output of y
k
or •y

k

k 1 k

d,k 2 d,k 1

d,k 1 d,k

y y
x x
x x

−

− −

−

=
=

=

Sample Period

expired?

NO

YES

Wait for next real-time interrupt and
compute other data

Save Recursive Values

Execute Control Algorithm

A/D Conversion

Initialisations

7. Control System J. Zimmermann

 46

7.4. CONTROL LOOP

The controlling algorithm has been presented in the last section. The adaptation to the

given plant means that the signals have to be identified and pre-, respectively post-

processed to meet the given environment. Furthermore, one has to determine which

values are controllable to get the intended result: Balancing.

As discussed in Chapter 6, the normal projection of the centre of mass represents global

information on the robots state. As it is a projection, its degrees of freedom in terms of

coordinates are reduced from three to two. The NPCM is located in the surface-plane

under the robot’s feet. As shown in Chapter 6, it can be expressed with the

mathematical utilities from Chapter 5. According to the statements in Section 5.3, it is

directly expressible in a foot’s y- and z-coordinate. This solves the first problem of the

controller: there is a value that can be controlled. As these coordinates are

mathematically independent they have to be controlled independently. This is done by

two PID-controllers; each attached to one coordinate: y-component for sidewards

deviation from the desired value, and the z-component for front-back-deviation.

This brings up the next question: what is the desired value and how is it expressed? The

structure of it is obvious: the controlled variable is a two-dimensional vector, thus the

desired value has to meet the same structure to create a reasonable control-error. The

controller calculates the desired value by itself. The basis to calculate it is the actual or

desired foot’s positions in global coordinates and the distribution of the load between

both feet. Thereby it is guaranteed to control to a safe state, according to the SOAR

defined in Chapter 6. This means, the controller has to be given the positions of the feet

relative to the base coordinate system in the hip-centre and a percentage of how much

load one foot should carry.

The control algorithm is applied to each coordinate. The output is used to drive the

appropriate servos, affecting the total centre of mass in the controlled direction. The

closed control-loop is shown in the following figure.

J. Zimmermann 7. Control System

 47

 Figure 7.4: Control Loop

The lower red dashed-lined box indicates the control plant. It comprises all hardware

components. This plant is obviously non-linear. The mathematical interrelationship is

given in the previous chapters. However, the plant is too complex to model and describe

∆yk,LHB ∆yk,RHB ∆yk,LK ∆yk,RK

Pitch-Servos
{Hip-Bend, Knee}

Roll-Servos
{Hip-, Ankle-Side}

Control Algorithm
Pitch

Control Algorithm
Roll

Splitterxd,k,z xd,k,y

∆yk,LHS ∆yk,RHS ∆yk,LAS ∆yk,RAS

Centre of Mass

yPitch yRoll

xNPCM

Distribution of Total
Gravity on Toes

A/D Inputs

NPCM
Calculation

xG

xM

xM,NPCM

Desired NPCM

xd,NPCM

xw,NPCM
+

–

Control Plant

Controller

7. Control System J. Zimmermann

 48

in mathematical expressions. An experimental model could also not be taken because

the only gauging instrument available was the A/D converter itself and it is too slow for

an appropriate data capture. In addition to the non-linearity, the gaugeable value is not

the NPCM directly, but can only be derived from it. The control algorithm explained in

the last section is designed for linear systems only. For small changes in the servos’

angles, the change of the NPCM is quasi-linear, as () 4sin | πα ≈ α α << . Therefore, it

could be applied, although it is generally not suitable for the system. In lack of a model,

even of a linearised model, the control-parameters, TN, TV, and KR could only be

adjusted according to the method of Ziegler and Nichols (see [9], Chapter 10.3.2

Einstellregeln von Ziegler und Nichols).

Some tests showed that a differential part makes the plant unstable and, therefore, it was

set to ‘0’. The proportional parameter was set to RK 0.01= and the integral parameter

to
N

T
T 1.5= . The algorithm still includes the differential terms to make it easily

accessible if one wants to experiment with it.

J. Zimmermann 8. Software System Architecture

 49

8. SOFTWARE SYSTEM ARCHITECTURE

To provide concise software, it is necessary to arrange the code clearly. This is essential

for efficient work during development and for a manageable starting-point for later

modifications of this project.

Object oriented programming means that methods and data are contained by classes and

instances. Therefore, real objects must be abstractedly described in software objects.

Real objects could be either physical objects or problems, e.g. concerning mathematical,

computational or data tasks. The software objects should have names, related to their

real objects’ names and they could interact among each other. They should provide

abstraction by encapsulating several features in one object, modularise access by

access-rights, and contain all data needed and directly related to the object’s features.

8.1. SYSTEM STRUCTURE

In the case of an EyeBot and especially Andy Droid, abstraction is already provided by

the API’s C-functions. As the programming language C does not provide object

oriented programming features, these functions had to be encapsulated in classes. The

following figure shows the logic layers, the robot-model was divided into.

 Figure 8.1: Layered System Structure

The lower three layers were already discussed in Chapter 4. The foundation classes

provide encapsulations in C++-objects. This comprises mathematical features for linear

algebra and Denavit Hartenberg calculations, as well as Singleton classes for hardware

objects. The controlling layer implements the control algorithm explained in Chapter 7.

Behaviour

Robot-Hardware

Hardware Abstraction Layer (HDT)

RoBIOS API

Foundation Classes

Controlling

User Interface

Provided

New

Hardware

Software

8. Software System Architecture J. Zimmermann

 50

The layer on top of the control layer determines high-level behaviour, e.g. walking gait

generation. At the top of the stack is the user interface. The behavioural

implementations are rudimentary at this state of the project. This layer should be used

for further implementations during future software work.

8.2. SINGLETON CLASSES

According to Chapter 5 of the script for the lecture “Softwaretechnologie II” by Prof.

Hußmann at the Technical University of Dresden [8], singleton classes provide some

advantages. They only allow one instance of themselves to be created, still obtaining the

opportunity to be accessed from multiple points. The singleton design pattern is as the

following code fragment shows:

The constructor of this class is declared private. This means, no functions, but member-

functions of this class itself can create an instance. The only instance of this class is a

static member of itself. The public function GetTheInstance() returns a pointer to

this uniquely created instance. The way in which the Singleton design pattern is

implemented and shown above differs from the method described by Hußmann. It was

class ClassName

{

 public:

 static ClassName* GetTheInstance();

 private:

 ClassName();

 static ClassName SingleInstance;

};

ClassName ClassName::SingleInstance;

ClassName* ClassName::GetTheInstance()

{

 return &SingleInstance;

}

J. Zimmermann 8. Software System Architecture

 51

proposed to have only a pointer to the single instance as a static member of the class.

The method which returns this pointer, creates the instance if it does not exist. This

means dynamic memory allocation, which requires a destructor to free the dynamic

allocated memory. However, RoBIOS, or the compiler used does not support

destructors. Therefore, Singletons were implemented in the way illustrated.

Access to the instance can be gained by calling the following line from anywhere in the

user program:

ClassName *instance=ClasseName::GetTheInstance();

The scope operator enables the compiler to call the static member function without an

instance and assign the function’s start address correctly.

8. Software System Architecture J. Zimmermann

 52

8.3. CLASS STRUCTURE

The idea behind Singletons is that a class is programmed as usual. However, by

protecting the constructor and adding an instance of itself to its private member

variables and one public function to retrieve a pointer to this instance, it is guaranteed

that only one instance exists at the same time. In terms of data access, this could be

achieved by declaring all member variables as static. In this case, constant member

functions still could be accessed from different points of the software at the same time.

Different parts of the hardware must be accessed only one at a time by the software. The

feature of Singleton Classes provides exactly the character of hardware components:

they only exist once. To fulfil the requirement from the beginning of this chapter, this

design pattern is appropriate for abstracting the real objects.

The following components have been designed as Singleton Classes:

- Legs, containing 10 servos → Servo-Class

- Feet, containing 6 sensors → Feet-Class

- Input, comprising keys and IR remote control → UserInput-Class

- Output, represented by the LCD → Display-Class

There are two more foundation classes, which are not designed as Singleton Classes

because it is necessary to obtain multiple instances:

 - Mathematical functions for matrix calculations → LinearAlgebra-Class

 - Functions for Denavit Hartenberg calculations → DenavitHartenberg-Class

The latter inherits the mathematical features of previous one. For the next layer,

controlling, a single class has been designed: Control-Class. This class is also a

Singleton. However, if it becomes necessary during future work to have more than one

controller, this class could easily be extended or redesigned. The behavioural layer

exists in a testing class for balancing which includes the user interface.

J. Zimmermann 8. Software System Architecture

 53

The following structure shows the interdependencies of the foundation classes and the

controlling layer:

 Figure 8.2: Class Structure

The main calculations take place in the DenavitHartenberg-Class, which has all the

abilities inherited from its mother class LinearAlgebra. It accesses the Servo-Class only

for retrieving the actual positions of the servos every time it calculates coordinate

transformations. The Feet-class needs LinearAlgebra to use its structures and

encapsulate sensored data in these. To synchronise some Outputs with the user,

Display-class needs access to the UserInput-class. Due to standardised output-functions

for LinearAlgebra-objects, it also uses this class. This output is mainly for debugging

purposes. All dashed arrows are only accesses if an error occurs, whereas normally the

highest layer accesses these two user-interfacing classes. The control layer mainly

works with the servos and the feet. For some calculations, it also needs

DenavitHartenberg and LinearAlgebra.

The layers above make use of these two straight top-down and, as the controlling layer

exist of only one class, the structural diagram is obvious. For forward controlled

behaviour and the user interface, the control layer can be passed by. Down bound layers

are no more classes because the foundation class layer wraps the API’s C-functions.

These C-functions access the hardware via RoBIOS.

Control Layer

Foundation Classes Layer

Control Class

A uses B
A inherits from B
A uses B only if an
error occurs

A B
A B
A B

Feet Class Servo Class

LinearAlgebra Class DenavitHartenberg Class

Display Class UserInput Class

9. Implementation J. Zimmermann

 54

9. IMPLEMENTATION

Since the structure is now clear, this chapter examines some features and ways of

implementing the previous results. It explains and clarifies the source code, but does not

give a complete and detailed overview.

9.1. LINEARALGEBRA-CLASS

LinearAlgebra is a basic class for mathematical calculations concerning vector and

matrix operations. It contains a 4 by 4 array of double variables and carries extra

information on the dimensions of the actual data. As far as possible, it uses overloaded

operator functions. It provides features to add vectors or matrices. Multiplications of

vectors or matrices with scalar values are computed with the same functions as

multiplications of vectors or matrices amongst each other or vectors with matrices.

These functions decide by themselves which operation to choose and verify the needed

dimensions. Furthermore, it can compute the absolute value of a vector, and if the

current data is a matrix, the result will be the determinant of it.

9.2. FEET-CLASS

The purpose of this class is mainly to read the sensor values and reprocess them for

further use. It reads all values at a time and calculates the NPCM of each foot. It also

provides information on the distribution of the load on each foot and the condition of

the foot if it is either attached to the ground or lifted. Reading procedures are adjusted to

the time constants of the A/D converter to provide a reliable value. In addition, a public

member named “deadbandwidth” provides the opportunity to mask displacements

under a certain range. The amplification values of the strain gauges are normalised by

mean values derived from series of measurements. It might be necessary to correct these

values as the strain gauges grow older.

J. Zimmermann 9. Implementation

 55

9.3. SERVO-CLASS

The servos are driven by public methods of this class. It comprises data on the actual

position, which can be changed only by this class itself, as the data is private.

Furthermore, the driving functions verify the chosen positions with the limits of the

servos to guarantee, that the links do not move across mechanical boundaries. These

limiters prevent the servos from overheating or illegitimate angles. Addressing the

servos is done via handles, which have to be initialised before driving. All servo-

handles are stored in a class-local array and the index is addressed by an integer value

between zero and nine. These values are overwritten by defined semantic names similar

to those mentioned in section 5.3. The definitions are global, so that they can be used in

the same context in other classes. To minimize latencies of procedure calls, the driving

functions await an array with new angles for all servos at a time. Otherwise, the calling

procedure must handle the movement and permanent switch between movements of

different joints to provide a smooth movement.

The servos can be driven relatively to their actual position by calling a method with

angle-deltas or absolutes. The movement can be performed with ten different angular

velocities. The different velocities are generated by adding 0-10 wait-states. Speed 10

means the maximum speed producible by the servos. However, the maximum speed

also depends on the torque on the joints. Therefore, it could be reasonable to drive the

servos at a lower speed, which then should be guaranteed.

9.4. DENAVITHARTENBERG-CLASS

Mainly, this class embodies the results of Chapter 5. It inherits all features of

LinearAlgebra. The overloaded operator ‘=’ had to be rewritten as it is not handed down

by the mother class, according to ANSI C++. The only additional public member

function calculates and returns a transformation matrix. Therefore, this function is

addressed with a semantic servo name, defined in Servo-class. If this value is negative,

the inverted matrix from hip-base to the chosen link is calculated. Which angles are

needed for the chosen operation is decided before calculating the matrix itself. A lookup

table is generated on the fly, according to Table 5.4. This means, that only at most ten

trigonometric computations have to be performed for each matrix calculation, instead of

39. The matrix itself then is assembled in another private method.

9. Implementation J. Zimmermann

 56

In addition to the increase of calculation performance by the lookup table, the standard

math-lib sine and cosine functions have been replaced. Performance test on the standard

functions showed that the computation of one standard sine or cosine consumes

approximately 1.9ms. A lookup table for sine-calculation has been generated, which

takes about 24µs. The calculation time reduces to 1.2% of the normal consumption. The

test setup therefore was an EyeBot MK4 running at 33MHz, operating RoBIOS V5.1

having access to 2MB RAM. The time consumption was taken over a partially unrolled

loop (to minimize loop-decision influences) with 20000 cycles.

The lookup table maps a full cycle from 0° to 360°. The test was also done with a

quarter-cycle sine-mapping using recursive calls taking the advantages of symmetry.

This increased the computation time to 102.5µs. The advantage using the latter table

would have been the reduced memory load. As the memory is 2MB in total and the

lookup table is 640 float values, it consumes 2.5kB, which is 0.12%. It was decided to

use the full cycle table.

The table was externally calculated with Microsoft Excel® at a precision of six

decimals. The table comprises a resolution of 640 values for 360°. The reason for this

was obvious: Chapter 4 Section 2 explains that the servos operate at a range of ±72°,

driven by C-functions that accept therefore a value between 0 and 255. This means a

full circle of 360° is represented by 360
144x 256 640°

°= ⋅ = distinguishable values which are

in the natural resolution of the servos. Thereby, additional uncertainties due to angle

conversions are avoided. On the other hand, this means that changes of the servo

resolution in the HDT entail adaptations of this lookup table. Cosine is processed by

calling sine with 90°-shifted angle.

Using a lookup table for square root calculation was also tested but this brought no

improvement. Besides, the square root function is not called very often and the time

consumption is not serious.

J. Zimmermann 9. Implementation

 57

9.5. DISPLAY- AND USERINPUT-CLASS

These classes provide C++-encapsulated functions to access the LCD and process key

or infrared inputs. Therefore, the UserInput-class initialises the infrared and combines

both, keys and remote control. It provides blocking and non-blocking functions similar

to those of RoBIOS itself, and operates via an internal buffer. It has also the ability to

desensitise the input, which was necessary to eliminate unwished double readings of the

remote control. The sensitivity is adjustable by inserting wait-states.

The Display-class imitates printf. It can receive a variable number of arguments by

using the Ellipsis-Operator ‘…’. For the implementation, see the source code in the

appendix. In this way, it can also display special data structures, such as vectors or

matrices, and the cursor can be positioned in the same function-call. Furthermore, it

provides methods to paint graphical elements like triangles and crosses. This was

needed for the intended output. If more functions are needed, the inventory of functions

can easily be extended.

9.6. CONTROL-CLASS

This class establishes a closed-loop PID-controller. It stores the last and second last

control errors and the last manipulated value. It is simply the translation of the results of

Chapter 7 in code. A difficulty in this class was in implementing the interrupt routine.

The EyeBot API’s interrupt routine is called with two parameters: a timescale and the

start-address of the routine to be executed in the interrupt. For this address, only C-

functions are accepted, because a pointer to a member function could not be resolved at

compilation time. Fortunately, static member functions are deemed C-functions, as they

exist only once. Static member functions can only use other static methods and

variables. The solution is, to pass a pointer to static member function to the interrupt-

timer attaching function. The static function calls the routine to be executed in the

interrupt. This is the controller itself. An additional function is needed to synchronise

data passed to the controller. This function has to ensure that the interrupt reads the

correct values. Therefore, it stops the running interrupt-routine and re-attaches it after

synchronising the data. The function for switching on and off is handed over to the user

by two simple functions. The following pseudo-code will illustrate the implementation.

9. Implementation J. Zimmermann

 58

class ClassName //Singleton

{ public:

 void InterruptOn();

 void InterruptOff();

 void Synchronise(…, …);

 private:

 static void InterruptKick();

 void ToRunInInterrupt();

static ClassName SingleInstance;

TimerHandle InterruptHandle;

 bool interrupt_active; };

void ClassName::InterruptKick()

{ SingleInstance.ToRunInInterrupt(); }

void ClassName::InterruptOn()

{ if(!interrupt_active)

 InterruptHandle=OSAttachTimer(2,InterruptKick);

 if(InterruptHandle) interrupt_active=true; }

void ClassName::InterruptOff()

{ if(interrupt_active)

 OSDetachTimer(InterruptHandle);

 interrupt_active=false; }

void ClassName::Synchronise(…, …)

{ bool wason=false;

 if(interrupt_active)

 { wason=true;

 InterruptOff();}

 //synchronise values

 …
 if(wason) InterruptOn(); }

void ToRunInInterrupt(){ …; … ; }

As the controller’s class is a singleton, no additional static member variable has to be

established which can be used by the kicking function to address the worker-routine. It

uses the static member SingleInstance.

J. Zimmermann 9. Implementation

 59

9.7. BEHAVIOUR-CLASS

This class implements some simple exercises for the robot. It runs in the highest level of

the software architecture and interfaces the user as well as lower levels. Besides simple

balancing, which means standing upright, even on sloped surfaces, the robot can

perform squats with or without running controller-interrupt. It also can shift its weight

from one foot to another using the desired value of the controller.

This class provides simple examples for the use of the controller. It should be

considered to use this class for future work implementations.

10. Testing J. Zimmermann

 60

10. TESTING

To test the robots behaviour, it was placed on a plate. This plate was lifted on one side

so that the subsurface was sloped. The robot was able to stand upright. The integral part

of the control algorithm made the process of erecting slightly slower but on the other

hand, provided more stability to the control loop. During the first tests, a P-controller by

itself was used. In this setup, the robot sometimes started to oscillate. The amplitude of

this oscillation increased, depending on the amplification of the control error.

After the control loop used a PID-controller, the oscillations were suppressed and the

robot was stabilised. As expected, the steady-state control accuracy did not appear.

The robot sometimes produced jerks and shakes. The jerks only appeared, while the

control loop was active. These effects could be aliasing caused by the sensors, due to

the missing low-pass filter.

The attached CD contains video files demonstrating the robot balancing.

J. Zimmermann 11. Future Work

 61

11. FUTURE WORK

This chapter discusses some issues, which could be improved during future work. Most

of the possible improvements are explained in detail in previous sections of this thesis.

Strain Gauge Amplification:

The digital resolution of the strain gauges is very low. The A/D converter has a linear

10-bit resolution over a voltage from 0V to 4.096V. The measured voltages range from

approximately 1V to 1.2V. This results in a digital resolution of 1.2V 1V
4.096V50 1024 −= ⋅ when

one toe is exerted to one sixth of the total gravity. The worst case, but unrealistic, would

be when one toe carries the total load. In this case, the linear strain gauge would have an

amplified output of Offset1V 6 0.2V 2.2V+ ⋅ = . Doubling the amplification would still

guarantee a voltage reserve of nearly 700mV. The digital resolution would double.

Low Pass Filtering:

As mentioned in Chapter 7, the strain gauge amplifier is equipped with a 1.061 kHz low

pass filter. Using the fastest interrupt possible (and still providing enough computation

time for other tasks) requires a low pass filter frequency of 5Hz. Maintaining the current

control software, this frequency should be at 2.5Hz. It should be considered to

implement this to guarantee realistic data and avoid aliasing effects.

Control Algorithm:

As mentioned in 7.4., the control parameters are estimated, as they are optimised

according to the method of Ziegler and Nichols. Due to time restrictions, it was not

possible to model the control plant and optimise the parameters with better methods. It

could also be advantageous to exchange the linear controller with a Fuzzy controller.

Servo Driving:

The current classes for interfacing with servos only provide methods to drive the servos

from one point to another with a constant angular velocity. It could be necessary to

implement trapezoidal or sinusoidal driving profiles to minimize jerk (or jolt

j a v s= = =� �����).

11. Future Work J. Zimmermann

 62

Desired Value:

Now, the control software calculates the desired value of the actual feet positions and

the load distribution between both. In this way, the definition of stability is enclosed in

the controller totally. Depending on future applications, it could be necessary to free

these values and give the desired NPCM directly to the controller. In this case, the

stability lies in the responsibility of the higher-level application.

User Interface and Behaviour Layer:

Maintaining the object-oriented structure of the code should be carried out through later

programming. In this way, the advantages of the classes could be sustained, especially

the hardware accessibility secured by the Singletons.

J. Zimmermann 12. Conclusion

 63

12. CONCLUSION

In this thesis, I presented an active control system for a bipedal robot using force

feedback. The Denavit-Hartenberg-Notation was successfully adapted to the existing

structure and provided the possibilities to calculate the kinematics. The sensory data

was processed to provide useful information on the robots state. Together with the

kinematics, the pre-processed data was used to establish a closed loop control on the

stability. This control was used for balancing the robot.

The software was developed object orientated in a layered architecture, according to

software engineering principles. The project can be extended to more complex tasks

such as walking, using the developed control to stabilise it.

Finally, the robot was able to balance on a moving surface.

To the best of my knowledge, this is the first implementation of a balance control in a

fully autonomous biped robot in this setup using only force sensors.

The control algorithm developed is only for kinematics. The controlling of dynamics

would require more sensors and at least the same amount of computation time. As tests

showed, the robot slows down its movements nearly to the half of its velocity when the

controlling algorithm is switched on. In addition, the actual combination of the sensor-

filters and the A/D-converter does not match the requirements, stated in Chapters 7.1

and 7.2.

J. Zimmermann References

 IX

REFERENCES

[1] Honda Motor Co., Ltd.: Honda Robot Top Page,

Website: http://world.honda.com/robot/,

(Avail. by 10.03.2003)

[2] Bräunl, T.: Hardware Description,

Website: http://robotics.ee.uwa.edu.au/eyebot/hardware.html

(Avail. by 10.03.2003)

[3] Bräunl, T.; Schmitt, K.; Lampart, T.; Reinholdtsen, P.; Kapp, M.: Library

of function build into RoBIOS,

Website: http://robotics.ee.uwa.edu.au/eyebot/ftp/ROBIOS/docs/library.html

 (Avail. by 10.03.2003)

[4] HITEC RCD USA, Inc.: Announced Specification of HS-945MG Standard

Coreless Motor High Torque Servo,

 Document: http://www.hitecrcd.com/Servos/hs945.pdf

 (Avail. by 10.03.2003)

[5] Kraft, D.: Modellierung, Simulation und Optimierung von Mehrkörpersystemen,

 Fachhochschule München, Fachbereich Maschinenbau,

 Document: http://www.fm.fh-muenchen.de/~dkraft/ps_files/rob.ps

 (Avail. by 10.03.2003)

[6] Kun, A.L.: A Sensory-Based Adaptive Control Algorithm for Variable Speed

Biped Robots, Dissertation, University of New Hampshire, 1997, (available: at

http://wwwlib.umi.com/dissertations/ under Ref.: AAT 9730831)

[7] Schrüfer, E.: Elektrische Meßtechnik, München: Hanser-Verlag, 1990

[8] Hußmann, H.: Softwaretechnologie II, Technische Universität Dresden,

Wintersemester 2000/2001, Scriptum zur Vorlesung,

 Website: http://www-st.inf.tu-dresden.de/Lehre/WS00-01/st2/vorl.html

 (Avail. by 10.03.2003)

[9] Lutz, H.; Wendt, W.: Taschenbuch der Regelungstechnik, 4. korrigierte

Auflage, Verlag Harri Deutsch, Frankfurt am Main 2002

[10] Maxim Integrated Products, Inc.: Data Sheet MAX192,

Document: http://pdfserv.maxim-ic.com/arpdf/MAX192.pdf

(Avail. by 26.03.2003)

http://world.honda.com/robot/
http://robotics.ee.uwa.edu.au/eyebot/hardware.html
http://robotics.ee.uwa.edu.au/eyebot/ftp/ROBIOS/docs/library.html
http://www.hitecrcd.com/Servos/hs945.pdf
http://www.fm.fh-muenchen.de/~dkraft/ps_files/rob.ps
http://wwwlib.umi.com/dissertations/
http://www-st.inf.tu-dresden.de/Lehre/WS00-01/st2/vorl.html
http://pdfserv.maxim-ic.com/arpdf/MAX192.pdf

References J. Zimmermann

 X

[11] Analog Devices, Inc.: Data Sheet AMP04, Document:

http://www.analog.com/UploadedFiles/Datasheets/421758465AMP04_b.pdf

 (Avail. by 26.03.2003)

[12] Shadow Robot Company Ltd.: Shadow Robot Company Home Page, Website:

http://www.shadow.org.uk/
 (Avail. by 03.04.2003)

[13] Encyclopaedia Britannica: Encyclopaedia Britannica

 Website: http://www.britannica.com/

 (Avail. by 03.04.2003)

[14] Marshall, I.J.: Active Balance Control for a Humanoid Robot, School of

 Information Technology and Electrical Engineering, University of

 Queensland, Dorrington 2002, Queensland, Australia

 Document: http://innovexpo.itee.uq.edu.au/2002/projects/s358239/thesis.pdf

 (Avail. by 03.04.2003)

http://www.analog.com/UploadedFiles/Datasheets/421758465AMP04_b.pdf
http://www.shadow.org.uk/
http://www.britannica.com/
http://innovexpo.itee.uq.edu.au/2002/projects/s358239/thesis.pdf

J. Zimmermann Figure Sources

 XI

FIGURE SOURCES

Figure 2.1: Johnny Walker

 Photo from Antonio Pickel, taken in the Mobile Robot Lab of CIIPS,

 Department of Electrical, Electronic and Computer Engineering,

 University of Western Australia, Perth 2003

Figure 2.2: Jack Daniels

 (See Figure 2.1)

Figure 2.3: Rock Steady

 (See Figure 2.1)

Figure 2.4: ASIMO

 Source: Honda Motor Co., Ltd., Website: http://world.honda.com/robot/

Figure 2.5: Shadow Robot

 Shadow Robot Company Ltd., Website: http://www.shadow.org.uk/

Figure 4.1: EyeBot Controller

 Photo from Christoph Braunschädel, taken in the Mobile Robot Lab of

 CIIPS, Department of Electrical, Electronic and Computer

 Engineering, University of Western Australia, Perth 2003

Figure 4.2: Andy Droid (front view)

 (See Figure 2.1)

Figure 4.3: Andy Droid’s left foot

 (See Figure 2.1)

Figure 4.4: Andy Droid (side view)

 (See Figure 2.1)

http://world.honda.com/robot/
http://www.shadow.org.uk/

Appendix A – Documentation of Developed Code J. Zimmermann

 XII

APPENDIX A – DOCUMENTATION OF DEVELOPED CODE

This Appendix is a code reference for all public variables and methods developed for

balance control and related classes.

LINEARALGEBRA-CLASS

This class provides mathematic functions for matrix and vector operations. It has class

DenavitHartenberg as a friend to allow this class access its private members.

LinearAlgebra();

Input: none
Output: none as it is a constructor
Semantics: Standard constructor is automatically called for the creation of an instance of this
 class.

LinearAlgebra(double* data, int wrows=4, int wcolumns=4);

Input: (data) array containing data the instance should be created with, matrix values
 must carry {row1; row2;…}
 (wrows) number of rows of matrix to be created with data, if omitted
 wrows=4, valid values 1-4
 (wcolumns) number of columns of matrix to be created with data, if omitted
 wcolumns = 4, valid values 1-4
Output: none as it is a constructor
Semantics: Constructor is automatically called for the creation of an instance of this class when
 initialisation data is passed.

LinearAlgebra(const LinearAlgebra& tocopy);

Input: (tocopy) instance, which has to be copied to created object
Output: none as it is a copy-constructor
Semantics: Copy-constructor is automatically called for the creation of an instance of this class
 when initialisation is done by operator =. All member data will be copied.

LinearAlgebra operator * (double scalar);

Input: (scalar) factor, which is used during operation
Output: result of the operation
Semantics: Overloaded operator * calculates v scalar⋅

G
if data in instance is a vector or

 V scalar⋅ if data in instance is a matrix. The result of operation is returned in an
 object of this class. The calling instance stays unmodified.

LinearAlgebra operator *=(double scalar);

Input: (scalar) factor, which is used during operation
Output: result of the operation
Semantics: Overloaded operator * calculates v scalar⋅

G
if data in instance is a vector or

 V scalar⋅ if data in instance is a matrix. The result of operation is returned in an
 object of this class and in the calling instance.

J. Zimmermann Appendix A – Documentation of Developed Code

 XIII

Appendix A – Documentation of Developed Code J. Zimmermann

 XIV

LinearAlgebra operator * (const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator * calculates call lagv v⋅G G

 (scalar product) if data in calling and

 passed instance are vectors (result in element (0,0)), call lagV V⋅ if data in calling

 and passed instance is a matrix, or lag callV v⋅ G if data in calling instance is a matrix
 and data in passed instance is a vector.. The result of operation is returned in an
 object of this class. Note: if calling instance is a vector and the data in passed
 instance a vector, or if the dimensions of the matrices do not match the
 multiplication requirements nothing is processed.

LinearAlgebra operator *=(const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator *= calculates call lagv v⋅G G

 (scalar product) if data in calling and

 passed instance are vectors (result in element (0,0)), call lagV V⋅ if data in calling

 and passed instance is a matrix, or lag callV v⋅ G if data in calling instance is a matrix
 and data in passed instance is a vector. The result of operation is stored in the calling
 instance and returned in an object of this class. Note: if calling instance is a vector
 and the data in passed instance a vector, or if the dimensions of the matrices do not
 match the multiplication requirements, nothing is processed.

LinearAlgebra operator + (const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator + calculates call lagv v+

G G
 if data in calling and passed instance

 are vectors, call lagV V+ if data in calling and passed instance is a matrix. The result
 of the operation is returned in an object of this class. Note: if the dimensions of the
 matrices/vectors do not match the addition requirements, nothing is processed.

LinearAlgebra operator +=(const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator += calculates call lagv v+

G G
 if data in calling and passed instance

 are vectors, call lagV V+ if data in calling and passed instance is a matrix. The result
 of the operation is stored in the calling instance and returned in an object of this
 class. Note: if the dimensions of the matrices/vectors do not match the addition
 requirements, nothing is processed.

LinearAlgebra operator - (const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator - calculates call lagv v−G G

 if data in calling and passed instance

 are vectors, call lagV V− if data in calling and passed instance is a matrix. The result
 of the operation is returned in an object of this class. Note: if the dimensions of the
 matrices/vectors do not match the subtraction requirements, nothing is processed.

J. Zimmermann Appendix A – Documentation of Developed Code

 XV

LinearAlgebra operator -=(const LinearAlgebra& lag);

Input: (lag) second operand, which is used during operation
Output: result of the operation
Semantics: Overloaded operator -= calculates call lagv v−G G

 if data in calling and passed instance

 are vectors, call lagV V− if data in calling and passed instance is a matrix. The result
 of the operation is stored in the calling instance and is returned in an object of this
 class. Note: if the dimensions of the matrices/vectors do not match the subtraction
 requirements, nothing is processed.

LinearAlgebra Equals(double* data, int wrows=4, int wcolumns=4);

Input: (data) second operand as an array, which is used during operation
 (wrows) number of rows in data, valid values 1-4
 (wcolumns) number of columns in data, valid values 1-4
Output: result of the assignment
Semantics: Copies the array data in the calling instance’s matrix using the assigned wrows
 and wcolumns. The result is returned. Note: if wrows and wcolumns are
 omitted, they are 4.

LinearAlgebra Plus(double* data, int wrows=4, int wcolumns=4);

Input: (data) second operand as an array, which is used during operation
 (wrows) number of rows in data, valid values 1-4
 (wcolumns) number of columns in data, valid values 1-4
Output: result of the operation
Semantics: Calculates call lagv v+

G G
 if data in calling instance and passed data are vectors,

 call lagV V+ if data in calling instance and passed data is a matrix. The result
 of the operation is returned in an object of this class. Note: if the dimensions of the
 matrices/vectors do not match the addition requirements, nothing is processed and if
 wrows and wcolumns are omitted, they are 4.

void GetData(double* data, int wrows=4, int wcolumn=4,

 int firstrow=1, int firstcolumn=1);

Input: (data) second buffer where desired data will be copied
 (wrows) number of rows to copy to data, valid values 1-4
 (wcolumns) number of columns to copy to data, valid values 1-4
 (firstrow) row, where to start copying, valid values 1-3
 (firstcolumn) column, where to start copying, valid values 1-3
Output: none
Semantics: Extracts the data contained in the calling instance to assigned buffer data. Note: if
 wrows and wcolumns are omitted, they are 4 and if firstrow and
 firstcolumn are omitted, they are 1.

double Absolute();

Input: none
Output: result of operation
Semantics: Calculates callvG (absolute) if calling instance is a vector or ()calldet V if calling
 instance is a square matrix. Otherwise, nothing is processed.

Appendix A – Documentation of Developed Code J. Zimmermann

 XVI

double Det();

Input: none
Output: result of operation
Semantics: Calculates ()calldet V if calling instance is a square matrix. Otherwise, nothing is
 processed.

bool IsMatrix();

Input: none
Output: true if calling instance is a matrix, otherwise false
Semantics: Determines, wether the calling instance is a matrix or not.

bool IsVector();

Input: none
Output: true if calling instance is a vector, otherwise false
Semantics: Determines, wether the calling instance is a vector or not.

int GetRows();

Input: none
Output: number of rows in calling instance
Semantics: Returns number of rows in calling instance.

int GetColumns();

Input: none
Output: number of columns in calling instance
Semantics: Returns number of columns in calling instance.

FEET-CLASS

This class provides functions to read and pre-process the sensory data of Andy Droid.

This class is a Singleton-Class.

static Feet* GetTheInstance();

Input: none
Output: pointer to Singleton-Instance
Semantics: This function returns a pointer to the Singleton Instance of this class. As this
 member method is not callable with an existing instance, use the Scope-operator
 during creation of the pointer:
 Feet* singleton_pointer=Feet::GetTheInstance()
 and access other member functions by dereferencing it:
 singleton_pointer ->Function().

bool Init();

Input: none
Output: true if initialisation succeeded, false if no success
Semantics: This function initialises members and the sensor. Especially, it reads the sensor
 values in their unstressed position. Therefore, make sure that the robot is lifted while
 calling this function. This function must have been called before using this class.

J. Zimmermann Appendix A – Documentation of Developed Code

 XVII

LinearAlgebra GetCOG(LinearAlgebra& buf,

 int left=1,bool refresh=false);

Input: (buf) buffer, where result is stored in
 (left) value to determine the foot’s centre of gravity to return, 1=left, 2=right
 (refresh) determines wether the sensors should be read or last readings should
 be used
Output: returns the cog assigned by passed values, this object carries the same data as buf
Semantics: The function returns the calculated centre of force (gravity) on the assigned foot. If
 refresh is true, the sensors will be read again, otherwise the last value is returned.
 The position of the COG are given in the foot’s coordinate system.

bool GetCOG(double* buf);

Input: (buf) buffer, where result is stored in
Output: true, if success, otherwise false
Semantics: The function returns the calculated centres of force (gravity) of both feet.
 buf[0]=left_z, buf[1]=left_y, buf[2]=right_z,
 buf[3]=right_y. The sensors will be read again and the values will be
 calculated new.

bool LoadDistribution(double *left,double *right,double *total,

 bool refresh=true);

Input: (*left) pointer for left-foot’s value
 (*right) pointer for right-foot’s value
 (*total) pointer for total load’s value
 (refresh) determines wether the sensors should be read or last readings should
 be used
Output: true if success, otherwise false
Semantics: This function returns the sum of the normalised sensor values of each foot and in
 total in the assigned buffers. They represent the total load (force) on each foot.

int Lifted(bool refresh=false);

Input: (refresh) determines wether the sensors should be read or last readings should
 be used
Output: information which foot is lifted
Semantics: This function returns a number, which determines the lifted foot: 0 = no foot lifted,
 1 = left foot lifted, 2 = right foot lifted, 3 = both feet lifted. The threshold above
 which a lift is recognised is given in the private member liftsensitivity.

int deadbandwidth;

Public member, which determines a threshold, below which no changes in read sensor values are
considered.

int readings;

Public member, which determines a number of loop readings for each sensor. This value handles
the validity time of the A/D-converter.

Appendix A – Documentation of Developed Code J. Zimmermann

 XVIII

SERVO-CLASS

This class provides functions to initialise and drive the servos. This class is a Singleton-

class. For driving, an array is used, to pass absolute or relative positions. The array has

to be of 10 integer values. However, it can be of the size NUMBEROFSERVOS, as this

is defined in the class’ header. The array-elements can be addressed by the following

defines, which are specified in the class’ header file:

NUMBEROFSERVOS

RHIPS, LHIPS, RHIPB, LHIPB, RKNEE, LKNEE, RANKB, LANKB, RANKS, LANKS

For addressing links and joints in DenavitHartenberg-Class, the following definitions

are made in the Servo class Header-file:

BODY, RTHIGH, LTHIGH, RSHANK, LSHANK, RFOOT, LFOOT

Public methods:

static Servo* GetTheInstance();

Input: none
Output: pointer to Singleton-Instance
Semantics: This function returns a pointer to the Singleton Instance of this class. As this
 member method is not callable with an existing instance, use the Scope-operator
 during creation of the pointer:
 Servo* singleton_pointer=Servo::GetTheInstance()
 and access other member functions by dereferencing it:
 singleton_pointer ->Function().

void Init();

Input: none
Output: none
Semantics: This function initialises the servos and members. This function must be called
 before using other methods of this class.

void Release();

Input: none
Output: none
Semantics: This function releases the servos. This function must be called after using them.
 After calling this function, the servos could not be used until the next call of
 Init().

J. Zimmermann Appendix A – Documentation of Developed Code

 XIX

int Set(int* position, int speed);

Input: (*position) pointer to an array (10 integers) that contains the new absolute
 positions for the servos
 (speed) speed for driving the servos to the new positions. Valid values 1(slow) to
 10(fast)
Output: the function returns the time consumed by this function-call in µs.
Semantics: This function drives the servos to the absolute positions passed to the function in the
 array. The function controls the absolute limits to protect the hardware. If not all
 servos should be driven, the array should carry the actual position of this servo.

void Get(int* position);

Input: (*position) pointer to an buffer array (10 integers), in which the actual servo
 positions will be stored
Output: none
Semantics: This function returns the actual servo position in the assigned buffer.

int GetLimit(int position);

Input: (position) number of servo, which limit should be returned, negative servo-
 number returns lower limit, positive upper.
Output: absolute servo-limit
Semantics: This function returns the limit of the chosen servo as an absolute servo-angle. If the
 passed servo number is negative, the lower limit is returned, otherwise the upper
 limit.

int Move(int* delta, int speed);

Input: (*delta) pointer to an buffer array (10 integers), in which the desired servo
 delta-positions are passed
 (speed) desired speed for movement
Output: the function returns the time consumed by this function-call in µs.
Semantics: This function drives the servos relative by from the actual positions. The deltas for
 all servos are passed in an array. The function controls the absolute limits to protect
 the hardware. If not all servos should be driven, the array entries should be zero for
 these servos.

Appendix A – Documentation of Developed Code J. Zimmermann

 XX

DENAVITHARTENBERG-CLASS

This class provides functions for the calculation of coordinate transformation matrices

for Andy Droid, according to Denavit Hartenberg. This class inherits from the

LinearAlgebra class and knows all public member functions of its mother class.

For addressing links and joints in DenavitHartenberg-Class, the following definitions

are made in the Servo class Header-file:

BODY, RTHIGH, LTHIGH, RSHANK, LSHANK, RFOOT, LFOOT

Public methods:

DenavitHartenberg();

Input: none
Output: none as it is a constructor
Semantics: Standard constructor is automatically called for the creation of an instance of this
 class.

DenavitHartenberg(double *matrix, const int * const servopos,

 bool docalc=true, bool left=true);

Input: (*matrix) pointer to an array in which the data calculated by the recently created
 instance can be returned
 (*servopos) pointer to an array carrying servo positions, the class will normally
 request it from the servo class
 (docalc) determines, if the matrix should be calculated new or the last one
 calculated should be passed back in matrix, if omitted, docalc = true
 (left) latch, to determine the leg, valid values are true = left and false =
 right, if omitted left = true
Output: none as it is a constructor
Semantics: Constructor is automatically called for the creation of an instance of this class when
 initialisation data is passed.

DenavitHartenberg& operator = (const LinearAlgebra& tocopy);

Input: (tocopy) second operand as a LinearAlgebra object, which is used
Output: result of the assignment as an object of DenavitHartenberg class
Semantics: Copies the LinearAlgebra data in the calling instance’s matrix

J. Zimmermann Appendix A – Documentation of Developed Code

 XXI

void GetDVMatrix(double *matrix, int whichservo=9);

Input: (*matrix) pointer to an array, in which the matrix will be returned
 (whichservo) determines which matrix should be calculated
Output: none
Semantics: This function returns a Denavit Hartenberg matrix. The matrix is a 4x4 frame in
 homogeneous coordinates. The variable whichservo determines the matrix. The
 table shows the matrices:

whichservo Result Transformation
LFOOT 0

5 leftT Left Foot to Hip Centre

RFOOT 0
5 rightT Right Foot to Hip Centre

-LFOOT 5
0 leftT Hip Centre to Left Foot to

-RFOOT 5
0 rightT Hip Centre to Right Foot

LSHANK 0
2 leftT Left Shank to Hip Centre

RSHANK 0
2 rightT Right Shank to Hip Centre

-LSHANK 2
0 leftT Hip Centre to Left Shank

-RSHANK 2
0 rightT Hip Centre to Right Shank

LTHIGH 0
3 leftT Left Thigh to Hip Centre

RTHIGH 0
3 rightT Right Thigh to Hip Centre

-LTHIGH 3
0 leftT Hip Centre to Left Thigh

-RTHIGH 3
0 rightT Hip Centre to Right Thigh

DenavitHartenberg& Calc(int whichservo=9);

Input: (whichservo) determines which matrix should be calculated
Output: DenavitHartenberg object carrying the result
Semantics: This function returns a Denavit Hartenberg object. The object carries a 4x4 frame in
 homogeneous coordinates. The variable whichservo determines the matrix to be
 calculated. The table above shows the matrices.

Appendix A – Documentation of Developed Code J. Zimmermann

 XXII

DISPLAY-CLASS

This class provides functions to access the display and to print and paint information for

the user. This class is a Singleton-Class.

static Display* GetTheInstance();

Input: none
Output: pointer to Singleton-Instance
Semantics: This function returns a pointer to the Singleton Instance of this class. As this
 member method is not callable with an existing instance, use the Scope-operator
 during creation of the pointer:
 Display* singleton_pointer
 =Display::GetTheInstance()
 and access other member functions by dereferencing it:
 singleton_pointer ->Function().

bool Init();

Input: none
Output: true if initialisation succeeded, false if no success
Semantics: This function initialises members and the display. This function must have been
 called before using this class.

void Clear();

Input: none
Output: none
Semantics: This function initialises members and the sensor. Especially, it reads the sensor
 values in their unstressed position. Therefore, make sure that the robot is lifted while
 calling this function. This function must have been called before using this class.

int Print(const char format[], ...);

Input: (format) formatted string
 (…) variable number of variables as done in printf()
Output: 0 if failed, other when successful
Semantics: This function can be used as printf(). The ellipsis operator deals with the
 variable number of variables.

int Print(int x,int y,const char format[], ...);

Input: (x) x-position for string
 (y) y-position for string
 (format) formatted string
 (…) variable number of variables as done in printf()
Output: 0 if failed, other when successful
Semantics: This function positions the cursor to assigned position before printing to display.
 Furthermore, this function can be used as printf(). The ellipsis operator deals
 with the variable number of variables.

int Print(LinearAlgebra toprint);

Input: (toprint) LinearAlgebra object to print in display
Output: 0 if failed, other when successful
Semantics: This function display the matrix elements of a LinearAlgebra object in the display.

J. Zimmermann Appendix A – Documentation of Developed Code

 XXIII

double PaintExtensions(int leftx =CENTREXL,int lefty=CENTREY,

 int rightx=CENTREXR,int righty=CENTREY);

Input: (leftx) x-position for left foot’s boundaries
 (lefty) y-position for left foot’s boundaries
 (rightx) x-position for right foot’s boundaries
 (righty) y-position for right foot’s boundaries
Output: 0 if failed, other when successful
Semantics: This function paints two triangles representing the feet’s boundaries. Both could be
 positioned by feet coordinate positions. The function zooms automatically to fit the
 triangles to the display.

double PaintExtensions(LinearAlgebra left,LinearAlgebra right);

Input: (left) position for left foot’s boundaries
 (right) position for right foot’s boundaries
Output: 0 if failed, otherwise the resize-factor (zoom) is returned
Semantics: This function paints two triangles representing the feet’s boundaries. Both could be
 positioned by feet coordinate positions. The function zooms automatically to fit the
 triangles to the display.

void PaintCross (float *positionnew, int identity,

 double resizefactor);

Input: (*positionnew) pointer to buffer carrying position for cross (z,y)
 (identity) unique identity for cross, valid values are 1 to 10
 (resizefactor) zoom factor
Output: none
Semantics: This function paints a cross on the assigned position. If identity is even, it is a ‘+’, if
 identity is odd it will become a ‘x’. The resisefactor is needed if the
 currently displayed screen is already zoomed to recalculate the positions.

void PaintCross (float *positionnew, int identity);

Input: (*positionnew) pointer to buffer carrying position for cross (z,y)
 (identity) unique identity for cross, valid values are 1 to 10
Output: none
Semantics: This function does the same as the method above, except resizefactor.

void PaintCross (LinearAlgebra vector,int identity,

 double resizefactor);

Input: (vector) position for cross (z,y)
 (identity) unique identity for cross, valid values are 1 to 10
 (resizefactor) zoom factor
Output: none
Semantics: This function paints a cross on the assigned position. If identity is even, it is a ‘+’, if
 identity is odd it will become a ‘x’. The resisefactor is needed if the
 currently displayed screen is already zoomed to recalculate the positions.

void PaintCross (LinearAlgebra vector,int identity);

Input: (vector) position for cross (z,y)
 (identity) unique identity for cross, valid values are 1 to 10
Output: none
Semantics: This function does the same as the method above, except resizefactor.

Appendix A – Documentation of Developed Code J. Zimmermann

 XXIV

void PaintLoadBalance(double left,double right,int total);

Input: (left) percentage of load on left foot
 (right) percentage of load on right foot
 (total) sum of sensor values read
Output: none
Semantics: This function paints a horizontal bar on the top of the display, its width
 represents the total load and its position represents the distribution between both
 feet.

int Menu(const char str1[],const char str2[],

 const char str3[],const char str4[]);

Input: (str1) string for menu entry 1
 (str2) string for menu entry 2
 (str3) string for menu entry 3
 (str4) string for menu entry 4
Output: 0 if no success, otherwise non-zero
Semantics: This function prints the assigned strings on the bottom of the display above the keys.

USERINPUT-CLASS

This class provides functions to read the keys and the IR remote control. This class is a

Singleton-Class.

static UserInput* GetTheInstance();

Input: none
Output: pointer to Singleton-Instance
Semantics: This function returns a pointer to the Singleton Instance of this class. As this
 member method is not callable with an existing instance, use the Scope-operator
 during creation of the pointer:
 UserInput*singleton_pointer
 = UserInput::GetTheInstance()
 and access other member functions by dereferencing it:
 singleton_pointer ->Function().

int Init();

Input: none
Output: not zero if initialisation succeeded, 0 if no success
Semantics: This function initialises members and the display. This function must have been
 called before using this class.

int Read();

Input: none
Output: key number if key was pressed, otherwise 0
Semantics: This function reads from the keys and from the IR remote control. This function is
 not waiting, if no key was pressed, it returns 0 immediately.

J. Zimmermann Appendix A – Documentation of Developed Code

 XXV

int Wait();

Input: none
Output: key number
Semantics: This function waits until a key on the controller or on the IRRC is pressed. The
 key’s number is returned.

int Wait(int specified_key);

Input: (specified_key) number of key to wait for
Output: key number
Semantics: This function waits until the specified key on the controller or on the IRRC is
 pressed. The key’s number is returned.

int WaitTime(int time=-1);

Input: (time) wait-time-out = (time*10ms)
Output: key number
Semantics: This function waits until a key on the controller or on the IRRC is pressed or the
 time-out is elapsed. The key’s number is returned if a key was pressed. If time
 elapses, the function returns 0. If time is omitted or time=-1 is passed to the
 function, it waits infinite for a key to be pressed.

int Flush();

Input: none
Output: none
Semantics: This function empties the class’ internal buffer for pressed keys.

BEHAVIOUR-CLASS

This class contains some examples of the use of the developed controlling algorithm.

Behaviour();

Input: none
Output: none as it is a constructor
Semantics: This function is a constructor does nothing, as there exist no members.

void Init();

Input: none
Output: none
Semantics: This function initialises all lower level classes. It must be called before using other
 member methods of this class.

void Release();

Input: none
Output: none
Semantics: This function releases all lower level classes. It should be called before exiting
 main().

void Run();

Input: none
Output: none
Semantics: This function runs the main-application.

Appendix B – Used Software J. Zimmermann

 XXVI

APPENDIX B – USED SOFTWARE

The software was developed on a PC with a Microsoft Windows XP® operating system.

The code was edited in UltraEdit-32® and compiled with a modified GNU C/C++-cross-

compiler. The matrix 5.12, presented in chapter 5, was verified with MathCAD Plus

6.0©. Microsoft Excel® was used to calculate the look-up tables for sine and square root.

This document and all drafts and diagrams contained were created with Microsoft

Word®. The videos were taken with the digital camera of the Mobile Robot Lab and

composed and rendered with Movie Xone 4.0®.

J. Zimmermann Declaration

 XXVII

DECLARATION

I hereby declare that this submission is my own work and that I only used the

referenced aids.

Perth, 28.04.2003

_(signed)_______________________

Jochen Zimmermann

	Balancing of a Biped Robot �Using Force Feedback
	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	Abbreviations
	Table of Figures
	Index of Tables
	1. Introduction
	2. Related Research
	2.1. Biped projects at CIIPS
	2.2. Commercial Projects

	3. Balancing and Walking
	3.1. Definitions
	3.2. Balancing
	3.3. Walking

	4. Provided Hard- and Software
	4.1. EyeBot-Controller
	4.2. Robot Hardware-Setup
	4.3. RoBIOS and Application Programming Interface
	4.4. Software Development
	4.5. Changes in HDT

	5. Adapted Denavit Hartenberg Notation
	5.1. Mathematical Basics and Conventions
	5.2. Denavit Hartenberg Notation
	5.3. Coordinate Systems
	5.4. Transformation Matrices

	6. Mass Distribution and Centre of Gravity
	6.1. Force Gauging and Processing
	6.2. Link Masses and Positions
	6.3. Calculation of the NPCM

	7. Control System
	7.1. Data Capture
	7.2. Control Loop Frequency and Sample Period
	7.3. Control Algorithm
	7.4. Control Loop

	8. Software System Architecture
	8.1. System Structure
	8.2. Singleton Classes
	8.3. Class Structure

	9. Implementation
	9.1. LinearAlgebra-Class
	9.2. Feet-Class
	9.3. Servo-Class
	9.4. DenavitHartenberg-Class
	9.5. Display- and UserInput-Class
	9.6. Control-Class
	9.7. Behaviour-Class

	10. Testing
	11. Future Work
	12. Conclusion
	References
	Figure Sources
	Appendix A – Documentation of Developed Code
	LinearAlgebra-Class
	Feet-Class
	Servo-Class
	DenavitHartenberg-Class
	Display-Class
	UserInput-Class
	Behaviour-Class

	Appendix B – Used Software
	Declaration

