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Abstract

In this thesis, we introduce a mammogram analysis system developed for the automatic
segmentation and analysis of mammograms. This original system has been designed to
aid radiologists to detect breast cancer on mammograms. The system embodies attribute-
driven segmentation in which the attributes of an image are extracted progressively in
a step-by-step, hierarchical fashion. Global, low-level attributes obtained in the early
stages are used to derive local, high-level attributes in later stages, leading to increasing
refinement and accuracy in image segmentation and analysis.

The proposed system can be characterized as:

� a bootstrap engine driven by the attributes of the images;

� a solid framework supporting the process of hierarchical segmentation;

� a universal platform for the development and integration of segmentation and analy-
sis techniques; and

� an extensible database in which knowledge about the image is accumulated.

Central to this system are three major components:

1. a series of applications for attribute acquisition;

2. a standard format for attribute normalization; and

3. a database for attribute storage and data exchange between applications.

The first step of the automatic process is to segment the mammogram hierarchically
into several distinctive regions that represent the anatomy of the breast. The adequacy
and quality of the mammogram are then assessed using the anatomical features obtained
from segmentation. Further image analysis, such as breast density classification and lesion
detection, may then be carried out inside the breast region.

Several domain-specific algorithms have therefore been developed for the attribute
acquisition component in the system. These include:

1. automatic pectoral muscle segmentation;

2. adequacy assessment of positioning and exposure; and

iii



3. contrast enhancement of mass lesions.

An adaptive algorithm is described for automatic segmentation of the pectoral mus-
cle on mammograms of mediolateral oblique (MLO) views. The pectoral margin is first
approximated by a straight line, which is validated for correctness of location and orienta-
tion. This straight line is then refined into a curve, using an iterative edge detector, that
delineates the pectoral margin more accurately.

After segmentation, and before analysis, it is necessary to ensure that the mammogram
is of sufficient quality for further analysis by machine. This mirrors the requirement that
a mammogram must be of sufficient quality for a radiologist to detect lesions or other
abnormalities with high sensitivity and specificity. The adequacy of breast positioning
is evaluated on MLO view mammograms using several quality criteria, including non-
exclusion of breast tissue, visualization of the nipple in profile, inclusion of inframammary
fold, and proper positioning of the pectoral muscle. The adequacy of film exposure is also
evaluated.

Mass lesions are then highlighted using a novel contrast enhancement technique, de-
veloped for this purpose. This technique is a modification of the amplitude and phase
(AMPM) demodulation transform introduced by Daugman and Downing. This new tech-
nique was compared with two other existing contrast enhancement techniques—morpho-
logical enhancement and histogram equalization—and was found to perform better than
either.

The above applications need to interact with each other during the segmentation and
analysis process. Attribute normalization and storage are necessary for this. The at-
tributes of mammograms generated by the applications were normalized to a standard
format, and stored in an Extensible Markup Language (XML) database. This database
was specified by an open-ended and extensible schema, and was designed to be application-
and platform-independent.
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Chapter 1

Introduction

Mammograms are X-ray images of the breast. They are used in the early detection of
breast cancer, which is the most common cause of death from cancer for women in Aus-
tralia [1]. In the attempt to decrease breast cancer mortality rates, a mammographic
screening program has been established nationally in Australia, where healthy women in
the target age group of 50–69 years are encouraged to participate in mammographic ex-
aminations [1]. From 1993 onward, there has been a steady decline in mortality rates from
breast cancer for Australian women in the target age group, indicating the success and
effectiveness of the screening program [1].

Breast cancer screening produces a large number of mammograms everyday. Currently
in Australia, each mammographic examination produces four X-ray images; two different
views for each breast. Each of these mammograms must be viewed and diagnosed carefully
by an expertly trained radiologist to ensure that breast cancer is correctly identified when
the disease is present (high sensitivity), and no cancer is incorrectly detected when it is
not really there (high specificity). This is a demanding task, and it would be beneficial if
computers could be used to improve radiologists’ ability to detect the few cancer cases in
the large amount of normal-looking images that they view everyday [2].

Mammographic image analysis is a challenging task in the field of medical image
processing. Due to the variable appearance of the compressed breast, superimposition
of different types of tissue and subtle signs of cancer, the image processing problems to be
solved are generally non-trivial [3]. It is even more different to develop a fully automatic
image analysis system, that takes the digital image of a mammogram as its input, and
presents an analytical report with annotated images as its output, without any human
interaction during the entire process. An overview of such a system is shown in Fig. 1.1:
it represents the overall goal of which this research forms a part.

In our approach, the development of this mammogram analysis system revolves around
the concept of attribute-driven image segmentation and analysis, in which the knowledge
about an image is described by a set of image attributes. These attributes are extracted
progressively in a step-by-step, cyclic procedure where global, low-level attributes gath-
ered in the early stages are used to derive local, high-level attributes in the later stages.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of the Image Analysis System for Mammograms.

While the complexity of segmentation and analysis algorithms increases during the pro-
cedure, these is also a monotonic accumulation of knowledge inside the system, leading to
increasing refinement and accuracy of the results.

The research described in this thesis forms part of the proposed automated image
analysis system, shown in Fig. 1.1. The first part of the original work consists of a new
attribute-driven system designed for mammogram segmentation and analysis. The second
part of the original contribution pertains to the special-purpose techniques that were
developed for the analysis of mammograms. They include:

1. automatic segmentation of the pectoral muscle;

2. adequacy assessment of breast positioning and film exposure; and

3. contrast enhancement of mass lesions.

In the process of developing the attribute-driven system, it was realized that the ap-
proach could be generalized into an abstract system model. We believe that this generic
model may be customized for a wide range of image processing problems, following a de-
sign strategy. However, a full experimental evaluation of this discovery is beyond the scope
of this thesis. Some fundamental concepts of the abstract system model are documented
at the end of this thesis to aid further investigation. Nevertheless, it is worthwhile to note
that the mammogram analysis system is actually an instantiation of the abstract system
model, so the two are closely related.

1.1 Outline of Thesis

This thesis consists of seven chapters and three appendices. Following this introductory
chapter, a review of the literature on mammogram segmentation and analysis is given
in a single chapter. The next chapter is devoted to the design and implementation of
the mammogram analysis system. The experiments that constitute the original work on
mammographic image analysis are presented in the three succeeding chapters, which are
followed by the concluding chapter. The various chapters are outlined below.

Chapter 2 gives a literature review of the existing segmentation and analysis techniques
developed for mammograms. The purpose of this chapter is to provide an overview on the
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previous work published in three main areas: mammogram segmentation, mammographic
image quality, and image enhancement of mammograms. Each of these areas is directly
related to the experimental work presented in Chapters 4 to 6.

Chapter 3 describes the actual system implemented for the attribute-driven segmen-
tation and analysis of mammograms. An overview of this system is first given in this
chapter. It is followed by the identification of three different types of image attributes
that are extracted from the mammograms. The proposed system constitutes of three
major components, namely, attribute acquisition, attribute normalization, and attribute
storage. Attribute acquisition is controlled by a series of computer applications that ex-
tract image attributes progressively from an image, and derive high-level attributes from
low-level ones. An attribute dependence graph is introduced here to represent the data
dependence and priorities of the image attributes. Attribute normalization is used to stan-
dardize the data format of image attributes generated by different applications. Several
aspects of the scale and representation of image attributes are considered. Attribute stor-
age is accomplished by building an attribute database. An Extensible Markup Language
(XML) database with a properly designed schema is proposed for the storage of image
attributes.

The computer applications developed for extracting image attributes are not described
in Chapter 3; instead they form the substance of the three succeeding chapters. The
image processing techniques presented in Chapters 4 to 6 are self-contained with their own
notational and experimental frameworks. They were developed as individual applications,
but they were also fully integrated into the mammogram analysis system, exchanging
image attributes with each other.

Chapter 4 is the first experimental chapter in which a fully automatic method of
pectoral muscle segmentation is described. On the mediolateral oblique (MLO) view of
mammograms, the pectoral muscle appears a high-intensity, triangular region across the
upper posterior edge of the image. The boundary of the pectoral muscle is usually slightly
curved. In the proposed method, the pectoral margin is first approximated by a straight
line. The position and orientation of this straight line is validated using the endpoints of
the breast border. Then the straight line is iteratively refined into a curve using an edge
detector. The pectoral muscle is finally represented by an enclosed region.

Chapter 5 is the second experimental chapter in which the potential of computerized
adequacy assessment of mammograms is addressed. A mammogram must be of sufficient
quality for medical diagnosis with high sensitivity and specificity. In this experimental
chapter, the positioning of the breast on a mammogram is assessed using a number of
quality criteria, including non-exclusion of breast tissue, visualization of the nipple in
profile, inclusion of inframammary fold, and proper positioning of the pectoral muscle.
Algorithms are devised in this chapter to automatically evaluate these quality criteria of
breast positioning on mammograms of MLO view. In addition, the quality of film exposure
is also evaluated by examining the distribution of optical densities, which is generated from
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the pixel values of the digitized mammogram.
Chapter 6 is the third experimental chapter in which the techniques of contrast en-

hancement of lesions is investigated. A novel contrast enhancement technique is presented
in this chapter for highlighting different types of mass lesions. This technique was derived
from the amplitude and phase (AMPM) demodulation transform introduced by Daugman
and Downing [4] for texture analysis. The chapter therefore begins with the mathematical
definition of AMPM demodulation transform. The original transform was extended from
single-carrier to multi-carrier, but it was found ineffective when applied on mammograms.
Hence the AMPM demodulation transform is further modified for the purpose of contrast
enhancement of mass lesions. The modified demodulation transform was compared with
two existing contrast enhancement techniques, which are morphological enhancement and
histogram equalization. The experimental results were evaluated using three quantitative
measures of mammographic contrast enhancement, developed by Bovis and Singh [5].

Chapter 7 concludes the thesis with a summary of the mammogram analysis system
and the three problem-specific image processing techniques introduced in the experimental
chapters. Some suggestions for further work are also given in this concluding chapter.

After the conclusion of this thesis, Appendix A introduces the abstract system model
that may be applicable to the attribute-driven segmentation and analysis of a wide range
of images. This appendix is closely related to Chapter 3, since the abstract system model
is actually a generalization of the mammogram analysis system, but it is not in the scope
of this thesis. The fundamental concept of knowledge accumulation using image attributes
is first explained in this appendix, then the generic framework of the system model is pre-
sented. Like the actual system, this generic model is also composed of the three major
components, i.e., attribute acquisition, normalization and storage. Each of these compo-
nents is described at the abstract level with additional detail and examples. A design
strategy is given to assist the instantiation of the abstract model into actual systems.
The properties of XML and its advantages and disadvantages are also discussed in this
appendix.

Because this appendix is written entirely from the abstract point of view, with the
intention to separate all the general aspects from an actual system, the domain-specific
issues of mammogram segmentation and analysis are not discussed in this appendix. The
reader should keep in mind that the abstract system model is applicable to any class
of images, not only to mammograms. As a result, the three major components of the
system model and the design principles related to them are also presented from the generic
perspective.
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Chapter 2

Literature Review

A review of the literature on the segmentation and analysis of mammograms is given in
this chapter. It focuses on three main topics: mammogram segmentation, mammographic
image quality, and image enhancement of mammograms. These three topics correspond
respectively to the work presented in Chapters 4 to 6 of this thesis.

A wide range of approaches for global segmentation of the mammogram are reviewed
here. These approaches include the segmentation of the breast border, the nipple, the
pectoral muscle and the fibroglandular region. For mammographic image quality, a list
of quality factors published in the clinical and technical literature is presented, but the
emphasis of this survey is on the adequacy of breast positioning and film exposure. For
image enhancement of mammograms, several contrast enhancement techniques are com-
pared, including global image enhancement, region-based enhancement, and window-based
enhancement.

2.1 Mammogram Segmentation

Mammogram segmentation is usually considered the primary step in the computer process-
ing of mammograms, and it is not a easy task to automate. In many cases, the accuracy
of segmentation directly affects the outcome of the subsequent image analysis procedures.
For this reason, a reliable segmentation scheme is certainly a necessary component in a
mammogram analysis system. The segmentation techniques described in this section refer
to the global segmentation of mammograms, in which the mammogram is partitioned into
several disjoint regions. Segmentation of local objects on a mammogram, such as lesions
and microcalcification clusters, is not included here.

Many attempts have been made in the literature [6–32] to segment a mammogram
globally into distinct regions. These regions represent the anatomical features of the
breast, such as the breast border, the nipple, the pectoral muscle and the fibroglandular
region. The first three are often considered the landmarks on mammograms. Separating
the breast object from the image background is almost always the first step in mam-
mogram segmentation. This step produces a breast border, or skin-air interface, on the
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mammogram.

Among the earlier papers, Miller and Astley [6] proposed the use of anatomical features
for breast asymmetry detection. A semi-automated procedure was used to exclude the non-
breast background and the pectoral muscle from the mammogram. Three types of feature
images are generated for the breast region. A threshold is determined from each of these
feature images and this threshold is used to segment the fat and non-fat regions. Specific
detail on how to generate the feature images and how to select the threshold is not given
in the paper. Only the segmentation accuracy of the non-fat region is computed in their
work, and an average accuracy of 80.3% was reported for the best set of results.

Bick et al. [7] presented an automatic method for segmenting the breast region on
digitized mammograms. In their approach, the original image is first subsampled to a
lower resolution. The local grey-level range is then calculated for each image pixel as
the difference between the local maximum and local minimum on an annulus centred on
the pixel. A modified histogram is computed using all the pixels with small local grey-
level range. The histogram is thresholded to label the image pixels as directly exposed,
unexposed and potential breast regions. Region growing and morphological filtering are
then used to remove artefacts on the image before the breast border is delineated. This
method has been applied to 740 mammograms, including both mediolateral oblique (MLO)
and craniocaudal (CC) views, scanned by three different digitizers. The results were rated
by two mammographers and two physicists, and a success rate of 97% was reported.

Suckling et al. [8] used multiple linked self-organizing neural networks to segment the
mammogram. They proposed that the mammogram can be segmented into four major
components: background, pectoral muscle, fibroglandular region and adipose region. The
algorithm developed by them is based on the classification of feature vectors constructed
from statistical texture measures. Self-organizing neural networks are trained separately
and linked together via a decision logic. They are used to classify the feature vectors
extracted from the mammogram. The method has been tested on 30 digitized mammo-
grams. Only the performance of parenchymal segmentation was measured, and the mean
and standard deviation of the agreement measure of overlapping areas was 0.69± 0.12.

Mendez et al. [9] described an fully automatic technique for breast border and nipple
detection on mammograms and stated that mammogram segmentation is a pre-requisite
for further image analysis. In their approach, the image is first thresholded to eliminate
border misplacement due to the film digitization process. The image is also smoothed to
filter out noise. Then five reference points are detected on the image in order to divide the
breast into three regions, and in each region the breast border is searched for in different
directions, using a tracking algorithm. After that, three algorithms are used to detect the
nipple: (1) maximum height of the breast border; (2) maximum gradient of the grey-levels
across the median-top section of the breast; and (3) maximum second derivative of the
grey-levels across the median-top section of the breast. Algorithms (1) and (3) are then
combined to derive the final nipple detection method. Their method has been tested on
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156 mammograms obtained from both lateral oblique (AXI) and CC views. The breast
segmentation results were evaluated by two expert radiologists and one physicist and 89%
of them were reported to be accurate. The detected nipple positions were compared with
the real positions indicated by radiologists, and a mean difference of 6 mm was reported.

Chandrasekhar and Attikiouzel [12,16,18] used background modelling and subtraction
to extract the breast border automatically. In their approach [18], the background region
is first estimated by examining the cumulative intensity histogram and calculating the
background monochromaticity. The estimated background is then modelled by a two-
dimensional polynomial with degree 0 to 2, and the modelled image is subtracted from
the original to yield a binary image of the breast region. This method has been applied to
322 mammograms, and 32 of them were randomly chosen and evaluated by a radiologist.
A success rate of 94% was reported. The segmented breast border was accurate enough
for the nipple contour to be delineated.

Besides the segmentation of the breast border, Chandrasekhar and Attikiouzel [13,16]
presented a simple and accurate method for automatically locating the nipple on the skin-
air interface of a mammogram. In their approach [13], normal lines are drawn on the
breast border and the average intensity gradient along the normal direction is computed.
If the nipple is in profile, it is located by detecting the sudden change of normal direction.
If the nipple is not in profile, it is located by detecting the distinctive change of average
intensity gradient. This method has been tested on 24 mammograms from two databases,
including both MLO and CC views, and a success rate of 96% was reported. Their method
needs to be performed on a fairly smooth and accurate breast border. In other cases, some
researchers, such as Georgsson [20] and Yam et al. [21], simply assumed that the point on
the breast border furthest away from the pectoral muscle in the MLO view, and furthest
away from the posterior image edge in the CC view, was the nipple location, although this
was only an approximation.

Chandrasekhar and Attikiouzel [22] also investigated mask-based edge detection in
order to delineate the pectoral muscle. In their approach, a families of tunable paramet-
ric edge detectors were tested on mammograms and the pectoral edge were highlighted
significantly with one of the detectors. The edge enhanced images were generated on six
pairs of mammograms, and they were visually inspected. Although promising results were
shown, no methods were given to trace out the continuous pectoral margin on the edge
images, and to yield a segmentation mask of the pectoral muscle.

Chandrasekhar and Attikiouzel [19] extended the Russ operator and presented a new
range-based neighbourhood operator for texture analysis. This operator was initially
developed to discriminate between the adipose and fibroglandular tissues on mammo-
grams [11]. By applying their extended Russ operator to mammograms, three types of
texture enhanced images were generated, namely, c-image, m-image and η2-image. They
found that the c-image was useful in detecting weak edges with good noise immunity, and
may be used to outline the skin-air interface on mammograms. They also suggested that
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the η2-image may be used to enhance the pectoral edge, the boundary of parenchyma, and
possibly some circumscribed lesions.

Karssemeijer [14] segmented the mammogram for parenchymal pattern classification.
He pointed out that accurate and robust segmentation is a pre-requisite of quantitative
feature extraction on mammograms for classification. His method automatically segments
a mammogram into three regions: breast tissue, pectoral muscle and background. In other
words, only two anatomical features (breast border and pectoral muscle) are detected. The
method for breast region segmentation is very simple; it is just a global thresholding tech-
nique using histogram peak detection. His major contribution pertains to the successful
application of Hough transform to approximate the boundary of pectoral muscle using
a straight line. This simple method has been adopted by several other researchers for
pectoral muscle segmentation, and the details are discussed in the literature review of
Chapter 4.

Aylward et al. [15] combined geometric and statistical modelling techniques and seg-
mented the mammogram into five regions: background, uncompressed-fat, fat, dense and
pectoral muscle. The breast border and pectoral muscle edge are first extracted using a
gradient magnitude ridge traversal algorithm for the geometric models. After that, statis-
tical models are used to define different types of breast tissue. These statistical models are
formed using pixel intensities, the concept of distribution sampling, and Gaussian mixture
models. They also devised three applications of the segmentation method: (1) general
intensity windowing for breast cancer screening; (2) component-specific intensity window-
ing for breast lesion characterization; and (3) breast density estimation for breast cancer
risk assessment. These applications were applied to 70 mammograms from three digital
mammography units. The results were judged by expert mammographers to be “clinically
interesting” [15]. They also claimed that the geometry models were generated successfully
on all images, and on 95% of the images for the statistical models. However, quantitative
evaluation of their results was not given.

Ferrari et al. [17] proposed a method to identify the skin-air interface, pectoral muscle
and fibroglandular disc. In their approach, the mammogram is first enhanced in contrast
and morphologically filtered. An approximate boundary is then extracted using a chain-
code method and smoothed by a cubic B-spline interpolation technique. After that, the
true boundary of the breast is detected by drawing normal lines on the approximate
boundary, and by examining the grey-level histogram of the pixels on each normal line.
Finally, the skin-air boundary is smoothed again. This method has been tested on 66
mammograms and the skin-air interface was detected accurately on 61 of them (a success
rate of 92%). However, the nipple contour was eliminated in some images due to the
smoothing of cubic B-splines. In addition, neither in this paper [17] nor in [27] was
their method of breast border segmentation described in full detail, making it difficult for
other researchers to implement their method. Furthermore, they modified Karssemeijer’s
Hough transform method [14] to approximate the pectoral muscle using a straight line.
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The pectoral muscle was accurately detected, within a difference of 1 to 3 mm, on 58/66
(88%) images. The segmentation of the fibroglandular disc was also described in their
work, but the results were only visually compared with the histogram equalized original
image. Nevertheless, a success rate of 55/66 (84%) was reported.

Recently, Ferrari et al. [27] presented another automatic method for pectoral muscle
identification using Gabor wavelets. In their approach, the pectoral muscle edge is first
enhanced by a bank of Gabor filters specially designed in the frequency domain. The
magnitude and phase images are then computed using a vector-summation procedure,
and the magnitude value of each pixel is propagated in the direction of the phase. Finally,
the pectoral boundary is formed by detecting relevant edges, connecting disjoint segments
and eliminating false edges. This method was applied to 84 MLO view mammograms, and
the results were compared with the pectoral edges drawn by one of the authors under the
supervision of a radiologist. The average false-positive and false-negative rates reported
were 0.58 ± 4.11% and 5.77 ± 4.83%, respectively. Their pectoral muscle segmentation
method using Gabor wavelets was compared with that using Hough transform [17], for
which the average false-positive and false-negative rates were 1.98 ± 6.09% and 25.19 ±
19.14%, respectively. A summarized literature review of pectoral muscle segmentation is
also given in Chapter 4.

Masek et al. [30,31] proposed a method based on expanding window to select a thresh-
old for separating the pectoral muscle from other breast tissue on the image. In this
approach, an image thresholding algorithm is applied to an expanding window, anchored
at the image corner near the pectoral muscle, to determine a series of thresholds as a
function of window size. The point of inflection in this function yields the threshold for
segmenting the pectoral muscle. The edge of the pectoral muscle is then approximated
by a straight line, but it is not refined into a curve. Their method was tested using
two different thresholding algorithms: (1) a modified minimum cross-entropy threshold-
ing algorithm [30], and (2) local median intensity [31]. Finally, the results of these two
algorithms were combined with those obtained from multi-level global thresholding [32] to
increase the segmentation accuracy.

2.2 Mammographic Image Quality

The image quality of a mammogram is influenced by a number of clinical and technical
factors. Standardized quality assurance programmes have been established in clinical cen-
tres in the US and elsewhere to ensure that high mammographic image quality is achieved
for every image. Specific testing routines have to be carried out by the radiologists, the
technologists and the medical physicists in the facility [33]. It would be of great benefit
if computerized image quality assessment could be integrated into the quality assurance
programme of mammography.
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2.2.1 Quality Assurance and Quality Control

The definitions of quality assurance and quality control in mammography is given in [33,
p. 63] as: “quality assurance entails procedures that guarantee the quality of all facets of
mammography practice. This includes equipment, radiation exposure, and film interpre-
tation. A subset of this is quality control, which involves the technical procedures that
guarantee a quality mammogram.” Quality control includes acceptance testing, establish-
ment of baseline performance of equipment, assessing the reasons for performance changes
in equipment, and documentation [33, p. 63].

Eklund et al. [34] emphasized the importance of constant attention to quality control in
mammography. They suggested that a consistent case-by-case, film-by-film, quality assess-
ment, with immediate corrective measures and repeat imaging, is essential for maintaining
high image quality. The significant factors of mammographic image quality assessment
include [34]:

1. clinical history, including the nature and specific location of clinical concerns;

2. availability of comparison images;

3. adequate visualization of areas of clinical or radiographic concern;

4. optimal amount of tissue included, particularly for MLO and CC views;

5. adequate exposure;

6. high contrast;

7. high resolution;

8. proper compression;

9. freedom from artefacts;

10. optimal viewing conditions, including freedom from distractions and high intensity
light from view boxes; and

11. proper labelling of images.

Two of the eleven factors, (4) and (5) in the list above, are considered in Chapter 5
for automatic adequacy assessment using computer. The first factor is related to the
positioning of the breast when the mammogram is acquired; the second factor is related
to the exposure and optical density of the film.

2.2.2 Mammographic positioning

For breast positioning on mammograms, Eklund et al. [34] described in detail a number
of quality criteria for optimum positioning in both MLO and CC views. These quality
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criteria are also outlined in other literature [33,35–38], and they are summarized in Chap-
ter 5. Breast positioning assessment relies on extracting anatomic landmarks accurately
on mammograms. Thus automatic mammogram segmentation is particularly important
to the automation of breast positioning assessment using computers. Moreover, the signif-
icance of breast positioning is such that it has been claimed in [38] that “invasive breast
cancer detection by mammography may be improved through attention to correct posi-
tioning.”

From our literature survey, very few publication have tackled the problem of comput-
erized breast positioning assessment. Among these is the work of Olsén, on automatic
determination of mammogram adequacy [39]. She proposed a mathematical model, on the
basis of fuzzy logic and pattern recognition, for combining quality criteria used in adequacy
assessment. However, she implemented and tested only a small portion of the proposed
system, and used only one anatomical feature, the pectoral muscle, for adequacy assess-
ment on MLO view mammograms. So only the position and curvature of the pectoral
boundary were automatically evaluated for adequacy in her work.

More anatomical features are used in our study of automatic breast positioning assess-
ment. The breast border, the nipple location and the pectoral margin are all included in
the algorithms described in Chapter 5.

2.2.3 Film Exposure

The exposure of mammograms is quantified by the optical density of the film. The impor-
tance of maintaining the mean optical density within a certain range is widely recognized
in the literature [40]. An adequately exposed mammogram can be used to improve the
image contrast of dense breast tissue [41]. It has also been reported in the literature that
the mean film optical density is correlated to the success rate of small breast cancer detec-
tion [42]. Most importantly, “maintaining a constant and appropriate mean film optical
density in mammography is an essential part of quality assurance in a breast screening
programme” [40].

For the adequacy assessment of exposure, Eklund et al. [34] gave a rather subjective
guideline, which requires that “the dense parenchymal areas of a mammogram should be
adequately penetrated by radiation so that fibrous strands or vascular structures can be
seen through the parenchyma,” and the film optical density of areas of highest glandular
density should be no less than 0.7.

A more up-to-date guideline is given by Heywang-Köbrunner et al. [33] that requires
the film to be exposed “in such a manner that all details relevant to the diagnosis are
visualized in the optimum density range.” They have also stated that “The useful range
of every film is limited to optical densities between 0.6 and 2.2–2.8” [33]. The mean
optical density should be maintained approximately in the middle of the useful optical
density range, i.e., between 1.4 and 1.8 [33]. These numerical constraints are useful for
the computerized assessment of film exposure on digitized mammograms (Chapter 5).
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2.3 Image Enhancement of Mammograms

Different image enhancement techniques have been used to improve the contrast of mam-
mograms, so that more accurate abnormality detection and clinical diagnosis can be per-
formed, by either human observers or computerized algorithms [5, 43–53]. Some of these
enhancement techniques are reviewed in this section.

A commonly-used contrast enhancement technique for mammograms is histogram
equalization. It is a simple, general and fast image transformation that is defined in
many image processing textbooks [54, 55]. Gupta and Undrill [48] used histogram equal-
ization to improve the visualization of lesions in their texture analysis. In some papers,
such as [13, 27], histogram equalization is not part of the proposed algorithms, but it is
used to enhance the visualization of the skin-air interface, the nipple contour and the
pectoral margin on mammograms, simply for the readers to see them clearly. However,
histogram equalization does not always give good results for mammograms. The study
from Bovis and Singh [5], and also the work in Chapter 6 of this thesis, has shown that
histogram equalization is often outperformed by other contrast enhancement techniques
that are specially designed for mammograms. In addition, Chandrasekhar [11] described
a zero-anchored histogram equalization, where the lowest intensity of the equalized image
is mapped back to zero intensity, giving a better contrast enhanced image.

Morrow et al. [49] proposed a region-based contrast enhancement technique for mam-
mograms. It is an adaptive neighbourhood processing technique that grows regions in a
given image and enhances the regions with respect to their local backgrounds. In their
approach, seed-fill region growing is used to define overlapping regions on the image. Two
parameters of region growing, namely, region growth tolerance and background width, have
to be selected manually using a interactive program. Each pixel on the image is taken as
a seed, and region growing is carried out iteratively until a specific background width is
achieved. The contrast of each region is then computed with respect to its background.
Contrast enhancement is performed by applying an empirical transformation to the seed
pixels. In addition, a quantitative measure of contrast enhancement was also defined based
on the histogram of region contrast, and used for result comparison. A number of case
studies were given for performance evaluation.

Rangayyan et al. [51] aptly named the region-based contrast enhancement technique
described above [49] as adaptive neighbourhood contrast enhancement, and evaluated its
effectiveness in increasing the sensitivity of breast cancer diagnosis. The enhancement
method was applied to two sets of digitized mammograms: 78 images of 21 difficult cases;
and 222 images of 28 interval cancer patients and 6 benign control cases. Three sets of
images: the original films, digitized mammograms and enhanced images were presented
to 6 radiologists for the difficult case set, and 3 radiologist for the interval cancer set.
Receiver operating characteristic (ROC) analysis was used to compare the radiologists’
performance in abnormality detection. The area under each binormal ROC curve was
computed to represent the overall performance. The larger the area parameter, the more
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accurate the detection. The area parameters for the original, digitized, and enhanced
images were computed to be 0.6735, 0.6259, and 0.6745, respectively, for the difficult
case set. The same figures for the interval cancer set were 0.3906, 0.4682, and 0.5407,
respectively. The results show that the radiologists’ performance with the enhanced image
is the best among the three sets of images, and that the diagnosis sensitivity is improved
by image enhancement.

Petrick et al. [52] proposed an adaptive density-weighted contrast enhancement filter
for mass detection on mammograms. In their approach, the original mammogram is first
passed through a map rescaler, in which the image is linearly scaled to [0, 1] and globally
thresholded using a fixed value to separate breast tissue. The largest object in the image
is then extracted and rescaled to produce a normalized image. The normalized image is
split into a density image, by applying a low-pass filter, and a contrast image, by applying
a band-pass or high-pass filter. The density image is used to determine a multiplication
factor, which is multiplied with the contrast image. The weighted contrast image is non-
linearly rescaled to produce the final enhanced image. Their method was applied to 25
digitized mammograms with biopsy proven masses. The method detected 24 of the 25
true mass objects, but the number of false-positives needs to be further reduced.

Li et al. [53] used morphological filters to enhance patterns of suspected masses on
mammograms, by cleaning up unrelated background texture. Using their method, the high
intensity background, caused by dense breast tissue overlapped on the mass, is removed
while preserving the patterns related to the mass. Hence it is a background correction
procedure. In their approach, two basic morphological operations, erosion and dilation,
are used to form a dual morphological top-hat operation. This top-hat operation is applied
twice on the mammogram using structuring elements of two different sizes: one smaller
than the minimum size of possible masses; the other larger than the maximum size of
possible masses. As a result, most of the background texture and noise inside the mass
is suppressed in the enhanced image. Note that their method is pattern-dependent since
it relies on measuring the effective size of targeted mass patterns. In Chapter 6 of this
thesis, their morphological enhancement technique is implemented and compared with our
contrast enhancement technique.

Bovis and Singh [5] proposed three quantitative measures to evaluate the performance
of contrast enhancement techniques applied to mammographic masses. These measures
are: (1) distribution separation measure; (2) target to background contrast ratio using
variance; and (3) target to background contrast ratio using entropy. They can be applied
to region of interest (ROI) containing the mass, with the assumption that the target
and background areas are accurately defined. Bovis and Singh tested these measures
using 41 mass images, and compared the effectiveness of histogram equalization and fuzzy
enhancement technique. The results have shown that fuzzy enhancement performed better.
The detail of these quantitative measures are described in Chapter 6 of this thesis, and
they are used to compare our contrast enhancement technique with two existing ones.
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CHAPTER 2. LITERATURE REVIEW

This concludes the review of the literature. In the next chapter, the design of an image
analysis system is presented for the segmentation and analysis of mammograms.
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Chapter 3

Mammogram Analysis System

A mammogram analysis system was developed in this research for the segmentation and
analysis of mammograms. The design of such system is presented in this chapter. We
consider that mammographic segmentation and analysis to be a hierarchical and cyclic
process, which is driven by the image attributes of mammograms. Three types of image
attributes are identified for mammograms in this chapter. These mammogram attributes
are derived from the images progressively from gross to subtle, from low-level to high-level,
from global to local, and from approximate to precise. The system consists of three major
components, namely, attribute acquisition, attribute normalization, and attribute storage.
The first component, attribute acquisition, corresponds to the mammogram segmentation
and analysis algorithms presented later in Chapter 4, 5 and 6. The attributes generated
by these algorithms are organized into a graph, to show the sequential order in which they
should be derived in the system. For the other two components, the specification of a
standard attribute format and the design of a attribute database are discussed in detail
in this chapter.

3.1 System Overview

An overview of the mammogram analysis system is shown in Fig. 3.1. The system is
attribute-driven and consists of three major components: (1) a collection of computer
applications for attribute acquisition; (2) a standard attribute format for attribute nor-
malization; and (3) a database for attribute storage. The input to the system is a digitized
mammogram. The image is processed by a series of applications, which are executed in
a pre-defined, sequential order. These applications include image segmentation, adequacy
assessment, lesion detection, and other mammographic image analysis techniques. Each
of the applications generate one or more attributes of the image, which are called mammo-
gram attributes. Mammogram attributes are normalized to a standard format and stored
into a database, so data exchange is possible between different applications. At any stage,
the mammogram attributes stored in the database can be retrieved and used by an appli-
cation to derive more attributes for further analysis. Consequently, a cyclic procedure is
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CHAPTER 3. MAMMOGRAM ANALYSIS SYSTEM

Figure 3.1: Mammogram analysis system. The design of this system follows the generic scheme
presented in Fig. A.2.

formed in the system, where mammogram attributes are derived progressively from low-
level to high-level and knowledge about the image is built up in the database. The output
of the system is a report containing the results of image analysis.1

3.2 Mammogram Attributes

Mammogram attributes are categorized into three types: image data, visual features and
analytical information. These three types of attributes are also derived in the segmen-
tation and analysis of mammograms. All the possible mammogram attributes that can
be exchanged between applications through the database have to be carefully identified
during the development of the system. The current set of mammogram attributes that
we consider useful for our applications is described below. More mammogram attributes
may be added to this set when new applications are developed.

3.2.1 Image Data

Image data includes the properties of the mammogram and its digital image. This type
of attribute can be obtained when the mammogram is acquired and digitized, before any
segmentation or analysis application is performed on the image. The following image data
is used in our mammogram analysis system:

� image ID
� mammographic view (MLO/CC)

1A generic form of the mammogram analysis system is documented in Appendix A.
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� left/right breast

� film density

� peak kilovoltage (kVp)

� exposure (mAs)

� image file index

� image dimensions

� image resolution (µm/pixel)

� grey-level bit-depth

� response curve of digitizer (optical density to pixel value conversion)

3.2.2 Visual Features

Visual features consist of the description of breast anatomy and the texture of breast
tissue. They are extracted directly from the image, using hierarchical segmentation and
image texture analysis, at the earlier stages of mammographic analysis. The following are
attributes of visual features:

� breast border

� nipple location

� pectoral margin (straight line and curve)

� outline of parenchyma

� density of breast tissue

� textural features

3.2.3 Analytical Information

Analytical information includes patient history, clinical findings and diagnostic results
of the mammogram. This type of attributes are normally generated at the later stages
of mammographic analysis, after the mammogram has been segmented into distinctive
regions. For example, these attributes are considered analytical information:

� patient history

� adequacy of image quality

� adequacy of breast positioning

and, if applicable,

� locations of microcalcifications

� locations and sizes of masses

� types and severity of masses

� locations of breast asymmetry
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Figure 3.2: The dependence graph of mammogram attributes derived from hierarchical segmenta-
tion, adequacy measures and lesion detection. The number at the corner of each box indicates the
attribute priority. The acquisition of the attributes in dashed line boxes has not been automated
yet.

3.3 Acquisition of Mammogram Attributes

After the mammogram attributes have been categorized into three types, they are gener-
ated using a series of computer applications in the framework illustrated in Fig. 3.1. The
mammogram attributes are derived progressively from low-level to high-level, i.e., from
image data to visual features, and from visual features to analytical information. Low-level
attributes extracted from the image at the earlier stages are used to generate high-level
attributes at the later stages. Therefore, the output attributes of one application may be
the input attributes of one or more subsequent applications. As a result, a very important
property of mammogram attributes is revealed; this property is dependence.

The dependence of mammogram attributes, derived from hierarchical segmentation,
adequacy assessment and mass lesion detection, is depicted in a dependence graph in
Fig. 3.2. In this dependence graph, mammogram attributes are shown as nodes and the
dependence relations are represented by directed edges. For example, the optical density
measure depends on the image data, breast border and pectoral curve. This means that
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the latter three attributes must be acquired first before the optical density measure is
calculated.

In the mammogram analysis system, attributes are acquired sequentially. This means
that at each cycle only one of the applications is executed and only the output attributes
of that particular application are normalized and stored into the database. The sequential
order of attribute acquisition can be determined by examining the dependence graph of
mammogram attributes and assigning priorities to them (see Fig. 3.2). Attributes with
higher priorities are acquired first, they are used to derive attributes with lower priorities.
The algorithm that we use to assign priorities to attributes is called attribute priority
assignment, which is described in Section A.5.2.

In Fig. 3.2, the attributes of image data have the highest priority in the graph, so they
are acquired in the first step and stored into the database. Then hierarchical segmentation
can be carried out on the mammogram using the attributes of image data. The order
of segmentation is pre-defined as {breast border → nipple location → pectoral margin
(straight line) → pectoral margin (curve)}. However, this is not the only order allowed.
The order can also be {breast border → pectoral margin (straight line) → pectoral margin
(curve) → nipple location}.

After the mammogram is segmented and the anatomical features are stored into the
database, the adequacy and quality of the mammogram can be assessed. As shown in the
dependence graph, the priorities of the attributes of adequacy measures are all zero (the
lowest priority). This indicates that all these measures are independent of each other,
and they can be acquired in any order. In fact, the adequacy measures constitute a good
example of parallel attribute acquisition (Section A.5.3), although the actual system that
we implemented only supported sequential attribute acquisition.

If the mammogram is assessed to be adequate, mass lesion detection may be performed.
In our design, mass lesion detection is divided into four steps: suspicious mass detection,
contrast enhancement, mass lesion segmentation and mass lesion classification. Only the
second step, contrast enhancement, has been developed in our work (Chapter 6). We
have assumed that the attributes of the other three steps can also be acquired, and have
shown their relationship with other low-level attributes in the dependence graph. The first
two steps of mass lesion detection require the input of image data and some anatomical
features. But once the contrast enhanced ROI image of a mass is obtained, mass lesion
segmentation and classification could be performed on the ROI image, independently of
the original mammogram. In addition, when classifying the mass lesion, the features of
other masses detected on other mammograms may be desired. In this case, the attributes
of other mammograms can be accessed from the attribute database in the system. Hence
the data exchange required by the analysis of multiple images maybe accomplished.

It is important to note that the attributes of adequacy assessment and those of mass
lesion detection are independent of each other. This can be demonstrated by the two
attribute dependence graphs shown in Fig. 3.3. These two dependence graphs are the
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(a) (b)

Figure 3.3: Referring to the dependence graph shown in Fig. 3.2. The number shown in each
box is the attribute priority. (a) Attribute priority assignment for the acquisition of adequacy
measures. (b) Attribute priority assignment for the acquisition of lesion description.

same as that shown in Fig. 3.2, except for the attribute priorities. In these two cases,
we only want to derive a subset of the mammogram attributes. In Fig. 3.3(a), only the
attributes of adequacy measures are desirable, and the graph shows that the attributes
of lesion description are not required since they have no priorities assigned. On the other
hand, in Fig. 3.3(b), only the attributes of lesion description are desirable, and the graph
shows that the attributes of adequacy measures are not required. From these two graphs,
we can conclude that adequacy assessment can be carried out independently of mass lesion
detection, and vice versa.

3.4 Normalization of Mammogram Attributes

In order to exchange information between different applications in the system, the mam-
mogram attributes have to be normalized to a standard format before they are stored into
the database. The normalized attributes are expressed in XML, which is later explained
in Section 3.5. When designing the specification of the standard format, all the image
properties described in Section A.6 were considered. Each of them is discussed in the
sections below.

3.4.1 Image Orientation

Digitized mammograms may be in different orientations due to two typical reasons: (1) a
film digitization procedure may produce a misoriented image when the film is scanned in
the wrong position; (2) the cassette used in computed radiography can be placed at various
orientations to accommodate the examination condition, and as a result, misoriented image
is produced [56, p. 789]. Algorithms to correct image misorientations may be used to rotate
the original image back to standard orientation [56, pp. 789–793], [57].
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Figure 3.4: Standard image orientations and co-ordinate system for left and right mammograms
of MLO and CC views.

For mammograms, the position of the film viewed by radiologists can be considered
as the standard image orientation. Some radiologists place the mammograms of left and
right breasts back-to-back on the viewbox to form mirror images [58], as shown in Fig. 3.4.
So the standard image orientations of left and right mammograms are not the same, but
symmetric. We should note that only one image orientation is used in the algorithms of
mammogram segmentation and analysis presented in previous chapters. In these algo-
rithms, it is easier for computation when all the right mammograms are mirrored at the
vertical edge, so that the nipples face the same direction as all the left mammograms. Thus
it is necessary to normalize all the attributes according to the standard image orientations
shown in Fig. 3.4.

3.4.2 Co-ordinate System

The standard x-y co-ordinate system defined for the mammogram attributes has its origin
at the top left corner of the image; x-axis is vertical pointing downwards and y-axis is
horizontal pointing to the right (see Fig. 3.4). This setting was chosen because it complies
with the right-hand rule of the Cartesian co-ordinate system. Note that a different co-
ordinate system was used in the development of the algorithms presented in previous
chapters. This co-ordinate system also has its origin at the top left corner, but its x-axis
is horizontal and y-axis is vertical. The attributes produced by the applications of these
algorithms must be converted to the standard co-ordinate system.

3.4.3 Spatial Resolution

The mammogram attributes derived from a subsampled image must be normalized ac-
cording to the original spatial resolution of the mammogram. Since the mammograms
from different databases may be digitized in different resolutions, no image resolution can
be chosen as a single standard value for all digitized mammograms. So each mammogram
has its own spatial resolution for all its attributes. Unlike the standard image orientation
and co-ordinate system of mammogram attributes, spatial resolution is image-dependent
and not universal.
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3.4.4 Measurement Units

All mammogram attributes that involve measurements are described by standard mea-
surement units. Any distance between two points on the mammogram is measured in
millimetres (mm); and any angle between two lines is measured in degrees (◦). Technical
data is also recorded in standard units. Peak kilovoltage set on the X-ray tube is recorded
in kilovolts (kV), and exposure in milliampere-second (mAs) products [33].

3.4.5 Representations of Object Boundary

Some visual features of a mammogram, such as anatomical landmarks of the breast or mass
lesions, are represented as attributes by their segmented boundaries. The requirements of
object boundary normalization are addressed in Section A.6.5. An object boundary can
be described using an array of points in standard image orientation, co-ordinate system
and spatial resolution. If the boundary is closed (mass lesion), the boundary points are
ordered in a clockwise direction. If the boundary is open (breast border, pectoral margin),
the boundary points are ordered in a single direction from top to bottom. An example of
object boundary normalization is given below.

3.4.6 Resulting Images

The images produced by an application, such as texture analysis, can also be treated as
attributes in the system. Unlike numerical data, these resulting images are not normalized
in any way. They are stored as image files in their specific format, possibly at a lower
resolution than that of the original mammogram. The locations of these image files are
recorded in the attribute database as Uniform Resource Locators (URLs), so that they
can be retrieved by other applications. One example of a resulting image is the contrast
enhanced ROI image of mass lesion.

3.4.7 Example: Normalization of the Breast Border

An example of object boundary normalization is shown in Fig. 3.5. When the breast border
is extracted from the mammogram using background modelling and subtraction [18], the
original digitized mammogram is subsampled and reduced in resolution from 50 µm/pixel
to 400 µm/pixel. If the original image dimensions are 2048×4320, then after subsampling,
the image dimensions are reduced to 256 × 540. Also, the co-ordinate system defined in
the algorithm of breast border extraction is different from the standard co-ordinate system
defined in Section 3.4.2. The x and y axes are swapped.

In the application format, the breast border is defined as an array of points, (xi, yi),
on the image where i starts from 0. In this example, the total number of points is 586,
so i is in the range [0, 585]. The order of the array entries runs from top to bottom. In
the standard format, the breast border attribute is also described by an array of points,
and only the x-y co-ordinates are different. Thus the normalization of the breast border is
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Figure 3.5: Normalization of the breast border attribute. The breast border is defined by the
application as a series of points, (xi, yi). There are 586 points on the border for this particular
image. The same image orientation and the same order of array entries are used in both the
standard and application formats. However different image resolutions (µm/pixel) and different
co-ordinate systems are used in the two formats, hence normalization is required.

quite straight-forward. The two variables, x and y, are both multiplied by 8; and they are
swapped in the co-ordinate system. Thus the top end-point (124, 0) is mapped to (0, 992),
and the bottom end-point (22, 539) is mapped to (4312, 176), as shown in Fig. 3.5.

Due to the scale-up in image dimensions, the breast border in standard format is not
a continuous boundary, and the bottom end-point does not coincide with the image edge.
The 586 points derived by the application are instead evenly spread on the breast border
in the standard format. Linear interpolation and extrapolation can be used to generate the
intermediate points if it is necessary. However, these intermediate points are not stored
in the database. The total number of array entries in the standard format is still 586.

3.5 Storage of Mammogram Attributes

The database of mammogram attributes basically consists of a collection of XML docu-
ments for data storage, and an XML schema for data definition. All the attributes of a
mammogram are captured in an XML document and the structure of this XML document
is constrained by an XML schema. A brief overview of XML database and XML Schema
is presented in Section A.7. The implementation of the XML database and the design of
the XML schema are discussed in the following section.
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Figure 3.6: The element structure of some mammogram attributes defined by the XML schema.

3.5.1 A Database of Mammogram Attributes

The simplest way to implement the XML database of mammogram attributes is to use
a flat file database architecture. In this architecture, the database provides hierarchical
access to data first through the directory structure of a file system, and then through the
element structure of the XML documents [59, p. 18]. Each XML document is simply a text
file encoded in Unicode UTF-8 that can be easily accessed with an editor or programming
interface.

All attributes derived from a single mammogram are captured in a single XML docu-
ment. This data-processing-oriented document was primarily designed for data exchange
and data manipulation. The XML schema of the mammogram attribute database was
designed according to the standard data format specified for the mammogram attributes.
Whenever an XML document is modified by the insertion of mammogram attributes, it
is validated by the XML schema to ensure that the element structure and datatype are
correct.

The element structure of mammogram attributes, defined by the XML schema, is
shown in Fig. 3.6. It is a tree in the terminology of graph theory. At the root of
the tree is the XML element <Mammogram>. Under <Mammogram> there are three subele-
ments: <Patient Info>, <Digital Image> and <Comment>. <Patient Info> and <Comment>

are just for recording the patient’s history and textual comments from radiologist. The
mammogram attributes derived from image segmentation and analysis are all captured
in <Digital Image>. The four major categories of mammogram attributes are <Breast

Anatomy>, <Texture>, <Adequacy> and <Abnormality>. Some mammogram attributes of im-
age segmentation, adequacy assessment, and mass lesion detection are included in three
of the categories as shown in Fig. 3.6. Other mammogram attributes, such as image data,
are described using XML attributes which are not shown in the figure. The full version of
the XML schema is included in Appendix B.
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Because mammogram attributes are progressively accumulated in the document, a
very flexible and extensible element structure has to be used. The element structure is
not dependent on the order of attribute acquisition or any application in the system. So
it is not necessary to modify the element structure even if the applications have been
updated in the system, as long as the attributes are normalized to the standard format.
Furthermore, new mammogram attributes could be added to the database easily by at-
taching new XML elements at the end of the element tree. For example, an XML element
<Microcalcification> can be attached under <Abnormality> to include the mammogram
attributes produced by microcalcification detection. In this case, the XML schema has to
be modified to include the new mammogram attributes.

The dependence graph (Fig. 3.2) and the element structure (Fig. 3.6) of mammogram
attributes may look similar, but they are not the same. In graph theory, the dependence
graph is an acyclic directed graph [60, p. 25], but the element structure of the XML
document is a rooted tree [60, p. 13], which is acyclic and undirected. Also, some of
the nodes in the dependence graph are tightly coupled, so there is only one sequential
order to acquire those mammogram attributes. On the other hand, the elements in the
XML schema were designed to be loosely coupled (flexible structure), hence mammogram
attributes can be inserted into the XML document in any order, provided the top-level
elements near the root have already been created. In other words, the attribute acquisition
order is much more restrictive than the attribute insertion order to the database. Thus,
altering the dependence graph does not necessarily mean that the database schema also
has to be changed, unless new attributes are added.

3.5.2 Example: XML Representation of the Breast Border

After the attribute of the breast border is normalized to the standard format, it is repre-
sented using XML in the database. The breast border is an array of points as shown in
the example in Section 3.4.7. It is therefore described in XML as:

<Breast_border array_length="586">

<Point i="0" x="0" y="992"/>

<Point i="1" x="8" y="984"/>

<Point i="2" x="16" y="976"/>

...

<Point i="585" x="4312" y="176"/>

</Breast_border>

The list of elements above has been cut short by omitting most of the intermediate points.
The definition of this XML representation is expressed in the form of XML Schema:

<xs:element name="Breast_border" type="arrayType" minOccurs="0"/>

<xs:complexType name="arrayType">

<xs:sequence>

<xs:element ref="Point" maxOccurs="unbounded"/>

25



CHAPTER 3. MAMMOGRAM ANALYSIS SYSTEM

</xs:sequence>

<xs:attribute name="array_length" type="xs:positiveInteger" use="required"/>

</xs:complexType>

<xs:element name="Point">

<xs:complexType>

<xs:attribute name="x" type="xs:nonNegativeInteger" use="required"/>

<xs:attribute name="y" type="xs:nonNegativeInteger" use="required"/>

<xs:attribute name="z" type="xs:double" use="optional"/>

<xs:attribute name="i" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

</xs:element>

The first line of this schema simply defines an XML element called <Breast border>, which
is of element type arrayType, and this element may occur zero or one time (maxOccurs="1"
by default) in the entire XML document. That is, only one copy of the breast border is
stored in the database for each mammogram.

The next section of the schema above defines an XML element type, which is a feature
of XML Schema that allows users to re-use a particular element type in the definitions
of different elements. This element type is called arrayType and it contains a sequence

of <Point> elements. The maximum number of points allowed in the array is unbounded,
but an XML attribute, named array length, is required to indicate the actual number of
points in the array. Note that the XML Schema definition only specifies that the value
of array length must be a positiveInteger, but it does not specify that the value of
array length must match the number of points in the array. In fact, there is no way
to define the latter constraint in XML Schema due to its limitation. Those constraints
that cannot be defined in XML Schema should be implemented as validation code in the
applications.

The last section of the schema defines an XML element called <Point>, which has four
XML attributes, two required and two optional. A <Point> element must contain the x

and y attributes, which are both nonNegativeInteger. This element may also contain the
z attribute of double type for data value, and the i attribute of nonNegativeInteger type
for indexing.

3.6 Conclusions

A mammogram analysis system has been presented in this chapter. The system provides
a means to acquire, normalize, store and re-use the mammogram attributes that are pro-
duced progressively, from low-level to high-level, by several segmentation and analysis
applications. By identifying the useful mammogram attributes and working out the at-
tribute dependence, the sequential order of attribute acquisition can be determined. We
have shown that adequacy assessment and lesion detection are independent of each other,
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although they both depend on the input of image data and anatomical features.
Although different applications may operate with data formats that are incompatible

with each other, data exchange among these applications is still possible by standardizing
the format of mammogram attributes, such as image orientation, co-ordinate system,
spatial resolution, measurement units and object boundary representations.

XML is used to describe the mammogram attributes in the database, with some struc-
ture and datatype constraints defined by XML Schema. An open-ended, application-
independent element structure is specified in the schema so that it can be extended easily
in the future.

This concludes the description of the mammogram attribute system, and its specifi-
cation of attribute normalization and attribute storage. The next three chapters present
three applications of mammogram segmentation and analysis, designed for attribute ac-
quisition. The first one presented is pectoral muscle segmentation.
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Chapter 4

Automatic Pectoral Muscle

Segmentation

4.1 Introduction

Segmentation is an unavoidable step in mammographic image analysis. We contend that
before the digitized mammogram is analyzed by computer, it must be segmented into its
representative anatomical regions. In the hierarchical approach of segmentation, three
anatomical landmarks are first extracted automatically on a mammogram [61]: they are
the breast border [18], the nipple [13] and the pectoral muscle (as previously described
in Section 3.3). In this chapter, a method is proposed for automatically segmenting the
pectoral muscle on mediolateral oblique (MLO) view mammograms. The work presented
in this chapter is also published in [62].

When the MLO view is properly imaged, the pectoral muscle should always appear as
a high-intensity, triangular region across the upper posterior margin of the image. The
craniocaudal (CC) view is not considered here because the pectoral muscle is only seen
in about 30%–40% of CC images [34]. Several factors complicate the segmentation of the
pectoral muscle. Depending on anatomy and patient positioning during image acquisition,
the pectoral muscle could occupy as much as half of the breast region, or as little as a few
percent of it. The curvature of the muscle edge is usually convex, but it can also be concave,
or a mixture of both. Although the pectoral muscle boundary is perceived to be visually
continuous by humans, there are large variations in edge strength and texture. In many
cases the upper part of the boundary is a sharp intensity edge while the lower part is more
likely to be a texture edge, due to the fact that it is overlapped by fibroglandular tissue.
In addition, the muscle edge may be obscured by artifacts on the digitized mammogram,
such as sticky tapes. Because of all these factors, automatic segmentation of the pectoral
muscle by computer is a demanding task.

Automatic pectoral muscle segmentation is useful in many areas of mammographic
analysis. The work of Gupta and Undrill [48] indicates that mammographic parenchyma
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and the pectoral region may have similar texture characteristics, causing a high number
of false positives when detecting suspicious masses. In other words, the pectoral muscle
could interfere with automated detection of cancers. Also the area overlying the pectoral
muscle is a common area for cancers to develop and is particularly checked by radiologists
to reduce false negatives. It is therefore necessary to segment out the pectoral muscle
before lesion detection, as stated in [63]. Similarly, exclusion of the pectoral muscle is
required for automatic breast tissue density quantification [14, 64]. The pectoral edge is
also used as one of the axes in 3-dimensional reconstructions from multiple mammographic
views [20, 21]; and it is one of the pivotal landmarks in mammogram-pair registration
and comparison [6]. Furthermore, it is recommended by radiologists that, for a high
quality MLO mammogram, the pectoral muscle should be seen to the level of the nipple
or below [34, 35, 37]. Some authorities have recommended, in addition, that the pectoral
margin should be convex [34,35]; that the angle made by the margin with the image edge
should not be less than 20° [33]; and that the quality of the pectoral margin may be assessed
on a numerical scale [37]. Hence extracting the pectoral edge, as both straight line and
curve, is particularly important in automatic evaluation of mammographic adequacy [65].

4.1.1 Literature Review

The Hough transform, used by Karssemeijer [14] to detect the pectoral edge, is a popular
technique. This method assumes that the pectoral edge is approximately a straight line
oriented in a certain direction. To ensure that the correct peak is selected in the Hough
space, gradient magnitude and orientation, length of projected line, and corresponding
pectoral area were taken into account. Because of this careful selection scheme, the results
were claimed to be very robust and reliable [14]. Other recent studies based on the
Hough transform include: Ferrari et al. [17] who segmented mammograms into skin-air
boundary, fibroglandular tissue, and pectoral muscle; Yam et al. [21] who refined the
Hough transform linear approximation into a curved pectoral boundary using a dynamic
programming method; and Georgsson [20] who extracted the pectoral muscle by region
growing, but later found the Hough transform to be more reliable.

There are several other approaches to segment the pectoral muscle. Suckling et al. [8]
segmented mammograms into four major components: background, pectoral muscle, fibro-
glandular region and adipose region, using multiple, linked self-organizing neural networks.
Aylward et al. [15] used a gradient magnitude ridge traversal algorithm at a small scale
to extract multiple initial points and then resolved the resulting multiple edge definitions
via a voting scheme. Their method parallels that of Karssemeijer [14]. Saha et al. [64,66]
reported a semi-automatic method that requires input from an operator to locate the
pectoral muscle; delineation is then performed automatically. In addition, Chandrasekhar
and Attikiouzel proposed two techniques to enhance the pectoral muscle region on mam-
mograms: the extended Russ operator [19], and tunable parametric edge detection [22],
although final segmentation on the enhanced images had not been carried out.
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In summary, most of the previous work approximates the pectoral edge as a straight
line and then refines that straight line into a more accurate curved boundary, if needed.
The accuracy of straight line approximation is usually satisfactory. With the Hough trans-
form, the pectoral muscle was segmented in 92.8% of the mammograms tested in [14]; and
the pectoral muscle was accurately detected in 87.9% of the images within a difference of 1
to 3 mm in [17]. However the reliability of curve refinement had not been specifically tested
and reported in the literature, until the publication of a recent study [27] in which Ferrari
et al. compared their pectoral muscle segmentation method using Gabor wavelets with
that using Hough transform on a subset of the Mammographic Image Analysis Society
(MIAS) database [67]. They found that the percentage of false-positive and false-negative
pixels given by the former method is less than the latter one, indicating that curve delin-
eation is more accurate than straight line approximation. Their study comes close to the
subject of this chapter.

In our method, the two-step approach of straight line approximation and curve re-
finement is taken as the basis, and extended by iteration to confer robustness. But the
algorithms that we developed to derive the straight line and the curve are fundamentally
different from the existing methods. Several techniques are also introduced to overcome
failure due to poor breast positioning and artifacts, and to validate the straight line ap-
proximation before it is refined to a curve. The final segmentation results have been
thoroughly assessed by two mammographic experts.

4.2 Overall Algorithm

From the observations made in section 4.1 regarding the appearance of the pectoral region,
we frame the following four hypotheses that form the foundation for the algorithm:

1. On mediolateral oblique mammograms, the pectoral muscle is a roughly triangular
region occupying a corner of the mammogram;

2. The pectoral muscle is defined as a region of higher intensity than the surrounding
tissue;

3. The pectoral margin is characterized by a fairly sharp change in intensity, i.e., it is
an intensity edge;

4. The intensity edge can be located by fitting step functions to a sequence of the inten-
sity profiles which lie perpendicular to the pectoral boundary. The step-transition
point represents the position of the edge.

Because the pectoral margin may be and is usually curved, it is first estimated as a
straight line, which is later refined to a curve. The algorithm therefore consists of two
main steps: (a) straight line estimation; and (b) iterative cliff detection. The flowchart of
this algorithm is shown in Fig. 4.1.
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CHAPTER 4. AUTOMATIC PECTORAL MUSCLE SEGMENTATION

Figure 4.1: Flowchart for automatic pectoral muscle segmentation on MLO mammograms. The
image orientation and breast border extraction are pre-processing steps that are not part of this
algorithm.

There are two pre-processing steps: image orientation and breast border extraction.
The image is first oriented in portrait mode to face the same direction for consistency, as
shown in Fig. 4.2. In the MIAS database, the image dimensions and left/right labels are
already given, so only image rotation and mirroring are required. The breast border is
then extracted automatically by background modelling and subtraction [18]. The accuracy
of the extracted border does not significantly affect the performance of pectoral muscle
segmentation, since the breast border is only used for validation and the endpoints of the
border are chosen cautiously (as explained in section 4.4.2).

The first part of the segmentation algorithm generates a straight line approximating
the pectoral edge. The initial straight line estimation is carried out within a region of
interest (ROI). The straight line is then tested for validity. If valid, the ROI is adjusted
accordingly, and a second straight line estimation is performed in the new ROI. If the
second straight line is also valid, it is used as the input to iterative cliff detection.

If the straight line is found to be not valid at any stage, the ROI is shrunk to a smaller
size and the estimation cycle repeated. When the ROI is smaller than a certain size, the
algorithm terminates with no segmentation of the pectoral muscle.
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Figure 4.2: The mammogram is oriented so that the pectoral muscle is located at the top left
corner. The co-ordinate axes are directed as shown with the origin also at the top left corner. The
width and height of the whole image are denoted by nx and ny, respectively. R1 is the initial region
of interest, equivalent to one quarter of the image. The straight line AB is an approximation to
the pectoral edge. The end-points of the breast border are C and D. s1 represents a search path
perpendicular to AB whereas s2 represents a rotated search path.

The second part of the algorithm is iterative cliff detection in which the straight line
is refined to a curve that more accurately depicts the pectoral margin. This is an iterative
process whereby the detected curve is fed back to the cliff detection module for increased
accuracy. Finally, the “triangle” with the detected pectoral margin as hypotenuse, is
closed to give a segmentation mask for the pectoral muscle.

4.3 Orientation and Notation

In our segmentation algorithm, all digitized mammograms are oriented so that the nipple
faces the right, i.e. all the right breast images are mirrored vertically. Therefore all input
images are always upright with the pectoral muscle at the top left corner. The intensity of
the image is denoted by I(x, y) in the range [0, Imax]. The origin of the co-ordinate system
is at the top left corner of the image, where x is defined to be the horizontal axis and
y to be the vertical one (see Fig. 4.2). The number of pixels of the image in the x- and
y-directions are denoted by nx and ny, respectively. Parameters used in the algorithm are
given in millimetres; they may be converted to pixels if divided by the image resolution
in mm/pixel.

4.4 Straight Line Estimation and Validation

Straight line estimation is used to approximate the pectoral muscle with a straight line.
This algorithm is based on iterative threshold selection and straight line fitting with a
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(a) (b) (c) (d) (e) (f)

Figure 4.3: Illustration of straight line estimation. (a) Initial ROI of MIAS image mdb227lm.
(b) Median filtered binary image produced by iterative threshold selection. (c) M1(y), obtained
by tracing the border of black region. Its gradient is computed in the sliding window. (d) M2(y),
result of removing positive gradient segments, with the largest area under the curve shaded. (e)
M3(y), selected for straight line fitting. (f) Straight line approximation to the pectoral edge.

gradient test. The result is then validated by a simple criterion, independently of the
straight line fit.

4.4.1 Straight Line Estimation

Defining the Region of Interest (ROI)

Since the pectoral muscle is located at the top left corner of the image, the top left quarter
of the image is taken to be the initial region of interest (ROI), as shown in Fig. 4.2. It
is assumed that the pectoral edge appears in this ROI (partially, if not fully) and that it
intersects the top and left image edges. The first straight line estimation of pectoral edge
is performed in this ROI, which is represented by R1:

R1 = {(x, y) : 0 6 x < nx/2 and 0 6 y < ny/2} (4.1)

Fig. 4.3(a) shows the initial ROI of mammogram mdb227lm taken from the MIAS data-
base.

Iterative Threshold Selection

After setting the initial ROI, the pectoral muscle (pectoral region) should be separated
from other tissues (non-pectoral region) as it has been done manually in Fig. 4.4(a).
However, determining a global threshold automatically is not straightforward. In many
MLO mammograms, the lower portion of the pectoral muscle is spatially superimposed
on some glandular tissue known as the “tail of Spence” [34]. Also, the image intensity of
the glandular tissue can be very near or identical to that of the pectoral muscle, causing
intensity overlap of the pectoral and non-pectoral regions in the histogram (see Fig. 4.4(b)).
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(a) (b) (c)

Figure 4.4: (a) Pectoral and non-pectoral regions in the initial ROI, R1. The spatial overlap
of pectoral muscle and glandular tissue can be seen in the lower portion. The region boundary
was traced out by hand. (b) Intensity histogram, h(i), of R1 showing the intensity overlap of
the pectoral (black) and non-pectoral (grey) regions corresponding to (a). (c) Iterative threshold
selection, where grey-levels below 15% of Imax are excluded (left of dotted line); µb and µo are the
mean values of the background and object grey-levels, respectively; and t is the final threshold.

Due to both spatial and intensity overlaps of the two regions, it is not always possible
to find a single threshold that completely separates the pectoral muscle from other tissues.
However, iterative threshold selection can be used to optimize the conversion of the grey-
scale image to a binary image in the sense that the image average luminance is preserved;
this is explained and mathematically proven in [68] (see appendix C). This method usually
works well even if the histogram is not bi-modal [69, p. 129]. For the images affected by
intensity overlap, iterative threshold selection is less likely to over- or under-estimate the
threshold when compared with other techniques that place the threshold at the valley
between two peaks in the histogram.

The algorithm given below has been slightly modified from that given in [69, pp. 129–
130] and assumes that the image has two regions of dominant grey-levels:

1. All grey-levels below 15% of Imax are removed from the histogram, h(i), of the
region R1. It is assumed that the non-breast background and the majority of the
breast-edge tissue have been excluded to ensure that the segmentation result is more
reliable.

2. A threshold t is determined as the mean of all remaining pixel values in R1:

t =

∑
i>0.15Imax

i · h(i)∑
i>0.15Imax

h(i)
(4.2)

3. The region R1 is segmented into background and object by thresholding at t.

4. The mean values of the background and object grey-levels, denoted by µb and µo
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respectively, are calculated by the following equations:

µb =

∑
0.15Imax6i<t

i · h(i)∑
0.15Imax6i<t

h(i)
; µo =

∑
i>t

i · h(i)∑
i>t

h(i)
(4.3)

5. t is then updated as the mid-point of µb and µo:

t =
µo + µb

2
(4.4)

6. If the new t remains unchanged, it is the final threshold; otherwise steps 3 to 6 are
repeated.

Pixel Selection

After thresholding, the edge of the pectoral muscle has to be traced out on the binary
image (Fig. 4.3(b)) by a pixel selection operation. First, impulse noise on the binary image
is removed by applying a 5×5 median filter. Then each horizontal line of the binary image
is scanned from left to right, and the first background pixel on each scan line is selected.
The positions of all the selected pixels define the function M1(y), that roughly represents
the pectoral edge.

Gradient Test

If the selected pixels M1(y) represent the actual pectoral edge accurately, straight line
fitting can be applied to it directly. However, in some cases, the curve M1(y) deviates
toward the right and forms a concave segment, whenever the glandular tissue overlaps the
pectoral edge. The deviation from the actual edge may lead to an inaccurate straight line
estimation.

A gradient test was therefore designed to eliminate the concave segments on the func-
tion M1(y). A sliding window of height 20 mm and width equal to the ROI is used in the
test. As the window slides from top to bottom, a straight line is fitted to the portion of
M1(y) that lies within the window, and the gradient of the fitted line is computed (see
Fig. 4.3(c)). The gradient function, g(y), is given by:

g(y) =
x2 − x1

y2 − y1
for

y2 − y1

2
< y <

ny

2
− y2 − y1

2
(4.5)

where (x1, y1) and (x2, y2) are the end-points of the fitted line, and ny/2 is the height of
R1.

Normally, g(y) is negative when M1(y) is a decreasing function which represents the
actual pectoral edge. If there is a deviation from the pectoral edge, g(y) becomes positive.
Hence in order to eliminate the concave deviations, M1(y) is set to zero whenever g(y) is
non-negative. Consequently the remaining pixels form a new function M2(y), which may
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consist of discontinuous segments. Note that g(y) is undefined at both ends of the ROI
and M1(y) would not be set to zero there.

Straight Line Fitting

Although the concave deviations have been removed, some small, discontinuous segments
left in M2(y) may also affect the accuracy of the straight line estimation. Therefore only the
continuous segment with the largest area under the curve (shown shaded in Fig. 4.3(d))
is used for straight line fitting because it is most likely to be the actual pectoral edge.
This segment is represented by a third function M3(y) in Fig. 4.3(e). Straight line fitting
with least squared error is then applied to M3(y) and results in the first straight line
approximation to the pectoral edge, as shown in Fig. 4.3(f). This line is shown as AB in
Fig. 4.2.

4.4.2 Straight Line Validation

Validation Criterion

A simple criterion is used to validate the straight line estimation. Line AB must intersect
the top and left image edges inside the breast region, but the intersections may not be in-
side the ROI. To define the breast region, the breast border (xborder, yborder) was extracted
automatically by polynomial modelling [18]. Since this method is not immune to artifacts
from tapes and misplaced labels, the end-points of the breast border (denoted as C and D

in Fig. 4.2) are determined by the maxima within the top and left margins of the image:

xC = max{xborder : 0 6 yborder 6 0.15ny} (4.6)

yD = max{yborder : 0 6 xborder 6 0.15nx} (4.7)

If for any reason the breast border is not available, xC and yD can be replaced by nx and ny

respectively. The validation criterion can then be described by the following expressions:

0 < xA < xC and 0 < yB < yD (4.8)

where (xA, 0), (0, yB), (xC , 0) and (0, yD) are the co-ordinates of points A, B, C and D

respectively. If the line is valid, ROI adjustment is invoked; otherwise ROI shrinking is
performed. Details of these two methods are given in the following sections.

ROI Adjustment

The first ROI, R1, is only an initial estimate of the location of the pectoral edge. The
ROI has to be adjusted so that the entire pectoral muscle is included, resulting in a more
accurate straight line approximation. Therefore a new ROI, R̂1, is defined so that AB
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runs diagonally from the top right corner to the left bottom corner in R̂1, i.e.,

R̂1 = {(x, y) : 0 6 x < xA and 0 6 y < yB} (4.9)

Then a second straight line estimation is performed on R̂1, following the same procedure
as described in section 4.4.1. The result is used to update AB. If the new straight line is
also valid, it represents the best approximation to the pectoral edge from this stage of the
algorithm; it is then ready to be refined into a curve by the iterative cliff detection, which
is described in later sections.

ROI Shrinking

ROI shrinking is used when the straight line estimation is not valid. The result of invalid
estimation could be due to internal texture or large artifacts on the pectoral muscle, but
in most cases, the main cause is the breakdown of the assumption that the pectoral muscle
occupies approximately half of the ROI. This smaller than expected pectoral muscle leads
to an underestimated threshold. Shrinking the ROI so that the assumption is upheld is
the basis for this step. If Rm is the current ROI, then the new ROI, Rm+1, is defined as
the top left quarter of Rm, i.e.,

Rm = {(x, y) : 0 6 x < nx/2m and 0 6 y < ny/2m} (4.10)

The same straight line estimation (described in section 4.4.1) is performed on the new ROI
in the hope that the result would be valid. The smallest possible ROI in this algorithm
is R4, which is 1/256 of the original image size. If no valid straight line is found after R4

is used, it is concluded that the pectoral edge cannot be detected, perhaps because it is
absent altogether from the mammogram.

4.5 Iterative Cliff Detection

Cliff detection is designed to refine the straight line approximation into a curve that
delineates the pectoral edge more accurately. The resulting curve is further refined by
applying cliff detection multiple times; hence it is an iterative process . Finally, a roughly
triangular region is enclosed to represent the segmented pectoral muscle.

4.5.1 Cliff Detection

Cliff detection is performed on the whole mammogram and not on any ROI. It consists of
the following steps:

38



4.5. ITERATIVE CLIFF DETECTION

(a) (b) (c) (d) (e) (f)

Figure 4.5: Illustration of iterative cliff detection. (a) Search paths placed across the straight
line AB (only every fifth path is shown). (b) All the detected cliff locations. (c) Two pieces of
padding, parallel to the straight line, are added at both ends of the detected curve for smoothing.
(d) Detected curve after first iteration. (e) Detected curves after 1st, 5th and 9th iterations,
respectively from left to right. (f) Final segmentation of the pectoral muscle.

Defining Search Paths

If the straight line estimation is accurate enough, the actual pectoral edge should be in
close proximity to AB. Therefore, search paths are used to find the exact position of the
muscle edge in the vicinity of the straight line. The whole image is first smoothed by an
average filter of size m ×m. On every pixel of AB, a search path of length 2d is defined
so that it is perpendicular to AB and the distances on both sides of AB are equal.

However, there is an exception at the image edges. Part of a search path could lie
outside of the image if it is placed perpendicularly to AB. In such cases, the search path
is rotated in the appropriate direction so that its outlying end-point is moved back into
the range of the image, just touching the image edge (see Fig. 4.5(a)).

An example of perpendicular and rotated search paths is shown as s1 and s2 respec-
tively in Fig. 4.2. The rotated search paths may overlap each other, but this is acceptable.
Although other orientations for the search paths were tried, the perpendicular orientation
gave the best results, and was best suited to detect the intensity edge representing the
pectoral margin.

Keeping the search path in full length is important because search path length and
intensity surface smoothness are related. The smoother the intensity surface, the longer
the search path that should be used to detect the intensity cliff. That is why search path
length, d, and smoothing filter size, m, are reduced together in each iteration (see also
Section 4.5.2). Experiment has shown that shortening the search path at the image edge
results in less accurate cliff detection; while rotating the full length search path has a
higher chance to include the cliff in the intensity profile.
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Extracting Intensity Profiles

The next step is to extract intensity profiles along the search paths. The intensity profile,
P (k), is a function that represents the cross-section of the smoothed image surface on each
search path. If there is a pectoral edge, a significant intensity drop, or a cliff, is expected
on the intensity profile. Cliff detection is actually designed to locate the intensity cliff
of the pectoral margin from a collection of intensity profiles across the straight line AB.
Fig. 4.6 illustrates the difference between intensity profiles of the original and smoothed
images.

(a) Original image (b) Smoothed image

Figure 4.6: Comparison of intensity profiles of original and smoothed images. Only every 20th
profile is shown here.

Determining Cliff Locations

The determination of the spatial co-ordinates of the intensity cliff is the next step in the
algorithm. It was observed that most of the smoothed profiles exhibit a typical sigmoidal
shape with various slopes and intensity changes. However, that typical shape did not
necessarily appear in all profiles, as may be seen in the two rightmost profiles in Fig. 4.6(b).
To confer robustness on the algorithm, it was decided to locate the cliff by fitting the
smoothed profile to a sigmoid function.

This sigmoid function, S(k;α, β, pmax, pmin), is a hyperbolic tangent function:

S(k;α, β, pmax, pmin) =
pmax − pmin

2
tanh(α− βk) +

pmax + pmin

2
for k ∈ [0, 2d]; β > 0 (4.11)

where pmax and pmin are the maximum and minimum intensities in P (k), and α and β are
fitting parameters solved by least squared error, i.e., ε2 = [S(k;α, pmax, pmin) − P (k)]2 is
minimized. Fig. 4.7 shows a plot of the sigmoid. The cliff location, kc, is determined at
the point of inflection of S(k), i.e.,

kc =


0 if α

β < 0
α
β if 0 ≤ α

β ≤ 2d

2d if α
β > 2d

(4.12)
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Figure 4.7: The sigmoid model, S(k), where α and β are fitting parameters; pmax and pmin are
the maximum and minimum values of the smoothed profile, P (k), respectively; 2d is the length
of the corresponding search path. The point of inflection at kc = α/β is assumed to be the cliff
location on the intensity profile.

The cliff locations of all the extracted profiles are marked on a blank image, which has
the same size as the original (see Fig. 4.5(b)). This set of cliff locations is denoted by C.

Smoothing the Detected Curve

The next step is to express the set of cliff locations as a function of y. This is done by
eliminating certain cliff locations from C, and adding intermediate values where necessary.
If there is more than one cliff location for a given y value on a horizontal scan line, only
that with the largest x value is retained; the others are eliminated. On the other hand,
if there is no cliff location for a given y value on a horizontal scan line, two-point linear
interpolation is used to generate an intermediate point. The resulting function is smoothed
by a 24 mm wide moving-window average filter. Also, two strips of padding, 12 mm each,
and parallel to line AB, are added at both ends of the function to reduce distortion (see
Fig. 4.5(c)). This smoothed function is called the detected curve and is the output of cliff
detection.

4.5.2 Iterative Refinement

Cliff detection can be applied iteratively to refine the detected curve. Since the image is
smoothed before determining cliff locations, the sharpness of the pectoral edge is reduced,
and hence the detected curve from the first cliff detection may be slightly inaccurate. Two
previously defined variables of the algorithm, m and d, are set to 4 and 8 mm respectively
in the first cycle of cliff detection. In the next iteration, m is decremented by 1 pixel and
d by 2 pixels. Search paths are defined in the same way, but this time on the detected
curve rather than the straight line. The same procedure is carried out as described in
section 4.5.1 to produce a new curve. The iterative process stops when either m or d is
reduced to 1 pixel. During the curve refinement, the image surface is gradually sharpened
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together with a reduction in the maximum search distance. Consequently the final detected
curve delineates the pectoral edge to a higher degree of accuracy. The final segmentation
result for mammogram mdb227lm is depicted in Fig. 4.5(f).

4.5.3 Region Enclosing

Since the detected curve is a function of y, its top end always coincides with the top edge
of the image. However, in some cases, its bottom end may not be aligned with the left
edge of the image. In order to form a closed region, the bottom end is extended by a
straight line parallel to AB (Fig. 4.2), after the final iteration, if necessary. The extended
curve is then smoothed again by the 24 mm average filter. Finally, this enclosed region
can be used to segment the pectoral muscle on the mammogram. It is pointed out that
this extrapolation has been deliberately chosen to guarantee region closure using a line
segment that is consistent with the overall direction of the pectoral margin. An example
is illustrated in Fig. 4.8.

(a) (b) (c)

Figure 4.8: (a) Pectoral muscle of MIAS image mdb215ll. (b) A straight line parallel to AB
is extended from the end of detected curve (marked by arrow). (c) Enclosed region for final
segmentation.

4.6 Experimental Setup

This new method for pectoral muscle segmentation was tested on 322 digitized mam-
mograms from the MIAS database [67]. The original 50 µm/pixel images were low-pass
filtered and reduced in resolution to 400 µm/pixel. The original bit-depth of 8 bits [0–255]
was retained.

Two expert mammographic radiologists1 were invited to assess the goodness of the seg-
mentation. In order to better objectify the results and ensure consistency, at the beginning
of the assessment, the radiologists were acquainted with the purpose of segmentation:

1Dr. Mary Rickard and Dr. Natacha Borecky
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The purpose of the segmentation is to localize the pectoral margin with suf-
ficient accuracy so as to segment out the “pectoral triangle” on mediolateral
oblique mammograms. This will facilitate exclusion of muscular tissue with
non-exclusion of parenchymal tissue, mammogram density analysis, parenchy-
mal characterization, mammogram adequacy determination via nipple to pec-
toral margin perpendicular lines, etc.

The radiologists were then presented with the original mammograms and two types of seg-
mented images: the straight line and curve segmentation of the pectoral muscles generated
by straight line estimation and cliff detection respectively. The segmented images were dis-
played on a computer screen in a random order. The segmentation boundary was coloured
in red and superimposed on the original mammogram, without any contrast enhancement.
The radiologists were asked to assess all the images of straight line segmentation first. Af-
ter that the images of curve segmentation were assessed in the same manner. For each
image, the radiologists determined whether the segmentation was acceptable, which is a
binary decision, and then, during a second pass, they rated the goodness of segmentation
using a five-point scale, as explained in Table 4.1. A score of 3 or less indicates an adequate
segmentation.

Table 4.1: Five-Point Assessment Scale with Score Descriptions

Score Meaning Description

1 Exact
The segmented straight line or curve delineates the pectoral mar-
gin exactly. Any deviations from the visually perceived margin
are imperceptible or insignificant.

2 Optimal
The segmented straight line or curve delineates the pectoral mar-
gin exactly for at least half its length and adequately for the other
half.

3 Adequate
The segmented straight line or curve delineates the pectoral mar-
gin inexactly but with sufficient accuracy for localizing the pec-
toral margin for the intended purpose.

4 Sub-optimal The segmented straight line or curve delineates the pectoral mar-
gin inadequately for at least half its length.

5 Inadequate
The segmented straight line or curve is either absent or is so inac-
curate as to be inadequate for localizing the pectoral margin for
the intended purpose.
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4.7 Results

4.7.1 Radiologists’ Assessments

The numbers of straight line and curve segmentation images accepted by the two radiol-
ogists are listed in Table 4.2. It shows that radiologist 1 rated as acceptable 243 (75.5%)
images for straight line segmentation and 280 (87.0%) images for curve segmentation;
while radiologist 2 rated as acceptable 170 (52.8%) images for straight line segmentation
and 216 (67.1%) images for curve segmentation. Although the segmentation images ac-
cepted by radiologist 2 are fewer than those accepted by radiologist 1, both radiologists
agreed that after applying curve refinement the number of acceptable images increased.

Table 4.2: Numbers of Segmentation Accepted by the Two Radiologists

Radiologist 1 Straight Line Segmentation Curve Segmentation

Decision Number Percentage Number Percentage

Acceptable 243 75.5% 280 87.0%

Not Acceptable 79 24.5% 42 13.0%

Radiologist 2 Straight Line Segmentation Curve Segmentation

Decision Number Percentage Number Percentage

Acceptable 170 52.8% 216 67.1%

Not Acceptable 152 47.2% 106 32.9%

Table 4.3: Contingency Tables of Straight Line and Curve Segmentation

Radiologist 1 Curve

Straight Line Acceptable Not Acceptable

Acceptable 242 1

Not Acceptable 38 41

Radiologist 2 Curve

Straight Line Acceptable Not Acceptable

Acceptable 151 19

Not Acceptable 65 87

The significance of the improvement can be determined statistically by the McNemar
test [70, pp. 75–80]. This test is useful for detecting changes in initial and final responses
(acceptable images) due to experimental intervention (curve segmentation). The test was
performed using the contingency tables shown in Table 4.3. The McNemar chi-squared
test statistics and approximated P-values are 33.23 and 8.18 × 10−9 for radiologist 1,
and 24.11 and 9.11 × 10−7 for radiologist 2. Since the P-values are very small in both
cases, we conclude that curve segmentation has improved the accuracy of pectoral muscle
segmentation. The contingency tables also show that after curve segmentation, 38 images
were upgraded from not acceptable to acceptable for radiologist 1, and 65 images for
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Table 4.4: Segmentation Accuracy Ratings by the Two Radiologists

Radiologist 1 Straight Line Segmentation Curve Segmentation

Rating (Score) Number Percentage Number Percentage

Exact (1) 84 26.1% 169 52.5%

Optimal (2) 106 32.9% 85 26.4%

Adequate (3) 53 16.5% 32 9.9%

Sub-optimal (4) 33 10.2% 10 3.1%

Inadequate (5) 46 14.3% 26 8.1%

Radiologist 2 Straight Line Segmentation Curve Segmentation

Rating (Score) Number Percentage Number Percentage

Exact (1) 34 10.6% 87 27.0%

Optimal (2) 50 15.5% 54 16.8%

Adequate (3) 113 35.1% 117 36.3%

Sub-optimal (4) 59 18.3% 30 9.3%

Inadequate (5) 66 20.5% 34 10.6%

radiologist 2. On the other hand, only 1 image was downgraded from acceptable to not
acceptable for radiologist 1, and 19 images for radiologist 2.

The radiologists’ five-point ratings for the 322 straight line segmentation images and
322 curve segmentation images are shown in Table 4.4. The results show that radiologist 1
rated the straight line segmentation adequate or better on 243 (75.5%) images and the curve
segmentation adequate or better on 286 (88.8%) images. The same figures for radiologist 2
are 197 (61.2%) and 258 (80.1%) respectively. Again, the ratings of radiologist 2 are lower
than that of radiologist 1, but in both cases the ratings were improved (by 13.3% and
18.9%) after applying curve segmentation. By taking the average score of each image,
67.4% of the straight line segmentation and 83.9% of the curve segmentation were rated
adequate or better (≤ 3).

Furthermore, after curve refinement, the ratings given by radiologist 1 increased on
164 (50.9%) images, remained unchanged on 141 (43.8%) images and decreased on 17
(5.3%) images. The same figures for radiologist 2 are 147 (45.7%), 152 (47.2%) and 23
(7.1%) respectively. Therefore by refining the straight lines into curves, almost half of the
image ratings increased by one level or more. These results once again demonstrated that
pectoral muscle segmentation was more accurate after applying iterative cliff detection.

As mentioned previously in Section 4.6, the radiologists assessed the images in two
passes using two different scales. Therefore, “acceptable” in Table II is not necessarily
equivalent to “adequate or better” in Table IV. The difference between the two sets of
results illustrates the uncertainty encountered in human observer studies, especially when
two different rating scales are given.

The 5 × 5 contingency tables of the segmentation ratings are shown in Table 4.5 to
give the readers an insight into the correlation or agreement between both radiologists.
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Table 4.5: Contingency Tables of Radiologists’ Ratings

Straight Line Radiologist 2

Radiologist 1 Exact Optimal Adequate Sub-optimal Inadequate

Exact 30 27 25 1 1

Optimal 2 21 53 29 1

Adequate 1 1 25 19 7

Sub-optimal 0 0 9 7 17

Inadequate 1 1 1 3 40

Curve Radiologist 2

Radiologist 1 Exact Optimal Adequate Sub-optimal Inadequate

Exact 85 34 50 0 0

Optimal 2 18 53 12 0

Adequate 0 2 14 13 3

Sub-optimal 0 0 0 5 5

Inadequate 0 0 0 0 26

Since our 5-point scale is an ordinal measurement, the Spearman rank-order correlation
coefficient [70, pp. 235–244], rs, was used to evaluate the association between the radiol-
ogists’ ratings. For the straight line segmentation ratings, rs is 0.740 and the P-value is
4.54×10−57. For the curve segmentation ratings, rs is 0.748 and the P-value is 6.27×10−59.
Since the P-values are very small in both cases, we conclude that the positive correlation
between the ratings given by both radiologists is statistically significant at the 1% level.

4.7.2 Algorithm Performance

The average processing time for a single mammogram was around 5.9 seconds, in which
0.4 second was spent on straight line estimation and 5.5 seconds on iterative cliff detection.
The computational time for curve refinement is much longer than that for straight line
estimation because the former is an iterative process, in which the whole image has to be
smoothed multiple times with filters of different sizes.

In straight line estimation, ROI shrinking was performed on 40 images, i.e., the straight
line did not pass the first validation in those cases. In the end, a valid straight line could
be found on 34 of those images: so shrinking the ROI is a necessary step when the pectoral
muscle is smaller than normal. The straight line estimation was not successful on the other
6 images, hence there was no curve segmentation for these images as well. In addition,
the curve extension used to enclose the pectoral region was performed on 195 images. The
average length of the extended line was approximately 5.5 mm, which is relatively small
on the mammogram.

Some examples of the final segmentation are shown in Fig. 4.9.
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[1, 3] [1, 3] [1, 1] [1, 1] [1, 1]
(a) mdb031ll (b) mdb233lm (c) mdb057ll (d) mdb123lm (e) mdb110rl

[1, 1] [1, 2] [1, 1] [2, 3] [2, 2]
(f) mdb002rl (g) mdb010rm (h) mdb028rl (i) mdb161lm (j) mdb156rl

[1, 3] [3, 4] [5, 5] [5, 5] [5, 5]
(k) mdb053ls (l) mdb240rl (m) mdb151lx (n) mdb061ls (o) mdb179ls

Figure 4.9: Segmentation results on MLO mammograms from the MIAS database. The scores of
each image rated by two radiologists are shown in [r1, r2]. All images are shown in the same scale.
There was no segmentation for (o).
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4.8 Discussion

The algorithm is adaptive to variations in pectoral muscle size, density and curvature. In
an adequate mammogram, the pectoral muscle should be visible down to the level of the
nipple [34]. In some extreme cases, however, the muscle may appear on the mammogram
as very small or very large. Two examples of tiny and large pectoral muscles are shown in
Fig. 4.9(a) and (b). They were both segmented accurately because multiple ROI’s, from
large to small, were used in the straight line estimation. Also, there is a variation on
the image intensities of different pectoral muscles. We found that the method of iterative
threshold selection can adaptively compute an appropriate threshold level for each image,
provided that the pectoral region occupies roughly 50% of the ROI. Furthermore the
segmentation method was accurate for tracing pectoral boundaries of different curvatures,
whether convex, concave or both.

Sometimes there may be more than one layer of tissue in the pectoral region and more
than one edge may be depicted. In such cases the straight line approximation is more
likely to be placed at the outer edge rather than at the inner edge. The reasons for this
are that (i) the straight line estimation method uses histogram thresholding instead of
edge detection to find the edge; and (ii) the straight line is fitted only to that segment of
the selected pixels which encloses the largest area. Therefore the outer edge is more likely
to be chosen. Fig. 4.9(c)–(e) show pectoral muscles with internal edges of different edge
strengths and they are all delineated at the outer edges.

The results also demonstrate that the segmentation method is robust against artifacts
such as sticky tapes. Fig. 4.9(f) and (g) show that although the top parts of the pectoral
muscles are obscured by tapes of different thickness, both were segmented successfully.
These images show one of the advantages of cliff detection: the refinement of the straight
line is restricted in certain directions, since the search paths are set perpendicularly, and
only intensity decreases in the profiles are searched for. Also, the detected curve in each
iteration is smoothed so that no sharp corners on the curve are allowed. More examples of
different kinds of small edges crossing the pectoral boundary are shown in Fig. 4.9(h)–(j).

In Fig. 4.9(k), a very dense breast is shown and the lower half of the pectoral muscle is
almost completely obscured by other tissues. In this case, the extrapolative power of the
segmentation method is demonstrated. The pectoral boundary was extended following
the direction of the estimated straight line. And the refinement process did not alter the
extended line significantly since there were no other strong intensity changes within the
reach of the search paths.

One disadvantage of the proposed, intensity-based method is its weakness in detecting
texture edges. In some cases the pectoral boundary is not a clear intensity edge but a fuzzy
texture edge. Cliff detection is not a suitable method to detect edges between different
textures. However it can still be used to approximate the pectoral boundary based on the
intensity changes alone. An example is illustrated in Fig. 4.9(l).

Another shortcoming relates to the detection of vertical pectoral edges, which are
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[2, 4] [1, 2] [4, 5] [1, 3] [5, 5] [5, 5]
(a) mdb008rl (b) mdb233lm (c) mdb065lm

Figure 4.10: Comparison of straight line and curve segmentation results on mammograms from
the MIAS database. The scores of each image rated by two radiologists are shown in [r1, r2]. (a) The
straight line (left) is roughly parallel to the pectoral margin but not exactly on it. This is corrected
in curve segmentation (right). (b) The pectoral muscle is poorly segmented by the straight line
(left) but accurately segmented by the curve (right). (c) The axillary fold is mistakenly segmented
by the straight line (left) and hence the curve (right) is also inadequate. Moreover, hypothesis (2)
stated in page 31 is not valid for this image.

excluded by assumption. Because a valid straight line approximation is assumed to inter-
sect the top and left image edges, a vertical line cannot satisfy the validation criterion.
As shown in Fig. 4.9(m) the pectoral edge is almost vertical but it was not segmented
correctly.

A very poor segmentation is shown in Fig. 4.9(n), which is a particularly difficult image
due to the coarse texture in the muscle region. Finally, no segmentation was produced for
Fig. 4.9(o). The pectoral edge of this image is barely visible. The primary reason for no
segmentation is that the pectoral muscle does not exist on the image, or that a large part
of the pectoral margin is obscured by dense tissue.

The radiologists also made the following comments for poorly segmented images. For
some images, the straight lines were placed parallel to the pectoral margins but not exactly
on them. Poor straight line estimation also resulted when the pectoral margins were
very curved. These kinds of inaccuracy, especially in the straight line estimation, were
normally corrected by the iterative refinement in curve segmentation (see Fig. 4.10(a),
(b)). However, in a small number of cases, some straight lines completely missed the
pectoral margins due to the influence of the axillary fold, which appears as a high-intensity
triangular region, similar to the pectoral muscle (see Fig. 4.10(c)). The radiologists also
noted that the axillary fold should not normally be seen on the MLO view and that its
presence is often the result of poor positioning.
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4.9 Suggestions for Further Work

The proposed algorithm could be improved in future by incorporating a texture edge de-
tector together with cliff detection. This is particularly targeted at extracting the texture
edge at the lower portion of the pectoral muscle. Such a texture edge detector should be
sensitive to texture direction since the texture direction of the pectoral margin is usually
perpendicular to that of the overlying glandular tissue. Also texture detection should be
carried out at higher image resolutions than the one used in cliff detection.

In straight line estimation, iterative threshold selection was proposed for separating
the pectoral muscle from other tissue, which is a typical binary-tree splitting problem [71].
We have tried other techniques that use histogram shape analysis and place the threshold
at the valley between two peaks. But due to the extensive intensity overlap of pectoral
and non-pectoral regions, the performance of these techniques are not satisfactory. In
the future work, other thresholding methods, such as binary Gaussian mixture model
and least mean square error optimization, should be investigated and compared with the
performance of iterative threshold selection.

The accuracy of pectoral muscle segmentation may be further improved if we com-
bine iterative cliff detection with other straight line approximation methods. Masek [32]
critically compared the performance of his striaght line approximation method with our
straight line and curve segmentation algorithms presented in [72]. He devised an automatic
voting scheme to compare the segmentation results, image by image, obtained from 322
mammograms from the MIAS database. The results were interesting: (1) our straight line
segmentation algorithm performed better than his straight line segmentation algorithm
on 39.6% of the images; (2) our curve segmentation algorithm performed better than his
straight line segmentation algorithm on 59.8% of the images. These findings have shown
that our curve segmentation was more accurate than his straight line approximation, which
was also more accurate than our straight line approximation. It is therefore worthwhile
to combine his straight line approximation method with our curve refinement algorithm,
so that segmentation accuracy can be further improved.

Most of the other difficulties in segmentation result from a poor positioning of the
patient during image acquisition or to poor image contrast. Thus, one way to overcome
these problems would be to ensure acquisition of good quality images in the first place. We
have suggested elsewhere [65] that automatic quality assurance during image acquisition
is a feasible solution to this problem. When the breast is correctly positioned, a sufficient
amount of pectoral muscle should be seen to the level of the nipple at an angle larger than
20° to the vertical edge [33]. When the image is properly exposed at optimal contrast, the
pectoral muscle should be differentiated from other dense tissue more easily.
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4.10 Conclusions

A new method has been developed for automatic segmentation of the pectoral muscle on
the MLO views of mammograms. The method consists of two major components: straight
line estimation and iterative cliff detection. By approximating the pectoral boundary with
a straight line and refining it iteratively to a curve, it is possible to accurately delineate an
enclosed pectoral region. The method was adaptive to large variations in appearance of
the pectoral muscle and margin. The method remained effective when parts of the pectoral
edge were obscured by superimposed glandular tissue or artifacts. The method was tested
out on the 322 digitized mammograms of the MIAS database and two mammographic
radiologists assessed the segmentation results. Their findings show that segmentation
accuracy was improved after refining the straight line into a curve using iterative cliff
detection and that 83.9% of the curve segmentations were adequate or better.

This concludes the first experimental chapter on mammogram segmentation and analy-
sis. In the next chapter, some algorithms for mammogram adequacy assessment are pre-
sented and they are also tested on all the mammograms from the MIAS database.
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Chapter 5

Adequacy Assessment of

Positioning and Exposure

The adequacy of mammographic image quality may be assessed with the aid of computers.
The term adequacy generally covers many aspects of quality in mammography, but in this
chapter we focus on the automatic evaluation of breast positioning and film exposure.
These two quality aspects were measured on digitized mammograms without the use of
any phantom. The algorithms for this automatic assessment are described in this chapter.
Anatomical features of the mammogram are used in these algorithms to generate the
adequacy measures, as shown in the attribute dependence graph in Fig. 3.2.

5.1 The Need for Automatic Quality Assessment

There are several reasons for wanting to assess mammographic adequacy using comput-
ers. If a mammogram is assessed for adequacy immediately after it has been acquired, a
repeat examination can be conducted, if necessary, before the subject leaves the screening
centre. This would save the patient’s anxiety and worry when told to return for a repeat
examination at a later date, without knowing the cause.

Adequacy assessment is also an important component in the computerized analysis
of mammograms. Low-quality mammograms could greatly influence the performance of
automatic segmentation and the accuracy of cancer detection. Inadequate images should
be identified as early as possible so that they are not subjected to needless further analy-
sis. In addition, automatic quality assessment may be integrated into an ongoing quality
assurance program at the facility, or into a radiographer training scheme.

5.2 Quality Attributes of Mammograms

Achieving high image quality is essential to the radiologist who wants to interpret the
mammogram with high sensitivity and specificity [34]. Although the assessment of mam-
mographic image quality usually requires some subjective considerations, there is a con-
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sensus in the literature [33–35, 37, 38] on the quality attributes that an ideal mammo-
gram should incorporate. A high quality mammogram should exhibit correct positioning,
optimal compression, good contrast, adequate exposure, low noise, high sharpness, and
absence of artefacts [38]. Chief among these attributes is positioning, which crucially
determines the amount of tissue inclusion and correlates with the overall quality of the
mammogram [38].

Images of standardized test object, or phantoms, are routinely acquired and analyzed
as part of the quality assurance program on a film-screen or full-field digital mammog-
raphy system. Phantom images are widely used in the research of automated quality
control of mammographic imaging. Blot et al. [73] used grey-level co-occurrence matrices
to analysis the textural structures of digitized phantom films, for quantitative objective as-
sessment of different imaging systems. Thomas et al. [74] reported an automated method
for measuring contrast-to-noise ratio on phantom images with superior precision. Bijkerk
et al. [75] used the computer to interpret phantom images and to determine the corre-
sponding contrast-detail curves. They found that computer detection was more efficient
than human perception, since the latter is influenced by the image presentation and view-
ing conditions. An automated scoring algorithm was developed by Muller et al. [76] for
contrast-detail phantoms used in digital mammography. Images acquired at different dose
levels or with different detector calibration status could be differentiated by their algo-
rithm.

There are also some papers related to noise detection and removal on mammograms.
An iterative noise detection scheme was described in [77] that locates and discriminates
shot noise from real calcifications on film-screen mammograms. Masek et al. [78] targeted
the removal of high-intensity background noise and rectangular labels, and as a result,
improved the performance of their skin-air interface segmentation.

The approach taken in this chapter is different from the previous work above, in that
it is more relevant to the clinical rather than technical aspects of mammography. Several
algorithms have been developed to automatically evaluate two unexplored areas: adequacy
of mammographic positioning and exposure. Measurable quality criteria related to these
two quality aspects are described in the following sections.

5.3 Optimal Positioning in the MLO View

In mammography, usually two standard views are taken for each breast; they are the
mediolateral oblique (MLO) and craniocaudal (CC) views. However, only MLO view
mammograms are provided in the MIAS database [67]. For this reason, the adequacy
assessment in this research is restricted to MLO view mammograms.

The MLO view is considered by the radiologists the most important view, in which all
of the breast tissue is most likely included on the film [34, 35]. To ensure that the entire
glandular body is imaged with best possible compression, correct positioning of the breast
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Figure 5.1: Optimal positioning in the MLO view. (1) The pectoral muscle is visible at least to
the level of the nipple (dotted line). (2) The angle between the pectoral margin and the posterior
image edge is at least 20◦. (3) The anterior pectoral margin is convex. (4) The inframammary
fold is included on the image. (5) The posterior glandular tissue is separated from the image edge
by retroglandular fat. (6) Upper glandular tissue superimposed over the upper pectoral muscle is
not excluded in the view. (7) The nipple is in profile. (a) The posterior nipple line is drawn along
the nipple axis from the nipple-skin junction to the pectoral muscle or to the back of the image,
whichever comes first [34]. This line is not needed in MLO view assessment.

is an absolute necessity [33]. Exclusion of glandular tissues from the field of view increases
the risk of lesions being missed because they do not appear on the mammograms. In fact,
a recent study on clinical image quality and the risk of interval cancer has shown that
“invasive breast cancer detection by mammography may be improved through attention
to correct positioning” [38].

Optimal positioning can be achieved in the MLO view when a number of quality criteria
are fulfilled. These criteria are described in most detail in [34] and also outlined in other
literature [33,35–38]. They are demonstrated in Fig. 5.1 and summarized below:

1. The pectoral muscle should be visible at least to the level of the nipple. A lesser
amount of the pectoral muscle seen on the image indicates that some posterior
glandular tissue may have been excluded. It is reported in [36] that this criterion
could not be fulfilled by all patients. In exceptional cases, the technologist should
determine whether any posterior and lateral tissue has been omitted.

2. The pectoral muscle should course diagonally along the posterior image edge at an
angle of at least 20◦.1

3. The pectoral margin usually exhibits anterior convexity when the pectoral muscle
was fully mobilized and maintained medially during compression.2

1This criterion has been stated only in [33].
2This criterion has been stated only in [34].
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4. The inframammary fold should be included on the image. This ensures that the
lower posterior tissue has not been excluded.

5. Retroglandular fat should be present between the posterior image edge and the
glandular tissue. This ensures that posterior glandular tissue has not been excluded
at the image edge.

6. Upper glandular tissue superimposed over the upper pectoral muscle, known as the
tail of Spence, should be projected properly into the field of view. This extension
of tissue toward the axilla is only prominent in some women [34]. When the tail is
seen being cutoff at the image edge, it indicates that the pectoral muscle might not
be fully mobilized medially.

7. The nipple should be seen in profile. This has been emphasized for proper positioning
but never at the expense of not imaging posterior breast tissue [34]. The nipple
should preferably be seen in profile in at least one of the standard views.

Quality criteria (1)–(3) are for assessing the positioning of the pectoral muscle; while
(4)–(6) are for preventing the exclusion of glandular tissues at the posterior image edge.
It is worthwhile to note that glandular tissues can also be excluded at the anterior and
inferior image edges, usually when the breast is larger than the film. These exclusions are
even more obvious than the posterior one since part of the skin-air interface is cutoff from
the image (see Fig. 5.3(a)).

All of the criteria mentioned above, together with the anterior and inferior breast
tissue exclusions, were evaluated by the computer in this assessment, except for (5) and
(6) because obtaining an accurate outline of glandular tissues is a non-trivial problem.

The posterior nipple line on the MLO view is shown in Fig. 5.1. It is compared with
the one measured on the CC view when assessing the amount of tissue included on the CC
view. The posterior nipple line on the MLO view should not exceed that on the CC view
by more than 1 cm [34, 37, 38]; otherwise optimal tissue inclusion has not been achieved
on the CC view. This comparative assessment is only for evaluating the adequacy of the
CC view and is not required for the MLO view.

5.4 Adequate Exposure

For an adequately exposed mammogram, the glandular tissues should be well penetrated
so that the observer can see detailed structures through dense parenchyma, and the fatty
areas and skin line can be visualized and evaluated in high-intensity light [34]. Proper
exposure is a prerequisite of good contrast; uniformly high contrast would be required in
every density range [33].

The requirements above are quite subjective. In terms of technical measures, the
optical density of the mammogram is examined. The useful optical density range, also
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Figure 5.2: The mammogram is oriented so that the image is upright and the nipple is faced to
the right. The co-ordinate axes are directed as shown with the origin placed at the top left corner.
The breast border is a discrete function denoted by B(x, y). The normal to the tangent of B(xi, yi)
is directed inwards to the breast. The angle between the normal and the positive x-axis is shown
as θi. The straight line PQ is an approximation to the pectoral margin and its angle to the y-axis
is shown as α. The posterior nipple line RS is perpendicular to PQ. The level of the nipple is
represented by a horizontal line ST .

known as latitude, of every film is limited between 0.6 and 2.2 (or 2.8 to 3.0 in bright
light) [33]. Therefore breast tissue in the density range below 0.6 or above 2.2 is not
visualized optimally to human observers. To ensure that most of the image details relevant
to the diagnosis are captured within the useful density range, the mean optical density
should lie approximately in the middle of the useful density range, i.e., between 1.4 and
1.8 [33]. If the mean value is below 1.4, the mammogram is probably underexposed. On
the other hand, if the mean value is above 1.8, the mammogram is possibly overexposed.
Underexposure results in the risk of masking abnormalities, such as low-opacity lesions
and microcalcifications, in dense parenchyma; while overexposure limits the visualization
of skin line and fatty areas on the mammogram [34].

5.5 Adequacy Assessment Algorithms

5.5.1 Image Orientation and Notation

The image orientation and notation used in the adequacy assessment algorithms are il-
lustrated in Fig. 5.2. For consistency, the image orientation and co-ordinate system are
the same as those used in pectoral muscle segmentation (see Chapter 4). Every image is
oriented so that it is upright and the nipple faces the right. The origin of the co-ordinate
system is at the top left corner of the image, where x is defined to be the horizontal axis
and y to be the vertical one. The breast border, that consists of n pixels, is represented
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by a discrete function B(xi, yi) for i = 0, . . . , n− 1, running from top to bottom. All the
normals to the border are directed inwards to the breast. The angle of each normal, θi,
in the range [180◦,−180◦), is positive when measured anti-clockwise from positive x-axis
and negative when measured clockwise.

Parameters used in the algorithm are given in millimetres; they may be converted to
pixels if divided by the image resolution in mm/pixel.

5.5.2 Exclusion of Breast Tissue

Although the exclusion of breast tissue at the posterior edge of the image cannot be
detected unless an accurate outline of dense glandular tissue is available, the breast tissue
exclusion at the anterior and inferior edges of the image can be identified by examining the
breast border. The breast border was extracted from the image by background modelling
and subtraction [18]. If part of the breast is excluded at the image edge, a segment of
the extracted breast border would not be a smooth curve but in the form of horizontal
or vertical straight lines. These abnormal segments can be identified by examining the
normal directions of all pixels on the breast border, and by locating consecutive normals
that point to the same horizontal or vertical direction. Also these segments should be
found very close to the image edge (see Fig. 5.3).

The algorithm for detecting breast tissue exclusion is given as follows:

1. For every point on the breast border, the tangent at (xi, yi) is estimated by fitting a
straight line (using least squared error) to B(x, y) within a neighbourhood of 10 mm
centred on (xi, yi).

2. The normal to B(xi, yi) is perpendicular to the tangent, pointing inwards to the
breast region.

3. The angle measured from the positive x-axis to the normal is denoted by θi in the
range [180◦,−180◦).

4. Exclusion of breast tissue is detected when there exists a segment on B(x, y) that:

(a) all the normals in that segment are either horizontal or vertical, i.e., θi is either
0◦ or −90◦; and

(b) the segment is at least 10 mm long; and

(c) the segment is within a 5 mm margin of the anterior and inferior image edges.

5.5.3 Nipple in Profile

The algorithm used to locate the nipple and to determine whether it is in profile is de-
scribed in [13]. A brief explanation of the basis of that method is given here. Whether
the nipple is in profile can be determined by examining the change of normal direction
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(a) (b) (c)

Figure 5.3: (a) Breast border extracted from MIAS image mdb019ll. (b) Normals to the breast
border (only every 8th normal is shown). (c) Breast tissue exclusions detected on the breast border
are shown as thicken white lines.

(a) mdb003ll (b) mdb008rl

Figure 5.4: Breast borders and nipple locations (white arrows) are illustrated on both images.
Only every 8th normal is shown. (a) Nipple is in profile, detected by the distinct changes in normal
directions. (b) Nipple is not in profile; changes of normal directions are very small.
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on the breast border. If the nipple is in profile, it is depicted as a small semi-circle on
the breast border; otherwise it is not seen on the breast border. With this distinctive
feature, the nipple is inferred to be in profile by the algorithm when the change of normal
direction near the nipple is higher than usual, i.e., when the maximum change is over an
absolute threshold, defined in [13]. Two mammograms, one with the nipple in profile and
one without, are shown in Fig. 5.4. Note the difference on the border curvature near the
nipples of both images.

5.5.4 Locating the Inframammary Fold

The method used to locate the inframammary fold is also based on examining the normal
direction on the breast border. Generally, when the inframammary fold exists, a distinctive
concave curve (i.e., the centre of curvature lies outside the breast region) is formed on the
border of the lower posterior breast region; otherwise the breast border is only a slightly
convex curve. Therefore the inframammary fold can be located by the following algorithm:

1. Because the inframammary fold is at the lower posterior breast region, only a portion
of the breast border is included for examination (shown as thickened line in Fig. 5.2).
This portion is defined on B(xi, yi) for i = m, . . . , n − 1 where xm is half of the
maximum horizontal distance between the breast border and posterior image edge.
The maximum horizontal distance does not necessarily coincide with the nipple
location.

2. The change of the normal directions is represented by θ′i which is given by:

θ′i =

{
θi − θi−1 if i > 0
θi+1 − θi if i = 0

(5.1)

3. All concave segments on B(x, y) which have θ′ greater than zero are labelled.

4. The inframammary fold is detected when there exists one or more labelled segments
which are at least 10 mm long.

5. The location of the inframammary fold is determined at the midpoint of the labelled
segment that is maximum in length.

Some examples of inframammary folds that were detected by the algorithm are shown
in Fig. 5.5.

5.5.5 Positioning of the Pectoral Muscle

To determine whether the pectoral muscle is visible to the level of nipple or below, two
straight lines are drawn on the image. The first straight line approximating the pectoral
margin is given by the automatic segmentation algorithm described in Chapter 4. It is
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(a) mdb003ll (b) mdb051ll (c) mdb065lm

Figure 5.5: The inframammary fold detected on each of these three images is located at the
centre of the white circle. The concave segments that are at least 10 mm long were labelled in
grey colour. (a) Three concave segments were detected but only the bottom one was included for
examination. (b) The inframammary fold was detected correctly although the turning point is
very shape. (c) The inframammary fold was detected correctly although the border is not smooth.

mdb075lm mdb206rl mdb021ll

(a) adequate (b) just adequate (c) poorly positioned

Figure 5.6: Straight line approximation of pectoral muscle, level of the nipple and posterior nipple
line are shown as PQ, ST and RS respectively on the images. (a) The pectoral muscle is visible
to the level of nipple. α = 13.8◦. (b) The pectoral muscle extends below the level of nipple by
22.8 mm. α = 20.7◦. (c) The pectoral muscle is not adequately depicted; its inferior extent is
37.2 mm above the level of nipple. α = 31.3◦.
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denoted as PQ in Fig. 5.2. The second straight line representing the level of nipple is
drawn horizontally from the nipple to the posterior image edge, denoted as ST . If the
pectoral muscle is adequately imaged, it will be visible to the level of the nipple or below,
and point Q should be at the same level or below point T .

The angle between the pectoral margin and the posterior image edge is denoted by
α in Fig. 5.2. This angle is measured anti-clockwise from PQ to the vertical edge. For
adequate positioning, the angle should be 20◦ or greater [33].

The posterior nipple line for the MLO view is defined in [34] as “the distance from the
nipple-skin junction to the pectoral muscle or to the back of the image, whichever comes
first.” This line should be drawn along the nipple axis, but can be approximated by a
straight line, shown as RS in Fig 5.2, which is drawn perpendicularly from the nipple to
PQ. If PQ and RS intersect outside of the image domain, the posterior nipple line is only
measured from the nipple to the posterior image edge.

Examples of adequately and poorly positioned pectoral muscles are shown in Fig. 5.6.

5.5.6 Curvature of the Pectoral Margin

When the pectoral muscle is fully mobilized and maintained medially during breast com-
pression, the anterior margin of the pectoral muscle usually exhibits a convex curve [34]
(i.e., the centre of curvature lies inside the pectoral region). The curvature of the pectoral
margin is measured by examining the normal directions of all the pixels on the pectoral
curve. The method to delineate the pectoral margin as a curve is described in Chapter 4.

The algorithm designed to distinguish between convexity and concavity of the pectoral
margin includes the following steps (see Fig. 5.7):

1. For every point on the pectoral curve, C(y), the tangent at yi is estimated by fitting
a straight line (using least squared error) to C(y) within a neighbourhood of 40 mm
centred on yi.

2. The normal to each point on C(y), directed inwards to the pectoral region, is com-
puted by finding the line perpendicular to the corresponding tangent.

3. The angle of each normal is denoted by φi in the range [180◦,−180◦). It is positive
when measured anti-clockwise from the positive x-axis and negative when measured
clockwise.

4. The change of the normal direction at yi is represented by φ′i which is given by:

φ′i =

{
φi − φi−1 if i > 0
φi+1 − φi if i = 0

(5.2)

5. If φ′i is negative or zero, the pectoral curve is determined convex at yi; otherwise it
is concave.
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(a) (b) (c) (d)

Figure 5.7: (a) The mammogram orientation, co-ordinate system and angle measurement is the
same as Fig. 5.2. The pectoral margin is represented by a discrete function C(y). The normal to
the tangent of C(yi) is directed inwards to the pectoral region. The angle between the normal and
the positive x-axis is shown as φi, which is negative when below the horizontal line. (b) Pectoral
margin of MIAS image mdb026rl. (c) Normals to the pectoral margin (only every 8th normal is
shown). (d) Convexity (white) and concavity (black) of the pectoral margin; 66% of the curve was
determined convex.

6. The segmented pectoral margin usually exhibits a mixture of convexity and concav-
ity. Therefore its overall curvature can be represented by the percentage of convex
sections in the curve C(y).

5.5.7 Optical Density Measures

Optical density is the amount of blackening produced on the film. It is determined by
measuring the ratio of incident to transmitted light intensity, when the film is trans-
illuminated, and expressing the value as a logarithm:

Optical density = log(intensity of incident light/intensity of transmitted light) (5.3)

When a film-screen mammogram is scanned by a digitizer, optical densities of the film
are converted to grey-scale pixel values of a certain bit-depth. The relationship between
the optical density and pixel value is represented by the response curve of the digitizer. If
the response curve is linear, i.e., pixel values are related linearly to optical densities, its
inverse could be expressed in the form:

Optical density = dmax −
dmax p

pmax
(5.4)
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Figure 5.8: Inverse of the response curve of the digitizer used to produce images in MIAS database.
It is used to convert pixel values back to optical density.

where dmax is the maximum of the optical density range, p is the pixel value and pmax is
the maximum pixel value.

For example, the images in MIAS database were scanned with a Joyce-Loebl micro-
densitometer SCANDIG-3, which has a linear response in the optical density range [0, 3.2]
and 8-bit grey levels [67]. By substituting 3.2 to dmax and 255 to pmax into Equation 5.4,
we have:

Optical density = 3.2− 3.2 p

255
(5.5)

This equation is plotted in Fig. 5.8. It shows that the higher (brighter) the pixel value,
the lower the optical density.

Using the inverse of the response curve, the optical density of the original film can
be obtained from the pixel values of the image, and hence the density range of the mam-
mogram can be determined. As a result, two optical density measures were used in the
algorithm to assess the adequacy of film exposure: (i) mean optical density of breast tis-
sue; and (ii) percentage of breast tissue lying within the useful optical density range. The
algorithm includes the following steps:

1. Only the non-pectoral breast tissue is included in the assessment, so all the pixels
lying outside the breast border and those lying inside the pectoral curve are excluded.

2. The optical density of each pixel within the breast region is calculated using (5.4).

3. The mean of the optical densities is then calculated. From the guideline given in [33],
the mean optical density should lie between 1.4 and 1.8, i.e., in the middle of the
useful optical density range. If the mean is outside of this range, the film is probably
underexposed or overexposed.
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4. The percentage of breast tissue lying within the useful optical density range is com-
puted. The useful optical density range defined in [33] is between 0.6 and 2.2. Within
that range, density differences can be visualized with good contrast so that different
types of breast tissue are distinguishable to human observers. Therefore the higher
the percentage, the more adequate the film exposure.

Three mammograms and their optical density histograms are shown in Fig. 5.9. For
all 3 cases, around 70% of the breast tissue is in the useful density range. However,
mammogram (a) was well exposed with mean optical density at 1.54, (b) was overexposed
with mean optical density at 2.08, and (c) was underexposed with mean optical density
at 1.16.

mdb014rl mdb027ll mdb029ll

(a) well exposed (b) overexposed (c) underexposed

Figure 5.9: Optical density histograms for only the non-pectoral breast region of the mammo-
grams. The mean optical density, marked by a grey vertical line on each histogram, should lie in
the range [1.4, 1.8]. The useful optical density range [0.6, 2.2] is represented by the white band
between the shaded regions. (a) Adequate exposure; mean optical density 1.54; 73% of breast
tissue in [0.6, 2.2]. (b) Overexposure; mean optical density 2.08; 69% of breast tissue in [0.6, 2.2].
(c) Underexposure; mean optical density 1.16; 74% of breast tissue in [0.6, 2.2].
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5.6 Experimental Results

The adequacy assessment algorithms was tested on all 322 images in the MIAS database.
The setting was the same as in the previous chapter. The original 50 µm/pixel images
were reduced in resolution to 400 µm/pixel by averaging 8× 8 pixels to one. The original
8-bit grey levels [0–255] was retained.

The author reviewed all the images3 to identify some of the anatomic features, in-
cluding the breast tissue exclusion, nipple in profile and inframammary fold. The author’s
observation was then compared with the results generated by the corresponding algorithms
to determine their accuracy or success rates.

Breast tissue exclusion was detected on 66 images at the anterior and/or inferior edges,
but with 7 false positives. Also the algorithm missed 5 cases with exclusion undetected.
Therefore the success rate was 310/322 (96.3%).

The nipples were detected in profile by the algorithm on 93 of the images. After
human assessment, 86 of the 93 cases were confirmed to be correct, so there were 7 false
positives. The algorithm however left 25 true cases undetected. The success rate was
therefore 290/322 (90.1%).

The inframammary folds located by the computer were indicated on the images by a
white circle of radius 20 pixels (as shown in Fig. 5.5). The algorithm found the presence of
inframammary folds on 121 of the 322 images. However in 12 of those 121 cases, the actual
inframammary folds either were too far from the detected locations (outside of the circle)
or did not exist at all. Also the algorithm failed to detect the inframammary folds on the
breast borders of 25 images. In total, 285/322 (88.5%) cases were considered acceptable
by the author.

Six images without the pectoral muscle segmentation results (see Chapter 4) were
excluded from the measurements related to the pectoral margin. The distances from
inferior extent of the pectoral margin to the level of the nipple were measured by the
presented algorithm on the remaining 316 images. Only 6 of the them fulfilled the criterion
that the pectoral muscle has to be visible to at least the level of the nipple. Therefore
majority of the images were classified inadequate in this aspect. Even with the more
relaxed criterion that the pectoral muscle should be depicted within 10 mm of the level of
nipple or below, only 21 images passed it. On average, the inferior extent of the pectoral
margin was 59 mm above the level of the nipple.

The angles of the pectoral margin were also measured on the 316 images as well. The
angles were greater than 20◦ in 216 cases, which met the positioning criterion. On average,
the angle was 22.6◦ to the vertical edge.

The lengths of the posterior nipple lines, measured perpendicularly from the nipple to
the pectoral muscle or to the posterior image edge, were computed on all 316 images. The

3Due to difficulties in securing expert radiologists to assess the results, the author reviewed all the
images independently of the results of the algorithms. Attempts were made to avoid bias by viewing the
original mammograms without looking at the experimental results. Although this was not ideal, it was
preferable to leaving the results unevaluated.
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Table 5.1: Number of MIAS Images Fulfilling the Quality Criteria

Quality Criteria Number/Total Percentage

(a) No breast tissue excluded 256/322 79.5%

(b) Nipple in profile 93/322 28.9%

(c) Inframammary fold included 121/322 37.6%

(d) Pectoral margin to level of nipple 6/316 1.9%

(e) Angle of pectoral margin ≥ 20◦ 216/316 68.4%

(f) Convexity of pectoral margin ≥ 50% 207/316 65.5%

(g) Mean optical density in [1.4, 1.8] 193/322 59.9%

(h) Breast tissue in useful density range ≥ 60% 281/322 87.3%

All criteria satisfied 1/322 0.3%

Positioning criteria satisfied (including (a)–(f) except (d)) 15/322 4.7%

Exposure criteria satisfied (including (g) and (h)) 172/322 53.4%

average length for all the images was 104 mm. Unfortunately, there are no CC views in
the MIAS database, so the posterior nipple lines of the MLO views could not be compared
with those of the CC views.

The algorithm that measures the pectoral margin curvature was applied to the seg-
mented pectoral curves of the 316 images. The percentage of convexity of each pectoral
margin was calculated accordingly. On average, this convexity percentage was 57.8% for
all the images. If we require at least half of the pectoral margin to be convex, i.e., 50%
convexity, then 207/316 (65.5%) images would fulfill this requirement.

The adequacy of the film exposure of all 322 mammograms was determined by the
mean optical density and the percentage of tissue visualized in the useful optical density
range. After evaluating all the images by the computer, the mean optical densities were
found in the range [1.4, 1.8] for 193 (59.9%) cases. On average, 69.8% of the breast tissue
was visualized in the useful optical density range [0.6, 2.2] across all images.

The individual criteria used in the adequacy assessment of the MIAS images are sum-
marized in Table 5.1. They are labelled from (a) to (h). Some of the criteria were satisfied
by majority of the images; while others were fulfilled by relatively few images. Only one
image in the database was found satisfying all the criteria, due to the fact that the pec-
toral muscle was rarely seen to the level of the nipple ((d) in Table 5.1). This outstanding
mammogram is shown in Fig. 5.10. The cut-off points used in two criteria, (f) and (h), are
not specified in the clinical references, but were rather subjectively set for this assessment.
When only the positioning criteria were included in the assessment, i.e., (a) to (f) except
(d), they could be fulfilled by 15 images. This is still relatively small for the whole set of
images. On the other hand, when only the exposure criteria (g) and (h) were evaluated,
172 images were found with adequate exposure.
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Figure 5.10: MIAS image mdb075lm. The only image that satisfied all quality criteria: no breast
tissue exclusion; nipple in profile; inframammary fold included; pectoral margin extended below
the level of nipple by 22.8 mm at an angle of 20.7◦ with 64% convexity; mean optical density at
1.74; and 82% of tissue in useful density range.

5.7 Discussion

The algorithm for breast tissue exclusion was found reliable when assessed visually as
described in Section 5.6. Provided the breast border was accurately segmented, most of
the exclusion could be detected. The detected exclusion also serves as an important cue
to the accuracy of other extracted features. If the breast is excluded at the anterior image
edge, it is possible that the nipple is excluded too. This could be the cause of failure in
the automatic nipple detection. Likewise, if the breast tissue exclusion is at the inferior
image edge, it is possible that the inframammary fold is also excluded from the image.
Any inframammary fold located by the computer would then be a false positive. However,
there is a chance that the nipple or inframammary fold is still included on the image when
breast tissue exclusion is detected (see Fig. 5.11 for some examples).

The method described in [13] was also found reliable to determine whether the nipple is
in profile. Its accuracy was affected by poor segmentation of the breast border. Sometimes
the nipple was actually in profile but was incorrectly classified as not in profile, because
the absolute threshold of θ′ was set too high in the algorithm.

High success rate was achieved in the inframammary fold detection. Again the method
was sometimes affected by poor segmentation of the breast border, since the basis is
solely on the examination of normal directions. The inframammary folds could appear in
different shapes: some are rounded and some are very sharp, as shown in Fig. 5.5. Most
of them could be detected by the algorithm with few exceptions. The fold could not be
detected when it was a very sharp and adjacent to a vertical straight line, on which θ′

was zero (no curvature). In those cases, the concave segment was shorter than 10 mm
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(a) mdb152rx (b) mdb006rl (c) mdb019ll

Figure 5.11: (a) Nipple is excluded at the anterior image edge and incorrectly located by the com-
puter. (b) Inframammary fold is excluded at the inferior image edge. (c) Nipple and inframammary
fold are both correctly located even though some breast tissue is excluded.

and left undetected. This could be overcome by reducing the required length for concave
segments, but it may produce more false positives on poorly extracted breast borders.
This is typical of the tradeoffs that need to be made to render algorithm robust.

The position of the pectoral muscle on the MLO view may be measured precisely by
the proposed method. The amount of pectoral muscle included in the view, the angle of
the pectoral margin and the posterior nipple line may be obtained by simply drawing three
straight lines on the image.

However these measurements are subject to the accuracy of the pectoral muscle seg-
mentation and the nipple location. The method used to measure the curvature of the
pectoral margin is similar to that used on the breast border. Since the pectoral curvature
is usually less obvious compared to the breast border, a larger neighbourhood is needed
to estimate the tangents. Provided the pectoral curve was accurately segmented, the cur-
vature measurement was found to be very accurate. The convexity and concavity could
be labelled on the curve, as shown in Fig. 5.7(d), so that we know exactly which part of
the curve is convex.

The scatter plot in Fig. 5.12 shows the relationship between the two optical density
measures used in the algorithm. Mammograms with their mean optical density between
1.4 and 1.8 are more likely to include higher percentage of breast tissue in the useful optical
density range. The maximum point of the trend line also lies within [1.4, 1.8]. However,
the low r2 value (r is correlation coefficient) of 0.11 indicates that the correlation is not
strong, since the mean optical density is not the only factor that determines the amount
of tissue visualized in the useful density range.

In fact, a high percentage of tissue in the useful density range does not necessarily
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Figure 5.12: The scatter plot of the mean optical density versus the percentage of tissue visualized
in the useful optical density range for all images in the MIAS database. The trend line is shown as
a polynomial with degree 2; r2 = 0.11 (r is correlation coefficient). In 193 cases, the mean optical
density lies between 1.4 and 1.8 indicating adequate exposure.

ensure adequate exposure. As shown in Fig 5.9, although all three images have around
70% of breast tissue in the useful density range, only one of them with adequate mean
optical density was properly exposed. Therefore both optical density measures have to be
assessed when determining the adequacy of exposure.

Inadequate exposure does not only limit the visualization of breast tissues, it also af-
fects the performance of the segmentation of the digitized mammograms. In Fig. 5.13,
the mammogram was poorly segmented by the computer. The breast border is inaccu-
rate; the nipple location is not on the spot and is actually in profile; the axillary fold is
outlined instead of the pectoral margin, which is barely visible; the inframammary fold is
circled but it does not really exist on the image. Any result produced by the positioning
assessment are consequently not valid. The cause of poor segmentation is mainly due to
the overexposure and incorrect positioning of the mammogram, in which the skin line is
not properly visualized, and too little pectoral muscle can be seen. The measured mean
optical density is too high at 2.10 and only 53% of breast tissue is in the useful density
range.

5.8 Suggestions for Further Work

5.8.1 Improvements to Algorithms

Two criteria related to the posterior glandular tissue ((5) and (6) in Section 5.3) were not
assessed in this work because an outline of glandular tissue was not available, due to the
difficulties of segmenting dense tissue accurately in the breast region. There are several
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(a) (b)

Figure 5.13: Result of MIAS image mdb066rm. (a) Overexposed and poorly segmented mammo-
gram. Breast border, nipple location, inframammary fold and pectoral margin are all inaccurate.
The level of nipple and posterior nipple line are consequently incorrect. (b) After histogram equal-
ization, the skin-air interface is better visualized, showing that the nipple is in profile and the
inframammary fold is actually excluded from the image.

methods in the literature for the segmentation of dense tissue [8,15,17]. In these methods,
the pectoral muscle is usually excluded first before the dense tissue is segmented. However,
the glandular tissue may sometimes appear superimposed on the pectoral muscle, i.e., the
tail of Spence. This is a significant feature in adequacy assessment and should not be
excluded. Because its density is only slightly different from that of the pectoral muscle, it
is difficult to segment the tail of Spence accurately.

For the optical density measures, all the pixels on the image were converted to optical
densities. Rather than doing that, it is equivalent if we convert the upper and lower limits
of the useful optical density range to pixel values and use these limits to evaluate the
image pixels. Only two optical density conversions are required in the latter case, hence
computational time can be reduced. Similarly, if the conversion is linear, the mean optical
density is equivalent to that converted from the mean pixel value.

5.8.2 Extension to Other Quality Attributes

Besides the adequacy of positioning and exposure, certainly more quality attributes men-
tioned in Section 5.2 should be included in the assessment. Not all quality attributes can
be measured using the computer, since some of them depend on subjective considerations.
For example, the measurements of contrast-detail curve and signal-to-noise ratio require
the use of phantoms. However, some quantitative attributes, such as contrast, compres-
sion, sharpness and artefacts, are likely to be measured on individual mammograms using
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the computer. These attributes are not considered in this chapter but should be included
in future work.

High contrast should be achieved in every density range so that tissues of different types
can be well differentiated. However, the contrast should not be too high otherwise the
latitude will be too narrow [33]. Without phantom images, simple contrast measures such
as the relative density difference between object and background is not really applicable
to the mammogram since it is formed by the superposition of all types of tissues. One
possible method to evaluate mammographic contrast may consists of two steps: (i) segment
the image into several regions according to tissue density, such as uncompressed-fat, fat,
dense and muscle, by mixture modelling [15] or other means; (ii) calculate the contrast in
each region and determine whether uniformly high contrast is maintained in every density
range.

The breast is adequately compressed when the glandular tissue is well spread out;
simply knowing the thickness of the compressed breast is not enough. One of the possible
methods to evaluate compression is by measuring the coherence of the ductal structure of
glandular body. However, segmenting glandular tissues on the mammogram is already a
demanding task; extracting its ductal structure is likely to prove even more difficult.

Quality of image sharpness is affected by motion blurring, geometric blurring and
screen-film blurring [33]. Motion blurring may be detected by examining the sharpness of
microcalcifications on the mammogram, although it is quite difficult to measure when the
microcalcifications present in areas of dense tissue. Geometric blurring and screen-film
blurring should be measured on phantom images. The former relates to the size of focal
spot and focus-film distance; the latter depends on the resolution of the intensifying screen.
The clarity of details can be expressed by the modulation transfer function (MTF).

Small artefacts can be mistaken by the observer as microcalcifications. One of the
methods that detects tiny artefacts such as dust or hair is presented in [77]. Large artefacts
could cover some of the breast tissue and prevent accurate diagnosis. Two algorithms for
the removal of large, high-intensity artefacts are described in [78]. Further investigation
could be carried out on the detection of other types of artefacts, such as fingerprints,
powder, or defects of the screen.

If the CC view is available, its adequacy should be examined also. Most of the quality
criteria can be applied to both MLO and CC views except for positioning. The criteria for
optimal positioning on the CC view are clearly described in [34]. The posterior nipple line
of the CC view should be compared with that of the MLO view as stated in Section 5.3.
The posterior nipple line on the CC view should not be shorter than that on the MLO
view by more than 1 cm.

5.8.3 Assessment of Other Mammogram Databases

Although only the images from the MIAS database were used for the results in this chapter,
the principles of automatic adequacy assessment are applicable to digitized mammograms
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in general. Because more recent image databases of mammograms were not available
during this research, its scope extended only to the MIAS database. It is suggested that
further work should be carried out on the adequacy assessment of mammograms from
newer databases, which may contain a larger percentage of acceptable mammograms.

5.9 Conclusions

In this chapter, the adequacy of mammographic positioning and exposure was examined
for the 322 images in the MIAS database. The purpose of this assessment is not only to
investigate the quality of MIAS images, but also to demonstrate a proof-of-concept that
mammographic image quality can be assessed by computer. The assessment algorithms
developed were found to be reliable and robust, but they are more or less affected by
the accuracy of the segmented anatomic features, i.e., breast border, nipple location and
pectoral margin. In the assessment, only 4.7% of the images were found adequate in
positioning and 53.4% exhibited proper exposure (Table 5.1). The results also showed
that breast tissue exclusion, overexposure and poor positioning could be a source of errors
for the automatic segmentation algorithms. Automatic assessment of the quality of CC
view mammograms should be included in the future.

This concludes our description on mammogram adequacy assessment. In the next
chapter, a novel technique is presented for highlighting mass lesions on mammograms.
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Chapter 6

Contrast Enhancement of Mass

Lesions

6.1 Introduction

After the mammogram has been segmented and assessed to be adequate in breast posi-
tioning and exposure, some diagnostic algorithms may be performed for the detection of
abnormalities, such as mass lesions, in the breast region of the image. This chapter focuses
on the contrast enhancement of mammographic masses, which is a necessary step for mass
detection, segmentation and classification [51]. It is also one of the four steps that are
performed in the mass lesion detection process, described in Section 3.3 and illustrated in
Fig. 3.2.

Masses are often difficult to identify when they are obscured by dense breast tissue,
or when the image quality is very poor. In these cases, the contrast between the object
of interest and the background may be insufficient for high sensitivity mass detection. To
improve the contrast of the image, some enhancement techniques specifically designed for
mammograms are required.

A new contrast enhancement technique is presented in this chapter. This technique is a
modification of the amplitude and phase (AMPM) demodulation transform developed by
Daugman and Downing [4,79]. Based on their work, we modified the AMPM demodulation
transform specifically for the purpose of highlighting mass lesions on mammograms. In
addition, two existing contrast enhancement techniques, morphological enhancement and
histogram equalization, are also described in this chapter. Our new contrast enhancement
technique was compared with the existing ones by applying them to all mammographic
masses from the MIAS database. The results were evaluated using three quantitative
measures that were proposed by Bovis and Singh [5].

First of all, the original AMPM demodulation transform is described in the next sec-
tion.

75



CHAPTER 6. CONTRAST ENHANCEMENT OF MASS LESIONS

6.2 Amplitude and Phase Demodulation

The amplitude and phase demodulation transform was introduced by Daugman and Down-
ing [4,79], who suggested that any 2D pattern can be represented by a single carrier wave
and a complex phasor that specifies over the space domain its amplitude modulation and
phase modulation (AMPM). Therefore, an image of any pattern can be decomposed into
three components:

1. carrier wave,

2. phasor’s AM component, and

3. phasor’s PM component.

These three components can also be used to completely reconstruct the original image
through the AMPM modulation process. The algorithm of the demodulation transform [4]
is described below.

6.2.1 Algorithm of AMPM Demodulation Transform

An arbitrary real-valued image, I(x, y), can be represented as

I(x, y) = S(x, y) + s0 (6.1)

where s0 is the mean value of I(x, y), and S(x, y) is a 2D pattern with zero mean value.

S(x, y) is taken as the original pattern for demodulation. It is first expressed by the
2D Fourier series expansion using paired conjugate spatial frequencies

S(x, y) =
N∑

k=−N

αk exp [j(µkx + νky)] (6.2)

In the expansion, there are 2N paired conjugate 2D frequency components (µk, νk) =
(−µ−k,−ν−k) and their associated complex coefficients αk = ak + jbk with α0 = 0. More-
over, because S(x, y) is real rather than complex, the coefficients αk are conjugate sym-
metric, i.e., αk = α∗

−k. The polar form of αk is ‖αk‖ exp(jθk) where ‖αk‖ =
√

a2
k + b2

k and
θk = tan−1(bk/ak).

Since the Fourier spectrum is conjugate symmetric, the Fourier half-plane may be
defined in any orientation such that all values of the index k sharing the same sign (+/−)
are in the same half-plane. Over the half-plane of all positive frequency components, the
spectral centre of mass (µc, νc) is determined by:

µc =

N∑
k=1

‖αk‖µk

N∑
k=1

‖αk‖
(6.3)
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and

νc =

N∑
k=1

‖αk‖νk

N∑
k=1

‖αk‖
(6.4)

The predictive carrier wave, C(x, y), is then selected at the centre-of-mass frequency
(µc, νc):

C(x, y) = exp [j(µcx + νcy)] (6.5)

For simplicity, only a single centre-of-mass frequency is chosen here for the single carrier
demodulation. However, more than one such gravitational centre can be chosen in multi-
carrier demodulation, as explained later in Section 6.3.

The complex modulation phasor, Z(x, y), is generated by demodulating the original
signal S(x, y) by the carrier C(x, y). Thus all the positive frequency components in the
half-plane are shifted to have their centre of mass (µc, νc) at the origin.

Z(x, y) =
N∑

k=1

αk exp [j(∆µkx + ∆νky)] (6.6)

where ∆µk = µk − µc and ∆νk = νk − νc. It is worthwhile to note that

Z(x, y)C(x, y) =

{
N∑

k=1

αk exp [j(∆µkx + ∆νky)]

}
exp [j(µcx + νcy)]

=
N∑

k=1

αk exp [j(µkx + νky)] (6.7)

which is half of the series (6.2), and for the other half

Z∗(x, y)C∗(x, y) =

{
N∑

k=1

α∗
k exp [−j(∆µkx + ∆νky)]

}
exp [−j(µcx + νcy)]

=
N∑

k=1

α∗
k exp [−j(µkx + νky)]

=
−1∑

k=−N

αk exp [j(µkx + νky)] (6.8)

The original pattern S(x, y) can then be reconstructed without loss using (6.7) and
(6.8) so

S(x, y) = Z(x, y)C(x, y) + Z∗(x, y)C∗(x, y) (6.9)

Alternatively, taking only the real part

S(x, y) = 2 <[Z(x, y)C(x, y)] (6.10)
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Note that the mean value s0 must be added back to S(x, y) to obtain the initial image
I(x, y), in accordance with (6.1).

Furthermore, the complex modulation phasor (6.6) can be expressed in complex polar
form to obtain as a product of amplitude modulation (AM) and phase modulation (PM)
components, A(x, y) and φ(x, y) respectively:

Z(x, y) = A(x, y) exp[jφ(x, y)] (6.11)

where

A(x, y) =

{[
N∑

k=1

‖αk‖ cos(∆µkx + ∆νky + θk)

]2

+

[
N∑

k=1

‖αk‖ sin(∆µkx + ∆νky + θk)

]2}1/2

(6.12)

and

φ(x, y) = tan−1


N∑

k=1

‖αk‖ sin(∆µkx + ∆νky + θk)

N∑
k=1

‖αk‖ cos(∆µkx + ∆νky + θk)

 (6.13)

The AM component A(x, y) may also be expressed just in terms of all the vector difference
frequencies among all the components of S(x, y) in the half-plane:

A(x, y) =

{
N∑

m=1

N∑
n=1

‖αm‖‖αn‖ cos[(µm − µn)x + (νm − νn)y + (θm − θn)]

}1/2

(6.14)

This equation reveals the important property that the phasor’s AM component depends
only on the original pattern S(x, y) and is independent of the carrier frequency (µc, νc).
Therefore the image demodulation process always produces the same filter-independent
AM component that is particularly useful later in our approach to image enhancement
(Section 6.4).

6.2.2 Results with Texture Images

The AMPM demodulation transform was applied to a synthetic texture composed by three
frequency components and the results are shown in Fig. 6.1. The figure illustrates the de-
rived components, C(x, y), A(x, y) and φ(x, y), together with the complete reconstruction
of the image. The Fourier spectrum is very well-concentrated and therefore the phasor’s
PM component (Fig. 6.1(e)) contains a pattern with much less complexity. The AMPM
demodulation transform was also tested on natural texture as shown in Fig. 6.2. For this
texture, the Fourier spectrum is less concentrated and hence the resulting PM component
is almost as complex as the original image. These two examples reveal that the complexity
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(a) (b) (c) (g)

(d) (e) (f) (h)

Figure 6.1: (a) Original synthetic three-component texture. (b) 2D Fourier spectrum of texture.
(c) Derived carrier wave. (d) Phasor’s AM component. (e) Phasor’s PM component. (f) AMPM
complete reconstruction. (g) Enlarged view of the origin of the Fourier spectrum (b) showing the
spectral concentration. (h) A plot of the three frequency components on the Fourier plane; it is
drawn to the same scale as (g). The bright dots in (g) correspond to the positions of frequency
components in (h).

(a) (b) (c) (g)

(d) (e) (f)

Figure 6.2: (a) Brodatz natural texture image illustrated in [80, p. D24]. (b) 2D Fourier spectrum
of texture. (c) Derived carrier wave. (d) Phasor’s AM component. (e) Phasor’s PM component.
(f) AMPM complete reconstruction. (g) Enlarged view of the origin of the Fourier spectrum (b)
showing very little spectral concentration. The black spots in this image represent frequencies with
very low magnitudes.
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of the phasor’s PM component φ(x, y) depends on the spectral concentration of pattern
and the chosen carrier wave. The underlying image texture is predicted by the carrier
wave much better if the Fourier spectrum of the image is well concentrated [4]. In other
words, if the predictive power of the carrier is large, the structure of the PM component
will be much simpler than the original pattern [4].

6.2.3 Selection of Half-Plane and Carrier Wave

The demodulation transform algorithm presented by Daugman and Downing does not
specify the orientation of the Fourier half-plane on the spectrum [4]. Due to conjugate
symmetry of the paired coefficients, the half-plane can be set in any orientation as long
as all values of the index k sharing the same sign (+/−) are in the same half-plane. The
carrier wave is selected as the centre-of-mass frequency in the positive half-plane using
(6.3) and (6.4).

The centre-of-mass frequency should lie inside a spectral cluster in the Fourier spec-
trum, so that the textural pattern is effectively demodulated. This is usually the case
when the boundary of the half-plane does not partition the spectral clusters, and there is
only one spectrally concentrated cluster in the positive half-plane. An example is shown
in Fig. 6.3(a). However, in a special case, the centre-of-mass frequency does lie outside
of the spectral clusters, when the boundary of the half-plane cut across the spectral clus-
ters, and two smaller clusters are depicted in the positive half-plane. This is illustrated in
Fig. 6.3(b). So the choice of half-plane orientation affects the computation of the centre-of-
mass frequency, and hence different orientations of half-planes may yield different carrier
waves.

(a) (b)

Figure 6.3: (a) The centre-of-mass frequency (cross) lies inside the spectral cluster (dots) in the
positive Fourier half-plane (k > 0). (b) The centre-of-mass frequency lies outside of the spectral
clusters in the positive Fourier half-plane.

In previous work [81], we have addressed this observation and introduced a method to
select the half-plane. The idea is to set the boundary of the half-plane perpendicular to
the dominant direction of the Fourier spectrum, which is also orthogonal to the dominant
direction of the image texture [69, p. 603]. The selected carrier frequency is therefore
closest to the concentrated portion of the spectrum and hence is expected to have more
predictive power.
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(a) (b) (c) (g)

(d) (e) (f)

Figure 6.4: (a) Original pattern of incoherent texture fields, scanned from [4]. (b) 2D Fourier
spectrum of texture. (c) Carrier wave was forced to be vertical. (d) Phasor’s AM component.
(e) Phasor’s PM component. Its complexity is lowest in the texture region with vertical cor-
relation (T-shaped); its complexity is highest in the texture region with horizontal correlation
(bottom right). (f) AMPM complete reconstruction. (g) Enlarged view of the origin of the Fourier
spectrum (b) showing spectral concentration in all directions.

Nevertheless, with this half-plane selection method, the texture of mammographic mass
images are still not simplified to a satisfactory level using the single-carrier demodulation.
This is due to the fact that the predictive power of the carrier wave is insufficient, and
the complexity of the decomposed components is not substantially reduced. Because the
texture of mammographic masses is far from being spectrally concentrated, very little
information of interest could be obtained from texture demodulation with a single carrier
wave. We have therefore taken a different approach that is independent of the half-plane
orientation, for the purpose of image enhancement. This is described in Section 6.4.

6.3 AMPM Demodulation with Multiple Carriers

The AMPM demodulation transform presented in [4] was restricted to the aspects of single
carrier although the possibility of multi-carrier demodulation was left to future investiga-
tion. Nevertheless, Daugman and Downing have addressed the limitation of single-carrier
demodulation using both synthetic texture and natural scenes in [4]. They have shown
that if the original pattern consists of incoherent texture fields defined in different primary
orientations of correlation, then a single carrier can only be chosen in one of the textural
directions and consequently only a portion of the PM component is simplified while other
portions remain complex (see Fig. 6.4). However, such a pattern may be demodulated
using multiple carriers, each corresponding to one textural direction, so that the resulting
PM component is completely simplified. Daugman and Downing have suggested the par-
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(a) (b) (c)

Figure 6.5: (a) Partitioning of the Fourier spectrum for the original pattern shown in Fig. 6.4.
The k labelling in each sector corresponds to the Fourier series given in (6.15). (b)–(c) Other
possible ways to partition the Fourier spectrum for other textural patterns.

titioning of either the image domain or the Fourier domain, or both, into distinct regions
that use different demodulation carriers [4]. The author therefore took this further step
into the investigation of multi-carrier demodulation by partitioning the Fourier spectrum,
as described below.

6.3.1 Algorithm of Multi-carrier AMPM Demodulation

In multi-carrier demodulation, the Fourier spectrum is divided into several regions. One
carrier wave is selected in each region. These regions may have any shape but they must
be symmetric on both sides of the half-planes. It is not necessary to have the regions
in equal size, but for the pattern shown in Fig. 6.4(a), we divide the Fourier half-plane
into four distinct sectors, which correspond to the four primary orientations of texture
correlations, as shown in Fig. 6.5(a).

The Fourier series of the original pattern (6.2) is therefore expanded into eight sum-
mations:

S(x, y) =
N∑

k=−N

αk exp[j(µkx + νky)]

=
N/4∑
k=1

αk exp[j(µkx + νky)] +
−1∑

k=−N/4

αk exp[j(µkx + νky)] +

2N/4∑
k=N/4+1

αk exp[j(µkx + νky)] +
−N/4−1∑
k=−2N/4

αk exp[j(µkx + νky)] +

3N/4∑
k=2N/4+1

αk exp[j(µkx + νky)] +
−2N/4−1∑
k=−3N/4

αk exp[j(µkx + νky)] +

N∑
k=3N/4+1

αk exp[j(µkx + νky)] +
−3N/4−1∑

k=−N

αk exp[j(µkx + νky)] (6.15)
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with α0 = 0.

The centre-of-mass frequency, (µc1, νc1), of the first sector for 1 6 k 6 N/4 is defined
as

µc1 =

N/4∑
k=1

‖αk‖µk

N/4∑
k=1

‖αk‖
; νc1 =

N/4∑
k=1

‖αk‖νk

N/4∑
k=1

‖αk‖
(6.16)

The predictive carrier wave, C1(x, y), of the first sector for 1 6 k 6 N/4 is specified at
(µc1, νc1) so

C1(x, y) = exp[j(µc1x + νc1y)] (6.17)

The AMPM modulation phasor, Z1(x, y), of the first sector for 1 6 k 6 N/4 is
computed as

Z1(x, y) =
N/4∑
k=1

αk exp[j(∆µkx + ∆νky)] (6.18)

where ∆µk = µk − µc1 and ∆νk = νk − νc1. Similarly, the carriers waves and phasors for
the other three sectors can be derived as in (6.16), (6.17) and (6.18).

As a result, the positive Fourier half-plane can be expressed as

N∑
k=1

αk exp[j(µkx + νky)] =
4∑

q=1

Zq(x, y)Cq(x, y) (6.19)

where q corresponds to the four sectors. Also, the negative Fourier half-plane can be
expressed as

−1∑
k=−N

αk exp[j(µkx + νky)] =
4∑

q=1

Z∗
q (x, y)C∗

q (x, y) (6.20)

The original pattern can be completely reconstructed using (6.19) and (6.20):

S(x, y) =
4∑

q=1

Zq(x, y)Cq(x, y) + Z∗
q (x, y)C∗

q (x, y) (6.21)

Alternatively

S(x, y) = 2 <

 4∑
q=1

Zq(x, y)Cq(x, y)

 (6.22)

It is worthwhile to realize that the phasor of the whole pattern given in (6.6) is the
sum of the phasors of the four sectors:

Z(x, y) =
N∑

k=1

αk exp[j(∆µkx + ∆νky)]
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=
4∑

q=1

Zq(x, y) (6.23)

therefore A(x, y) and φ(x, y) can be computed using (6.12) and (6.13) respectively.

The original pattern shown previously in Fig. 6.4 was demodulated by the four carriers
chosen in the four spectral sectors, and the results are shown in Fig. 6.6. Note that the
PM component is now simplified for texture fields of all orientations.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

Figure 6.6: (a) Original pattern of incoherent texture fields illustrated in [4]. (b) 2D Fourier spec-
trum of texture. (c)–(f) Carrier waves chosen in the four sectors of Fourier half-plane. (g) Phasor’s
AM component. (h) Phasor’s PM component. Its complexity is reduced for all texture fields.
(i) AMPM complete reconstruction.

6.4 Modification for Contrast Enhancement of Mass Lesions

Although the single- or multi-carrier demodulation transform is able to decompose syn-
thetic texture images into simplified AM and PM components, we have found that for
spectrally less concentrated texture, such as natural or medical images, the complexity of
the derived components still remains high. When the Fourier spectrum is very broad, no
carrier waves can be chosen to have high predictive power. Even if the carrier is placed
at the spectral centre of mass of the half-plane or one of the partitions, the resulting
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PM component will contain little information of interest, achieving no economy through
decomposition.

Therefore, rather than seeking simplification of image texture, we modified the AMPM
demodulation algorithm [4] for the purpose of contrast enhancement of mass lesions on
mammograms. The modified demodulation method was designed to enhance the contrast
of ROI images of mass lesions, and it should be applied to the ROI image only, not to the
whole mammogram.

The single-carrier demodulation algorithm, described previously in Section 6.2.1, was
modified in four steps:

1. carrier wave of zero frequency;

2. phase-only and amplitude-only reconstructions;

3. subtraction of partially reconstructed component images; and

4. contrast stretching.

These modifications are explained in the next four sections and illustrated throughout
in Fig. 6.7. Image (a) in the figure is the ROI of a mass lesion; images (b)–(f) were
produced by the single-carrier demodulation transform with zero carrier frequency; and
images (g)–(j) were derived by the modified algorithm for contrast enhancement.

6.4.1 Carrier Wave of Zero Frequency

As stated previously with the expression (6.14), the AM component A(x, y) depends only
on the original pattern S(x, y) and is independent of the carrier frequency (µc, νc). Thus
one can obtain the same AM component even with zero carrier frequency, i.e.,

C(x, y) = exp[j(0x + 0y)]

= 1 (6.24)

Therefore (6.10) becomes
S(x, y) = 2 <[Z(x, y)] (6.25)

The phasor is simply projected into its AM and PM components using (6.11) without
being demodulated. Although the AM and PM components are not simplified, they were
found very useful in image enhancement (discussed later in Section 6.4.3).

6.4.2 Partial Reconstruction

The motivation for this step is the observation that a phase-only reconstruction of the
discrete Fourier transform of an image results in an edge detected image of the original [82].
The intention here was to explore the range of images that resulted from amplitude-only
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 6.7: Contrast enhancement using texture demodulation. (a) Original ROI showing the
circumscribed mass and texture of MIAS image mdb028rl. (b) 2D Fourier spectrum of texture.
(c) Carrier wave of zero frequency. (d) Phasor’s AM component. (e) Phasor’s PM component.
(f) AMPM complete reconstruction. (g) Amplitude-only reconstruction. (h) Phase-only recon-
struction. (i) Result of image subtraction. (j) Result of contrast stretching.

and phase-only reconstruction and to determine if diagnostically useful information about
the mammograms could be extracted from them.

When only the AM or PM component of the phasor is modulated with the carrier
wave, the pattern is not completely but partially reconstructed. By omitting the AM or
PM component in the reconstruction, the demodulation transform becomes non-invertible,
and hence new components are derived.

As shown in (6.10) and (6.11), the original pattern S(x, y) is completely reconstructed
by the carrier C(x, y) and the phasor Z(x, y) = A(x, y) exp[jφ(x, y)]. The pattern can
also be partially reconstructed using either the AM component or PM component of the
phasor. For amplitude-only reconstruction, all values of φ(x, y) are set to zero so that
Z(x, y) = A(x, y) and therefore

RAM(x, y) = 2 <[A(x, y)C(x, y)] (6.26)

where RAM is the partially reconstructed pattern with AM component only.

On the other hand, for phase-only reconstruction, all values of A(x, y) are set to one
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so that Z(x, y) = exp[jφ(x, y)] and hence

RPM(x, y) = 2 <{exp[jφ(x, y)]C(x, y)} (6.27)

where RPM is the partially reconstructed pattern with PM component only.

In both (6.26) and (6.27), C(x, y) is 1 if zero carrier frequency is used, so

RAM(x, y) = 2 <[A(x, y)] (6.28)

and
RPM(x, y) = 2 <{exp[jφ(x, y)]} (6.29)

6.4.3 Image Subtraction

The AM component of the phasor is specified in the space domain by and can be converted
into a grey-scale image by linear transformation, i.e., the values of the AM component
A(x, y) in the range [Amin, Amax] are mapped to [0, Imax] where Imax is the maximum grey
level. Similarly, the phase-only reconstructed component RPM(x, y) defined by can be
converted into a grey-scale image by linearly mapping [RPM,min , RPM,max] to [0, Imax].

The image representations of A(x, y) and RPM(x, y) are shown in Fig. 6.7(d) and (h).
In the AM component, the circumscribed mass is almost completely suppressed and the
surrounding glandular tissue appears in dark colour. In the phase-only reconstructed
image, the mass is very well highlighted with the background darkened, hence the image
contrast is much higher than the original. These two meaningful images are therefore
combined using image subtraction to produce the mass enhanced image with a pure black
background.

In image subtraction, the digital negative of the AM component image is subtracted
from the phase-only reconstructed image, i.e.,

H(x, y) = max{0, R̂PM(x, y)− [Imax − Â(x, y)]} (6.30)

where H(x, y) is the subtracted image; R̂PM(x, y) and Â(x, y) are the image representations
of RPM(x, y) and A(x, y) respectively. The image of H(x, y) is shown in Fig. 6.7(i). We
can see that the surrounding glandular tissue is removed, the shape of the circumscribed
mass is revealed, and the background is in pure black colour. The idea of this step is based
on intuition, and the motivation for using image subtraction is to remove some of the low
intensity texture around the object, so that it is highlighted in the image.

6.4.4 Contrast Stretching

Although the background texture is removed and the mass is highlighted, the contrast
of the subtracted image H(x, y) may still be poor. This is because the intensity range
of H(x, y) obtained after image subtraction does not necessarily span the full range of
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grey levels [0, Imax]. To further enhance the contrast, contrast stretching [54, p. 235] (or
intensity scaling) is carried out in the final step. Contrast stretching is simply a linear
transformation that scale the image intensities to a desired range. If the desired range is
[0, Imax], then the following equation can be used:

Ĥ(x, y) =
[H(x, y)−Hmin]Imax

Hmax −Hmin
(6.31)

where Hmin and Hmax are the minimum and maximum values of H(x, y) respectively.
The background of Hmax is already black, so Hmin is usually zero. But sometimes there

are tiny bright spots in H(x, y) that could lead to unsatisfactory scaling. To avoid the
effect of outlying, high intensity pixels, a slight modification is introduced here. Rather
than setting Hmax at the maximum value of H(x, y), the 99th percentile of the histogram
is used instead, i.e.,

Ĥ(x, y) =


[H(x, y)−Hmin]Imax

H99% −Hmin
if H(x, y) 6 H99%

Imax if H(x, y) > H99%

(6.32)

where H99% is the maximum grey level in the 99th percentile of the histogram. As a result,
1% of the histogram, that most likely contains the bright spots in the image, is omitted
from the computation of contrast stretching, and hence the enhancement process is more
robust.

6.5 Existing Techniques of Contrast Enhancement

Two other existing techniques for contrast enhancement in digital mammography were
implemented and compared with our modified texture demodulation method. The first
technique is morphological enhancement which was developed by Li et al. [53], and the
second one is the commonly-used histogram equalization [48].

6.5.1 Morphological Enhancement

The morphological enhancement technique described in [53] was designed to remove back-
ground texture from the mammogram and enhance the mass pattern by background cor-
rection. The algorithm was implemented by dual morphological top-hat operations and
image subtraction [53]. It is applied to the entire image pixel by pixel with the same
operations.

The morphological filters used in the algorithm [53] are represented as the combination
of two basic operations: erosion and dilation.1 Let f be a binary or grey-scale image. The

1The symbols 	 and ⊕ were used to denote erosion and dilation in [53], but they are actually the
symbols of Minkowski subtraction and Minkowski addition, respectively, as stated in [83, p. 76]. Minkowski
subtraction and addition are equivalent to erosion and dilation, respectively, if and only if the structuring
element is symmetric with respect to its origin.
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erosion of f by a structuring element B is denoted by εB(f) and is defined as the minimum
of the translations of f by the vectors −b of B [83, pp. 65–66]:

εB(f) =
∧
b∈B

f−b (6.33)

Therefore, the eroded value at a given pixel x is the minimum value of the image in the
window defined by the structuring element when its origin is at x [83, p. 66]:

[εB(f)](x) = min
b∈B

f(x + b) (6.34)

The dilation of an image f by a structuring element B is denoted by δB(f) and is
defined as the maximum of the translations of f by the vectors −b of B [83, p. 68]:

δB(f) =
∨
b∈B

f−b (6.35)

Hence, the dilated value at a given pixel x is the maximum value of the image in the
window defined by the structuring element when its origin is at x [83, pp. 68–69]:

[δB(f)](x) = max
b∈B

f(x + b) (6.36)

Morphological opening and closing are defined in terms of erosion and dilation. The
opening of an image f by a structuring element B is denoted by γB(f) and is defined
as the erosion of f by B followed by the dilation with the reflected structuring element
B̌ = {−b | b ∈ B} [83, pp. 105–106]:

γB(f) = δB̌[εB(f)] (6.37)

The closing of an image f by a structuring element B is denoted by φB(f) and is
defined as the dilation of f by B followed by the erosion with the reflected structuring
element B̌ [83, p. 108]:

φB(f) = εB̌[δB(f)] (6.38)

After defining the filters, the morphological white top-hat, WTH, can be performed on
an image f by subtracting the opening of f from its original [83, p. 121]:

WTHB(f) = f − γB(f) (6.39)

This operation is useful to extract the objects of sizes smaller than the structuring element
from the original image. The dual top-hat operations developed for mammograms [53]
consists of two WTH using two different disc shaped structuring elements that are flat
and symmetric [83, pp. 64–65].

The first top-hat operation is used to extract the background texture and noise from
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the grey-scale image f of a mammogram [53]:

r1 = WTHB1(f) (6.40)

where r1 is the residue image containing the background texture; B1 is a structuring
element chosen to be smaller than the size of masses.

The second top-hat operation is used to enhance the mass pattern by background
correction [53]:

r2 = WTHB2(f) (6.41)

where r2 is the mass patter enhanced image; B2 is a structuring element chosen to be
larger than the size of masses. The actual sizes of B1 and B2 are specified later in this
section.

Finally, the enhanced image f1 can be derived as [53]:

f1 = max{0, [r2 − r1]} (6.42)

The resulting image should have the mass pattern enhanced, and the background
texture and noise inside the mass pattern removed. This enhanced image is post-processed
by applying morphological opening and closing with a disk of five pixels in diameter so
that other texture noise is eliminated [53]. An extra post-processing step was added by
the author: the ROI of the highlighted mass is selected from the whole image and this
ROI image is further enhanced by contrast stretching described in Section 6.4.4.

The sizes of mammographic masses were measured in [53] to derive the appropriate
sizes for the structuring elements. When the image resolution is at 400 µm, a disk with
a diameter of 7 pixels was chosen to be the structuring element B1, because the smallest
mass in the MIAS database also has 7 pixels in its diameter. On the other hand, a disk
with a diameter of 75 pixels was chosen to be the structuring element B2, because the
largest mass is of size 75 pixels in diameter also. These parameters were also used in our
experiment later in this chapter.

The morphological enhancement technique described above was applied to the same
mammographic mass used in Fig. 6.7. The results are shown in Fig. 6.8.

6.5.2 Histogram Equalization

Histogram equalization is a simple and commonly-used method for improving the contrast
of an image. It was found to be useful in visualizing lesions on mammograms and increasing
the sensitivity of subsequent analysis [48]. The basis of this method involves probability
theory, where the image histogram is treated as a probability density function [54, pp.
241–242]. The goal is to transform the image so that the cumulative intensity histogram
is linearized. The grey-level transformation function is derived from the cumulative his-
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(a) (b) (c)

Figure 6.8: Contrast enhancement using morphological operation [53]. (a) Original ROI showing
the circumscribed mass of MIAS image mdb028rl. (b) The morphologically enhanced image.
(c) The result of contrast stretching.

togram, c(i), which is defined as

c(i) =

{
h(i) if i = 0
c(i− 1) + h(i) if i = 1, ..., L− 1

(6.43)

where h is the histogram of L grey levels.

Then the grey-level transformation function, T (i), is derived as

T (i) =
c(i) · (L− 1)

c(L− 1)
(6.44)

Histogram equalization is performed by applying the transformation T (i) to every pixel
in the original image.

For our experiment on mammograms, the histogram equalization should not be applied
to the whole image but only to the breast region. In other words, the non-breast background
pixels were excluded from the formation of the grey-level transformation, so the enhanced
image is not affected by the image background.

Histogram equalization was applied to the same mass image as previous examples and
the result is shown in Fig. 6.9.

6.6 Quantitative Measures of Contrast Enhancement

The performance of the contrast enhancement techniques presented in previous sections
should be evaluated by some quantitative measures. The three measuring methods devel-
oped by Bovis and Singh in [5] were used for this purpose. Their quantitative measures
were designed to evaluate the contrast improvement of a target region against its sur-
rounding background. In our case, the target regions are the highlighted masses on the
mammograms. The computation of these quantitative measures are explained in the fol-
lowing sections.
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(a) (b) (c)

Figure 6.9: Contrast enhancement using histogram equalization. (a) Histogram equalization
applied only to the breast region of MIAS image mdb028rl. (b) ROI of the original mass. (c) ROI
of the enhanced mass.

6.6.1 Distribution Separation Measure (DSM)

The first measure proposed in [5] is distribution separation measure (DSM). To evaluate
the performance of an enhancement technique, the separation of the grey-level distribution
between the target and background regions before and after enhancement is measured. The
original image is denoted as O. The target and background regions, T and B, are treated
as two grey-level distributions in the histogram. The means of T and B are represented
by µO

T and µO
B respectively; and the standard deviations of T and B are represented by

σO
T and σO

B respectively. Likewise, for the enhanced image, E, the means and standard
deviations of T and B are denoted as µE

T , µE
B, σE

T and σE
B . Then the best decision boundary

for separating the two distributions in the original image is given by [5]

D1 =
µO

BσO
T + µO

T σO
B

σO
B + σO

T

; σO
B + σO

T 6= 0 (6.45)

Similarly, the best decision boundary for separating the two distributions in the enhanced
image is given by

D2 =
µE

BσE
T + µE

T σE
B

σE
B + σE

T

; σE
B + σE

T 6= 0 (6.46)

Finally the distribution separation measure (DSM) is calculated as

DSM = (|D2 − µE
B|+ |D2 − µE

T |)− (|D1 − µO
B|+ |D1 − µO

T |) (6.47)
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If the image contrast has been enhanced, the DSM should be positive. The larger the value
of DSM, the greater the separation between the distributions and therefore the better the
image contrast enhancement. On the other hand, a negative DSM value indicates that
the contrast of the enhanced image is worse than the original image.

6.6.2 Target to Background Contrast Ratio Using Standard Deviation

(TBCs)

The second measure proposed in [5] is target to background contrast ratio using standard
deviation (TBCs). (The term variance rather than standard deviation was actually used
in [5], but the latter is more suitable to name this measure.) After contrast enhancement,
the difference between intensity means of the target and background regions is expected to
be greater, because µE

T is increased and µE
B is decreased. Therefore the ratio µE

T /µE
B should

be greater than µO
T /µO

B. Furthermore, if the spread of the grey levels in the enhanced target
region is reduced after enhancement, then the standard deviation σE

T should be greater
than σO

T . Thus the target to background contrast ratio using standard deviation (TBCs)
can be computed as

TBCs =
(µE

T /µE
B)− (µO

T /µO
B)

σE
T /σO

T

(6.48)

where µE
B, µO

B, σE
T and σO

T are all non-zero.

Like the DSM, if the image contrast has been enhanced, the TBCs should be positive.
The larger the value of the TBCs, the greater the difference between the means (or the
standard deviations), and therefore the better the contrast enhancement. On the other
hand, a negative TBCs value indicates that the contrast of the enhanced image is worse
than the original image.

6.6.3 Target to Background Contrast Ratio Using Entropy (TBCe)

The third measure proposed in [5] is target to background contrast ratio using entropy
(TBCe). The basis of this measure is similar to TBCs, except that image entropy is used
here. The entropy of all the pixels in a region is computed as [54, p. 42]

ε = −
L−1∑
i=0

f(i) log2[f(i)] (6.49)

where L is the number of grey levels in the histogram of that particular region, and
f ∈ [0, 1] is the normalized frequency or probability of the occurrence of each grey level,
i.e.,

f(i) =
h(i)

L−1∑
i=0

h(i)
(6.50)

where h is the histogram of the region.
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In this contrast enhancement measure, the entropy of the target region is expected to
be reduced after image enhancement. Thus the target to background contrast ratio using
entropy (TBCe) is computed as

TBCe =
(µE

T /µE
B)− (µO

T /µO
B)

εE
T /εO

T

(6.51)

where εO
T and εE

T are the entropy of the target regions of the original and enhanced images
respectively; and µE

B, µO
B, εE

T and εO
T are all non-zero.

Like the DSM and TBCs, if the image contrast has been enhanced, the TBCe should
be positive. The larger the value of TBCe, the greater the difference between the means
(or the entropies), and therefore the better the contrast enhancement. On the other hand,
a negative TBCe value indicates that the contrast of the enhanced image is worse than
the original image.

6.6.4 Combining the Quantitative Measures

After obtaining the three quantitative measures described above, they can be combined
to produce the final score for contrast enhancement. First, each measure is normalized
by linear scaling within the range [0, 1], i.e., the minimum measured value is mapped to
0 and the maximum measured value is mapped to 1. Then the final score is computed by
taking the average of all three normalized measures. Consequently, the final score that
represents the overall performance of contrast enhancement is also in the range [0, 1]. This
combining method was derived by the author, and it is not described in [5].

6.7 Experimental Setup

The modified texture demodulation algorithm that we have developed, and the two ex-
isting techniques, morphological enhancement and histogram equalization, were used to
enhance all the masses from the MIAS database, on a total of 41 images with 22 circum-
scribed masses and 19 spiculated masses. The original 50 µm/pixel images were reduced
in resolution to 400 µm/pixel by averaging 8 × 8 pixels to one. The original 8-bit grey
levels [0–255] was retained. The results of the three enhancement techniques were then
evaluated by the three quantitative contrast measures.

For the quantitative contrast measures, target and background regions have to be
defined on each enhanced image. However the exact boundaries of the masses are not
provided with the MIAS database. The location and size of each mass is instead repre-
sented by a circular region which was drawn by radiologist. As a result, the target region
T is approximated by such circular region, and its background B is defined as a larger
concentric circle. Additionally, the areas of T and B should be the same. Thus, if the
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(a) (b)

Figure 6.10: (a) Target and background regions, T and B respectively, defined in the ROI of a
mass that is fully included on the mammogram. The areas of T and B are equal. (b) Target and
background regions defined in the ROI of partially included mass.

radius of T is r and the radius of B is λr, then

Area(T ) = Area(B)

πr2 = π(λr)2 − πr2

1 = λ2 − 1

λ =
√

2

Therefore, the radius of B is
√

2r, as shown in Fig. 6.10.

The ROI of each mass was extracted from the whole image as a square of side length
2
√

2r pixels, centred on the target and background regions. Sometimes the mass was
partially missing at the image edge and so was the pre-defined circular region. In this case
the ROI was selected as a rectangular region adjacent to the image edge (see Fig. 6.10). The
three quantitative contrast measures were then performed on the target and background
regions inside the ROI.

6.8 Results

The results of the three quantitative contrast measures for all 41 images are shown in
Fig. 6.11. The three measures for each image are graphically represented by three bars of
different colours. For all three measures, the higher the value the better the performance.
A negative value indicates that the contrast of the enhanced image is worse than that
of the original image. In all three measures, the performance of texture demodulation
was either comparable or better than that of morphological enhancement and histogram
equalization. For DSM, texture demodulation and morphological operation were found
to have around the same score for some images, and they both generally outperform
histogram equalization. For TBCs and TBCe, the values for texture demodulation were
predominantly greater than the other two, clearly demonstrating its excellent performance
in contrast enhancement.

As mentioned before, the contrast measures were normalized from 0 to 1 and the aver-
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Figure 6.11: The three contrast enhancement techniques, texture demodulation, morphological
operation and histogram equalization, are compared using three quantitative measures.
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Figure 6.12: The average of the three normalized contrast measures (DSM, TBCs and TBCe),
taken as the final score for the enhancement performance.

ages of the normalized measures were taken as the final scores for performance evaluation.
The final scores of all the tested images are shown in Fig. 6.12. The higher the score the
better the performance of the enhancement technique. The mean of the final scores for
texture demodulation is 0.31, for morphological enhancement is 0.25, and for histogram
equalization is 0.16.

One-tailed z-test was applied to the final scores to determine their differences sta-
tistically. The value of z was 2.20 and the P-value was 1.40 × 10−2, when comparing
texture demodulation and morphological enhancement. The same figures were 5.54 and
1.51× 10−8, respectively, when comparing texture demodulation and histogram equaliza-
tion. We therefore conclude that the final scores of texture demodulation are statistically
higher than those of the other two methods, to the significant level of 2%.

The number of highest scores achieved by each enhancement technique is listed in
Table 6.1. A highest score is defined here as the largest measured value (in DSM, TBCs,
TBCe or final score) among the three contrast enhancement techniques for a particular
image. Texture demodulation achieved the highest scores for 16/41 images in DSM, 30 in
TBCs and 31 in TBCe. Texture demodulation was also found to have the highest final
scores on 27/41 images, while morphological enhancement achieved 13 and histogram
equalization only achieved 1.

The Pearson correlation coefficients between the three contrast measures as well as the
final scores are shown in Table 6.2. We found that DSM is not strongly correlated with
TBCs and TBCe. This is expected since the formulation of DSM is so different from the
other two—DSM is a distance measure but TBCs and TBCe are two ratios. Also they
focus on different aspects of contrast enhancement. On the other hand, TBCs and TBCe
were found highly correlated at 0.93, due to the fact that the only difference between these
two measures is the use of standard deviation in one formula and entropy in the other.
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Table 6.1: The Number of Highest Scores Achieved by the Enhancement Techniques

Measures Demodulation Morphological Hist. Equalization

DSM 16 24 1

TBCs 30 9 2

TBCe 31 8 2

Final Score 27 13 1

Table 6.2: Pearson Correlation Coefficients between DSM, TBCs, TBCe and the Final Score

DSM TBCs TBCe Final Score

DSM 1.00 0.33 0.28 0.72

TBCs 0.33 1.00 0.93 0.88

TBCe 0.28 0.93 1.00 0.86

Final Score 0.72 0.88 0.86 1.00

Furthermore, because TBCs and TBCe represent 2/3 of the final score, the correlation
between each of these two measures and the final score is higher than that between DSM
and the final score.

In addition, the processing time for the three enhancement techniques was collected.
The average processing time for texture demodulation was 1.31 seconds per ROI. The
actual processing time for each mammogram depends on the size of the ROI; the larger
the mass the longer the time. The average processing time for morphological enhancement
was much more at 475.40 seconds per image, because the top-hat operations were repeated
on every pixel of the whole image. The actual processing time for each mammogram
depends on the sizes of the structuring elements and the image dimensions. The average
processing time for histogram equalization was the least at 0.36 second per image, since its
computational complexity is far less than the other two methods. The actual processing
time for each mammogram is quite consistent; it depends on the size of the breast region.

Finally, some enhanced images of the masses together with their final scores are shown
in Fig. 6.13 for visual comparison.

6.9 Discussion

The modified demodulation algorithm was found to have very good sensitivity for high-
lighting circumscribed or spiculated masses on mammograms. With an accurate ROI pro-
vided, the contrast of the targeted mass and its background could be greatly enhanced,
showing a clear outline of the mass.

One feature of our proposed method is that the background of the enhanced image
is reduced to zero intensity, by image subtraction, with the surrounding glandular tissue
suppressed. Its effect is even greater than the background correction used in morphological
enhancement. The pure black background significantly improved the visualization of the

98



6.9. DISCUSSION

Original Texture
Demodulation

Morphological
Operation

Histogram
Equalization

(a) mdb010rm, C 0.51 0.33 0.16

(b) mdb015lm, C 0.60 0.29 0.21

(c) mdb021ll, C 0.23 0.37 0.16

(d) mdb025ll, C 0.58 0.28 0.12

(e) mdb132rx, C 0.43 0.23 0.17

(f) mdb178rs, S 0.26 0.28 0.17

Figure 6.13: Some enhanced masses from the MIAS images. All images are on the same scale
except for (h). The letter C stands for circumscribed, and S for spiculated. The number showing
below each enhanced image is the final score, i.e., the average of the three normalized contrast
measure.
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Original Texture
Demodulation

Morphological
Operation

Histogram
Equalization

(g) mdb179ls, S 0.15 0.10 0.14

(h) mdb184rl, S 0.85 0.23 0.17

(i) mdb191ls, S 0.33 0.27 0.17

(j) mdb198rm, S 0.23 0.21 0.18

(k) mdb270rm, C 0.18 0.13 0.13

(l) mdb290rs, C 0.32 0.34 0.15

Figure 6.13: (Continued).
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mass (see Fig. 6.13), and this is surely a very useful feature in mass segmentation. Masses
superimposed by dense tissue are also highlighted as a solid pattern with most of the
surrounding tissue removed, e.g. Fig. 6.13(g) and (j).

The enhancement effect of texture demodulation was maximized on images when the
background intensity surrounding the mass was consistent. As shown in Fig. 6.13(c), only
sub-optimal enhancement could be achieved on the mass that was near the breast edge,
where the lower part of the background on the original image was darker. For the same
reason, the demodulation method also failed to highlight masses that were superimposed
by the pectoral muscle or that were partially missing at the image edge (see Fig. 6.13(k)
and (l)). In these cases of uneven background intensity, morphological enhancement was
found to give better results.

We have noticed that for a few images the quantitative contrast measures were negative,
indicating a decrease in image contrast. However these negative measures were mostly
caused by the inaccuracy of target and background regions defined in the ROI, and they
did not necessarily reflect the change in actual image contrast. As explained in the previous
section, the target region is only a circle enclosing the mass but not the exact boundary of
the mass. Therefore some image background may have been included in the target region.
Furthermore, some of the circles given in the MIAS database are clearly either not centred
on the mass, or are larger than the visually apparent size of the mass, e.g. Fig. 6.13(g)
and (k). These inaccurate target regions also affected the measurement of image contrast.

The only input parameters in the texture demodulation algorithm are the location
and size of the mass. The ROI of the mass has to be extracted first, before the demod-
ulation process is applied. This is very different from the morphological enhancement
and histogram equalization which are applied to the whole image or breast region before
extraction of the ROI. Unlike morphological enhancement, that was designed for lesion
site selection [53], texture demodulation is not suitable for mass detection where the mass
location is unknown. Instead, texture demodulation could be used to enhance suspicious
masses that are already found by radiologist or computer, so that further processing such
as mass segmentation and classification can be carried out more efficiently.

When comparing texture demodulation with morphological enhancement, we can see
several advantages of our method. Despite the mathematical complexity of the demodula-
tion algorithm, the processing time was reduced significantly when fast Fourier transform
(FFT) was used to compute the frequency components. Also, the enhanced images pro-
duced by texture demodulation are not as blurred as those produced by morphological
enhancement. Texture demodulation gives a clearer outline of the mass with some of
the spicules around the mass retained, and may be useful in mass classification later on.
Furthermore, the background texture surrounding the mass is more thoroughly removed
using texture demodulation, so that at standard deviation and entropy of the background
is usually very small. This is reflected by the high contrast measures, TBCs and TBCe,
of our method shown in Fig. 6.11.
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6.10 Suggestions for Further Work

Although the experimental results have shown that the modified demodulation algorithm
was successful in highlighting masses with high sensitivity, it did not appear to have good
specificity. When it was applied to the ROIs of normal breast tissue where no mass lesions
exist, the glandular tissue was itself highlighted rather than suppressed. As a result, some
irregular and curly shapes were formed on the enhanced images of normal tissue. This
effect was more significant for dense breast tissue (see Fig. 6.14).

mdb009ll mdb008rl mdb004rl

(a) fatty (b) fatty-glandular (c) dense

Figure 6.14: Original ROIs of normal tissue (above) and enhanced images by texture demodu-
lation (below). The size of each ROI is 128 × 128. The densities of breast tissue are (a) fatty,
(b) fatty-glandular, and (c) dense.

However, the appearance of these highlighted normal tissue fractions are so different
from the appearance of masses that it is not difficult to visually distinguish them from
the enhanced images. The pattern of highlighted mass lesions is usually solid and circular
in shape; whereas the pattern of enhanced normal tissue is likely to be incoherence and
non-circular in shape.

In computer-aided diagnosis, texture demodulation may be used to highlight part of the
breast tissue that contains a suspicious mass for the radiologist to make the final decision.
We suggest that a shape analysis operator may be developed to distinguish circular and
non-circular shapes and hence to improve the specificity of automatic mass detection.
Furthermore, the highlighting of normal breast tissue may prove useful for modelling and
subtracting out portions of the breast tissue for dense breasts, thus enhancing visualization.

The texture demodulation algorithm has been tested on both circumscribed and spic-
ulated masses. We observed that some of the fine structures, like spicules, around the
masses were removed on the contrast enhanced images. Due to the removal of these fine
structures, the proposed method may not be suitable for mass classification. Further de-
velopment is therefore required to preserve the spicules of masses on the enhanced images.
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Due to the small number of sample images, only quantative measures [5] were used to
evaluate the results in this chapter. For future work, the contrast enhancment methods
described in this chapter should be further evaluated using receiver operating characteristic
(ROC) analysis [50, 51]. By comparing the radiologists’ performance in detecting masses
on various contrast enhanced images, the usefulness of the texture demodulation algorithm
could be determined.

6.11 Conclusions

In this chapter we have summarized the AMPM demodulation transform introduced by
Daugman and Downing, and we have extended it to multi-carrier demodulation by parti-
tioning the Fourier spectrum. Both the single- or multi-carrier demodulations were used
to simplify the texture of some synthetic images, but they failed to simplify the texture
of natural images, due to the fact that the Fourier spectrum of this kind of image is far
from being well concentrated; the predictive power of the carrier is also accordingly low.
AMPM demodulation with single or multiple carriers is therefore not very useful in the
texture analysis of mammograms, which are also spectrally less concentrated.

However, we discovered that the AM component of such demodulation could be use-
ful for image enhancement and hence we modified the existing demodulation transform.
The modifications include: (1) zero-frequency carrier wave; (2) partial reconstruction;
(3) image subtraction; and (4) contrast stretching. The modified algorithm was found to
highlight mammographic masses with good contrast enhancement.

Two other contrast enhancement techniques, morphological operations [53] and his-
togram equalization, were implemented and compared with the new texture demodula-
tion method. They were tested on 41 circumscribed and spiculated masses taken from the
MIAS mammograms. The results were then evaluated using three quantitative measures
suggested in [5], and these measures were combined to derive the final scores of contrast
enhancement. The mean of the final scores for texture demodulation was 0.31, for mor-
phological enhancement was 0.25, and for histogram equalization was 0.16. On average,
the performance of texture demodulation was better than that of the other two techniques.

The texture demodulation method could be used to highlight masses on mammograms
with good sensitivity. A significant feature is the pure black background produced on
enhanced images. However, the method does not have good specificity as it also highlights
some of the dense normal tissue. This shortcoming could be improved by the use of shape
classification. Nevertheless, it may prove useful in the analysis of dense mammographic
parenchyma.

This concludes all the algorithms developed for the applications of mammographic
segmentation and analysis. The next chapter is the conclusion of this thesis.
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Chapter 7

Conclusion

In this thesis, a mammogram analysis system has been presented for the attribute-driven
segmentation and analysis of mammograms. In this system, mammogram attributes are
derived progressively from low-level to high-level in a cyclic procedure. An attribute de-
pendence graph has been drawn for the acquisition of mammogram attributes; a standard
format has been specified for the normalization of mammogram attributes; and an XML
database with the support of XML Schema has been built for the storage of mammogram
attributes. These three major components of the system are discussed in Chapter 3, and
they constitute the first part of the original work of this thesis.

New algorithms have been proposed for mammogram segmentation and analysis, fol-
lowing the framework described in Chapter 3. These algorithms were implemented as
computer applications and integrated into the mammogram analysis system. They in-
clude:

1. automatic pectoral muscle segmentation (Chapter 4);

2. adequacy assessment of positioning and exposure (Chapter 5); and

3. contrast enhancement of mass lesions (Chapter 6).

The detail of each of these three applications constitutes the second part of the original
work of this thesis.

7.1 Summary of Research Outcomes

The research outcomes of this thesis are summarized in the following sections:

7.1.1 Mammogram Analysis System

In Chapter 3, a solid framework is provided for the attribute-driven segmentation and
analysis of mammograms. A set of mammogram attributes are defined in three categories:
image data, visual features and analytical information. All the knowledge about the im-
age that we have at each stage of image processing is represented by the whole set of
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mammogram attributes accumulated in the system. As the set of attributes expands, the
knowledge about the image also increases. Hence more complex algorithms can be devel-
oped using the existing mammogram attributes to generate even more accurate results.
This is the fundamental concept of the entire framework.

The mammogram attributes were organized in an attribute dependence graph with
priorities assigned to them, the sequential acquisition order of mammogram attributes was
then determined. The dependence graph also showed that all the adequacy measures are
independent of each other, so they can be acquired in any order. By changing the attribute
priorities in the graph, we have shown that adequacy assessment and mass lesion detection
can be performed independently of each other, but they both depend on the anatomical
features given by mammogram segmentation.

A standard format has been specified for the normalization of mammogram attributes.
This format was required so that information exchange between applications could be
carried out easily. All the common aspects of attribute normalization have been considered
during the process of standardization for mammogram attributes.

A mammogram attribute database has been built using XML for data storage, and
XML Schema for data definition. An open-ended and application-independent element
structure of the mammogram attributes was specified in the database schema. Mammo-
gram attributes were divided into four categories: breast anatomy, adequacy, abnormality
and texture. Each of these categories can be extended easily by attaching new elements at
the end of the element tree. By comparing the dependence graph and the element struc-
ture of mammogram attributes, we have shown that the attributes in the former graph
are tightly coupled, whereas the attributes in the latter one are loosely coupled. So the
attribute acquisition order is much more restrictive than the attribute insertion order to
the database. This is a characteristic of the attribute-driven system.

7.1.2 Automatic Pectoral Muscle Segmentation

In Chapter 4, a new method has been developed for automatic segmentation of the pectoral
muscle on mammograms of the MLO view. In this method, the pectoral muscle is first
approximated by a straight line using iterative threshold selection and gradient test. The
position of the straight line is validated according to the end-points of the breast border.
This straight line is then refined into a curve using iterative cliff detection, in which the
pectoral edge is located by fitting intensity profiles to a sigmoid model. Finally, an enclosed
region is extracted to represent the pectoral muscle. This method has been tested on 322
mammograms from the MIAS database, and on average 83.9% of the curve segmentations
were rated adequate or better by two radiologists. The results have also shown that the
segmentation accuracy was significantly improved after refining the straight line into a
curve. The straight line approximation and the curve delineation of the pectoral muscle
were both used in the automatic assessment of breast positioning.
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7.1.3 Adequacy Assessment of Positioning and Exposure

In Chapter 5, it has been demonstrated that the adequacy of breast positioning and
exposure of mammograms may be automatically assessed by computer. The purpose of
breast positioning assessment is to ensure that the optimal amount of breast tissue is
included, while the purpose of exposure assessment is to guarantee that most of the breast
tissue is visualized in the useful optical density range. Algorithms have been derived for
these two assessments, based on several quality criteria that are stated in the radiological
literature. In these algorithms, some anatomical features extracted from mammogram
segmentation are used, including the breast border, the nipple and the pectoral muscle.
Thus the accuracy of adequacy assessment is affected by the accuracy of the preceding
segmentation steps. This is reflected in the dependence graph of mammogram attributes
that adequacy measures are dependent on anatomical features. The algorithms have also
been tested on 322 mammograms from the MIAS database. Only 4.7% of these images
were found adequate in positioning and 53.4% exhibited proper exposure. We therefore
conclude that very few mammograms from the MIAS database are diagnostically adequate.
The results also showed that breast tissue exclusion, overexposure and poor positioning
could be a source of errors for mammogram segmentation algorithms.

7.1.4 Contrast Enhancement of Mass Lesions

In Chapter 6, a novel technique has been developed to highlight mass lesions on mammo-
grams. It is a modification of the AMPM demodulation transform (developed by Daug-
man and Downing), based on texture demodulation, partial reconstruction and image
subtraction. This contrast enhancement technique was found to have good sensitivity for
highlighting masses on mammograms, but insufficient specificity, as it also enhances some
of the dense normal tissue. One significant feature of this technique is that it increases
contrast by producing a pure black background in the enhanced image. The new contrast
enhancement technique was compared with two existing methods: morphological enhance-
ment and histogram equalization. All three techniques were applied to 41 mammograms
with circumscribed and spiculated masses from the MIAS database. The enhancement
results were then evaluated using three quantitative measures, and these measures were
combined into one final score of contrast enhancement for each image. The mean of the
final scores was 0.31 for the new technique, 0.25 for morphological enhancement, and 0.16
for histogram equalization, indicating that the new technique had the best performance
on contrast enhancement.

7.2 Suggestions for Further Work

A hierarchical framework has been proposed in this thesis for the development of a mam-
mogram analysis system. The research described in this thesis forms part of the proposed
system. While the segmentation algorithms may be further refined, the work on the ad-
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equacy assessment and lesion enhancement hold great potential for future development
and applications.

Other applications of mammographic image analysis, such as density classification,
bilateral comparison, and other abnormality detection, may also be included in the mam-
mogram analysis system. The mammogram attributes described in this thesis by no means
cover all the possible attributes that can be derived from a mammogram. In fact, they
form only an initial subset of useful mammogram attributes. More attributes should be
included in the future as new applications are developed and integrated into the system.

An XML database was constructed for the storage of mammogram attributes. The
syntax of XML is straight forward and simple, and its hierarchical structure is particularly
useful in describing medical data. Currently there are efforts directed at the development
of mammographic ontology, which is similar to our attribute database. Several modelling
languages have been suggested in [84] for defining the Breast Cancer Imaging Ontol-
ogy (BCIO), e.g., Resource Description Framework (RDF), RDF Schema, DARPA Agent
Markup Language and Ontology Inference Layer (DAML+OIL), and Ontology Web Lan-
guage (OWL). These languages provide a means to formally define the semantics of a
specific domain. All of them conform to the syntactic constraints of XML. They should be
investigated in the future work and may be used to replace the current XML schema for
mammogram attribute specification. In addition, BCIO was created using the terminology
of the Breast Imaging Reporting and Data System (BI-RADS), which should be included
into our set of mammogram attributes.

At the current stage, most of the anatomical features on a mammogram can be iden-
tified and segmented out automatically. The algorithms used in the work of this thesis,
for segmenting the breast border, nipple and pectoral muscle, are accurate enough for
most of the subsequent image analysis applications. Further work has to be carried out on
segmenting the fibroglandular tissue on mammograms. This anatomical feature is partic-
ularly important in breast positioning assessment and breast tissue density classification.
One way to extract this feature is to use Gaussian-mixture models and the Expectation-
Maximization (EM) algorithm as proposed in [17]. Another possibility would be the use
of edge detector and texture segmentation as suggested in [19].

Because the method proposed in this thesis for pectoral muscle segmentation refines a
straight line into a curve, the curve segmentation could be improved by giving it a more
accurate straight line approximation. Expanding window thresholding proposed in [32]
may be used to replace the iterative threshold selection method described in this work,
since the former one was evaluated to be more accurate [32]. Furthermore, a texture edge
detector may be combined with iterative cliff detection (which mainly detects intensity
edges) so that the texture edge at the lower portion of the pectoral muscle can be more
accurately delineated.

For the work on adequacy assessment, two quality criteria of positioning related to the
posterior glandular tissue were not evaluated, because the boundary of the fibroglandular
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region had not been outlined, as accurate automatic segmentation of fibroglandular tis-
sue was not available. Besides the adequacy of positioning and exposure, other quality
attributes should be included in the assessment. Some quantitative attributes, such as
contrast, compression, sharpness and artefacts, are likely to be measured on individual
mammograms using the computer. Automatic adequacy assessment should also be ex-
tended to evaluate mammograms of the CC view, since it is a standard mammographic
view as well. Once this is achieved, the posterior nipple lines on the MLO and CC views
should be compared for breast positioning assessment.

Contrast enhancement of mass lesions is only part of the whole process of lesion detec-
tion on mammograms. Unlike other enhancement techniques, the texture demodulation
method proposed in this thesis requires the ROI of the mass to be extracted first. Thus
methods for suspicious lesion site selection, such as [53], should be investigated in the
further work. The two subsequent steps of mass enhancement are lesion segmentation and
classification; these should be further investigated as well. In addition, to improve the
specificity of the proposed texture demodulation method, a shape analysis operator may
be used to classify circular and non-circular patterns highlighted on the enhanced image,
so that mass lesions can be distinguished from normal breast tissue.

Finally, it is hoped that the generic abstract system model presented in Appendix A
of this thesis contributes not only to the field of mammographic image analysis, but also
find application in other domains as well.
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Appendix A

Abstract System Model

A.1 Introduction

The problems of image processing in the real world are usually very complex. They are
unlikely to be solved by a single, simple, generic technique. Therefore, in many areas of
image processing, most of the problems have been successfully solved by a combination of
different techniques, that were specifically designed and developed for a particular class
of images. Although these techniques are not generic, we believe that from the abstract
point of view, there exists a generic framework that may be applicable to the segmentation
and analysis of any class of images.

In this appendix, an abstract system model is introduced for automatic, attribute-
driven segmentation and analysis of images. This generic model has been designed to
integrate an arbitrary number of special-purpose image processing techniques into one
system, in which the hierarchical segmentation process is driven by the attributes of the
image. Different computer applications communicate with each other through the ex-
change of attributes, and the information about the image is centralized in an attribute
database.

Note that the proposed abstract system model has not been fully evaluated but only
tested on the segmentation and analysis of mammograms. Further development of this
system model is outside the scope of this thesis, so it is left to future work.

A.2 Image Attributes

In an attribute-driven system for image segmentation and analysis, all the information
that we have gathered from an image is represented by a set of image attributes. This set
of image attributes can be considered, in the broad sense, as a knowledge base [55, p. 25–
28], which interacts with image processing applications in the system. Image attributes
are not only simple data items, but they are also often meaningful and useful information
belonging to a specific domain. There is no generic set of attributes that is suitable
for any class of images. Instead, a specific set of attributes has to be chosen carefully,
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Figure A.1: The set of image attributes expands from image data to visual features when image
segmentation is applied; and it expands from visual features to analytical information when image
analysis is carried out. As the knowledge about the image increases, more complex algorithms may
be performed on the image.

according to the purpose of analysis, for a particular class of images. Image attributes can
be categorized into three types: image data, visual features and analytical information.

Image data includes the pixel values of the digital image that is being analyzed, and
all the image properties, such as dimensions, resolution and bit-depth. Image data can
usually be located in the header of an image file. When the image is first read by the
system, the image data constitutes the first set of attributes, before any segmentation
is performed on the image. This first set of attributes is most frequently accessed by
subsequent applications in the system.

Visual features include the description of an object on the image, such as colour, size
and shape. They are also used to describe the structural relationship among objects or
within parts of an object, as well as the texture of different regions on the image. Visual
features are usually extracted directly from the image by image segmentation and texture
analysis. They are low-level image attributes that are usually obtained in the earlier
stages of image processing. Based on these attributes, more refined segmentation and
sophisticated image analysis can be performed in the later stages.

Analytical information consists of all the high-level image attributes that are derived
from the low-level ones. It is the result of image analysis, which is normally carried out in
the later stages of image processing. Analytical information may include, for example, the
classification of an object, the clinical findings on a medical image, or the identification of
a person on a photograph. External data that is not derived from the image, such as the
age of a patient, can also be considered as part of analytical information.

During the process of image segmentation and analysis, image attributes are acquired
progressively in a step-by-step fashion. From the attributes of image data, visual features
are extracted by image segmentation. Analytical information is then derived from image
analysis. With each successive stage of attribute acquisition, the knowledge that we have
about the image is assumed to increase monotonically as more attributes are derived,
leading to refinement of accuracy. We assume that there is no reduction in information,
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Figure A.2: A system model of attribute-driven image segmentation and analysis. The input to
the system is an image and the output is a report. The n number of applications are executed
in a pre-defined sequential order, from 1 to n, to extract attributes from the image. The image
attributes are normalized and stored in an attribute database. They can be retrieved and used by
any subsequent application.

and the correlations between the set of image attributes, the knowledge about the image
and the complexity of algorithms are all positive. This fundamental concept of knowledge
accumulation can be visualized as a growing set of attributes, illustrated in Fig. A.1.

Attributes are usually extracted automatically from the image using computer appli-
cations. Although these applications may operate with data formats that are incompatible
with each other, attributes can still be exchanged between applications if they are normal-
ized to a standard format. Normalized attributes are stored persistently in a database, and
they can be retrieved from the database by any application in the system. The workflow
of the system is described in Section A.3. The relationship between attribute acquisition,
normalization and storage are discussed in Section A.4.

A.3 System Model

The abstract system model of attribute-driven image segmentation and analysis is illus-
trated in Fig. A.2. This system model is generalized so that it may be applied to any
class of images. The input to the system is a digital image. The attributes of the image
are extracted by a number of applications, which are the computer programs of specific
segmentation and analysis techniques. These applications may be written in different pro-
gramming languages and be run on different platforms. The attributes generated by each
application could possibly be in a data format that is not compatible with other appli-
cations. Therefore it is necessary to normalize the attributes to a standard format. The
normalized attributes are stored in an attribute database that is designed to be application-
and platform-independent. An open-ended data structure is used in the database so that
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it can be extended easily when more applications and attributes are added into the system.
Figure A.2 also illustrates the cyclic nature of attribute-driven segmentation and analy-

sis. All the applications in the system are executed in a pre-defined sequential order. First,
Application 1 reads the image and generates some attributes. These attributes are nor-
malized and stored into the database. Then, Application 2 requests and retrieves the
normalized attributes produced by Application 1 from the database. In Application 2,
these normalized attributes are converted to the data format that is compatible with its
implementation. Application 2 then performs further segmentation or analysis and gen-
erates additional attributes. The same procedure is repeated until all the subsequent
applications in the system have been executed. Ultimately, an analytical report with an-
notated images can be produced using the attributes in the database, and presented to
the user at a workstation.

A.4 Three Major Components

The system model for attribute-driven segmentation and analysis may be decomposed into
three major components, which are:

1. attribute acquisition,
2. attribute normalization, and
3. attribute storage.

These three components are linked to each other to form a feedback loop in the system,
as shown in Fig. A.3. The detailed description of these three components is given in
Sections A.5, A.6 and A.7 respectively.

Figure A.3: The three major components comprising the system model of attribute-driven image
segmentation and analysis.

In the system model, attribute acquisition is handled by a series of applications; at-
tribute normalization is specified by the standard format of attributes; and attribute
storage is achieved by the attribute database. Among these three components, attribute
acquisition is the most difficult to implement, since the domain-specific applications usually
involve complex, non-trivial image processing techniques. In contrast, attribute normal-
ization and attribute storage are relatively easy to accomplish by specifying a standard
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format for the attributes and by designing and building a database. Consequently, when
developing the actual system for the analysis of a particular class of images, more time
and effort are expected to be spent on the attribute acquisition component, rather than
on the other two.

A.5 Acquisition of Attributes

As previously described in Section A.2, the acquisition of some attributes requires the
input of other attributes from earlier stages. The high-level attributes from image analysis
rely on the low-level attributes from image segmentation. The attributes themselves are
sometimes closely coupled with each other, especially in hierarchical image segmentation.
Since all the attributes required by an application have to be available when the application
is executed, it is particularly important to work out the data dependence of all the possible
attributes that would be stored in the database. To illustrate the dependence relationship
between the attributes, an attribute dependence graph is therefore created.

A.5.1 Attribute Dependence Graph

In the dependence graph, image attributes are shown as nodes and the dependence rela-
tions are represented by directed edges. If attribute B is dependent on attribute A, then an
edge is directed from node A to node B (see Fig. A.4(a)). An attribute may be dependent
on more than one attribute; and a particular attribute may be required by more than one
other attribute (see Fig. A.4(b)).

However, the dependence graph must be acyclic. It is not allowed to form a path in
the dependence graph that starts and ends on the same node. For example, attribute
B in Fig. A.4(c) can never be generated because it virtually depends on itself through
the cycle {B → C → D → B}. With the use of a dependence graph, we can keep
track of the attributes available in the current stage and find out which attributes may
be derived in the next stage of segmentation. Furthermore, most importantly, we can use
the dependence graph to determine the order of attribute acquisition.

(a) (b) (c)

Figure A.4: Dependence graphs. (a) Attribute B depends on attribute A. (b) Attribute D
depends on attributes A, B and C, and it is required by attributes E, F and G. (a) and (b) are
both acyclic directed graph. (c) Cyclic dependence graph where attribute B virtually depends on
itself through a cycle; attributes B, C and D can never be acquired by the proposed scheme.
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A.5.2 Sequential Attribute Acquisition

In the attribute-driven image analysis system, the applications are executed sequentially.
This means only one of the n applications is executed at each cycle and only the output
attributes of that particular application are normalized and stored into the database. By
examining the dependence graph of all the attributes and assigning a priority to each
attribute, the sequential order of attribute acquisition can be determined. The algorithm
that we use to assign priorities to attributes is called attribute priority assignment.

Attribute Priority Assignment

This algorithm starts from the attributes that we want to acquire, and iteratively searches
for other attributes that are required in the attribute acquisition. In each iteration of this
algorithm, attribute priorities are assigned to the nodes in the dependence graph, from
the lowest priority to the highest one.

1. Let G = (V,E) be the dependence graph with the node set V and the edge set E. G

is an acyclic directed graph with two maps, init: E → V and ter: E → V , assigning
to every edge e ∈ E an initial node, init(e), and a terminal node, ter(e) [60, p. 25].
So the edge e is directed from init(e) to ter(e). Each node v ∈ V can be labelled with
a priority number, which is a non-negative integer. The priority of a node v is given
by pri(v). Initially, all nodes in G are unlabelled, i.e., no priorities assigned. Also,
the attributes that we want to acquire are called desired nodes, denoted by W ⊆ V .
If all the attributes in the dependence graph are to be acquired, then they are all
desired nodes, i.e., W = V . If we only want to obtain a single attribute (which may
depend on other attributes), then only this particular attribute is selected as the
desired node. In addition, let U ⊆ V be a set of flagged nodes, u ∈ U , and R ⊆ V

be a set of required nodes, r ∈ R.

2. Label every desired node w ∈ W with the lowest priority zero, i.e., pri(w) := 0. Flag
all the desired nodes, so we set U := D. We also empty the set of required nodes
R := ∅.

3. For each flagged node u ∈ U , search for all the nodes that u depends on, i.e., the
required nodes, and put them in R. Also, assign a higher priority to the required
nodes. Thus,

for all u ∈ U {

for all e ∈ E {

if ( ter(e) ∈ U ) {

add init(e) into R

if (( pri(ter(e)) + 1 > pri(init(e)) ) or ( init(e) is unlabelled )) {

set pri(init(e)) := pri(ter(e)) + 1 }}}}
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4. If no required nodes are found for every flagged node, i.e., R = ∅ at the end of step 3,
we have reached the nodes with the highest priority, so go to step 5 to finish the
assignment. Otherwise set U := R, then set R := ∅, and repeat step 3.

5. The priority assignment is completed. The order of attribute acquisition for all the
desired nodes is determined by the priorities of all the labelled nodes in the graph.
The attribute with the highest priority must be acquired first. The desired attributes
have priority 0 so they are acquired last. If there are two or more attributes with the
same priority, they are not dependent on each other, therefore they can be acquired
in any order. Any node that is not labelled with any priority is not required by the
desired nodes; hence it is not necessary to include unlabelled nodes in the acquisition
order.

Example 1: Single Desired Node

Suppose we have six attributes, A to F , organized in a dependence graph as shown in
Fig. A.5. We want to acquire a single attribute F , so node F is the only desired node.
Using attribute priority assignment, the attribute acquisition order is derived as {A →
B → D → E → F}, and attribute C is not required by F .

Figure A.5: A step-by-step illustration of attribute priority assignment in a dependence graph.
The priority of the node is given as a number inside the circle. The single desired node, F , initially
has the priority 0. In every step, the flagged nodes are represented by thickened circles; and the
required nodes are represented by shaded ones.
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Example 2: Multiple Desired Nodes

Another dependence graph is shown in Fig. A.6. All the attributes in the dependence graph
are considered the desired nodes, hence they are all labelled with priority 0 and flagged in
the first step. The priorities of all attributes may therefore be determined using attribute
priority assignment. The attribute acquisition order is {A → B → D → E → C → F}
or {A → B → D → E → F → C}. In either case all the attributes will be generated
correctly.

Figure A.6: The first and last steps of the derivation of attribute priorities in a dependence graph.
All the attributes are desired nodes.

A.5.3 Parallel Attribute Acquisition

From the previous example, there are two ways to set the attribute acquisition order and
both of them are valid. The two attributes with priority 0, C and F , are not dependent
on each other. So in sequential attribute acquisition, C and F are generated one before
the other, but the order does not matter. However, in parallel attribute acquisition, it is
possible to compute C and F at the same time, as soon as the attribute with priority 1 is
available.

In fact, it is not unusual to have more than two attributes with the same priority in
the dependence graph. Since all the attributes with the same priority can be acquired in
parallel, the corresponding applications can be executed in parallel as well. Simultaneous
application processing can then be performed using multiple computers or CPU’s. For
example, in Fig. A.7, the priorities of all the attributes in the dependence graph are
determined using the same method, attribute priority assignment. Among them, three
attributes have priority 2 and three attributes have priority 1. Thus, B, C and D can be
acquired in parallel; whereas E, F and G can also be generated simultaneously. If we use
// to denote the attributes that can be acquired in parallel, then the attribute acquisition
order in this case is {A → B//C//D → E//F//G → H}.
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Figure A.7: The first and last steps of the derivation of attribute priorities in a dependence graph
where parallel attribute acquisition is possible. All the attributes with the same priority can be
acquired in parallel.

A.6 Normalization of Attributes

The derived attributes may vary in scale and format due to different segmentation and
analysis approaches, and different application implementations. Attribute normalization
is required to convert the attributes to a standard format, before they are inserted into
the database. Normalized attributes ensure that data exchange between applications is
carried out in a standardized manner. In this way, the application developer only needs to
deal with one standard data format and not worry about the data format used by other
applications. The application may convert or scale the normalized input attributes to
its own data format during its execution, and then normalize its output attribute to the
standard format.

When the format of image attributes is being standardized, the following aspects are
usually considered:

� image orientation

� co-ordinate system

� Spatial resolution

� measurement units

� representations of object boundary

A.6.1 Image Orientation

The orientation of an image is very important in image segmentation because most of the
algorithms require the image to be placed in a certain orientation, in order to identify
and segment the targeted objects. Different segmentation algorithms may use various
image orientations, and the attributes produced by these applications may refer to their
own image orientations rather than the original one. However, the normalized attributes
must refer to the same image orientation defined in the standard format. Without the
knowledge of image orientation, the segmented boundaries cannot be reproduced correctly
on the image and they become useless to other applications in the system.

An image may be oriented in eight different ways as shown in Fig. A.8. In the top
row of the figure, the image orientations are (a) correct, (b) rotated 90◦, (c) rotated 180◦,
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Figure A.8: Eight possible orientations of an image.

and (d) rotated 270◦. In the bottom row, the images are flipped around the vertical axis,
hence the image orientations are (e) flipped, (f) rotated 90◦ and flipped, (g) rotated 180◦

and flipped, and (h) rotated 270◦ and flipped. One of these orientations should be selected
as the standard image orientation in attribute normalization. Only quadrantal changes of
image orientation are considered here, and other image orientations are not recommanded
to be the standard image orientation.

A.6.2 Co-ordinate System

The x-y co-ordinate system used in the image domain should also be standardized for
attribute normalization. Some possible co-ordinate systems used in image processing are
shown in Fig. A.9. In the figure, (a) The origin is at the image top-left corner; x-axis is
horizontal and y-axis is vertical. This co-ordinate system is commonly used to specify the
pixels on a digital image, but it does not comply with the right-hand rule of the Cartesian
co-ordinate system. (b) The origin is also at the image top-left corner, but x-axis is
vertical and y-axis is horizontal. This co-ordinate system complies with the right-hand
rule. (c) The origin is at the image bottom-left corner; x-axis is horizontal and y-axis is
vertical. This co-ordinate system also complies with the right-hand rule. (d) The origin
is at the centre of the image; x-axis is horizontal and y-axis is vertical. This is another
co-ordinate system that complies with the right-hand rule.

Generally, any setting of the co-ordinate axes may be chosen as the standard co-
ordinate system for attribute normalization. Different co-ordinate systems may be used
in the algorithms of attribute extraction, but all output attributes must be normalized
to the standard co-ordinate system. The conversion of the data values from one 2D co-
ordinate system to the standard one normally just involves swapping the x and y values,
and shifting the origin. If it is necessary, a 3D co-ordinate system or a polar co-ordinate
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Figure A.9: Some possible co-ordinate systems used in image processing.

system may also be defined in the standard attribute format.

A.6.3 Spatial Resolution

The original image is often subsampled and low-pass filtered to a lower resolution when
extracting large features on the image. The subsampling operation filters out noise and
unwanted image texture. It improves the accuracy of feature extraction and significantly
reduces the processing time. Consequently, the attributes extracted from an image at
lower resolution are also reduced in scale, since the subsampled image is smaller in size
than the original one.

In attribute normalization, all attributes are scaled back to the highest spatial resolu-
tion, which corresponds to the original image. For example, if the original image resolution
is 50 µm/pixel and the subsampled image resolution is 400 µm/pixel, then the scaling ratio
is 400/50 = 8. If the attribute to be normalized is a straight line described by two points,
then the x and y values of each point are multiplied by the scaling ratio. The normalized
straight line will be drawn correctly on the original image if it is reused. On the other
hand, if the attribute to be normalized is a continuous boundary composed of an array of
points, then after scaling, the resulting boundary is no longer continuous and the points
are evenly spread. Some kind of interpolation must then be used to link up the points
when the boundary is reproduced on the original image.

A.6.4 Measurement Units

When the Euclidean distance between two points on the image is calculated using the
x-y co-ordinate pairs, the result is usually expressed in pixels. However, pixels are not
the preferred measurement unit for the normalized attributes, since they depend on the
image resolution. A measurement given in pixels can be converted to micrometres (µm)
by multiplying it with the image resolution (µm/pixel).

Therefore, all attributes that involve measurement should be described by standard
measurement units, which should be meaningful and suitable to the object that is mea-
sured. For example, the diameter of a lesion is normally measured in millimetres rather
than metres. The units and prefixes defined in the International System of Units (SI) are
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preferable.

A.6.5 Representations of Object Boundary

A segmented object or region is normally represented by a set of pixels on the image. The
boundary of the object is formed by all the pixels between the object and the background.
When the object boundary is described as an attribute in the database, the boundary
pixels are represented by a sequence of points. The sequence of points are called boundary
points, which should be described by the standard co-ordinate system on standard image
orientation and resolution. The normalization methods defined in previous sections should
therefore be used to transform the boundary pixels to boundary points.

Sometimes it is not necessary to include every segmented boundary pixel as a boundary
point. When the image resolution is high and the object is large, using each boundary
pixel may produce a sequence of points that is too long for storage. To save storage
space, the segmented boundary may be reduced in spatial resolution so that the number
of boundary points are also reduced. However, after the reduction, the original boundary
can no longer be reproduced exactly on the image. One type of interpolations (possibly
linear) has to be used to connect up the boundary points.

In another case, if the image resolution is reduced during the segmentation of the
object, then the segmented boundary is also smaller in scale. After scaling the boundary
points back to the original resolution, they would be disconnected and evenly spread out
on the image. Again, interpolation may be used to link them up.

In order to perform interpolation on the boundary points, they must be arranged in a
predefined sequential order. If the boundary is closed (a loop), then the boundary points
should be described in clockwise or anti-clockwise direction. If the boundary is open (an
edge), then the boundary points should be described in a single direction, e.g., from top to
bottom, or from left to right. With this kind of consistency, the subsequent applications
can reproduce and reuse the boundary more easily.

Furthermore, the approximate location and size of an object can be represented by
some simple shapes, e.g., a circle, a rectangle or a polygon. The advantage of using simple
shapes is that they can be described by a few parameters and hence with less data. As
with the boundary points, these parameters must be normalized to a standard format too.
In addition, chain codes are also widely used in different areas of image processing [56,
pp. 219–220], and they may be considered for efficient boundary representation as well.

A.7 Storage of Attributes

The normalized attributes are permanently stored in an attribute database for any sub-
sequent application in the system to use them again. The attributes can be stored in
any data format, as long as the value of each attribute remains unchanged when it is
retrieved from the database. All the approximation, reduction and conversion of the at-
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tribute values should not be carried out within the database; they are instead part of the
normalization process. Only the integrity of data items and the structure of data entries
are verified by the database. The correctness and accuracy of the attributes are not part
of its verification.

The database should be independent of the applications that are used for attribute
acquisition, and should be portable to a wide range of computer platforms. It should also
support some degree of scalability and extensibility so that further development of the
system can be implemented without significant changes to the existing database design.
If it is necessary, online access of the database should be enabled for remote applications.

Generally, any type of database can be used to store the normalized attributes. How-
ever, depending on the hierarchical structure of the attributes, one type of database may
be more suitable to capture the data than other databases. Typically, Extensible Markup
Language (XML) database is preferable for storing the attributes of any class of images,
due to a number of reasons [85, p. 85], [59, p. 10]:

� XML has the expressive power to describe a complex data model;

� XML is useful for data exchange between applications; and

� XML can be viewed and manipulated with a wide range of tools.

The pros and cons of XML database are discussed in the following section. It is also
compared with relational databases and object-oriented programming languages.

A.7.1 XML Database

XML is a meta-markup language that defines a syntax in which field-specific markups
can be used to represent data as a string of text, or as a document [85, p. 3]. An XML
database stores data in a collection of XML documents. Each XML document is simply a
text file, containing XML elements and XML attributes1, that can be easily accessed and
manipulated with an editor or programming interface.

XML elements are the basic building blocks of XML. An element may contain an ar-
bitrary number of subelements, and each subelement may contain other sub-subelements,
and so on. An XML document must have exactly one root element, that completely con-
tains all other elements, at the very top level. Thus the nested elements actually form a
tree hierarchy in the document and data information is represented in a hierarchical style.
The nested element structure can be extended by attaching new elements to the existing
hierarchy. An element may also contain an arbitrary number of XML attributes, which
are name-value pairs in string format. Unlike the XML elements, XML attributes cannot
be nested and therefore they are not extensible.

XML is a self-describing language with great expressive power and flexibility. One
of its advantages is the ability to markup structured and unstructured data, both in the

1The definition of XML attributes should not be confused with that of image attributes.
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same document. It can be used to capture a complex data model with a mixture of data
and text. Most languages are designed to describe either well-structured data or free-form
text, but XML can integrate both in the same document [59, p. 9].

The use of XML should be seriously considered when data exchange is required between
multiple applications, particularly when the structure of the data changes [59, p. 10]. Due
to the flexible and extensible data representation of XML, the element structure of an
XML document can be iteratively refined as the data model changes [59, p. 9]. This makes
XML particularly useful for areas that consist of complex relationships and are likely to
undergo frequent revision [59, p. 9].

The syntax of XML is very well defined in the specification [86] from World Wide
Web Consortium (W3C). The standard is supported by a range of generic tools and XML
parsers [85]. As a plain text file, an XML document can be viewed and edited using a
simple text editor. It can also be manipulated using a programming interface that parses
the document and converts it into a tree of objects. Hence XML has been designed to
be a powerful language that is easy to read and write by human beings and by computer
applications.

Comparison with Relational Databases

Compared with the relations used in relational databases, the structure of XML elements
is certainly more flexible and expressive. A relation is often visualized as a table with
rows and columns. Each relation has an unordered collection of tuples (or rows), where
each tuple has a fixed number of characteristics (or columns) [59, p. 22]. A relation cannot
contain other relations and the number of characteristics has to be the same for all tuples
in the relation. Because a relation is not very flexible, it is only suitable to capture data
that is rigid and regularly structured; whereas XML has the expressive power to describe
both structured and unstructured data.

One advantage of using a relational database is that complex queries can be expressed
in Structured Query Language (SQL). SQL is a well developed and widely used query
language that is supported by many database products. It provides a means of creating
a relational database, as well as searching, inserting, updating and deleting data in the
database. Currently, the query languages of XML, such as XPath and XQuery (both
are W3C working drafts), are still under development. Most of them only support data
searching in XML databases. Other data operations, like insert, update and delete, have
to be done by other means, but they will be supported in the future.

As mentioned previously, the database of image attributes has to support some degree
of scalability. The size of the database is likely to scale up in two situations: (i) when new
image attributes are added to the existing set; and (ii) when more images are analyzed
and their attributes are inserted into the database. As the size of the database increases,
the search time of data items in the database scales up also. In terms of data storage, the
scalability of XML database is as good as that of relational database. More XML elements
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and attributes can be added to the XML document for new image attributes; and more
XML documents can be created for new images.

However, in terms of data searching, the scalability of XML database is relatively
poor when compared with relational database. An XML database stores data in XML
documents. If the search is carried out within a single document, the processing time is
still reasonable, since the data item is only searched for in a single hierarchy of elements.
On the other hand, if the search is performed across multiple documents, perhaps across
all the documents in the database, then it is a time-consuming process. The same search
operation is faster in a relational database because a particular characteristic can be
centralized in a single column of a relation.

In summary, different implementation approaches have to be taken for different system
requirements. If the attribute-driven system is built solely for the purposes of image
segmentation and analysis, then an XML database is sufficient since image attributes
are usually retrieved from a single XML document that contains all the attributes of a
particular image. On the other hand, if the system is designed for the purpose of image
similarity matching or image retrieval based on image attributes, then a relational database
could be used for data storage and searching, together with an XML interface for data
exchange between applications.

The main topic of this thesis, segmentation and analysis of digitized mammograms,
corresponds to the former case described above.

Comparison with Object-Oriented Programming Languages

Some features of XML are similar to those of object-oriented programming languages,
such as C++ and Java. The features provided by XML, such as element types, named
attributes and hierarchical structure, are also supported by the objects used in object-
oriented programming languages [59, p. 16]. Due to these similarities, an XML document
can be directly transformed into a tree of objects using an application programming inter-
face (API), such as Document Object Model (DOM, a W3C recommendation). Computer
programs can therefore be used to manipulate the data stored in XML documents.

Nevertheless, XML elements are not totally the same as objects. XML is not related
to the concept of encapsulation, that is fundamentally defined in object-oriented program-
ming languages. For objects, all internal structure is hidden from other objects; whereas
for an XML element, all internal structure is transparently exposed [59, p. 16]. Objects
also have the programming features, like function and attribute inheritance, that are not
supported by XML. Therefore, while XML is excellent for data representation and data
exchange between applications, a programming language is still required for data manip-
ulation in applications, i.e., for editing the content of XML documents [59, p. 16].
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A.7.2 XML Schema

XML Schema is a schema definition language (W3C recommendation). The element struc-
ture and data values that may occur in the XML documents are defined and constrained
by an XML schema. XML Schema also provides a mechanism to enable inheritance for
element, attribute, and datatype definitions [87, p. 11]. By defining tighter and looser con-
straints to formalize the document structure and datatypes, only a restricted class of XML
documents are allowed to be created. This formalization is a necessary step for software
design [88, p. 1]. Applications can be developed to deal with all the possible structures of
an XML document. In many ways, schemas serve as design tools, establishing a framework
on which implementations can be built [88, p. 1].

XML Schema can be interpreted by computer because its definition language is written
in XML. An XML schema is primarily used to validate an XML document, i.e., to ensure
that the document contents conform to the data definition described in the schema. The
schema serves as a firewall, between the applications and the database, against the diver-
sity and extensibility of XML. Due to the powerful validation features provided by XML
Schemas, more validation work that has traditionally been performed by application code
can be taken care of by defining a schema [87, p. 228]. The more constraints we put in
the schema, the tighter its restrictions on the class of documents, and the less validation
code we have to write in applications [87, p. 228].

A.8 Design Strategy for Actual Systems

The abstract system model presented in this appendix is a generic scheme that may be
applied to the attribute-driven segmentation and analysis of a wide range of image classes.
When designing the actual system for a particular class of images, the following steps are
usually involved:

1. Identify the three types of image attributes, i.e., image data, visual features and
analytical information. These attributes may be determined by an exhaustive search,
experimental methods, past experience, or other manual processes.

2. Draw the dependence graph of the image attributes and show the hierarchical struc-
ture of low-level and high-level attributes.

3. Determine the attribute priorities, and hence the attribute acquisition order, either
sequential or parallel.

4. Develop the computer application for acquiring the attribute with the highest pri-
ority.

5. Specify a standard format for the attribute if it has to be normalized.

6. Define the XML representation of the attribute in the database schema.
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7. Repeat steps 4 to 6 for all other attributes from highest to lowest priorities.

In the beginning of a research project, it may not be possible to identify all the useful
image attributes for a particular class of images, as we only have little knowledge of how
to segment and analyze the images automatically using computer. Therefore the first
draft of the dependence graph may not include all the image attributes; it may only
contain the image data and some low-level attributes of image segmentation. Low-level
attributes are likely to have high priorities, so they can be acquired in the early stages.
Computer applications can be developed for the low-level attributes without considering
any of the high-level attributes. After the low-level attributes are successfully generated
using computer, and they are normalized and stored in the database in the standard
format, high-level attributes of analytical information may then be identified and included
in the dependence graph. Hence the applications of image analysis can be developed for
the high-level attributes, which may depend on some of the low-level attributes in the
database.

From the observation above, we notice that many components of the system are con-
tinuously evolving during the system development. The set of image attributes and the
dependence graph are expanding as more attributes are included. New applications are
implemented for the new attributes. The standard attribute format and the database
schema are also modified to include the new attributes. One of the advantages of our
attribute-driven system model is that it can be extended easily. The entire system may
be built up incrementally, application by application, until we have reached our goals of
image analysis. New applications can be developed separately without knowing the inter-
nal implementation of other applications; and new applications can be integrated into the
system without influencing the existing applications.

Three examples are outlined below to demonstrate the possible ways of designing the
actual systems of different classes of images.

A.8.1 Example: Bank Cheques

The information on a bank cheques may be located, extracted and processed automatically
using computer. The first set of image attributes acquired from the cheque are likely to
be the locations of several hand-written items, including the legal amount in words, the
numeric amount, the date and the signature [89]. These hand-written items may be
written in words or numbers with various styles. They can be located on the cheque by
detecting the horizontal baselines under the items [89]. The regions of interest around
the baselines are then extracted, and the hand-written data can be segmented out. Other
low-level image attributes of the cheque could be the visual features of the segmented hand-
written data. To extract the visual features, the region of each hand-written item may
be divided into words, and also subdivided each word horizontally into 5 smaller regions,
corresponding to the main body and the baseline of the word [90]. Within each of these five
regions, finer features of the word may be generated, such as ascender, descender, loops,
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word length, as well as horizontal, vertical and diagonal strokes [91]. They are all image
attributes of the cheque. After all the low-level attributes are obtained and stored into
the database, applications of information processing, such as handwritting recognition and
signature matching, may be carried out automatically. The results of these applications
are the high-level image attributes of the cheque.

A.8.2 Example: Human Faces

The visual features of the face provide very important information in a face recognition
system. These low-level image attributes may be obtained progressively using hierarchical
face segmentation. Locating the face region is arguably the first step of any system
performing face recognition. The head of the targeted person is first segmented from
the image background to locate the frontal view of the face. From the face region, several
features can be extracted, such as skin colour, face shape, and the ratio of face width and
height [92]. Then the face may be horizontally partitioned into five distinctive regions,
from top to bottom: forehead, eyes, nose, mouth and chin [93]. Within each of these five
regions, smaller facial features can be detected, such as hair colour, hair style, lengths of
the eyebrows, eye colour, shape of the eyes, size of the nostrils, and width of the mouth [92].
After collecting all the visual features in the database, high-level analysis, primarily face
recognition and identification, may be performed.

A.8.3 Example: Mammograms

An automatic image analysis system may be developed for breast cancer detection on
mammograms. The mammogram can be hierarchically segmented into several distinctive
regions according to the anatomical structure of the breast [61]. The low-level attributes of
a mammogram are therefore its anatomical features. The breast region is first segmented
from the image background, then the nipple is located on the breast border, and the
pectoral muscle is delineated inside the breast region. The fibro-glandular region may be
segmented from the breast region as well. Using the anatomical features, several types of
image analysis can be performed, such as image adequacy and quality assessment, breast
density classification, and abnormality detection. This analytical information constitutes
the high-level attributes of mammograms. More detail of the mammogram analysis system
is described in the Chapter 3.

A.9 Conclusions

In this appendix, the abstract view of an original, attribute-driven system is presented for
automatic image segmentation and analysis. The system model has been generalized for
most classes of images, but it can be customized for a particular class of images through
the design and development of domain-specific image processing techniques.
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There are generally three types of image attributes: image data, visual features and
analytical information. Based on image data, visual features can be derived from image
segmentation, and hence analytical information obtained through image analysis. The
knowledge about the image is captured by the whole set of attributes in the database.
The set of attributes expands as we gather more information about the image, leading to
more accurate segmentation and analysis results. This iterative refinement is supported
by the cyclic process of attribute-driven segmentation and analysis that comprises three
major components: attribute acquisition, normalization and storage.

Attribute acquisition is achieved by developing a series of domain-specific applications
for a particular class of images. The priorities of attributes may be determined from the
attribute dependence graph introduced in this appendix. The applications may then be
executed in a pre-defined order so that the attributes with higher priorities are generated
first.

In order to formalize the data exchange between applications, the image attributes
produced by different applications need to be normalized to a standard format, which
is defined by the system developer. Aspects associated with attribute normalization,
such as image orientation, co-ordinate system, image resolution, measurement units and
representation of object boundary, are discussed in this appendix.

The normalized attributes are stored persistently in a database. Any type of database
can be used in the implementation, but it has to be application- and platform-independent.
The database should support some degree of scalability so that the attributes of a large
number of images can be stored in the database without a significantly increase in retrieval
time. The database should also be extensible so that new image attributes can be added to
the system without significant changes to the existing database design. XML database and
XML schema have been suggested for the storage of image attributes, and their properties
have been discussed.

Finally, a design strategy has been given to layout the steps to be taken for customizing
the abstract system model into an actual system. This design strategy provided a picture
of the project life cycle that may be undertaken in the development of the attribute-
driven system. Most importantly, it also revealed that the abstract system model is not
only a generic scheme for automatic segmentation and analysis, but it also serves as a
development platform for us to implement the entire system incrementally, application by
application, until our end goals of image analysis have been achieved. Three examples
have also been given to illustrate the possible applications of the abstract system model
to some domain-specific problems.
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Appendix B

XML Schema of Mammogram

Attributes

The complete XML schema of the mammogram attribute database described in Chapter 3
is given in this appendix. The basic elements used in the schema are first described. The
element structure of the mammogram attributes is then presented, followed by a complete
code listing of the XML Schema file.

All diagrams in this appendix were generated by the XMLSpy Schema Editor1, and
hence its graphical representation is adopted.

B.1 Basic Elements

Basic elements can be included and re-used in the definitions of other elements in the same
schema.

B.1.1 Point

A particular point on the image is described by a <Point> element with four XML at-
tributes: x, y, z, and i, where x and y define the co-ordinate pair; z can be used to
represent any quantity, such as pixel value; and i is the index number.

Figure B.1: Graphical representation of the <Point> element.

1XMLSpy is available at http://www.xmlspy.com.
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B.1.2 Line

An element of lineType describes a straight line on the image with two end-points, which
are defined by <Point>.

Figure B.2: Graphical representation of the element of lineType.

B.1.3 Array

A boundary or curve on the image is described by an element of arrayType, which consists
of an array of <Point> elements in sequential order. The number of points in an array is
specified by the XML attribute array length.

Figure B.3: Graphical representation of the element of arrayType.

B.1.4 Image

The file location of an image is described by an <Image> element with three XML attributes:
id, location and resolution, where id is the identification number of the image; location
contains the URL of the image file; and resolution is the image resolution.

Figure B.4: Graphical representation of the <Image> element.

B.2 XML Elements of Mammogram Attributes

B.2.1 Mammogram

All mammogram attributes are described under a single element <Mammogram>, which
is the root of the element tree. <Mammogram> has three subelements: <Patient Info>,
<Digital Image> and <Comment>. The elements of Mammogram attributes are divided
into four categories under <Digital Image>. The four categories are <Breast Anatomy>,
<Abnormality>, <Adequacy> and <Texture>. The first three are explained in the following
sections.
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Figure B.5: Graphical representation of the <Mammogram> element and its subelements.

B.2.2 Breast Anatomy

The anatomical features of the mammogram are described in the element <Breast Anatomy>.
The <Breast border> element is of arrayType. The <Nipple> element is a <Point> and one
of its XML attributes indicates whether the nipple is in profile. The <Pectoral muscle> is
described by a <Straight line> and a <Curve>. The <Boundary> of the <Parenchyma> is of
arrayType, and its <Density> is represented by a string datatype.

Figure B.6: Graphical representation of the <Breast Anatomy> element and its subelements.
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B.2.3 Adequacy

The adequacy measures of the mammogram are described in the element <Adequacy>. The
exclusions of breast tissue at the image edges are described as elements of lineType in the
<Tissue exclusion group>. The pectoral muscle extension to the level of the nipple, the
angle and the percentage of convexity of pectoral muscle are described as XML attributes in
<Pectoral muscle>. The posterior <Nipple line> is defined by the nipple location and the
other <End point>. The location of <Inframammary fold> is a <Point>. The mean optical
density and the percentage of breast tissue in the useful density range are described by
the XML attributes of <Exposure>. Other adequacy measures are not within the scope of
this thesis and they are not defined here.

Figure B.7: Graphical representation of the <Adequacy> element and its subelements.

B.2.4 Abnormality

The descriptions of abnormalities found on the mammogram are included in the element
Abnormality. The ROI of a <Mass> lesion is defined by two <Point>s; one for the top left
corner of the window and the other for the bottom right corner. The <Enhanced> image
of the mass is stored as a separate image file, referenced by <Image>. The <Boundary> of
the mass is of arrayType. Other abnormalities are not within the scope of this thesis and
they are not defined here.
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Figure B.8: Graphical representation of the <Abnormality> element and its subelements.

B.3 XML Schema File

The text version of the XML Schema file, corresponding to the above graphical represen-
tation, is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="qualified">

<xs:element name="Mammogram">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Patient_Info" minOccurs="0">

<xs:complexType>

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="age" type="xs:nonNegativeInteger" use="optional"/>

<xs:attribute name="gender" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="M"/>

<xs:enumeration value="F"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="weight" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Digital_Image" minOccurs="0">

<xs:complexType>

135



APPENDIX B. XML SCHEMA OF MAMMOGRAM ATTRIBUTES

<xs:all minOccurs="0">

<xs:element name="Breast_Anatomy" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Breast_border" type="arrayType" minOccurs="0"/>

<xs:element name="Nipple" minOccurs="0">

<xs:complexType>

<xs:sequence minOccurs="0">

<xs:element ref="Point"/>

</xs:sequence>

<xs:attribute name="profile" type="xs:boolean" use="optional"/>

<xs:attribute name="radius" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Pectoral_muscle" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Straight_line" type="lineType" minOccurs="0"/>

<xs:element name="Curve" type="arrayType" minOccurs="0"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="Parenchyma" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Boundary" type="arrayType" minOccurs="0"/>

<xs:element name="Density" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="F"/>

<xs:enumeration value="G"/>

<xs:enumeration value="D"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="Abnormality" minOccurs="0">

<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Mass" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="ROI" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="Point" minOccurs="2" maxOccurs="2"/>

</xs:sequence>
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</xs:complexType>

</xs:element>

<xs:element name="Enhanced" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element ref="Image"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Boundary" type="arrayType" minOccurs="0"/>

</xs:all>

<xs:attribute name="radius" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="type" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="CIRC"/>

<xs:enumeration value="SPIC"/>

<xs:enumeration value="MISC"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="severity" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="BEN"/>

<xs:enumeration value="MAL"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="highlight_image" type="xs:IDREF" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Calcification" minOccurs="0">

<xs:complexType>

<xs:attribute name="radius" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="severity" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="BEN"/>

<xs:enumeration value="MAL"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="count" type="xs:positiveInteger" use="optional"/>

</xs:complexType>

</xs:element>
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<xs:element name="Distortion" minOccurs="0"/>

<xs:element name="Asymmetry" minOccurs="0"/>

<xs:element name="Secondary_sign" minOccurs="0"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Adequacy" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Positioning" minOccurs="0">

<xs:complexType>

<xs:all minOccurs="0">

<xs:element name="Tissue_exclusion_group" minOccurs="0">

<xs:complexType>

<xs:sequence minOccurs="0">

<xs:element name="Tissue_exclusion" type="lineType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Pectoral_muscle" minOccurs="0">

<xs:complexType>

<xs:attribute name="convex" type="xs:boolean" use="optional"/>

<xs:attribute name="angle" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="90"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="to_level_of_nipple" type="xs:decimal"

use="optional"/>

<xs:attribute name="percentage" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Nipple_line" minOccurs="0">

<xs:complexType>

<xs:sequence minOccurs="0">

<xs:element name="End_point">

<xs:complexType>

<xs:attribute name="x" type="xs:decimal" use="required"/>

<xs:attribute name="y" type="xs:decimal" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="length" use="required">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Inframammary_fold" minOccurs="0">

<xs:complexType>

<xs:sequence minOccurs="0">
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<xs:element ref="Point"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Compression" minOccurs="0">

<xs:complexType>

<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Contrast" minOccurs="0">

<xs:complexType>

<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

<xs:attribute name="average" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Exposure" minOccurs="0">

<xs:complexType>

<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

<xs:attribute name="avg_optical_density" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="percentage" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Noise" minOccurs="0">

<xs:complexType>

<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="Artifact_group" minOccurs="0">

<xs:complexType>

<xs:sequence minOccurs="0">

<xs:element name="Artifact" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Overall_quality" minOccurs="0">

<xs:complexType>
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<xs:attribute name="adequate" type="xs:boolean" use="optional"/>

<xs:attribute name="score" type="xs:decimal" use="optional"/>

</xs:complexType>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="Texture" minOccurs="0">

<xs:complexType/>

</xs:element>

</xs:all>

<xs:attribute name="location" type="xs:anyURI" use="optional"/>

<xs:attribute name="width" type="xs:positiveInteger" use="required"/>

<xs:attribute name="height" type="xs:positiveInteger" use="required"/>

<xs:attribute name="resolution" use="required">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="bit-depth" type="xs:positiveInteger" use="required"/>

<xs:attribute name="min_optical_density" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="max_optical_density" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Comment" type="xs:string" minOccurs="0"/>

</xs:all>

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="view" use="required">

<xs:simpleType>

<xs:restriction base="xs:string"/>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="side" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="L"/>

<xs:enumeration value="R"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="pair_id" type="xs:ID" use="optional"/>

<xs:attribute name="film_density" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">
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<xs:minInclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="exposure_time" use="optional">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:minExclusive value="0"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="Point">

<xs:complexType>

<xs:attribute name="x" type="xs:nonNegativeInteger" use="required"/>

<xs:attribute name="y" type="xs:nonNegativeInteger" use="required"/>

<xs:attribute name="z" type="xs:double" use="optional"/>

<xs:attribute name="i" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

</xs:element>

<xs:complexType name="lineType">

<xs:sequence>

<xs:element ref="Point" minOccurs="2" maxOccurs="2"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="arrayType">

<xs:sequence>

<xs:element ref="Point" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="array_length" type="xs:positiveInteger" use="required"/>

</xs:complexType>

<xs:element name="Image">

<xs:complexType>

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="location" type="xs:anyURI" use="required"/>

<xs:attribute name="resolution" type="xs:decimal" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>
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Iterative Threshold Selection

The iterative threshold selection method described in Chapter 4 was claimed to be “the
best possible solution for dividing the histogram while preserving the image average lumi-
nance” by Magid el at. in [68]. Their mathematical explanation is given below.

Let T be the threshold. A binary image can be created by replacing all pixels having
a darker grey-level than T by the grey-level A, and by replacing those brighter than T

by the grey-level B. Then an error function e2 can be defined to evaluate the sum of the
difference squared between the pixel values of the binary image and those of the original
image (using integral expressions for convenience):

e2 =
∫ T

0
(i−A)2h(i)di +

∫ N

T
(B − i)2h(i)di (C.1)

where h(i) is the grey-level histogram of the original image.

We have to prove that the solution given by iterative threshold selection minimizes the
error function e2 by showing that A and B are the means of the pixel values below and
above the threshold T , respectively, in the histogram.

The error function is minimized with respect to T by differentiating (C.1) with respect
to T and equating to 0, i.e.,

d(e2)
dT

= 0

d

dT

∫ T

0
(i−A)2h(i)di +

d

dT

∫ N

T
(B − i)2h(i)di = 0

d

dT

∫ T

0
(i−A)2h(i)di− d

dT

∫ T

N
(B − i)2h(i)di = 0

(T −A)2h(T )− (B − T )2h(T ) = 0

(T −A)2 = (B − T )2

T −A = B − T

T =
A + B

2
. (C.2)
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So T is the average of A and B.
By replacing the value T in the integral limits in (C.1) with (C.2), and minimizing the

error function with respect to A, we obtain

d(e2)
dA

= 0.5[((A + B)/2)−A]2h((A + B)/2)

+
∫ (A+B)/2

0
(−2)(i−A)h(i)di

−0.5[((A + B)/2)−B]2h((A + B)/2) = 0. (C.3)

The first and third parts cancel each other, so∫ T

0
(i−A)h(i)di = 0∫ T

0
i · h(i)di−

∫ T

0
A · h(i)di = 0∫ T

0
i · h(i)di = A

∫ T

0
h(i)di

A =

∫ T
0 i · h(i)di∫ T

0 h(i)di
. (C.4)

which shows that A is the mean of all the pixel values below the threshold T . In the same
way, we can show that when the error function is minimized, B is the mean of all the pixel
values above the threshold T .

Thus, we have proven that by selecting the threshold as the average of the means
of pixel values above and below the threshold in the histogram, the error function given
in (C.1) is minimized, hence image average luminance is preserved.

144



Bibliography

[1] Australian Institute of Health and Welfare, “BreastScreen Australia monitoring re-
port 2000–2001,” Australian Institute of Health and Welfare, Canberra, Australia,
Report AIHW cat. no. CAN 20, December 2003, Cancer Series no. 25.

[2] S. K. Moore, “Better breast cancer detection,” IEEE Spectrum, vol. 38, no. 5, pp.
50–54, May 2001.

[3] R. Highnam and M. Brady, Mammographic Image Analysis. Dordrecht: Kluwer
Academic Publishers, 1999.

[4] J. G. Daugman and C. J. Downing, “Demodulation, predictive coding, and spatial
vision,” Journal of the Optical Society of America A, vol. 12, no. 4, pp. 641–660, Apr.
1995.

[5] K. J. Bovis and S. Singh, “Enhancement technique evaluation using quantitative
measures on digital mammograms,” in IWDM 2000: 5th International Workshop
on Digital Mammography, M. J. Yaffe, Ed. Madison, WI, USA: Medical Physics
Publishing, 2001, pp. 547–553.

[6] P. Miller and S. Astley, “Automated Detection of Breast Asymmetry Using Anatom-
ical Features,” in State of the Art in Digital Mammographic Image Analysis, ser.
Machine Perception and Artificial Intelligence, K. W. Bowyer and S. Astley, Eds.
Singapore: World Scientific, 1994, vol. 9, pp. 247–261.

[7] U. Bick, M. L. Giger, R. A. Schmidt, R. M. Nishikawa, D. E. Wolverton, and K. Doi,
“Automated Segmentation of Digitized Mammograms,” Academic Radiology, vol. 2,
no. 1, pp. 1–9, Jan. 1995.

[8] J. Suckling, D. R. Dance, E. Moskovic, D. J. Lewis, and S. G. Blacker, “Segmenta-
tion of mammograms using multiple linked self-organizing neural networks,” Medical
Physics, vol. 22, no. 2, pp. 145–152, Feb. 1995.

[9] A. J. Méndez, P. G. Tahoces, M. J. Lado, M. Souto, J. L. Correa, and J. J. Vidal,
“Automatic detection of breast border and nipple in digital mammograms,” Computer
Methods and Programs in Biomedicine, vol. 49, no. 3, pp. 253–262, May 1996.

145



BIBLIOGRAPHY

[10] M. Abdel-Mottaleb, C. S. Carman, C. R. Hill, and S. Vafai, “Locating the boundary
between the breast skin edge and the background in digitized mammograms,” in Dig-
ital Mammography ’96: Proceedings of the Third International Workshop on Digital
Mammography, Chicago, USA, 9–12 June 1996, ser. Excerpta Medica International
Congress Series, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, Eds., vol.
1119. Amsterdam, The Netherlands: Elsevier Science, 1996, pp. 467–470.

[11] R. Chandrasekhar, “Systematic Segmentation of Mammograms,” Ph.D. Thesis, Cen-
tre for Intelligent Information Processing Systems, Department of Electrical and
Electronic Engineering, The University of Western Australia, Nedlands, WA 6907,
Australia, Oct. 1996.

[12] R. Chandrasekhar and Y. Attikiouzel, “Gross Segmentation of Mammograms using
a Polynomial Model,” in Bridging Disciplines for Biomedicine: Proceedings of the
18th Annual International Conference, IEEE Engineering in Medicine and Biology
Society, October 31–November 3, 1996, Amsterdam, The Netherlands. Amsterdam,
The Netherlands: IEEE, Oct. 1997, pp. 1056–1058.

[13] R. Chandrasekhar and Y. Attikiouzel, “A Simple Method for Automatically Locating
the Nipple on Mammograms,” IEEE Transactions on Medical Imaging, vol. 16, no. 5,
pp. 483–494, Oct. 1997.

[14] N. Karssemeijer, “Automated classification of parenchymal patterns in mammo-
grams,” Physics in Medicine and Biology, vol. 43, no. 2, pp. 365–378, Feb. 1998.

[15] S. R. Aylward, B. M. Hemminger, and E. D. Pisano, “Mixture modeling for digital
mammogram display and analysis,” in Digital Mammography: Nijmegen, 1998, ser.
Computational Imaging and Vision, N. Karssemeijer, M. Thijssen, J. Hendriks, and
L. van Erning, Eds. Dordrecht, The Netherlands: Kluwer Academic Publishers,
1998, vol. 13, pp. 305–312.

[16] R. Chandrasekhar and Y. Attikiouzel, “Segmenting the Breast Border and Nipple on
Mammograms,” Australian Journal of Intelligent Information Processing Systems,
vol. 6, no. 1, pp. 24–29, 2000.

[17] R. J. Ferrari, R. M. Rangayyan, J. E. L. Desautels, and A. F. Frère, “Segmentation
of mammograms: identification of the skin boundary, pectoral muscle, and fibroglan-
dular disc,” in IWDM 2000: 5th International Workshop on Digital Mammography,
M. J. Yaffe, Ed. Madison, WI, USA: Medical Physics Publishing, 2001, pp. 573–579.

[18] R. Chandrasekhar and Y. Attikiouzel, “Automatic breast border segmentation by
background modeling and subtraction,” in IWDM 2000: 5th International Workshop
on Digital Mammography, M. J. Yaffe, Ed. Madison, WI, USA: Medical Physics Pub-
lishing, 2001, pp. 560–565, Proceedings of the Workshop, June 11–14, 2000, Toronto,
Canada.

146



BIBLIOGRAPHY

[19] R. Chandrasekhar and Y. Attikiouzel, “New range-based neighbourhood operator for
extracting edge and texture information from mammograms for subsequent image
segmentation and analysis,” IEE Proceedings—Science, Measurement and Technol-
ogy, vol. 147, no. 6, pp. 408–413, Nov. 2000.

[20] F. Georgsson, “Algorithms and Techniques for Computer Aided Mammographic
Screening,” Ph.D. dissertation, Department of Computer Science, Ume̊a University,
Sweden, 2001.

[21] M. Yam, M. Brady, R. Highnam, C. Behrenbruch, R. English, and Y. Kita, “Three-
dimensional reconstruction of microcalcification clusters from two mammographic
views,” IEEE Transactions on Medical Imaging, vol. 20, no. 6, pp. 479–489, June
2001.

[22] R. Chandrasekhar and Y. Attikiouzel, “Segmentation of the pectoral muscle edge on
mammograms by tunable parametric edge detection,” in Advances in Signal Process-
ing and Computer Technologies, G. Antoniou, N. Mastorakis, and O. Panfilov, Eds.
Athens, Greece: World Scientific and Engineering Society WSES Press, 2001, pp.
55–60.

[23] M. Adel, M. Rasigni, G. Rasigni, B. Seradour, and P. Heid, “An automatic scheme to
breast region segmentation,” in Digital Mammography: IWDM 2002 6th International
Workshop on Digital Mammography, H.-O. Peitgen, Ed. Berlin: Springer, 2003, pp.
161–163.

[24] B. H. Allen, M. E. Oxley, and M. J. Collins, “A universal segmentation platform for
computer-aided detection,” in Digital Mammography: IWDM 2002 6th International
Workshop on Digital Mammography, H.-O. Peitgen, Ed. Berlin: Springer, 2003, pp.
164–168.

[25] R. Zwiggelaar, P. Planiol, J. Mart́ı, R. Mart́ı, L. Blot, E. R. E. Denton, and C. M. E.
Rubin, “EM texture segmentation of mammographic images,” in Digital Mammog-
raphy: IWDM 2002 6th International Workshop on Digital Mammography, H.-O.
Peitgen, Ed. Berlin: Springer, 2003, pp. 223–227.

[26] M. A. Wirth and A. Stapinski, “Segmentation of the breast region in mammograms
using active contours,” in Visual Communications and Image Processing, T. Ebrahimi
and T. Sikora, Eds., vol. 5150, Lugano, Switzerland, 2003, pp. 1995–2006.

[27] R. J. Ferrari, R. M. Rangayyan, J. E. L. Desautels, R. A. Borges, and A. F. Frère,
“Automatic identification of the pectoral muscle in mammograms,” IEEE Transac-
tions on Medical Imaging, vol. 23, no. 2, pp. 232–245, February 2004.

[28] M. Masek, Y. Attikiouzel, and C. J. S. deSilva, “Skin-air interface extraction from
mammograms using an automatic local thresholding algorithm,” in Proceedings of the

147



BIBLIOGRAPHY

15th Biennial International Conference Biosignal 2000, Brno, Czech Republic, June
2000, pp. 204–206.

[29] M. Masek, Y. Attikiouzel, and C. J. S. deSilva, “Combining data from different
algorithms to segment the skin-air interface in mammograms,” in Proceedings of the
World Congress on Medical Physics and Biomedical Engineering, Chicago, USA, July
2000, CD-ROM, 4 pages.

[30] M. Masek, R. Chandrasekhar, C. J. S. deSilva, and Y. Attikiouzel, “Spatially based
application of the minimum cross-entropy thresholding algorithm to segment the pec-
toral muscle in mammograms,” in ANZIIS 2001: Proceedings of the Seventh Aus-
tralian and New Zealand Intelligent Information Systems Conference. Perth, Aus-
tralia: ARCME, The University of Western Australia, Nov. 2001, pp. 101–106.

[31] M. Masek, C. J. S. deSilva, and Y. Attikiouzel, “Comparison of local median with
modified cross-entropy for pectoral muscle segmentation in mammograms,” in Pro-
ceedings of the 16th Biennial International Conference Biosignal 2002, Brno, Czech
Republic, June 2002, pp. 320–322.

[32] M. Masek, “Hierarchical segmentation of mammograms based on pixel intensity,”
Ph.D. Thesis, Centre for Intelligent Information Processing Systems, School of Elec-
trical, Electronic and Computer Engineering, The University of Western Australia,
Crawley, WA 6009, Australia, Feb. 2004.
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