A Torso Driven Walking Algorithm for
Dynamically Balanced Variable Speed Biped
Robots

by

ALISTAIR JAMES SUTHERLAND

BSc (IT), University of Western Australia, 1991

BE (EE), University of Western Australia, 1993

DISSERTATION

This thesis is presented to the
School of Electrical, Electronic and Computer Engineering
for the degree of
Doctor of Philosophy of Engineering
at

The University of Western Australia

June 2006

Abstract

As a contribution toward the objective of developing useful walking machines, this
dissertation considers solutions to some of the problems involved with bipedal robot
development. = The main area of focus involves control system design and

implementation for dynamically balanced walking robots.

A new algorithm “Torso Driven Walking” is presented, which reduces the complexity
of the control problem to that of balancing the robot’s torso. All other aspects of the
system are indirectly controlled by the changing robot state resulting from direct control
of the robot’s torso. The result is literally a “top-down” approach to control, where the
control system actively balances the top-most component of the robot’s body, leaving
the control of the lower limbs to a passive “state-driven” system designed to ensure the

robot always keeps at least one leg between the torso and the ground.

A series of low-cost robots and simulation systems have been constructed as
experimental platforms for testing the proposed new control system. The robots have
been designed to balance on “point” feet, and so the control system must be able to

dynamically maintain balance, while moving at a variable velocity.

The Torso Driven Walking control system achieves a fully dynamic, variable speed
walking behaviour that does not rely on maintaining a stable supporting polygon for
balance. In addition, the system exhibits a high degree of tolerance for low frequency
“bias” or “drift” errors. These measurement errors are commonly encountered when

using sensors for detecting torso inclination.

11

Acknowledgements

In completion of this Thesis I would like to thank several people for their support and

valuable contributions.

Direction — A/Prof Thomas Briunl

Proof reader and constant support — Virginia Sutherland

Inspiration — Cormac Sutherland

Assistance with dynamics revision — Dr. Nathan Scott

Genetic algorithm introduction and advice — Adrian Boeing

Advice, encouragement, coffee conversation and many ideas —
Martin Wicke

Philippe Leclercq

Uli Mezger

111

Table of Contents

1 INErOAUCTION cuucceeeiennieiteineiineisneectecsnecssecssecssseessesssesssesssesssassssesssassssssssassssesssasssasans 1
1.1 Problem identification............cocueruieiiiiienieieeeee et 1
1.2 Research gOals........ccocioiiiiiiiiiiee e 9
1.3 Robotic experimental platforms..........ccceeveeeiiieriieiieniieieeeeeeeee e 11
1.4 ThesiS OTZANISATIONcccueeruiieiieriieeiie et eiee ettt ettt e et e st e eaeeeabeesseeeneeas 14

2 Control Systems for Walking RODOtS.......cccevvueevurerenssuenseensnensenssnensnecsssecsanssaneens 16
2.1 Some ancient RIStOTYcoeivuiriiiiiiiiietee e 16
2.2 Humanoid walking classifiCationsccceeveeriierieniiieriieeieeriee e eiee e 17
23 Control systems for dynamic GaitS........c.ccecuereeririiinienenienieseeeeeeseeeene 24

3 Torso Driven WalKINgcoeeeeensennsnenssnnnsnenssnesssenssnssssesssnssssesssnsssssssssssssesssssssases 56
3.1 Control system 1SSUESs t0 CONSIACTc.ueruviruieriiriiniiiieeieetene et 57
3.2 Control SYStem deSIZN......cccuieiiieriieiiieiieeie ettt ebeesereeseeseneenneas 65

4 Experiments with Johnny Walker & Jack Daniels..........ccooveevueisverisneiisecisuennns 101
4.1 Introducing Johnny and Jack..........cccoocvieiiiniieiiieniieiieecece e 102
4.2 Previous work with Johnny and Jack...........ccccooeniiiiniinine, 103
4.3 What do I want from these robOtS?cccevuerieriirienieeeeeeeee e 105
4.4 Construction and materialS...........cocveeiuieriiiiiieniieeee e 106
4.5 ExXperimental OVEIVIEWc.coevuiiiiiiieiiiie e 111
4.6 Walking demo using Johnny Walkerccccoceviininiiniininiiiicceiceeee, 111
4.7 Johnny and Jack’s 1€ZACYcccuiiriiiiiieiieeie et 120
4.8 EXPerimental TEVIEWcccuieiiieiiieiiieiieeie ettt ettt et ebeesnee b 122

S Experiments with the Ballybotcuienuennuinnuennnennuinnsnensnennnecsenssnesssecssneenees 123
5.1 Introducing Ballybotc.cooiiiiiiiiiiie e 124
5.2 Why build a Ballybot?c..ccoiiiiiiiiiiinieeeeeeeeeeee e 125
53 IMALIIALS. ...t 128
54 Experimental OVEIVIEWccceeeciiiiiieriiieiieniieeieente ettt et see e e seeesee e 131
5.5 Torso Attitude Controller for the Ballybotccccoeeiiieiiiiciieeeee 134
5.6 Force from VOItAZecc.eeviieriieiieeie ettt 142
5.7 Sensors for BalancCeoecueiiiiiiiiiiie e 160
5.8 Comparison with a “first-principles” adaptive control system..................... 178
5.9 EXPerimental TEVIEWcccviiiiiiieeiiieeieeeee et 194

6 Experiments with the Legbot..........iioeiiiiiivniicnisnnniccsssnnicssssnnnecssssnssesssssssscssnns 198
6.1 INtroducing Legbot.........viieiiiieiieeeeeeeee e e 199
0.2 MOTIVALION ...ouuiiiiiiiieieeteritest ettt ettt ettt et st be et 200
6.3 IMALIIALS. ...t 203
6.4 Experimental OVEIVIEWcccceeiciieruieeiieiieeieeiie et et siee e e seeesseesnee e 210
6.5 Torso Driven Walking control SyStem..........ccccvveeviieerieeeiieeeieeeiie e 213
6.6 Genetic algorithm tuning of TDWcccoooiiiiiiiiiiiiicee e 232
6.7 Porting the TDW control system to new environments...............cceeevveennnee. 255
6.8 TDW comparison with Virtual Model Control..............cccoeviiieiiiniiniiennn. 275
6.9 PhysiCal 1€ZDOt.....cccueiieiiieeieeeeeee e 312

T CONCIUSION ..cuuueeecnneieinieciineiesineeessnnecsssnecsssnessssnessssnesssssesssssessssesssssasssssssssssassssansssses 325
7.1 Project MIlESTONEScceviiieiiieciie ettt 325
7.2 Review of research g0alsocceviiieiiiiiiiiiieee e 335
7.3 FUtUre WOrko.ooiiiiii e 339

Appendix A Materials 342
A-1 Eyebot robotic platformcccceieiiiieiiieeieeeeeeeeee e 342
A2 ACTUALOTS ..ttt sttt et 343

Appendix B Ballybot dynamic Simulationceeeenveicnssenensnncssnncssnncssnnncsenns 347

v

B-1 INtrOdUCHIONoutiiiiiiiiiceiecc et 347
B-2 System deSIZN ...c.ovuiiiiiiiiiiiiieieet e e 348

B-3 SoOftware deSIZN........cccuiiiiiiieiiie et 349
B-4 Dynamic model.........cooouiiiiiiiiiiiiiee e 351
Appendix C Legbot dynamic model and software simulation...........c.cceeuveennen. 359
C-1 INOAUCTION ...ttt ettt et e et eesaeeeabeens 359
C-2 SyStEM AESIZN .oouviieiiieiieeiieiie et eee ettt ettt e bt e e enbe e saeeseeaeeesseensaeeaseens 361
C-3 Software deSIZN.......coeevieriiriiieeieee et 362
C-4 Dynamic MOcccoiiiiiiiiiieiiecie ettt neens 365
BibliOGraphy ..ccccueicivuiinisiininnninssnncnssnnisssnncsssnssssnsssssssssssssssssssssssssssssssssasssssssssssssssssassses 392

1 Introduction

1.1 Problem identification

Human beings, together with almost all other creatures on this planet, exhibit modes of
locomotion that are far more adaptable, wide ranging and robust than any machine that
has yet been developed. The goal of research into walking robots, and bipedal walking
research in particular, is to work towards the development of robots that can walk, run
and climb as well as a human being, or other animal. The fact that this has not yet been

achieved is evident by the absence of walking machines in everyday life.

As a contribution toward the objective of developing useful walking machines, this
dissertation will consider solutions to some of the problems involved with bipedal robot
development. ~ The main area of focus involves control system design and
implementation. A new biped walking control system, “Torso Driven Walking” is
introduced. Other areas of concern in biped robotics research, including robotic design
and sensor selection and interpretation will also be considered. A series of low-cost
robots and simulation systems have been constructed as experimental platforms for
testing the hypotheses with respect to these areas of interest in the field of walking

robots.

Legged robots have the potential for significant advantages over conventional, wheeled
robots. The most often cited is the ability to navigate more difficult terrain, and
negotiate obstacles where a wheeled vehicle would not be able to pass. Commonly
identified applications for biped robots include use as automata in rough terrain, as
vehicles to assist the disabled or as robotic explorers in space missions. These visions

are far from realised. The problem currently is that walking robots are much more

expensive, complicated to build, and difficult to control, than wheeled or even flying

machines.

The difficulties in developing walking machines are the primary reason for the interest
in investigating bipedal robots. More ambitious uses for a walking robot can be
invented, but they often sound rather contrived. Many of the commonly identified
applications require such a high level of robotic sophistication that it will be many years
before they could hope to be seriously considered practical — if they ever are. Of
course, if we never start looking into the problems, robust walking machines capable of
performing the more ambitious goals of researchers in this field will continue to remain

solely in the realm of science fiction.

The problem of making a robot that can walk well is worth investigating because it has
been recognised as something that is harder than it looks, and requires integration of
solutions to a range of problems that can be extrapolated to other fields of robotic
research. Walking robots are a non-trivial test platform for developing and evaluating
solutions to robotic challenges ranging from sensor interpretation to artificial

intelligence and adaptive control. Areas of focus for this thesis are:

Topics of interest:

Control system fabrication.
e Sensor selection and interpretation.
e Software modelling techniques.

e Issues associated with porting solutions from a simulated environment to a
physical system.

e Appropriate application of adaptive control methodologies.

1.1.1 State of research today

There are several hundred research groups actively developing bipedal walking robots

and related technologies. For example, one web catalogue has sixty three biped robots:

http://www.walking-machines.org/

Most are slow-moving statically balanced walkers. Many have enormous feet so they
do not fall over. They tend to be heavy, rigid and underpowered, with a typical walking
speed of 10 or more seconds per step. Many, including our own prototype robot
“Johnny Walker”, simply execute pre-determined joint trajectories and are thus not
much different from expensive wind-up toys. In order to achieve more robust robot

walking, more sophisticated control systems are required.

The following robots are commonly acknowledged as being among the “leading edge”
in the field of humanoid walking robots, in terms of robot construction and control. All
of these robots are the result of many years’ research, and considerable financial

investment.

1.1.1.1 “Qrio” (Sony)

In December, 2003, Sony unveiled a new version of their Humanoid robot “Qrio”, that
is able to run. In humanoid research, running is commonly defined as a gait where both
feet leave the ground during execution of the steps. The running ability currently being
reported for “Qrio” carries the robot for a distance of 3-4m, at a speed of 14m/minute.
Qrio’s feet are airborne for a total of only 20ms during each step. Considering Qrio’s
size of approximately 60cm, this running performance is equivalent to a human taking

142 seconds to run 100m, but stopping after 12m. While — according to the commonly

held definition — the gait described can technically be called running, there is still a lot

of work to be done before a robot will be demonstrated to run like a human.

Image source: http://www.dottocomu.com/b/archives/cat_robots.html

Figure 1-1 Sony's humanoid robot, "Qrio".

Depending on which report you read, Qrio’s price would range anywhere between the
cost of a small car, to that of a luxury car. Since Sony have not yet made any models
available for purchase, all we can take from this is the fact that a substantial investment
must have been made by Sony to get Qrio to the state it has reached. For the time
being, Qrio’s roles are likely to be restricted to public relations work for Sony. Qrio’s
recent duties have ranged from conducting the Tokyo Philharmonic Orchestra (playing

Beethoven’s 5™ Symphony), to performing dance routines at press conferences.

1.1.1.2 “Asimo” (Honda)

The culmination of 18 years development, “Asimo” is the latest in a line of humanoid
robots coming from the Honda research laboratories. Standing at 1.2m in height, and
weighing 52kg, Asimo is the size of a human child. With twenty six degrees of
freedom, including six in each leg, Asimo exhibits a wide range of possible movements.

Pressure sensors in the feet, a gyroscope and acceleration sensors in the torso are inputs

into a variation of the zero-moment-point control system (see Chapter 2.3.1), which is
used to adjust a series of pre-generated joint trajectories. The resulting walking pattern
can reach a top speed of 1.6 km/h. To continue the comparison made with Qrio’s

running speed, this performance is equivalent to walking 100m in 225 seconds — or 3%

minutes.
10856 1987 - 1931 1001 - 1003 1003 - 1997 2000 -
. . o ; .
a & a : __':'_' I

[T o ST : E’ B L "" Ficr) Lt s
I B i LS

ED E1 E2 E3 E4 ES EG P1 P2 P3 ASIMOD
Image S(I)urce: http://Wlorld4honda,lcom/ASIMO/histc:ry/ I I) I I I

Figure 1-2 Eighteen years of Honda bipeds

As with Sony’s robot, at present Honda has declined to suggest an estimated price to
purchase an Asimo unit. However Asimo is finding limited commercial application,
Honda is reported to be renting Asimo units to four companies, including IBM Japan

and a science museum in Tokyo, for a reputed price tag of $163,000 a year.

At Home
1200 — 0
O] Switch 1104
i A ’—d—
1000 - |
900 7 — Dioormob 900
Kitchen Sink 1
800 ;
TO0 = Table 700
600 r
500 .’ — Gaffa Table 500
400
300
200 Stairs 180 ol
100
PR g—
+ The abowe haights are exarmplas to serve as a referanca(mm).

Image source: http://world.honda.com/ASIMO/technology/concept.html
Figure 1-3 “Asimo” at home

Like the Qrio robot for Sony, for the time being the robot Asimo’s main role is to
provide a demonstration of the company’s technical expertise. Asimo has appeared in a
number of advertisements for Honda, and one unit was recently making a public

relations tour of high schools in North America [92].

1.1.1.3 MIT Leg Laboratory

MIT’s legged laboratory has a long history of research into legged robots. Beginning
with the demonstration of a planar hopping robot in 1982, the Leg Laboratory has
developed a number of robots demonstrating walking and running gaits. Early robots

such as the “3D-Biped” have simplified “telescoping” legs, and move by hopping to

keep balance.

Image source: http://www.ai.mit.edu/projects/leglab/robots/3D_biped/3D_biped.html

Figure 1-4 MIT Leg Laboratory — “3d-Biped”

The laboratory’s current robots exhibit fully articulated biologically inspired legs.
Troody is a well known robot, built to resemble a Troodon (a species of dinosaur). This
robot exhibits sixteen degrees of freedom, with seven in each leg. Each toe is
independently actuated. In order to provide joint behaviour that appears to more closely
mimic biological structures, Troody employs a technology called “series elastic

actuators”. This simply means that motors to drive the robot joints are attached to

springs, providing more natural looking joint characteristics than traditionally actuated

robots.

Image source: http http://www.ai.mit.edu/people/chunks/chunks.html

Figure 1-5 MIT Leg Laboratory — “Troody”

The researchers responsible for developing Troody have formed a spin-off company,
“Dinosaur Robots Inc”, through which they hope to sell future versions of dinosaur

inspired robots four use in museums, the entertainment industry, and as expensive toys.

1.1.2 Torso Driven Walking control system

Torso Driven Walking is a new control system for balancing biped systems, introduced
in this thesis. The Torso Driven Walking control system is a “top-down” inverted
pendulum inspired control system. Inverted pendulum models are often used to
describe biological walking systems, such as in [57], [59], and have been shown to
generate very efficient walking gaits [58]. Inverted pendulums require truly dynamic
balance, and yet the classical solution to the problem of inverted pendulum control is

surprisingly simple. The equation at the heart of most inverted pendulum inspired

control systems is expressed by (1), where the balancing horizontal force can be

determined using a simple linear relationship between four state variables [26].

fi=a@+bO+cx+dx (1)

In Equation (1), @ and x are respectively the inclination angle and displacement of the
pendulum, whereas {a, b,c,d } are simple scalar values. The Torso Driven Walking

control system uses this equation to balance the robot’s torso through the application of
a torque to the supporting leg’s hip joint. This leaves control of the robot’s feet to an
ancillary algorithm, which has no need to directly consider the problem of balance, and
is merely responsible for ensuring there is always a foot between the robot and the
ground. In this way, a robot balancing using the Torso Driven Walking control system
walks as a consequence of keeping balance, rather than attempting to maintain balance

while walking.
Some of the advantages realised by the Torso Driven Walking control system include:

e The inverted pendulum based balancing algorithm (1) is the only component
requiring an absolute inclination reading. Chapter 5.7 demonstrates this
component can robustly handle sensor noise — especially gyroscope “drift” or
“bias”. This allows inexpensive solid state gyroscopes to be used as the
inclination sensor.

e The TDW algorithm is relatively easy to explain, and tuning parameter
behaviours can be described intuitively.

e The control system is modular in nature, allowing distinct components of the
system to be developed and tested in isolation to the complete system.

e The control system does not require an accurate system model of the robot being

controlled.

e Foot placement is arbitrarily determined, allowing for the possibility of selecting
footholds according to terrain, rather than to maintain balance.

e All of the balancing torque, as well as a significant component of translational
forces are generated by the hip joint actuators, which can be mounted within the

robot’s torso.

The Torso Driven Waking control system is described in greater detail in Chapter 3, and

is the focus of many of the experiments presented in this thesis.

1.2 Research goals

The goal of this thesis was to produce a simple, robust, low-cost biped walking

machine. With this strategic objective in mind, the “primary” goals were:

Primary goals:

e To design and build a robot that exhibits a natural looking gait.

e To implement a control strategy that does not require a precise kinematic/kinetic
model.

e To implement a control strategy that allows operators to command the robot to
move with a specific, variable target velocity.

e To accommodate moderate amounts of sensor noise without causing the robot to
fall.

e Demonstrate that the Torso Driven Walking control system is a viable control
system for biped walking.

e To keep power sources and computers on board.

e To restrict the developmental costs to the constraints of a limited budget.

Unfortunately, even the simplest biped robot is an extremely complex system. Usually
there are a high number of degrees of freedom, each joint is driven by some kind of
actuator, and state information is read by a number of sensors. Imperfections and noise
creep into the system in all of these areas — especially in collecting and interpreting
sensor data, and modelling actuator behaviour. In order to regulate this complex
system, a control algorithm needs to use noisy state information observed by the sensors

to impose order on the system, with the final result being the robot walks.

If you have just built a robot, installed some sensors, and written a control algorithm —
the most likely resulting robotic behaviour is to consistently fall over. It is very difficult
to troubleshoot such a complex system, with so many different potential modes of
failure. If the robot is falling, is the control system at fault? Perhaps the sensors are not
giving accurate information? Perhaps they are not even giving the right kind of
information? The list of possible causes is very large. Usually more than one problem
will be present at once — even if you fix one of the failure modes, you may not realise it

as the robot is still falling due to another problem.

The strategy employed to cope with this complexity has been to develop a series of
small, inexpensive robots. Each robot has been used to help isolate and attempt to find
solutions to issues that have been identified from previous work as critical to the
development of low-cost walking machines. Additionally, a software simulation has
been developed for each new robot, allowing control systems to be designed and tested
in a wholly controllable artificial environment before being exposed to the challenge of
real world control. Successive robots carry forward solutions that were proven on their
simpler predecessor, and introduce a limited number of new challenges. The idea is that

each new robot is a step closer to realising our primary goal.

10

1.3 Robotic experimental platforms

1.3.1 Johnny Walker

Johnny Walker, and experiments conducted using Johnny Walker, will be more fully

described in Chapter 4.

Figure 1-6 Johnny Walker

Johnny is a 9 degree-of-freedom, SERVO actuated, biped robot. Johnny was designed
and built as a first pass at building a walking robot. While not able to achieve anything
close to our stated goals for walking using this robot, it was a useful tool for identifying
areas critical to the development and control of walking robots. Some key issues

identified as a result of experiments with Johnny Walker were:

e Importance of appropriate sensor selection and interpretation.

e Desirability of force control of joints.

11

1.3.2 Ballybot

The Ballybot, and experiments conducted using the Ballybot, will be more fully

described in Chapter 5.

Figure 1-7 Ballybot

The Ballybot is an inverted pendulum inspired robot. It was designed primarily as a test
platform for experiments with sensors for robot balance. The robot needs to measure its
orientation, especially inclination angle, in order to determine a torque, which when
applied to the robot’s wheels keeps the Ballybot from falling over. The idea was that if
a collection of sensors can be identified that allow this robot to balance, the same
sensors will also be suitable for providing orientation information to a more complicated

walking robot.

Topics investigated using the Ballybot included:

e Sensor selection and integration.
e Balancing algorithms

e Artificial neural networks as a tool for developing control systems from scratch

12

1.3.3 Legbot

The most recent experimental platform, this robot extends the Ballybot by replacing
wheels with a pair of two degree of freedom legs. The feet have been designed to
approximate “points” when viewed in the sagittal (x-y) plane, but to be very wide in the
z direction. This design constrains the robot motion to the sagittal plane, and reduces
the 3D system to a planar 2D robot. This simplifies the task of modelling the robot
dynamics, and therefore makes the development of a control strategy simpler, while still

being extensible to the more general 3D case.

Figure 1-8 Legbot

Topics investigated using the Legbot included:

e Force control of joints
e Balancing control systems for legged robots

e Investigate genetic algorithms as a tool for tuning a generic control system

The Legbot will be described in more detail in Chapter 6.

13

1.4 Thesis organisation

Chapter 2 Control systems for walking robots. Presents a review of the
development of control systems for biped walking, including a summary

of recent research.

Chapter 3 Torso Driven Walking. Presents a detailed design of the Torso Driven

Walking control system, which is the subject of the bulk of this thesis.

Chapter 4-6 Investigations and Experiments

Chapter 4 Experiments with Johnny Walker and Jack Daniels

o Preliminary experiments with an existing robot platform are used to
highlight areas of concern in the development and application of biped
robot systems. The interrelationships between control system, sensors,

actuators and physical construction are highlighted.

Chapter 5 Ballybot experiment

o The Ballybot is used as a test system for the most critical component of
the Torso Driven Walking control system (the Torso Attitude Controller

subsystem)

o Issues relating to the implementation of Torso Driven Walking on a

physical Ballybot robot are identified and addressed.

o An experimental comparison is made between Torso Driven Walking
and a “first-principles” Artificial Neural Network control system for the

Ballybot.

Chapter 6 Legbot experiments

o A simulation of the Legbot is used as a test system for the complete

Torso Driven Walking control system.

14

Chapter 7

Genetic Algorithms are developed as a tool for automatic tuning of the

Torso Driven Walking control system.

Issues relating to the porting of a Torso Driven Walking controller to

alternative environments are investigated.

An experimental comparison is made between Torso Driven Walking,

and an alternative biped control system known as Virtual Model Control.

Issues relating to the implementation of Torso Driven Walking on a

physical Legbot robot are identified.

Conclusion. A summary of the process followed during the course of
this thesis is presented, together with a review of the research goals and a

number of ideas for future research.

15

2 Control Systems for Walking Robots

"Motion is created by the destruction of balance, that is, of equality of weight, for nothing can move
by itself, which does not leave its state of balance, and that thing moves most rapidly, which is

furthest from its balance." - Leonardo da Vinci.

While there are many aspects of robotic research that must be integrated successfully to
produce a walking biped robot, the area of most critical importance is the robot’s
control system. Developing a suitable control system for experimental robots has been
the major focus of the work done towards preparing this thesis. As a result, it is
appropriate to review some of the history of biped robot control, as well as introduce

some of the terminology used to discuss biped robot control systems.

2.1 Some ancient history

Image source: http://www.history.rochester.edu/steam/hero/section70.htm
Figure 2-1 Figures made to dance by fire on an altar, an early example of steam powered automata
attributed to the Greek mathematician Heron of Alexandria.

Throughout recorded history, people have always had a fascination with the idea of
building artificial men. Legends of artificial people and animals are common to many
cultures. As well as telling myths featuring artificial men, people have been building

animated models of human beings, or automata, for thousands of years.

16

Despite this long interest, it is only recently that people have begun to have some
success making biped robots walk, as recent advances in technologies and materials
make the actuators and control systems required for robot walking possible. Of all these
advances, it is the advent of powerful digital computers in the last century, which has
been most critical in enabling researchers to find ways to generate the dynamic,
adaptable and timely control signals required to keep a system as complex as a biped

robot balanced while walking.

2.2 Humanoid walking classifications

2.2.1 Supporting polygon

Many of the approaches to controlling robot walking behaviour rely on the control
system tracking the robot’s orientation in space with respect to its “footprint” on the
ground. This “footprint” is an imaginary area drawn on the ground, such that all parts
of the robot in contact with the ground at a given time delimit the outside border of the
area. If only one foot is in contact with the ground, this area is the contact area of the
foot. If multiple feet are on the ground, this area includes the contact areas of the
supporting feet as well as the area between the contact feet, even though there may not
be any part of the robot contacting the ground at the intermediate points. The term used

in literature to describe this shape or projection on the ground is the “supporting

polygon” [62].

e g '31.\'?«@,—:‘
At DA AS
¥ Yol o
/A8 A AN
Y il A
g 48
o o Y T 2
“'\;.»'/D < - 5 i AN _

Horse walking gait images sourced from: http://www.angelfire.com/tx2/kidshorses/gaits.html
Figure 2-2 — The supporting polygon associated with a horse’s walking gait. The polygon’s shape
continually changes as different hooves contact the ground over the course of the horse’s walk.

17

A basic understanding of physics can demonstrate that if a structure is immobile, or
static, and its centre of mass projected onto the ground (GCoM) lies within the
structure’s supporting polygon, the structure will remain standing. The structure is
statically stable. When the structure’s GCoM falls outside the bounds of its supporting
polygon, then the structure will tip over. In the diagram shown by Figure 2-3, structure

A is statically stable, while structure B is not.

| Supporting polygon | | Supporting polygon | GCoM

Figure 2-3 Structure (A) is statically balanced, while (B) is not. In the absence of any external
forces, structure (B) will fall.

If the dynamic forces associated with a structure’s motion are small enough, this rule
can be extrapolated to allow an evaluation of the stability of moving structures. Robot
control systems using this concept to maintain stable walking patterns have become

generally known as static walking or static crawling control strategies.
2.2.2 Static walking

While the label is a modern invention, the relationship between static balance and centre
of mass has been understood for a very long time. Leonardo da Vinci demonstrates an
understanding of the concept as he describes how to draw human figures in motion, in

his notebooks.

18

“The centre of gravity of a man who lifts one of his feet from the ground always rests on the

centre of the sole of the foot [he stands on]” - Leonardo da Vinci [86]

It is a fairly simple matter to construct robots that automatically walk by keeping their
GCoM within the supporting polygon. The objective is to generate a walking joint
trajectory that satisfies the constraint of always keeping the GCoM within the robot’s
supporting polygon. The trajectory is then “played back” on the robot, at a slow enough
speed that dynamic contributions to rotational forces are kept small enough that the
robot maintains its balance. The joint trajectory can be determined offline by iteratively
calculating the position of the robot centre of mass at various points along the walking
cycle. Alternatively, instead of calculating the GCoM, the robot itself can be “posed”

and its static balance experimentally verified in its various walking positions.

Simple static walkers do not require complex control systems, as all they need to do is
play back a pre-recorded joint trajectory. Early experiments with walking robots used
kinematic linkages to move limbs in such a way that the structure is statically balanced
at all times, while executing stepping motions. Up to a point, errors introduced by the
presence of dynamic forces, uneven ground or other unexpected disturbances could be
compensated for by increasing the size of the supporting polygon — usually by giving
the robot large, or many, feet. This is an approach that is still sometimes used today,

even in more “sophisticated” dynamic walking experiments.

The advent of the digital computer allowed scientists to easily modify a robot’s gait in
response to unexpected disturbances. In 1968, Frank & McGhee conducted
experiments with static walking robots that were controlled by microprocessor [60].
The microprocessor gives researchers far more flexibility in developing robot gaits,

which have been implemented by a number of researchers on a range of static walking

19

quadrupeds and hexapods. Research is continuing today on the descendants of these

early static walking, multi-legged machines (for example, Long, et. al. [83]).

Image source: http://robotics.ee.uwa.edu.au/eyebot/doc/robots/walker.html

Figure 2-4 — EyeBot Walker cheats by stepping over walls in a maze puzzle

While static walking robots certainly have their applications, they are severely limited
by the need to minimise dynamic forces in the system, and to constrain the centre of
mass to within a supporting polygon. High speeds, natural looking movements, gait
flexibility and the ability to take advantage of dynamic movements to recover
equilibrium if the robot starts to fall, all remain out of reach of static walking machines.
In 1980, Kato et al. [61] made some of the first steps away from the static walking
model by developing a biped robot control system that executed a gait they described as

“quasi-dynamic walking”.

2.2.3 Quasi-dynamic walking.

Quasi-dynamic is a term given to a class of walking machines which are statically
balanced for much of their gait, but deliberately lose their balance during some portion
of each step. The term was introduced by Kato et al. [61], when they presented their
research into a walking biped robot. Their machine was essentially a static walker that
made use of some limited dynamic movements in order to quickly transfer its weight
between feet as it walked. The free leg was first positioned to “catch” the robot, and

20

then the robot caused itself to “fall” onto the prepared airborne leg. An inverted

pendulum model was used to plan the dynamic weight transfer.

While quasi-dynamic walking is generally considered an improvement on static
walking, in that a greater range of movements are possible, the control system driving
these robots is not necessarily more sophisticated. Usually the proportion of the gait
which is dynamic is short and fast enough that the resulting dynamic response is highly
repeatable. Most quasi-dynamic robots still require large feet to ensure the transition
from a dynamic to statically balanced state is safely achieved. This means that most
robots exhibiting a “quasi-dynamic” gait can still achieve walking by playback of a
predetermined joint trajectory. Active control is often not required, and not used. Many
popular “walking” toy robots move in this way. A recent example is the “Robosapiens”

toy, produced by Hong Kong based company WowWee.

Image source: http://www.wowwee.com

Figure 2-5 — “Robosapiens” is a quasi-dynamic walking toy.

Robosapiens moves by rocking its torso from side to side in order to transfer its weight
from one super-sized foot to the other. Technically this toy robot fulfils the criteria for
“quasi-dynamic” walking, but as far as its walking control system is concerned, it is no

more complex than the wind-up clockwork toys.

21

The walking robot prototype, Johnny Walker (described in Chapter 4), was able to walk
using a quasi-dynamic walking gait. Very little in the way of active control was

performed by this robot.

Quasi-dynamic robot control systems are essentially a limited extension of static
walking control systems. They gain some extra flexibility from the ability to break the
rule about always being continuously statically balanced. This increases the control
options available to gait designers. Quasi-dynamic robots often rely on a long statically
balanced phase to recover from perturbations resulting from the short dynamic part of
their gait. Since they are “enhanced” static walkers, usually they require large feet and
are slow moving...even if, as in the case of “Robosapiens”, the legs are taking many

small fast steps.

Both static and quasi-dynamic biped walkers fail to take full advantage of the flexibility
afforded to walking machines by their structure. This means many of the advantages
that are commonly cited as justification for building walking machines cannot be
realised by this category of robot. Currently much of the interest in walking robots is
focused on the development of truly dynamic walking robots, which require far more

sophisticated and active control systems to operate.

2.2.4 Dynamic walking.

A robot classified as a dynamic walker is not required to return to a statically balanced
state at any point during its walking motion. These “dynamic walkers” are sometimes
called “actively balanced” robots, as during “dynamic” motion the control system must
constantly take actions to keep the robot from falling over. In effect, dynamic walking
is achieved by shifting the robot into a state of a continuous, controlled fall. Of course,

being a dynamic walker does not necessarily preclude a robot from using static walking

22

strategies when it chooses, but this should no longer be a constraint. In order to focus
more on the dynamic control of walking robots, many experimenters in dynamic
balance have constructed their robots to preclude any possibility of static balance.
Robots such as MIT’s “Uni-hopper” [55] must continuously maintain dynamic balance,

or they will fall — they can never be statically balanced.

Obviously, dynamic walking is considerably more difficult to achieve than “static” or
“quasi-dynamic” walking. However, if researchers want to realise the potential of
legged robot locomotion, robust dynamic balance is a fundamental requirement. The
ability to maintain balance while dynamically walking and running is a trait possessed
by almost all walking animals — although it is true that some creatures are better at it

than others.

The advantages dynamic walkers possess over static and quasi-dynamic machines stem
primarily from increased gait versatility and speed. A robot that is not bound by the
constraints of maintaining static balance is free to adapt its gait to environmental
conditions. For example, dynamic walkers should be free to pick out isolated footholds
when crossing difficult terrain. Since dynamic walkers are constantly in a statically
unstable state, it should be easier for these machines to recover easily from unexpected
bumps and knocks. Since the robots are not required to minimise their dynamic forces,
they can be developed to move far more rapidly than static and quasi-static walkers,
increasing the range of movements that can be utilised. And finally, since they are not
relying on a large supporting polygon to stay balanced, dynamic walkers are freed from

the requirement to possess large, ungainly “clown” feet.

An extension to the idea of dynamic walking is dynamic running. Running is usually
defined as a gait where contact is lost with the ground during a portion of the robot’s

step.

23

Image source: http://www.olympischeflamme.de/

Figure 2-6 — Sprinters use a dynamic gait

By observing the strict interpretation of this definition, it is possible to engineer a
“quasi-dynamic” gait that can be called a run. If a quasi-dynamic gait involves
“hopping” from one foot to the other, while maintaining static balance between hops it
can technically be described as a run. This is not the action that comes to mind when
most people imagine a running gait. To truly be capable of running, a robot should be

dynamically balanced.

2.3 Control systems for dynamic gaits

Traditional approaches to the control of bipedal locomotion have focused primarily on
two broad strategies. The first, “classical control”, requires the development of precise
mathematical models of the dynamic system. The model is then solved using a variety
of techniques to generate control solutions for specific situations [30], [31], [32]. The
alternative approach relies on developing adaptive control strategies, common examples
being neural networks [42], [43], genetic algorithms [47], [69], [70], [74], [82] and
reinforcement learning [76], [77], [78]. In this discussion, these techniques shall be
referred to as “adaptive control” strategies. Ideally, in these adaptive approaches, the

robot can learn suitable behaviour, without the need to accurately model the dynamic

24

system. Recent work on developing control algorithms for biped robots has mixed

elements from both the conventional and adaptive schools of control [43].

2.3.1 Zero Moment Point

Perhaps the most widely used classical approach to dynamic biped walking are those
control systems based on the measurement of zero moment point (ZMP). The ZMP is a
tool used to measure the dynamic stability of a walking system. In and of itself, the
ZMP is not a complete control system. Rather, the ZMP measurement is used by a
control system in the same way that the centre of mass projected onto the ground
(GCoM) can be used for static walking systems. It is used in the offline generation of
dynamically stable walking gaits, and online to predict if a system needs to take some

kind of corrective action to prevent the loss of its dynamic stability.

Dynamic stability, as defined by researchers using ZMP walking strategies, has a
specific meaning: In order for a biped walker to be dynamically stable at a particular
moment in time, its feet must remain motionless with respect to the ground for the entire
time that they support the robot’s weight. If a robot begins to “tip over” the edge of its

support foot, then it is no longer considered dynamically stable.

The ZMP is defined as the point within the supporting polygon of a dynamically stable
structure at which a single ground reaction force acts in order to cause the sum of all
moments of active forces on the robotic system to equal zero. The diagram below

(Figure 2-7) shows a representation of a typical robot foot.

25

Figure 2-7 — Forces and torque acting on a robot foot

Interaction between the foot and the rest of the robot’s structure can be represented by a

single force F5 and torque Ta acting on the foot’s ankle joint. Additional forces

working on the system include:

o Fg, the gravitational force acting on the foot, through the foot’s centre of mass

e Fr and Tr the frictional force and torque preventing the foot from sliding or

twisting along the ground, and
e Fg, the ground reaction force preventing the foot from penetrating the ground

surface.

The ZMP definition of a dynamically stable robot requires the foot does not roll or tilt
with respect to the ground during gait execution. This means that to be stable, the
resultant of all the pitch and roll torques acting on the foot must be zero. It is left to the
ground reaction force Fr to cancel out any horizontal components of torque resulting
from t5 and horizontal torque contributions of all other forces. Since the ground
reaction force is fixed in magnitude, the only way it can compensate for varying

horizontal torque is to be applied at different points on the robot’s supporting polygon.

26

Note that it is possible for a robot’s foot to slide while still satisfying the ZMP stability

criteria.

SP—

'€---- Supporting polygon ----- »

Figure 2-8 — Simplified foot dynamics

In the example depicted by Figure 2-8 above, as the distance d increases, the reactive

torque produced by Fy also increases, such that:

TR:d FR

If a point can be found within the supporting polygon such that the reactive torque Tr

applied at this point exactly cancels out all other torques acting on the foot, then this
point is known as the zero moment point, and the robot is dynamically stable. In the
example above, when d coincides with the ZMP, the reactive force Fr will cancel out all
other torques, so if all other forces are known, the location of the ZMP can be

calculated:

TA"‘TR:O
Tat+dmp FR=0

27

dzup = - Ta/ Fr

In reality, the ground reaction force does not act through a single point. Instead it is
distributed across the supporting polygon as a pressure applied to the sole of the robot’s
foot. In dynamic calculations, the pressure between the foot and the ground can be
replaced by single force acting through the centre of pressure (CoP). If the robot is
dynamically stable, then the effect of this reactive pressure is equivalent to the result of
a ground reaction force acting through the ZMP. In other words, the ZMP and CoP
coincide. This is good news for researchers intending to use the ZMP to help control a
walking gait, because the CoP can be easily measured using pressure sensors in the

robot’s feet.

As torque transmitted to the foot by the rest of the robot system increases, the ZMP
must move closer to the edge of the foot in order to generate enough reactive torque to
maintain dynamic stability. Once the ZMP reaches the foot’s edge, the system is only
marginally stable and any further increase in applied torque will cause the system to tip
over. So in dynamically balanced systems, the ZMP has the same relationship to the
robot’s supporting polygon as the GCoM does in statically balanced systems. As the
ZMP moves towards the border of the robot’s supporting polygon, the robot’s dynamic

stability becomes more marginal.

By definition, the ZMP can never exist outside of the robots supporting polygon. If the
robot is not dynamically stable, then there is no zero moment point. Sometimes it is
useful to be able to compare the relative stability of various unstable states. To this end,
researchers have extended the ZMP concept to include an imaginary point outside of the
robot’s supporting polygon, where the ground reaction force would have to act if it were

to maintain dynamic stability. This imaginary force is calculated in the same way as the

28

ZMP, with the constraint to remain within the supporting polygon removed. In order to
highlight the difference between this imaginary point, and a real ZMP, the terms foot
rotation index (FRI) or fictional zero moment point (FZMP) have been suggested [51].
Since it is impossible to apply a force to an object without contacting it, while it is
outside the robot’s supporting polygon, the FRI does not exist and so cannot be
measured. While the FRI lies within the robot’s supporting polygon, it is equivalent to
ZMP and the robot is dynamically stable. Since the FRI is not always measurable, and
mainly applies to systems that have already lost dynamic stability, it is not very useful
for on-line ZMP based control systems. FRI/FZMP calculations are more usefully

applied to off-line gait synthesis tasks.

There are two applications for which the ZMP/FRI measurements are typically used:
gait synthesis and control feedback. Gait synthesis is usually determined off-line using
a variety of algorithms [8], [31], [53], [87], [88]. These all attempt to constrain the
ZMP to a region within the supporting polygon, giving a stability margin. If
environmental conditions change, for example the robot needs to climb a slope, or
negotiate a staircase, the gait calculations must be repeated to maintain suitable robot
behaviour. For use in control feedback, the CoP can be directly measured using sensors
in the robot’s feet. While the robot is dynamically balanced, we know that the
measured CoP is equivalent to the ZMP. The robot control system monitors this
inferred ZMP, and takes some kind of corrective action to shift the CoP away from the
borders of the supporting polygon if its stability margin is threatened. These corrective
actions are usually pre-planned, often involving movements of the robot torso or arms to

try and restore the ZMP stability margin.

In their humanoid robots “Asimo” and “Qrio”, Honda and Sony have both developed

sophisticated biped robots that use variations of ZMP based control. Both of these

29

robots are impressive demonstrations of dynamic biped walking, however I believe both
are limited by the reliance of their control systems on pre-planned joint trajectories. In
each case, the control strategies involve creating a library of pre-recorded joint space
trajectories, each of which executes a specific action, such as walking, turning left or
right, starting and stopping. Joint trajectories resulting in more complicated actions
such as climbing stairs are also stored in this library. These movements are designed to
maintain a large “stability margin”, as measured by the distance between the ZMP and
the edge of the supporting polygon. Specific actions can then be “played back” on the
humanoid robot, as directed by a remote operator. Further robustness is gained by
monitoring the CoP of the robot’s contact with the ground, and modifying the pre-
recorded gait to compensate for unexpected deviations in the ZMP. Honda’s Asimo
unit includes an additional level of sophistication that they call predictive control [75].
In the Honda system, planned future movements are anticipated and pre-emptive
corrective action taken to ensure a large stability margin is maintained during transition
between walking actions. For example, if the robot is about to turn to the left while it is
currently walking straight, before it turns it can begin to shift its ZMP away from the

right hand edge of the supporting polygon.

Despite the achievements of these systems, both share a number of disadvantages with
other control systems based on zero moment point prediction and monitoring. Some of
the problems with using a ZMP approach to control system design for walking robots

include:

e Robot gait must be predominantly determined off-line, which restricts
adaptability to terrain. ZMP based control systems do not allow a robot to deal

with situations for which it has not been explicitly pre-programmed.

30

e Corrective movements are also pre-determined, often involving movements of
the robot torso or arms to try and restore ZMP safety margins.

e ZMP systems are still bound by restrictive stability constraints. This means that
a ZMP based control system inherits many of the disadvantages that were
supposed to have been removed in the move from static to dynamic walking
system.

e ZMP Calculations give a measure of dynamic stability - they do not provide
active balance solutions. Alternative methods must be used to actually
determine the control actions required to keep a robot balancing

e The entire premise of ZMP analysis insists that the robot must at all times
maintain contact between the entire sole of the robot foot and the ground. The

obvious result is a flat-footed, unnatural walking gait.

Zero moment point based control systems are only a small step forward from static
walking machines. In ZMP systems, the concept of “static stability” is replaced by
“dynamic stability”, an artificial constraint promoted as a required characteristic of
dynamically walking machines. Robot movements are constrained to a subset of
actions that keep a calculated mapping of robot state within the pre-defined boundaries.
While these boundaries are less restrictive than those of static walkers, they are still

restrictive.

A system that is dynamically stable is not guaranteed to be safe from falling over. All
that can be said for certain is that while the ZMP is within the supporting polygon, the
robot’s foot will remain flat on the ground. For example, in the system described in
Figure 2-9, dynamic stability can be maintained by limiting the magnitude of torque that

can be transmitted to the robot foot via the ankle joint.

31

TAmax

[

Figure 2-9 — The system guarantees maintenance of the ZMP definition of dynamic balance by

limiting T mayx, but it still collapses. It is not balanced at all.

Since the ZMP remains in the supporting polygon, the system is dynamically stable, and
its foot remains in contact with the ground. But it still falls over, as a small ankle torque
is insufficient to prevent the robot structure above the ankle from collapsing to the

ground.

Human beings, the blue-print for humanoid walking systems, do not walk like this at all.
Dynamic stability, if it exists at all during a person’s walking gait, is an incidental state
— not a requirement. If information about the CoP or ZMP is obscured, a person will
generally have no problems walking. This can easily be tested by observing stilt
walkers, infants tip-toeing or people walking in ski boots. For most of the walking
stride only a portion of the foot is in contact with the ground at any time, and during a
stride the supporting foot rolls from heel to toe. In fact, it is quite difficult and
unnatural to try and walk while deliberately keeping your feet flat on the ground. In
short, people do not maintain “dynamic stability”” when they walk, and a robot shouldn’t

need to either. It is generally not considered a compliment to call someone flat footed.

32

McGeer’s passive walkers [58] use the foot as a lever to help ensure the raised/returning
leg does not collide with the ground. Such a movement relies on the foot being to rotate
as the robot transitions through its gait. The passive walker’s feet are designed to have
a semi-circular profile, as shown by Figure 2-10. A ZMP balanced robot cannot move

like this — it must be flat-footed.

3

W/

Figure 2-10 A simplified system model diagram of McGeer's passive walking robot. This kind of
walker cannot be controlled using ZMP approaches, as its feet must be free to rotate as the robot
swings over the supporting foot.

There is a class of walking control systems that does not rely on maintaining some
artificial measure of “stability” in order to achieve walking. These systems are based on
one of the earliest experiments for control of unstable/non-linear systems, the inverted

pendulum.

2.3.2 Inverted Pendulum Inspired Systems

Inverted pendulums are the classic “balancing broomstick™ problem, where a pole or
rod (the “pendulum”), is balanced by the application of a horizontal force to a cart on

which the pendulum stands.

33

Figure 2-11 — The classic inverted pendulum

Experiments balancing inverted pendulums are not new, with the first known automated
example built in 1951 by Claude Shannon. Despite the simplicity of the system,
inverted pendulums are an example of a non-linear control problem, which is never
completely stable. A controller must continuously act to correct any deviation in the
pendulum angle from vertical or it will fall. The classical solution to balancing an
inverted pendulum is well known, and is fairly easy to implement. As a result, inverted
pendulums have often been selected as a test platform for evaluating the performance of
new algorithms intended for controlling non-linear systems [4], [6], [11], [13], [18],

[19], [22], [89], [90], [91].

Inverted pendulums are of particular interest in the study of biped walking because the
dynamics of a human body walking share some obvious characteristics with that of a
simple inverted pendulum system [57], [59]. In a simplification of the forces acting on
a balancing human, a body’s dynamics during the single support phase of a walking or
running gait can be modelled as an inverted pendulum. The supporting foot’s contact
with the ground is the fulcrum, about which the body rotates. Instead of an external
balancing force being applied to a pendulum cart, humans (and autonomous robots) can
exert horizontal forces against the ground, in order to generate frictional reaction forces

to help maintain balance.

34

Runner image adapted from source: http://www.olympischeflamme.de/

Figure 2-12 — A simple inverted pendulum model for a running man

Not surprisingly, inverted pendulum models have been used by a number of researchers
to simplify the dynamics of humanoid walking during the development of robotic

control systems [7], [21], [61].

Unlike the ZMP based control systems, which have a precise definition, and fairly
consistent treatment by researchers, there are a great many ways inverted pendulum
models can be incorporated into control system designs. As a result, researchers have
used these models to varying extents and for varying purposes. Some of the ways

various researchers have made use of the inverted pendulum model include:

e Used to predict or plan “optimal” foot placement as the robot is preparing to
change supporting feet. [21], [61]
e (Can be used to determine an appropriate joint torque required to assist or

maintain balance. [21], [7]

Two specific examples of walking algorithms relying on an inverted pendulum model
include the “linear inverted pendulum mode” and “gravity-compensated inverted

pendulum mode” control systems.

35

2.3.2.1 Linear Inverted Pendulum Mode (LIPM) [7]

This control system simplifies the dynamics of a biped system, using an inverted
pendulum model, to the extent that the on-board controller is able to operate quickly
enough to perform control decisions on-line. The control system first selects a series of
footholds, based on prior knowledge or active sensing of the terrain profile. Next, a
trajectory for the robot’s Centre of Mass (CoM) is calculated, such that the CoM
traverses at a constant height above the pre-selected footholds. This constraint is
executed by the hip and knee joints, and is not directly controlled by the dynamic
model. The robot legs are assumed to have negligible mass, and to be exchange
instantaneously as the robot takes each step. The system is modelled by treating the
single support phase of a step as a linearised inverted pendulum. Active control is

achieved by applying torque as directed by the model to the supporting leg’s ankle joint.

2.3.2.2 Gravity-Compensated Inverted Pendulum Mode (GCIPM) [9], [53]

The GCIPM strategy is similar to the LIPM, on which it is based. The primary
extension introduced consists of an analysis of ZMP and active control of the free leg
while making a step. The free leg is no longer assumed to have no mass, although its
mass is modelled as a point mass concentrated at the location of the free foot. The mass
of the supporting leg is still assumed to be zero. The GCIPM controller generated
walking trajectories were tested using a simulation and demonstrated improvements in

stability over LIPM control.

2.3.3 Ballistic Control

A constraint common to all the previously discussed control system models is that the

robot is required at all times to keep at least one foot on the ground. This means the

36

robot is limited to walking, and cannot run or jump unless a different control strategy is

selected.

Two of the most well known examples of recently created running robots, Sony’s
“Qrio” and Honda’s “Asimo”, overcome the difficulties introduced by the airborne
component by minimising the time spent without ground contact. The image shown in
Figure 2-13 is taken from a video, published by Honda, of “Asimo” running. In the

image, the leading foot is about to contact the ground, while the trailing foot is yet to

leave it.

Image source: http://www.world.honda.com/HDTV/ASIMO/200412-run/index.htm
Figure 2-13 —Asimo prepares for its short ballistic phase

Using this approach, the researchers are able to claim their robots are running, without
the need to substantially alter the ZMP based control systems used to make their robots
walk. On the other hand, if a robot is truly running, the fully ballistic phase of its
motion must be a significant component of the overall gait. In the example above,

Asimo’s “run” would not disqualify it from an Olympic walking race!

Control of a robot during the ballistic phase of its gait has received special attention
from a number of researchers, perhaps most famously by Marc Raibert in his book,
“Legged Robots that Balance” [55], one of the most frequently cited works in the field
of bipedal locomotion. Raibert suggests that control of a running robot can be reduced

to a series of jumps, or hops, where each leg can be modelled independently as a spring

37

mechanism. To test this idea, he built a series of robots with pneumatic, telescoping

legs that were designed to hop around on one, two or four legs.

Image source: http://people.csail.mit.edu/russt/Ircc/robot.cgi?id=1

Figure 2-14 —Raibert’s one-legged hopping robot.

Since Raibert saw control of a running robot as an extension of that of hopping robots,
he first designed a controller for a single legged, hopping robot. The resulting controller
was then successfully applied to robots with more than one leg, with each leg driven as
one of a number of coordinated hopping legs. For the case of a single hopping leg, a
running step consists of two major phases — the support phase, and the ballistic phase.
During the support phase, while the foot is on the ground, a body posture correction
torque is applied by the hip joint keeping the robot upright. During the ballistic phase,
while the entire robot is airborne, the leg is moved into position for landing. The
landing points are carefully selected by the robot in order to control the horizontal
acceleration of the robot. Depending on the current horizontal velocity of the robot,
landing points further ahead of the robot will slow the robot down, while landing points
behind will speed it up. Maps of landing points and their corresponding effect on

acceleration were experimentally determined for various velocities.

Raibert’s hopping machines, and similar robots built by other researchers, are truly
dynamic machines. They rely entirely on their constant motion to stay stable upright,

and so are never able to stop and stand still. For real-world applications, depending on

38

the circumstances a robot should be able to combine the dynamic capabilities of ballistic
machines, with the careful stability which is the strength of ZMP based walkers. Tools
such as the ZMP and LIPM can be used to help control the robots while they are in the
support phase of a running gait, and the integration of these control systems should
allow a robot to switch between walking and running gaits without the need to switch

between dramatically different control systems.

2.3.4 Virtual Model Control

“Virtual Model Control” (VMC) is a methodology introduced by Pratt for developing
robotic controllers [66], [80], [85]. Virtual Model Control employs an array of virtual
springs, dampers and other imaginary components to disassociate the low level control
of the robot from high level commands. These virtual components are attached at
various points to a model of the robot being controlled, and are used to “pull” the robot
in the desired directions. The components provide a high level representation of the

commands being sent to the VM control system.

Once the virtual components have been attached to a robot model, the imaginary forces
with which they act on the robot are determined. For example, the virtual spring shown
in Figure 2-15 attached to a robot arm’s end effector exerts an imaginary force on the

end effector, pulling towards the “spring set point” position.

The resultant imaginary forces acting on the robot are then examined, and a set of joint
torques that generates the same resultant forces is determined. Selecting the actual
torque values to provide the virtual model behaviour usually requires complex inverse
kinematic equations, as forces are converted from linear Cartesian forces to the

equivalent joint torques.

39

Virtual spring
set point
T

position
Pl N
"SI

[A|
‘i
I

12

Virtual spring
length

Figure 2-15 Virtual model control of a 2-link planar robot arm could be achieved through the use
of a single virtual "spring" component attaching the end effector to an imaginary '"virtual spring
set point position". Joint torques that will that generate the desired “virtual” force need to be
determined analytically. Usually a virtual damper is used in association with any spring
component to prevent oscillations in the resulting robot movement.

Depending on the composition of the virtual controllers, the resulting robot actions can
be compliant, natural looking, efficient and safe. Pratt states that the aim of VMC
control is not to reproduce a specific joint trajectory, but rather to “encourage” the robot
to follow the VM supplied instructions [80]. A significant advantage of using a VMC
approach is that design of robotic controllers can be described in an intuitive manner.

The robots appear to be drawn about like a puppet on a string.

The VM concept may well have been inspired by the idea of “series elastic” actuators,
which was developed in the same laboratory [81]. Series elastic actuators introduce an
organic looking elasticity into force-based joint actuation by using tendon-like
structures to transmit torque to a robot’s actuators. An advantage of these actuation
systems, used by Pratt in his physical robots, is that the bulk of actuator’s weight can be
concentrated in a robot’s body, reducing the weight of legs. VMC control lends itself to
implementations using series-elastic actuation, as these actuators already behave with a

“spring/damper” component to their response. Alternatively, VMC control can be used

40

to mimic series-elastic behaviour using actuators capable of applying specific, variable
torque, and can be used to drive systems which do not exhibit the natural elasticity of

series-elastic actuators.

Despite the attractions of VMC approach to control system design, there are some
important classes of problem for which the VMC methodology is not suitable. The
most important of these from a biped walking control point of view is the classic
inverted pendulum problem, since inverted pendulums are often used as the basis for
system models of walking bipeds. Figure 2-16 illustrates two views of the same
inverted pendulum system, together with the VMC components that would be used to

try and control it.

Figure 2-16 Two virtual model components are attached to an inverted pendulum. (1) A virtual
model "granny walker" is used to apply corrective torque to hold the pendulum vertical. (2) a
spring/damper virtual component pulls the pendulum base to the centre of the workspace. Since
the pendulum can only be controlled by a single horizontal force, it is not possible to satisfy the
requirements of both components at the same time.

In the diagram, the following VMC components are used:

1) Spring/damper virtual components are used to maintain the angle of the

pendulum by generating a corrective torque if the pendulum leans to either side.

41

2) A second spring/damper component is used to control the displacement of the

pendulum base, pulling it towards a target position (in this case the point x =0).

Consider the situation shown in the diagram, where pendulum angle 6 >% while the

pendulum displacement x <0. Component (1) would require a negative torque be
applied to the pendulum, while component (2) would demand a positive force be
applied to the pendulum base. The problem is that an inverted pendulum is controlled
using a single input signal — the horizontal force to be applied to the pendulum’s base.
To satisfy the first component’s requirement, a negative force would have to be applied,
while the second component requires a positive force. It is not possible to satisfy both
components at the same time. The classical solution to the inverted pendulum in this

example is a simple relationship [26]:
u=a0+b0+cx+dx

But a design based on VMC control does not allow us to find this solution.

Despite these limitations, Pratt [66] has successfully applied VMC to the control of a
planar biped 5-link walking robot which has a similar system model to the Legbot robot
used in the experiments in Chapter 6. The robot walks, and maintains balance, by
selecting joint torques that mimic the effects of a “virtual granny walker” to hold the
torso vertical and off the ground, together with a “dog track bunny” to drag the robot

after a moving target.

The “granny walker” virtual component maintaining torso inclination and altitude is
active at all times (both single and double support phases) during the robot’s walk.
Positional control cannot be achieved via VMC models during the single support phase

of a walk, for the same reasons VMC cannot be used to solve the inverted pendulum

42

problem (see above). As a result, positional control is managed by the knee joints

during the double support phase of walking gait only.

1) 2)

Figure 2-17 Pratt's virtual model controlled biped robot. (1) A virtual "granny walker' holds the
robot off the ground, and keeps the torso angle upright. (2) When both of the robot's feet are on the
ground, a second VM component regulates the robot’s horizontal velocity.

Pratt’s VMC implementation of a biped walker is only one possible approach using this
design philosophy. Virtual Model Control could be combined with other methods (such
as ZMP or reinforcement learning trajectory approaches to walking control). In this
thesis, VMC methodologies are utilised in one component of the Torso Driven Walking
control system (the “Collision Avoidance Controller”, Chapter 3.2.7). A number of
other components of the TDW control system share some characteristics with VMC.
For example, raised leg joint trajectories are implemented using PD control. This
configuration would be described in a VMC system using a virtual “spring/damper”
component to connect each joint to a set point angle. On the other hand, any PD based
controller fits this definition. To really be considered a Virtual Model system, all
trajectory planning should be performed using real world coordinates (not joint space),

then the required torques calculated in joint space.

43

Chapter 6.8 describes an experimental comparison between Pratt’s Virtual Model

Control system for Biped Walking, and the Torso Driven Walking control system.

2.3.5 Adaptive trajectory based controllers

Early implementations of trajectory based walking algorithms, required control system
designers to plan the robot’s movement off-line, and then experimentally modify the
trajectory on the target platform, manually altering the “program” to try and compensate
for observed failures. Tools such as static and ZMP stability criteria enabled designers
to predict the stability of potential joint trajectory “programs”, but the work of crafting a
trajectory is still difficult. Recently a number of researchers have applied adaptive
techniques to the problem of crafting joint trajectories for controlling walking robots.

[74], [70], [76], [77], [78].

2.3.5.1 Finding a stable “fixed” trajectory

Many adaptive systems such as Boeing [74], Zhang [70] learn to follow or find
trajectories that do not cause the robot to fall over when replayed. Both of these
researchers employed genetic algorithms to generate cubic polynomials which produced
the periodic gait trajectories. Boeing’s systems employed a fitness function evaluating a
simulated robot’s performance in playing a “walk forward” trajectory. Zhang’s GA
system evaluated a trajectory’s fitness by examining its ZMP based stability criteria.
Using the ZMP stability criteria for fitness evaluation will mean the resulting
trajectories will be a sub-set of the solutions that may have been found using an
experimental evaluation, and the results may not include the most dynamic or fastest

solutions. On the other hand, they are likely to be safe.

44

2.3.5.2 Modulating an arbitrary trajectory

One of the disadvantages of trajectory based control systems is that if the environmental
conditions experienced by the robot change, then a new trajectory will need to be
developed. For example, the robot needs to learn a new trajectory if it wants to walk

down hill, as its speed will tend to increase with steeper gradients.

Recent work by Morimoto, et. al. [76], [77], introduces a technique they have named
“Poincaré-map-based reinforcement learning”. In this context, a “Poincaré map” is

simply an alternative name for a “joint trajectory” without reference to time.

The Poincaré-map-based algorithm is used to show that by simply modulating the
trajectory’s step cycle time and step length, a trajectory can be modified “on-the-fly” to
cope with unexpected changes in the robot’s state. For example, if a robot begins to
walk down hill, by lengthening the stride and quickening the pace, the same control
system that successfully walked on a flat surface could be used to walk downhill.
Furthermore, they have implied that, assuming the required step length and cycle time
can be found, any reasonable periodic walking trajectory can be used to generate a
balanced walking gait. The researchers suggest motion capture could be used to craft

the joint trajectory, rather than the hand-designed pattern they have used.

Using a number of reinforcement-learning algorithms, the Poincaré algorithm learns to
predict the desirability of the system state resulting from various foot placement and
step period decisions, given a current system state. These models are used to decide on
the foot placement and step period to use for subsequent steps. The control system
makes these decisions only once each step cycle, during the “single support” phase of
the robot’s walk, when the robot’s raised foot is above the support foot. Because most

of the parameters describing the joint trajectory are fixed, with only two variables to

45

generate, and because control decisions are made only once each step, the learning
process can be very fast. The researchers report that stable controllers can be achieved
within 100-200 trials. This low number of required trials means it is entirely feasible to

perform all of the training required for reinforcement learning on a physical robot.

However, while the resulting control system is more robust than fixed trajectory
systems, the behaviour exhibited by the control system is entirely reactive. This is not
actually velocity control, but simply the controller adapting the robot’s gait to overcome
external perturbations (such as a slope, changing surface properties, externally applied
forces, etc.). In order to deliberately alter the robot’s velocity, another approach is
required. The robot is still unable to stop or move backwards without changing its

“program” to another trajectory.

The torso is kept balanced by a torque incidentally applied via the hip joint as the PD
control implementing the trajectory playback goes through its paces. The control
system makes no attempt to explicitly control the orientation of the robot’s torso. A
disadvantage of this approach is that if the robot falls, it will be hard! On the other
hand, this approach eliminates the need for sensing torso inclination, which is one of the

more difficult state measurements to accurately determine.

2.3.5.3 Approximating trajectories

Sharon and van de Panne present an imitation-based reinforcement learning algorithm
for finding a planar bipedal walking trajectory [78]. The algorithm attempts to develop
a trajectory that follows a walking “style” introduced to the algorithm as an example or
demonstration walking gait. Note that this gait does not have to be ideal — or even
possible. The example trajectory is intended to be used as a suggestion, rather than a

requirement. The demonstration trajectory is generated using key-frames of the robot

46

joint positions at various times during a step, and interpolating to find the complete

trajectory.

Unlike most other trajectory based controllers, the control system resulting from
Sharon’s algorithm is not simply a description of the joint trajectory (or Poincaré map)
the robot should perform. Instead, the algorithm creates a function mapping the current
system state to a set of controller output values (usually joint torques). For each robot
state, the algorithm learns the control actions that will be most likely result in the robot

following the example trajectory.

The function mapping ‘input space’ to output torque is encoded as a set of nodes, each
of which is associated with a “point” in the robot’s “input-space” and a vector of control
output values. The “input-space” is the hyper-dimensional volume which encompasses
the values obtainable by the robot’s sensors. This configuration effectively quantises
the controller’s input space. At any instant, the robot’s current state is identified using a
weighed minimum distance function measuring the distance to the closest node, and that
node’s output vector is used to drive the robot’s joint torques. Figure 2-18 displays an

abstraction of the controller representation and operation, and has been taken from [78].

47

Controller input space

State boundary
Target trajectory
*------- i Simulation trajectory

0 Activation state and target action

Image source: Sharon, D, van de Panne, M., “Synthesis of controllers for stylized planar bipedal walking”, Reference [78].

Figure 2-18 Abstracted representation of Sharon’s imitation-based controller operation.

Before the Reinforcement-Learning algorithm is applied, the input/output mapping
function is initialised by distributing the set of controlling nodes evenly along the target
trajectory. The output vector initially associated with each node is calculated to drive
the robot towards the centre pose of the next node. Optimization involved determining

quantization boundaries, as well as associated control signals.

The fitness function used in this example of an imitation-based reinforcement learning
algorithm measures how closely the robot follows the specified target trajectory over
time. Balance is implied by a high score, as the robot has to stay balanced to
accumulate the score. The researchers demonstrate their control system successfully
learns to balance a range of planar biped robots with point feet. In addition, by applying
different example trajectories to the learning algorithm, they are able to generate
walking controllers with significantly different styles and stride durations. As with the
Poincaré-map controllers, this result demonstrates again that the range of possible

trajectories a robot can use to execute its walk is surprisingly variable.

48

Because the controller is not learning a trajectory explicitly, but rather learns torques
and forces that cause the robot to converge towards the trajectory, the system should be
able to robustly handle unexpected disturbances. Experimental results published show
the imitation controller successfully navigating unexpected terrain, including a “bumpy”
surface and a slope [78]. Despite this robust behaviour, the control system is not
controllable. The robot will always strive to follow the single “example” trajectory.
The result is a single, constant velocity walking gait for each controller. As with most
other trajectory based systems, if the robot is to do anything else, new trajectories must
be learned. In addition, as separate control signals need to be learned for every possible
input state, training time is expensive. The robot required around 23,000 trials to learn

each new trajectory.

A significant problem common to all trajectory based walking control systems is
variability. The control system designer needs to develop a new trajectory for every
new speed, direction and action. As an added complication, it is not possible to
arbitrarily shift from playing one trajectory to another, as the robot will need to enter a
trajectory from approximately the same state each time. This means that if the robot is
currently playing a “walking forward” trajectory, and receives a command to turn left,
the robot must find a way to transition between the forward walking and turning left

programs.

2.3.6 “First principles” adaptive control systems

One of the great attractions in using adaptive control systems is the potential to develop
a control system without needing to fully understand the system you are controlling.
Learning from “first principles” implies the control system will be able to learn from

scratch everything to do with controlling the system.

49

In practice, what this means is that researchers do not give any hints or implied
knowledge to these systems, and a very simple feedback mechanism is used to shape the
adaptation. For example in walking systems, the training system’s only feedback might
be a failure signal if the robot falls over. Everything else needs to be learnt by the
control system through some form of trial and error. In a robot balancing application,
such as biped walking, the system even needs to learn that keeping the robot upright is

safer than leaning far forwards or backwards.

2.3.6.1 Artificial neural networks

Artificial neural networks have often been suggested as a potential tool for
implementing “first principles” walking control systems for biped robots. Early
attempts involved feeding the robot state into a single “monolithic” network, and
training the robot to behave in a sensible way. In practice this proves to be an
impractical approach, due to the large size of the required network, the correspondingly
large training times, together with the necessity for a “nearly sensible” output at all

times.

Since inverted pendulums are often used to describe biped walking system models, it
makes sense to briefly consider “first principle” adaptive control systems that have been

applied to solving the inverted pendulum problem.

Anderson [13] presented a method of training a neural network to balance an inverted
pendulum using only a single failure signal if the pendulum falls or moves too far from

the origin. Anderson’s system consisted of two components:

e A predictive controller, which learns to predict the future state of a robotic
system, based on a measurement of the current state, together with a potential

control signal, and:

50

e An evaluator component which learns to judge comparative qualities of different

robot states.

The evaluation function judges the likelihood that a given state will result in a failure.
Control signals generated by the action network are limited to the set of three possible

values: { -f,0.0,+ f }, where [is the maximum horizontal force that can be applied

to the pendulum base.

Anderson contrasts his technique favourably with a system presented by Michie and
Chambers [23], called “BOXES”. In this system, the entire state space that can be
experienced by the system is quantised into regions, where an appropriate control action
is learned for each region. For an inverted pendulum, the state space was divided into
162 regions. This approach can quickly become unwieldy for systems with a large

number of state variables.

Hougen, Fischer & Johnam [18], have presented a system, based on a technique they
call SONNET (Self Organising Neural Networks with Eligibility Traces), which they
have used to control a real cart and pole. This system also limits its success/failure
feedback to a single failure signal when the cart crashes. They limit the state

information sampled to cart position and pole angle.

Chapter 5.8 discusses the implementation of a simple ‘“evaluator/predictor” back-
propagation neural network (BPN) based controller that can be trained to balance a
simulated inverted pendulum system. The control system shares many characteristics
with Anderson’s approach, with the major difference being that my controller can apply
a variable control force to balance the pendulum. The controller operates with no a
priori knowledge of the system model of the inverted pendulum. In addition, the

control system initially knows nothing about relative quality of various pendulum states.

51

All this knowledge is found by trial and error during training of the networks, while

limiting all performance feedback to an error signal when the pendulum has crashed.

Despite these and other successes in controlling inverted pendulums with neural
networks, there are significant problems which rule out attempting to control a biped

robot with neural networks working from “first principles”.

For the relatively simple inverted pendulum problem, all of these ANN based
controllers successfully learn to balance the pendulum. However even for this simple
problem, ANN controllers require an immense amount of training data, as well as very
careful selection and presentation of training data. Given the performance issues
experienced with ANN control of inverted pendulum systems, simply extending these
kinds of controllers to much more complex biped robots would prove to be prohibitively

expensive.

2.3.6.2 Genetic algorithms learning with no assistance

Recently, Wolff and Nordin have presented some ideas in applying genetic algorithm
techniques to “first principles” biped walking [67], [69]. Unlike some of the ANN
systems previously discussed, the researchers define a fitness function used to measure
the quality of the resulting gaits. This feedback is richer than the single failure signal
input to Anderson’s ANN system, and “evaluator/predictor” ANN system described in
Chapter 5.8. A control system accumulates fitness score by increasing the time it keeps

the robot’s balance, as well as by covering greater distances during the test.

The control program evolved by Wolff and Nordin’s algorithm encodes its behaviour as
a sequence of simple mathematical operations. Each instruction consists of four

elements, encoded as integers:

52

e Input register 1 (may be an input signal or an internal register).

e Input register 2 (may be an input signal or an internal register).

e An operation to perform on registers 1 and 2 (i.e. ADD, SUB, MUL, DIV,
SINE)

e An output register, which may be an internal register, or an output signal.

The researchers report that at the conclusion of GA evolution, the best performing
individuals outperformed a manually developed controller. The control systems
successfully balanced the robots for 20 seconds (the trial duration). Information about

the distance covered is unavailable.

However, as with the ANN approaches, this GA system’s “first principles” approach is
time consuming. To achieve successful walking durations of 20 seconds, 6000
tournaments must be conducted. Since each tournament requires separate trials of four
individuals, the control system needed to perform 24,000 distinct trials lasting up to 20
seconds each in order to evolve a walking pattern. In addition, the pattern that resulted
is not controllable, as it is only judged on its ability to walk forward. Finally, as with
ANN approaches, the behaviour of the control system is encoded in a set of

indecipherable numbers, and so cannot be understood by casual examination.

A review of these attempts at a “first-principles” adaptive approach to developing
walking control systems leads to the conclusion that pre-knowledge of all or part of a
system model will be an essential part of any successful strategy. The most appropriate

place for adaptive approaches will be in hybrid classical-adaptive control systems.

53

2.3.7 Hybrid classical-adaptive control systems

If the researchers know how a system should behave, using that knowledge to help
“bootstrap” an adaptive controller will greatly reduce the training times required to learn

successful behaviour.

2.3.7.1 Adaptive components in a larger system

Some of the most successful implementations of adaptive control to biped walking
strategies have been where the walking problem is divided into smaller component
parts, where each component of the problem is controlled by a separately trained
adaptive system [42], [43], [44]. Identifying these components requires the use of a

dynamic model such as those used in classically based control strategies.

2.3.7.2 Adaptive “tuning” of classical solutions

Almost any classical control system can become adaptive if adaptive systems are used
to tune the classical system. For example, the classical solution to an inverted
pendulum problem can be described using a single equation whose behaviour can be

controlled by modulating four numbers. The equation is repeated here for convenience:

u=ab@+bO+cx+dx

Finding appropriate values for these numbers is a trivial task to determine
experimentally, and can be found by a human after a handful of trials. The same task

could just as easily be performed by an adaptive system such as genetic algorithms.

This approach of applying adaptive tuning to a classically based controller will be

investigated during the course of this thesis, when a genetic algorithm tuning system is

54

applied to the Torso Driven Walking control system. These experiments are described

in Chapter 6.6.

55

3 Torso Driven Walking

“The faster a man runs, the more he leans forward towards the point he runs to and throws more

weight in front of his axis than behind.”, Leonardo da Vinci [86].

This thesis is proposing a simple control system for bipedal locomotion based on the
idea that our desired outcome of walking or running can be obtained as a side effect of
actions taken to maintain balance. This is a different philosophy to that behind the
majority of walking algorithms, especially those which create and replay a joint
trajectory. Examples of these trajectory based control systems include most zero
moment point (ZMP) strategies [31], [51], [53], [62], [75], [70] as well as many
reinforcement learning [76], [77], [78] and genetic algorithm based adaptive control
systems [70], [74]. Systems such as the ZMP based controller employed by Honda’s
“Asimo” robot [75] often utilise pre-planned ‘“corrective actions” in an attempt to

maintain balance while walking.

Rather than trying to keep balanced while we walk, the Torso Driven Walking control
system walks to keep balanced. The result is a solution that provides a robust control
system, capable of traversing uneven terrain, modulating forward velocity, and even of
running. Running and walking gaits are treated the same way by our control system,
eliminating the need to implement multiple control systems in order to achieve different
gaits. The TDW control system is simple enough that adaptive training strategies can
easily be implemented to improve the system performance in simulation, or online. The
entire control system can be completely described by a simple floating point array

containing 52 values.

These numbers specifying the behaviour of the TDW control system are all values of
clearly defined parameters. Each number has an easily understood impact on the
behaviour of the control system. For example, perhaps the most critical parameter value

56

is the “torso offset angle”, the angle at which the control system attempts to hold the
torso as it balances. By simply examining these numbers, a human observer can
understand how the control system implementation behaves. This contrasts with some
commonly used adaptive control system designs. For example, neural network based
controllers, such as [11], [13], [79] store their configuration as a collection of neuron
‘synapse’ weights. Some genetic algorithm approaches, such as [69] store their
behaviour as a collection of encoded operations mapping sensor readings to internal
registers and output signals. For all of these systems, a human attempting to interpret

the control system by observing its configuration has very little chance of success.

In this chapter, the “Torso Driven Walking” control system’s architecture and design
philosophy is introduced. Experiments with various implementations of the control
system have been conducted, and are described in Chapters 5 and 6. In Chapter 5, the
“torso attitude control” subsystem of “Torso Driven Walking” is tested on a simple
balancing robot, the wheeled “Ballybot”. In Chapter 6, the complete “Torso Driven
Walking” control system is implemented on a simulated planar biped robot.
Preliminary work in porting the control system to a physical robot is also described.
Specific adaptations of the control system to address implementation issues with these

environments are discussed in more detail in the relevant chapters.

3.1 Control system issues to consider

When planning the control system design, a number of desirable traits were identified

that required consideration.

e Where possible, a walking algorithm should be able to utilise the robot’s natural
dynamics.

e Constraints imposed by the robot structure must be considered.

57

e High level control of the robot should be simple.

e The robot gait should be variable, without requiring significant re-calculations.

e Running gaits should not be treated differently to walking gaits.

e The control system should emphasise force control over joint control.

e A gait should not simply replay recorded joint trajectories.

e The robot should not need to maintain static contact between its supporting feet
and the ground.

e The control system must be suitable for experiments using adaptive techniques

such as genetic algorithms.

Each of these requirements has influenced the design of the “Torso Driven Walking”

control system to varying extents.

3.1.1 A general control solution

There are almost as many different walking control systems as there are experimental
robots. This is partly because the physical dynamics and capabilities of each robot
design are never the same, but is also due to the fact that control system reuse does not
appear to be a significant consideration in the design of most walking systems. Often
only very high level concepts behind a specific control system’s design can be reused on

different platforms.

Concessions towards providing a “generic” control system have been made in two

ways:

1) The control system design is strongly hierarchical. Components of the walking
algorithm which are more likely to be reusable (such as the Torso Attitude
Controller) are separate from components that are more likely to be platform

specific.

58

2) The design of the control system is such that as long as the target robot has a
similar morphology, the control system can be adapted to the new environment

(demonstrated in Chapter 6.7 and 6.9).

3.1.2 Utilise robot’s natural dynamics

Where possible, a robot should try to make use of the natural dynamics of its structure,
in order to assist its motion. For example, allowing the free leg to swing forward at its
natural swing rate will use far less energy than if the leg is being constrained to follow a
faster or slower trajectory. In the first case, no energy needs to be input into the system,
while in the second the robot’s motors will need to work continuously to maintain the
planned velocity. It has been shown that it is possible to design bipedal robots that walk
with very little energy input. McGeer introduced an entirely passive biped that used
gravity, and the natural dynamics of the carefully designed robot system, to walk down
a gentle slope [58]. No additional control, or energy input was required. Obviously, the
ability to take advantage of these kinds of energy savings will be severely influenced by

the target robot’s physical construction.

A disadvantage with this approach to design is that a control system making strong use
of a robot’s physical characteristics is not likely be easily transferable to a different
robotic platform. The more a robotic control system is designed to take advantage of

robot specific dynamics, the less generic is the resulting control system.

The “Torso Driven Walking” control system has been designed to take a compromise
approach to efficiency. Our control system is capable of operating at various rates,
moving through the stages of a walking gait as a result of triggers, and adaptable timers.
It is during commissioning of the control system on a specific robot that the system can

be tuned to try to work with, rather than against, the robot’s natural movements.

59

3.1.3 Constraints imposed by physical robot

A related issue to using the robot’s natural dynamics to assist walking are constraints
imposed by a physical robot design. These constraints could include factors such as
limited motor torque, availability and quality of state sensors, processor speed and joint

friction.

Consider the possible configurations of the knee of a bipedal robot’s supporting leg
during the “single support phase” of a walking step. Many current walking algorithms
require the knee to be bent at a fairly large angle, which places a considerable strain on

the knee actuators if they are to prevent the robot sinking to the ground.

The reasons for keeping a bend in the knee can vary depending on the control system:
LIPM based control systems need to keep the knee bent during the support phase of a
step in order to allow the torso to follow a flat trajectory over the ground [7]. Both
Sony and Honda’s humanoid robots exhibit a “bent knee” walking style, although the
reason for this is not clear. A bent knee will lower the robot’s centre of gravity, which
would help satisfy the ZMP based stability criteria used by these robots. It is possible

that the bent knee position was chosen for purely aesthetic reasons.

Regardless of any benefits that may result from bent kneed walking, the “Torso Driven
Walking” control system that has been designed to severely limit the magnitude of the
knee joint angle during the support phase. This is mainly due to the physical constraints
of limited actuator torque, and significant frictional forces present in the experimental

robot’s knee.

60

3.1.4 Simple high level control

At the end of the day, walking is just a way of getting around. A robot should not be
distracted from its primary function by figuring out how to walk — presumably it will
already have some useful task to perform. With that in mind, the “Torso Driven
Walking” control system is designed to be as simple to operate as possible. The control

system takes as its input parameters either of two variables:

e Target horizontal velocity, or:

e Target horizontal displacement.

As much as possible, issues such as uneven ground, unexpected perturbations, and gait
modifications should be taken care of implicitly by our control system design. At the

very least, they should not be exposed to the high level control interface.

3.1.5 Variable gait speed.

Walking faster is not simply a matter of moving your legs faster. This is evident from
an examination of static walking machines. If they move too quickly, they tend to fall
over! A control system needs to make some fundamental modifications to its gait in
order to change speeds. One of the objectives considered is to enable the control system
to easily modulate its walking speed, without having to make changes to the control
system itself. A robot should not need to “remember” different gait patterns for every
selectable velocity, nor should it need to make complex gait re-calculations in order to

change speed.

Because the control system has been designed to move in order to maintain balance, its
most basic requirement is to be able to easily modulate its velocity. As a consequence,

a variable gait speed is obtained at no additional computational cost.

61

3.1.6 Force control vs. positional control.

Many robotic control systems are primarily concerned with forcing the robot to follow
prescribed joint trajectories. This is an inappropriate approach to controlling a
balancing robot. Using positional control, unless the robot’s movements are constrained
to ZMP based stability criteria (see Chapter 2.3.1), there is no guarantee that the robot
will remain balanced. Even with joints fixed to known positions, it is still possible for
the robot to tip over. Some kind of force control is an essential part of dynamically

controlled robot balance.

One problem with force control in robotics is the increased complexity. The kinematic
equations required to accurately determine required joint torque for desired end effector
forces are complicated and time consuming. Additionally, these dynamic equations are
very specific to the hardware platform on which they have been calculated. Any
changes to this platform, such as improved motors, or changing joint frictions will

require the dynamic model to be redesigned. Positional control is much simpler.

In the “Torso Driven Walking” control system, the primary balancing task is performed
by a robot hip joint using force control, while the job of keeping the legs underneath the

robot is performed using positional PD control loops.

3.1.7 Avoid pre-recorded joint trajectories.

One superficially obvious way to make a robot walk is to generate a static set of joint
trajectories. As the joint set points are played back, the robot will move following a
prescribed path. If playing back this joint trajectory causes the robot to move its limbs
in a walking motion, and if the robot remains upright during the joint trajectory

playback, then we have a walking control system. This is the general approach that has

62

been followed by a number of research groups (including [70], [74-78]), and in

experiments described in Chapter 4. Some of the problems with this approach are:

e The resulting control system is not adaptable — dynamically changing speeds,
stride length, etc is not possible.

e Complicated joint trajectories use up a lot of memory, still often in short supply
on an autonomous robot.

e The control system is not portable — new trajectories will need to be found after

any change to the robot.

While the Torso Driven Walking control system does not rely on pre-recorded joint
trajectories, some elements of the robot gait are reminiscent of joint trajectory systems.
In the Torso Driven Walking control system, the trajectory of the free foot during the
single support phase of a walking gait is controlled by driving joint angle set points.
These set points are driven in a response to changes in the supporting leg angle, rather

than following a trajectory over time.

3.1.8 Allow rolling foot-ground contact.

Many walking algorithms require the supporting foot to remain in contact with the
ground, and to not roll or tip over. The zero moment point class of walking control
systems are a classic example. ZMP systems require the presence of a supporting
polygon in order to satisfy their stability criteria, and need to ensure the robot’s
movements do not cause any rotation of the supporting polygon out of the ground plane.
During the single support phase of a biped’s walking gait, the supporting polygon is by
definition the contact area between the robot foot and the ground. If the control system

is doing its job then the supporting foot will not be allowed to roll or tip over. Note that

63

ZMP stability does allow the supporting foot to slide or twist — as long as solid contact

is maintained with the ground surface. It is just “tipping” movements that are illegal.

For reasons that have been discussed in Chapter 2.3.1, consistent ground contact is an
artificial constraint that is not an appropriate foundation on which to base a control
system for dynamic biped robots. It is certainly not a restriction to human walking,

where the supporting foot rolls from heel to toe over the course of every step.

To emphasise the fact that this kind of contact is unnecessary in a walking system,
‘point’ feet are used on all the robots used during development of the TDW control
system. These robot’s feet are constantly rotating with respect to the ground. While the

robots have only a single foot on the ground, they have no (or a very small) supporting

polygon.

3.1.9 Design with adaptive learning in mind.

Adaptive control systems promise the ability to learn how to control a system that is not
fully understood. In robotic systems this situation is frequently the case. Friction forces

are unpredictable, etc.

The “Torso Driven Walking” control system can be tuned to operate on various
hardware platforms, or in different environments, by manipulating the tuning
parameters of the control program. For example, two of the primary variables are the

PD parameters controlling the response of the free leg to changes in set point positions.

Tuning of these parameters is a good task for applying adaptive strategies. The problem
size is reasonable, being limited to 51 floating point variables. And the fitness is easily

determined — the longer the robot system stays balanced, the fitter the solution.

64

Experiments using genetic algorithms and programming techniques for tuning our

“Torso Driven Walking” control system are presented in Chapter 6.6.

3.2 Control system design

The following design describes in detail the structure and components making up the
“Torso Driven Walking” control system. Experiments implementing components of

the control system are the focus of Chapters 5 and 6.

3.2.1 Overview of control system

The “Torso Driven Walking” control system uses the observed system state of the robot,
together with a control signal input by an operator, to determine a vector of output joint
torque values to be applied to the robot’s joints. The control system’s objective is to
maintain balance of the robot, while satisfying the input command as closely as

possible. Figure 3-1 illustrates the control system’s context diagram.

Yy Torzo T Biped R
e Driven ——— Robot
Walking

Figure 3-1 Torso Driven Walking control flow context diagram.

The basic hypothesis used by the “Torso Driven Walking” control system is that: if the

robot torso remains upright, and the robot’s feet are below the torso, then the robot has

65

not fallen over. The sequence of images shown in Figure 3-2 illustrates the desired

behaviour of the Torso Driven Walking control system.

a4
| 4 -b‘!
! 1
B ~ C ' D ! Oromso

B8 >
i TORSO ‘J GTORSO

A
n? A1 A 4

|
>
Br0rse

QO rS‘uppv:u)"tzp

fSupporIHip © SupportHip T supportiiy

Support
foot

Support foot

Figure 3-2 Torso Driven Walking algorithm behaviour, for a planar robot. (A) From an initial
standing position, the robot balances the torso by applying a torque to the supporting hip. (B) This
causes the supporting leg to drift away from its central position. The raised leg needs to move into
position to take over the supporting leg role. (C) Eventually the “raised” leg strikes the ground.
Torso balance continues to be achieved by applying torque to the single hip designated as the
support hip. (D) As the robot’s weight shifts to the second leg, the control system needs to switch
the “support leg” designation and lift the old supporting leg.

Starting from an initial position of balancing on one leg, the control system balances the
torso by applying a joint torque to the robot support leg’s hip joint, while standing on

one foot.

As the balancing torque is applied to the supporting leg’s hip, the foot of the support leg
will tend to move away from the centre line of the robot, just as our own feet move
away from our torso as we walk. Whenever the supporting leg moves forwards or
backwards, the raised leg needs to be moved in the opposite direction, so that it will be

in position to take over the support leg’s role.

At some point, the extended leg will contact the ground, and the robot will begin the

“double support” phase of its gait. Even though both feet are in contact with the ground

66

during this phase, only one of the legs is designated as the “supporting leg” by the

control system. This leg’s hip joint continues to be used to balance the robot torso.

As the robot’s weight transitions over the “non-support” leg, the control system must
change the leg being designated as the support leg, and the old support leg is lifted off

the ground.

At any time, this flow of robot stance transitions must be reversible, in case the
balancing torque applied to the robot’s supporting hip causes the robot to change

direction.

If the robot’s steps are small enough, and fast enough, then the entire system should

remain balanced in much the same way as a simple inverted pendulum.

3.2.2 System model

In order to achieve this behaviour, the Torso Driven Walking control system has been
developed a hierarchical system consisting of a number of distinct, simple components.
Figure 3-3 shows the system model illustrating the relationship between components of

the Torso Driven Walking control system.

67

Uy ——] User

Interface
Controller
> (UIC)

|:’\.5‘P
Nep

Torso
Attitude
Controller
(TAC)

T supporiitip

Gait
Trangition
Controller

(GTC)

boolSupportLeg sRightOrLeft

boolRatsed Hip UsesPID

55’upporﬂ{'ﬂe 25P

ﬁRﬂxsedKneeSP

e

RaissdHipS P

7| Collision

Avoidance
Controller
(CAC)

{_"RmsedKnee SP

{_jﬁmsed{-ﬁps P

Toint
Torque
Controller
JIC)

Trre

TJoint

Limit

Tre

Controller
JLC)

Emergency
Stop
Controller
(ESC)

Ny

3

4

Xy

Figure 3-3 Torso Driven Walking control system components.

3.2.3 Breakdown of components:

The components making up the Torso Driven Walking control system include:

Ty

1) User interface controller (UIC). A control interface is provided to safely convert

2)

3)

user supplied target velocities or displacements into set point values for desired

system state variables.

Torso attitude controller (TAC). An inverse pendulum control model is used to

determine hip torques required to keep the robot’s torso upright.

Gait transition controller (GTC).

A state machine, primarily driven by the

position of the supporting leg in relation to the torso, is used to prepare for and

execute transitions between supporting feet. This is the component that executes

a walking gait.

68

4) Collision avoidance controller (CAC). A “virtual model” controller that works
to prevent collisions between the robot links by maintaining an exclusion zone
repelling links in danger of colliding.

5) Joint torque controller (JTC). Responsible for managing the torque being
applied to each joint. Supporting hip torque is provided by the Torso Attitude
Controller, while set point positions for the remaining joints are supplied by the
Gait Transition Controller. PD control is used to drive joints to positions
commanded by the Gait Transition Controller.

6) Joint limit controller (JLC). A second “virtual model” controller that operates
on the robot joints, ensuring they continue operating within desired ranges.

7) Emergency stop controller (ESC). Extreme limit shutdown commands are used
to help prevent the robot from damaging itself in the event of controller errors,

or accidents.

This modular approach to control system design is not new. Raibert’s hopping
machines [55] also integrated a number of simple yet distinct controllers that working

together result in robots that hop about to maintain dynamic balance.

3.2.4 User interface controller (UIC).

This is the interface between the operating software and the control system. It provides
a simple interface, allowing for control of the robot’s position or velocity using a single

input variable.

3.2.4.1 Objective

Take commands from the user, and pass them on to the rest of the control system in a

measured way. The subsystem is responsible for preventing large jumps or

69

discontinuities in the target set point values for position and velocity that are used as

inputs to the inverted pendulum based Torso Attitude Controller.

3.2.4.2 Implementation

=t
Y

User
Interface ——p { _SP :|
Controller Xep
(UIC)

H&: !
4

Figure 3-4 The user interface controller (UIC) uses the current system state, together with an input
command signal to generate a set point trajectory for the robot's displacement.

The User Interface Controller accepts an input control command, specifying a target
position or speed that the user has sent to the robot. Each time step &, the User Interface
Controller will update the internal control system set point variables for displacement

(xgp) and velocity (xg,). These parameters are then used as inputs to the Torso Attitude

Controller subsystem.

Boundary values for the set point displacement x, should be set to an area within the

robot’s workspace. It is also reasonable to set minimum and maximum limits to the

velocity set point xg,. The User Interface Controller prevents discontinuities in the set

point signals by enforcing a maximum acceleration that can be applied to the robot’s set

point state as it attempts to satisfy the command signal.

3.2.5 Torso attitude controller (TAC)

This component is the heart of the control system. Indirectly, the Torso Attitude

Controller drives all other parts of the Torso Driven Walking control system.

70

3.2.5.1 Objective:

The single goal of the Torso attitude controller at each control interval is to determine a
joint torque which — when applied to the supporting hip — will keep the torso upright.
This component of the control system is not concerned with any other aspects of the
robotic system. It is assumed that issues such as coordinating the exchange of
supporting legs and holding the torso away from the ground will be managed by other

elements of the control system.

This kind of torso attitude correction has been used by Raibert to correct torso
inclinations in his hopping robots [55]. The difference with the “Torso Driven
Walking” system is that Raibert’s hopping machines remained balanced primarily
through careful selection of foot placements. His torso attitude correction algorithm is
of secondary importance. In Torso Driven Walking, the Torso Attitude Controller is the

key component for maintaining balance.

3.2.5.2 Implementation

Torso
Attitude ey TSuppor:Hzp
Controller
Y, ——— (TAQ)

Figure 3-5 The torso attitude controller (TAC) uses the current system state, together with an
updating target position and velocity to determine a balancing torque to apply to the support leg’s
hip joint.

1. Torso system model

Everything above the waist of the biped robot is treated as part of a single rigid link,

called the torso. In the interests of increasing simplicity, the influence of arm, head and

71

flexible torso movement on the robot has been disregarded in the development of a

system model. The simplified 3-D system model is shown in Figure 3-6.

TF!IGHT RIGHT

Figure 3-6 Torso system model.

For the purposes of this discussion, only the planar case is considered (which is an
approach taken in the experimental investigations as well). As a result, the system

model can be simplified further, as in Figure 3-7.

eTORSO

Yup-------%

v

X

Figure 3-7 Planar torso system model

72

Table 3-1 Torso system model state variables

T puse Torque acting on the base of the robot’s torso. This is the sum of both
the left and right hip joint torques. (Including any friction components).

Xups Ve World coordinates of the hip joint in the sagittal (x-y) plane of the robot.
Sfos f,y Translational force components, transmitted to torso by the lower limbs.
Ororso Angle of inclination of the torso.

The left and right motor torque is known, so if frictional torque is assumed to be

negligible, 7,,.. can be calculated:

Tpase = Trerr + Tricur (1)

The translational forces (f,, f,) transmitted to the torso by the robot’s legs come from

three primary sources:

1) Transmitted ground reaction force through the supporting leg
2) Dynamic forces induced by the free leg’s swinging motion

3) Collision impulses as the free leg strikes the ground

All of these translational force components are difficult to calculate on-line, and require
an accurate system model to give meaningful results. In many cases the system model
includes a significant unknown component, making accurate estimation of transmitted
ground reaction force and dynamically induced forces difficult. Including the influence
of collision impulses is an even more difficult task — so much so that it is unreasonable

to attempt to analytically account for these forces in an online control system.

As a result, the TAC subsystem disregards all components of f, and f,. Instead the

effect of these forces is treated as an external noise, and must be compensated for by the

73

system’s natural robustness. This means that the system diagram can be simplified even

further, as shown in Figure 3-8.

Figure 3-8 Planar torso system model, horizontal translational forces are assumed to be small
compared to 7, .., and are omitted from the diagram. Vertical translational forces are assumed

to simply hold the base of the torso at a constant height.

ii. Control rule
The simplified torso system model shown in Figure 3-8 is in the form of an inverted
pendulum system. Inverted pendulum systems have a well known classical solution that
can be used to balance the pendulum at a fixed position. A balancing horizontal force
can be determined using a simple linear relationship between four state variables [26].

The classical solution to the inverted pendulum problem takes the form:

u=a0+bO0+cx+dx Q)

Table 3-2 Equation (2) variable definitions

u Control variable. Usually this variable is the applied balancing
horizontal force. In the case of the TAC, the variable specifies a
balancing hip joint torque 7, .

0,0 Angle of inclination, and angular velocity, of the pendulum.

X, X Pendulum base horizontal displacement and velocity.

{ a,b,c,d } A vector of scalar values.

74

Given desired performance characteristics in terms of settling time and responsiveness,
appropriate scalar values for {a,b, c,d } that result in successful balancing can be
determined analytically in a process described by Ogata [26]. This approach requires an
accurate system model to be effective. As previously discussed, an accurate system
model is something we do not have. In practice, it proves to be far more practical to

experimentally determine values for the scalar variables. In general terms:

e Increasing the value of ‘a’ will cause the system to respond more vigorously to
changes in angle.

e Increasing ‘b’ will mitigate the effects of ‘a’, and help prevent overshooting the
desired torso angle.

e Increasing the value of ‘¢’ will cause the system to respond more vigorously to
deviations in horizontal displacement.

e Increasing ‘d’ will mitigate the effects of ‘c’, and help prevent overshooting the

desired torso angle.

This classical solution to the inverted pendulum control system is used to create a
control rule for the “Torso attitude control” component. Since it is unsatisfactory to
simply balance the robot in one place, a number of new variables to control the robot’s

position and velocity have been introduced.

The TAC component takes as input values the set point position (xg,) and velocity
(x5) values output by the UIC component. Together with x,, and Xx,, (the

displacement and velocity of the torso’s base), these values are used to calculate the x

and x terms from equation (2).

As a result, the equation used to balance the robot’s torso becomes:

75

Tpase = @ (eTORSO — O prrser) +b (HTORSO = Oprrser)+ c (xH[P - xSP) +d (xHIP - xSP)

3)

If 7gpporr 15 the torque to be supplied to the support leg’s hip joint, and 7, is the

torque being supplied to the free leg (by the JTC component), we can use Equation (1)

to exXpress g pporr OY (5):

Tsupporr = ¢ (9T0Rs0 — O prrser) +b (QTORSO — Oprrser)+ c (xHIP — Xgp) +d (xH[P — Xgp) ~ TrreE
4
Equation (4) is the control signal output from the TAC component, and used to drive the

supporting leg’s hip joint.
3.2.5.3 Complications and assumptions:

1. Arms and heads or elastic torsos
The control system simplifies the entire robotic system above the waist, replacing any
torso arms and head with a rigid single link. The controller relies on the natural
robustness of its inverted pendulum based control system to compensate for any
changes in the torso structure, by treating the dynamic impact of possible changes as

noise.

ii. Leg mass
Translational forces acting on the hip joints of the torso will be generated by rotational
motion of the raised leg, and to a lesser extent by the motion of the supporting leg. The
controller assumes that these forces will have a small magnitude compared to other

forces acting on the robot’s torso. Their influence is treated as noise.

76

iii. Ground reaction force
Translational forces acting on the hip joints are also generated by ground reaction forces
acting on the supporting foot being transmitted through the robot leg to the hip joints.
In the simplified system considered by the TAC, the most significant components of
ground reaction forces are a resultant of gravity working on the torso, and translational
forces generated by the hip torque. As long as the robot’s foot remains in contact with
the ground, a significant component of horizontal force applied to the base of the torso

will be proportional to the applied hip joint torque.

What this means is that it is a reasonable simplification to consider the robot torso an
inverted pendulum, and to balance the pendulum using experimentally determined
values for {a, b, c, d }. However, it also suggests that when the robot’s foot leaves the
ground, the experimentally determined parameters will no longer be valid, as hip torque
no longer generates a reactive translational force. The symptoms observed
experimentally are that the leg joints fly out of control after the supporting foot leaves
the ground. As a result, torque is not applied to the balancing leg’s hip if the foot is not

in contact with the ground.

To illustrate this, the relationship between hip torque and translational ground reaction
force is described in Figure 3-9, and the following equations. To simplify the derivation

of the system equations the following initial assumptions have been made:

e The balancing robot is modelled as a 2-link robot.
e Contact point does not slide, and the foot remains in contact with the ground.

e Supporting knee is ‘locked’.

71

»>i
—
I
1
1
[
I
I

l

L}
|
2 i I
'
TSupporIpr ; -
fX(Iorso)
. L. fY(Iorso)
Fixed knee joint
i
l 1
Il
fX(g?'ound)
fY(g'round)

Figure 3-9 A balancing robot is modelled as a planar 2-link robot with a fixed knee joint. Assuming
the robot’s foot remains fixed on the ground, the relationship between torso translational force,
ground reaction force, and link angular accelerations is described by Equations (5) to (10).

Equations (5) to (10) describe the behaviour of the two link planar robot in Figure 3-9.

The equations are derived through application of the Newton-Euler iterative algorithm
[41]. The derivation of these equations is complex, and so has not been included here.
Readers interested in the derivation of these equations should refer to Appendix C-4 ,

where a general system model for describing multi-link planar robotic systems is

discussed.
m,ls, - .. . m.l.0.%c
fX(torso) = _MQZ —myl;s,6, _mzllglzcl _% (5
m,l,c, = .. . 02
Triomoy = —a 0, +mylic,60, + g m, —m,,6’s, _% (6)

78

mls, = ml0’c
fX(ground) = fX(torso) - 121 1 91 - 1 121 : (7)

22
mylc, o — m,l,6,"s,

fY(ground) = fY(lorso) + 2 1 2 + g ml (8)

fY(ground)Zlcl + fX(ground)lel N fX(torso)llsl _ fY(torso)llcl

= TSupporttip — 5) 5 5 I, é]
9

= T SupportHip fX(W;)lzsz - fY(mr;)lzcz = 1 2 éz (10)

Table 3-3 Planar 2-link robot system variables

Sxtorso) Horizontal force experienced by the base of the torso.

Sy torso) Vertical force experienced by the base of the torso.

S x (ground) Horizontal ground reaction force.

S ceround) Vertical ground reaction force.

m, Mass of the robot leg.

m, Mass of the robot torso.

I, Moment of inertia of the robot leg.

I, Moment of inertia of the robot torso.

[, Length of the robot leg.

[Length of the robot torso.

6, 6"1 , él Angle, angular velocity and angular acceleration of the robot leg.

0,, 6?2, éz Angle, angular velocity and angular acceleration of the robot torso.

)\, Cosine and sine of 6, .

Cys S, Cosine and sine of 6, .

79

g Gravitational acceleration (+ 9.81 ms™).

Torque applied to the leg by the torso’s hip joint actuator.

TSupportHip

Equations (5) to (10) can be rearranged to express fy ., as a function of the system

variables (m,,m,,1,,1,,l,,1,,0,, 6’1,6’2, éz,g and 7g, ...,)- However the resulting

equation is extremely complex. Instead I consider the case here where:

The robot torso is held upright, as it will be if the TAC does its job correctly

T
(6, z?)

e The supporting leg’s foot is close to the ground projection of the robot’s torso

(6 zz

e The robot is not rotating quickly ((9.1 ~ 6’2 ~0).

The mass of the leg link is very small, compared to the torso (m, = 0,1, = 0).
Equations (7) and (9) reduce to:

S ceroundy = S orso) (11)
= 2Tsupportiip T S xgromnart T Fxiorsopls = 0 (12)

Substitute (11) into (12), we see that:

TSupportHip
fX(torso) ~ l— (13)
1

80

This horizontal reaction force, proportional to the applied torque, works with the torque

to assist in balancing the torso “pendulum”.

When the simplifying conditions resulting in Equation (13) no longer exist, the
relationship between torque and horizontal ground reaction force will not be so strong.
This variability in the relationship between horizontal ground reaction force and hip
torque is treated as noise by the TAC component of the Torso Driven Walking control

system.

iv. Collision impulses
Each time the robot finishes a step there is a collision between its raised foot and the
ground. During a collision, translational impulses will propagate throughout the robot
system resulting in almost instantaneous changes in joint angular velocities. It is not
reasonable to try and compensate or predict these impulses, as it is an intractable
problem to solve. The effects of collisions will vary depending on collision speed,
attitude and on the characteristics of the materials colliding. Instead the TAC
component treats the effect of collision impulses as noise, and once again the robustness

of the inverted pendulum controller is trusted to recover any loss in equilibrium.

v. Hip joint friction forces
Joint friction can have a serious impact on the performance of any control system,
including the “torso attitude controller”. The impact of friction is to apply a reasonably
constant force, working against the direction of the current joint angular velocity. Even
small amounts of friction can adversely impact an inverted pendulum controller, as the
effect of friction is to cancel out the small balancing forces generated when the
pendulum is nearly vertical. The result is a balancing control system that appears

sluggish, as the pendulum often has to fall a significant distance before the effects of

81

friction on the controller are overcome. Where possible a control system should

compensate for frictional forces in some way.

The approach to friction compensation is described in Chapter 5. Essentially, the task
requires predicting, at each time step, the level of friction acting against the motion of
the joint. The control system should then apply an equal and opposite compensation
torque to the joint’s actuators. This process is not managed by the Torso Attitude

Controller, and will not be discussed further here.

3.2.6 Gait transition controller (GTC)

The primary responsibility of the gait transition controller is to ensure there is always at

least one leg preventing the robot torso from sinking to the ground.

3.2.6.1 Objective

As the robot’s torso is balanced by the Torso Attitude Controller, torque applied to the
supporting leg’s hip will cause the leg to move from its position beneath the torso. The
Gait Transition Controller’s primary objective is to make sure the raised leg is moved
into position to take over the supporting leg role when necessary. An additional
responsibility of the Gait Transition Controller is to ensure that the supporting leg holds

the robot’s weight without buckling.

82

3.2.6.2 Implementation

boolSupportLeg BRightCOrLeff

" boolRaised Hip UsesPID
Ghait —
¥ Transition o o tEne eSP
: — > pporting &
k Controller i
(GTC) > 5Rax’sedK)zeeSP
> 5Rax’sede’pS F

Figure 3-10 The gait transition controller (TAC) uses the current system state, to generate a joint

space target position to which all joints but the supporting hip are attracted.

The Gait Transition Controller requirements for managing the position of the free leg
and supporting leg’s knee joint are achieved through the use of a state machine, driven
by the position of the supporting leg relative to the robot’s torso. Figure 3-11 shows the

full Gait Transition Controller state transition diagram, consisting of 14 states, each of

which describes a distinct part of the robot’s gait.

Lett foot 1s support Right foot 18 support
/ hold \
l left :
\/\ behind /
P AL ~ o
/ : . 74
hold \ // lift / push
right | M left | | eft
ahead / \forward A\ back
L S~ — \\L_i/
P'-'" push\\ / hold \\
)
right / right (left |
\ back \ forward y /\up A
~— > o \‘k—/‘ T T —_— s i
e ~ - A
4/ hold / push 7 pull N
" ¥ |ght ,. left :\ L left
P \\fOI’\‘JaI‘d) . . back /
T _/ ~ — o -
™, -~ _\ —
7 push \ I|ft \ /" hold
0 ight J ' right | e { left |
\\ back \ _forward / \ ahead /
~— — R ~—
/ hold
right |
\behlnd /
-~

Figure 3-11 Gait transition controller state tr

83

ansition diagram.

In each state, the controller has a specific objective, and a number of triggers to initiate
transition between states. As the robot walks, the state transition controller follows a
clockwise or anticlockwise path through the state machine depicted in Figure 3-11. If

the robot is walking forward, the path is clockwise, following these states:

Left foot is support Right foot is support

hold
left
ahead

hold
right
up

lift
left
forward

lift
right
forward

push
left
forward

push
right
forward

Figure 3-12 State transitions when walking forward.

At any time, the state machine may be required to change direction. If the robot is

reversing, the path is anticlockwise, following these states:

Left foot is support Right foot is support
hold pull hold push
right |77 left left p left

behind back up back

Figure 3-13 State transitions when walking backward.

hold
left
behind

hold
right
up

Each of the gait transition controller’s states is treated as a distinct module, further
decomposing the “Torso Driven Walking” control system. A Gait Transition Controller
state is made up of two types of rules; transition triggers and set point trajectories.
Together these two components describe a state program that is executed for as long as

the state is maintained.

1. Transition triggers
Transition triggers are most commonly fired if a system variable exceeds a tuneable

value. For example, the system shifts from the state “hold left up” to “push left

84

forward” when the angle between the supporting (right) foot and the torso moves below
a threshold value. Some other kinds of transition trigger may include events such as the

raised leg’s foot striking the ground, or a joint trajectory transit timer expiring.

. Set point trajectories
Set point trajectories are defined by the Gait Transition Controller as a target joint
angle, together with a trajectory transit time (ms). At the start of a trajectory, the joint
set points are initialised to the corresponding joint angles currently being measured by
the robot’s system variables. As the trajectory is then executed, the set point values are
varied from the initial value to the trajectory target value, over an interval specified by

the trajectories’ transit time.

The effect of a changing set point trajectory can be visualised as pulling the end of a
virtual spring/damper integrated with the robot’s joints. As the set points move away
from the robot’s current position, the joints follow as if they are being dragged by a
spring. This is equivalent to a joint-space representation of Pratt’s “virtual model

control” paradigm [66].

iii. State program
A state program may include multiple joint set point trajectories, which can work in
parallel (if they apply to different joints) or in a sequence (if the trajectories apply to the
same joint). Together, the transition trigger limit values, joint trajectory set point targets
and transit times make up the tuneable parameters of the gait transition controller

module.

Whereas the state transition diagram (Figure 3-11) shows 14 possible system states, the
only difference between the left and right diagram is which leg has been designated as

the “support leg”. By specifying that the robot gait should be symmetrical, the number

85

of state programs that must be developed is reduced to seven. A summary of the seven
GTC state programs, and the transition triggers and trajectories associated with each
program, is provided here. For an example of a specific implementation, please refer to

Chapter 6.5.

1) Hold leg up

During this state, the raised leg is moved into a position above the support foot, ready to

move in either direction. boolRaisedHipUsesPID is true for the duration of this state.

The robot transitions to the “push leg forward” state if the supporting leg drifts too far

back and to the “push leg back” state if it drifts too far forward.

2) Push leg forward

During this state, the raised leg is pushed ahead, ready to catch the robot’s weight.

boolRaisedHipUsesPID is true for the duration of this state.

The robot transitions to the “hold leg ahead” state once the raised foot has struck the

ground.

3) Hold leg ahead

During this state, both legs are on the ground. The robot is preparing to shift its weight

onto the forward leg. boolRaisedHipUsesPID is false for the duration of this state.

The robot transitions to the “pull leg back” state if the supporting (rear) foot moves back
under the robot’s torso. The robot transitions to the “/ifi leg forward” state once the
supporting leg is judged to have moved far enough away from the torso, of if the

supporting leg has become airborne.

86

4) Lift leg forward

During this state, the rear foot is lifted off the ground and swung forward.

boolRaisedHipUsesPID is true for the duration of this state.

The robot transitions to the “hold leg up” state once the foot has been given sufficient

time to clear the ground.

5) Push leg back

During this state, the raised leg is pushed back — ready to catch the robot’s weight as the

robot moves backwards. boolRaisedHipUsesPID is true for the duration of this state.

The robot transitions to the “hold leg behind” state once the raised foot strikes the

ground.

6) Hold leg behind

During this state, both legs are on the ground. The robot is preparing to shift its weight

onto the back leg. boolRaisedHipUsesPID is false for the duration of this state.

The robot transitions to the “list leg forward” state if the supporting (front) foot moves
back under the robot’s torso. The robot transitions to the “pull leg back” state once the
supporting leg is judged to have moved far enough away from the torso, of if the

supporting leg has become airborne.

7) Pull leg back

During this state, the front foot is lifted off the ground and swung back.

boolRaisedHipUsesPID is true for the duration of this state.

87

The robot transitions to the “hold leg up” state once the foot has been given sufficient

time to clear the ground.

3.2.6.3 Complications and assumptions

1. Supporting leg knee joint
Obviously, if the supporting leg is to hold the robot’s torso off the ground, some
attention must be given to the control of the supporting knee. This role is handled by
the Gait Transition Controller by assigning a joint trajectory to the supporting knee that

holds the knee to a predefined angle.

1) Initial position

i. Initial position ii. Initial position iii. Initial position
after hyper- after normal step after unexpected
extended step step

Figure 3-14 Common initial positions for support leg

When a leg becomes the supporting leg, its initial leg position will be fairly arbitrary — it

cannot be predicted by the control system. The robot may have stepped on an obstacle,

88

or stubbed its toe, it could be moving forwards or backwards, etc. Some examples of

common initial orientations of the support leg are shown in Figure 3-14.

Regardless of its initial position, the Gait Transition Controller needs to move the
support knee joint into an optimal “operating position”, and hold it there. It is not
required to do any balancing, as this is the job of the Torso Attitude Controller

subsystem.

2) Operating position of supporting knee

Determining an optimal operating position for the supporting knee joint is a tuning task
that needs to be performed when configuring the control system for a particular robotic
platform. The set point value chosen will depend strongly on the capabilities of the
physical robot on which the control system is being implemented. Possible choices
range from a completely straight knee joint, to a significantly bent knee. Selecting a
single “ideal” position will require a compromise in order to balance the advantages and

disadvantages of the various configuration options.

i Robot is ii. Robot is
balanced on a balanced on a
bent knee straight knee

Figure 3-15 Two extreme values for the balancing leg’s knee operating position

89

There are a number of considerations that will influence the choice of angle when

selecting an operating set point position for the balancing leg’s knee joint:

3) Minimise supporting knee torque

Minimising the knee torque required will result in reduced power consumption, and
wear and tear on actuators. More importantly, a robot will always have a maximum
output torque that can be supplied by the joint actuators. If this maximum torque is low,

large supporting knee joint angles will not be possible.

T

fGfo
fGR_y
i. Knee torque is ii. Knee torque is
primarily driven primarily driven
by f,
Y Thip by Typ

Figure 3-16 System model showing some of the forces and torques acting on a robot’s thigh and
shin links.

Knee torque output by the “support leg controller” component needs to work against
deviations between the measured knee position and the desired operating position.
These deviations are the result of torques and forces acting on the shin and thigh joints
of the robot leg. Figure 3-16 illustrates a simple robot leg, and some of the factors that
result in the need for a corrective knee torque.

90

Table 3-4 System parameters resulting in the need for stabilising knee torque.

Top A torso balancing hip torque applied by the TAC component.
S Translational forces generated by the torso, acting on the hip joint.
Sfor The ground reaction force acting on the robot’s foot.

The system model diagrams in Figure 3-16 illustrate two possible configurations for the
operating position of the supporting leg. The bent configuration (i.) works best for

countering deviations driven by a clockwise 7,,, while the straight legged
configuration (ii.) minimises deviations driven by f,,, and f;,. The target robot’s

construction (especially weight), and the strength of its actuators will determine a
suitable operating angle that minimises power requirements made on the knee joint.

Usually, a straighter knee joint will be more efficient.

4) Implications of supporting knee angle for maintaining ground contact

Although the Torso Driven Walking control system is designed to cope with loss of
ground contact, the Torso Attitude Controller component will suspend application of a
balancing torque for the duration time the supporting foot is above the ground surface.
As a result, it is prudent to consider the implications of the supporting knee angle on
ground contact. A glance at Figure 3-16 will show that if the torso were to rise for any
reason, the robot is in danger of losing contact with the ground. In the first
configuration, the ground contact will be maintained as the supporting leg extends with
a rise in robot torso height. However when the leg is held straight, as in configuration

(1), any rise at all in the torso position will result in loss of contact with the ground.

91

3.2.7 Collision avoidance controller (CAC)

The Collision Avoidance Controller is a “virtual model” controller that works to prevent
collisions between the robot links by maintaining an exclusion zone repelling links in

danger of colliding.

3.2.7.1 Objective

As a result of some experimental investigations (Chapter 6.6) the need for some
additional system to prevent the robot’s feet from colliding together was required. The
Collision Avoidance Controller was developed as a way to prevent links of the robot

that might collide from coming too close together.

3.2.7.2 Implementation

5RaisedK}seeSP N HRaisedKneeSP
. » Collision >
HRas’sedepS P Avoidance)
> Controller hRﬂ‘iSéd}YIpS P
Vi | (cao) >

Figure 3-17 The collision avoidance controller (CAC) uses the current system state, to modify the
raised leg joint set point positions, keeping the set point positions outside an “exclusion zone” about
components of the robot that might be a danger.

The Collision Avoidance Controller shown in Figure 3-17 monitors the current robot
joint angle state measurements for the supporting leg. The state variables are compared
with the raised leg set point positions being output by the Gait Transition Controller
subsystem. The Collision Avoidance Controller ensures that the set point angles for the
raised leg will keep the leg at a safe distance from collisions with the supporting leg. It

does this by adjusting the raised leg set point positions if a safety threshold is breached.

For the case of the simple planar “Legbot” robot discussed in Chapter 6, the robot’s

rotational motion is constrained to the sagittal plane due to the structure of the robot’s

92

feet. The feet have been designed as rods that are fixed to the robot’s ankles and

aligned perpendicular to the ground, as shown in Figure 3-18.

Sagittal view Frontal view

Set point trajectory

\ Exclusion

Zone border

Figure 3-18 The Legbot robot restricts rotational motion to the sagittal plane through the design of
its feet. As a consequence of the robot’s structure, the only internal collision possible between the
robot’s links is if the feet occupy the same space in the sagittal plane. To avoid any collisions, the
raised foot’s set point position is kept out of an exclusion zone maintained by the Collision
Avoidance Controller.

As a consequence, the only possible collision that can occur between the robot’s links
occurs if the feet occupy the same space in the sagittal plane. To prevent a collision, the
Collision Avoidance Controller will calculate the Cartesian coordinates of the support
foot based on sensor measurements, and then calculate the coordinates of the raised
foot, as if it were at the set point positions output by the Gait Transition Controller. If
the distance between these two feet is less than a reasonable safety margin, the set point
foot position will be raised until it is at the safety margin. Figure 3-18 illustrates the
resulting set point trajectory for the robot’s raised foot. For this example, the tuneable

Collision Avoidance Controller parameter is the radius of the set point exclusion zone.

3.2.8 Joint torque controller (JTC)

The Joint Torque Controller is responsible for determining the torque that should be

applied to each of the robot’s joints.

93

3.2.8.1 Objective

The Joint Torque Controller is responsible for coordinating the application of joint
torques to the robot’s actuators. In the case of the supporting leg’s hip joint, the Joint
Torque Controller simply passes on the torque specified by the Torso Attitude
Controller to the joint. For all other joints, the Joint Torque Controller needs to
determine an appropriate torque to use when driving the joints from their current
positions towards the set point positions provided by the gait transition controller

subsystem.

3.2.8.2 Implementation

TSupportHzp l

boolSupportLeg TRightOrLeft

boolRaised Hip UsesPID e .
Jomt

Torque —
_— | — T
Controller JIT
meSedKneeSP -_— (JTC)

Figure 3-19 Each time interval, the joint torque controller (JTC) uses the current system state,
together with set point commands and balancing torques input from the rest of the control system’s
components to determine an array of output joint torques to apply to the robot..

bSupporane a5k

- -
mesedepS P

The support leg’s hip torque is set to the balancing torque provided by the Torso
Attitude Controller subsystem, unless the support foot is not in contact with the ground,

in which case the supporting leg’s hip torque is set to zero.

The remaining robot’s joints are controlled using a simple PD control algorithm, which
tracks the changing joint set point positions output by the Gait Transition Controller

state programs. Joints controlled via PD include:

e Support leg’s knee

e Raised leg’s knee

94

e Raised leg’s hip (if the variable boolRaisedHipUsesPID is true, otherwise

torque applied to the hip joint is zero.)

The Joint Torque Controller tuning parameters are the proportional and differential
constants of the PD control loop used to drive the robot joints towards the set point

positions

3.2.9 Joint limit controller (JLC)

The Joint Limit Controller is a “virtual model” controller that operates on the robot

joints, ensuring they continue operating within desired ranges.

3.2.9.1 Objective

The Joint Limit Controller is responsible for keeping the robot’s limbs operating in the
correct configurations by applying a corrective torque if the joint limits are exceeded.
The need for a Joint Limit Controller was identified during the course of preliminary
experiments conducted using the Torso Driven Walking control system. It was
observed that due to the double-jointed nature of our robot’s knee joint, as the robot
pushed against the ground to step forwards, the knee joint would tend to buckle
backwards. The simple PD control supplied by the Joint Torque Controller was

insufficient to keep the robot’s leg straight.

In nature, it can be observed that the knee joints of birds and animals either bend

forwards, or backwards, but not in both directions.

95

3.2.9.2 Implementation

e Joint
Limit g
Controller

X, =— (LO)

T

Figure 3-20 Each time interval, the joint limit controller (JTC) monitors the robot’s system state
variables. If any joint angles are determined to be outside the limit boundary for that joint, then
the torque being applied to the offending joint is updated to correct the transgression.

Many robots are designed with physical range limits effectively prevent the knee joints
from hyper-extending, and locking the leg straight during the support phase of a
walking gait. A locking knee joint is one of the primary requirements for passive
walking with knees [58]. Another advantage that would be realized from physical limits
to joint ranges is a simplification in the control of the robot through the removal of

multiple solutions in the robot kinematic equations.

Unfortunately, it is not always the case that robots will posses physical joint limits
where they are needed. Additionally, a robot’s joints would need to be very well
designed in order to withstand the jarring impulses that would be experienced by the
joint if the links are allowed to effectively crash into the joint limit as they reach the end

of their range of motion.

The Torso Driven Walking control system avoids this problem by implementing the
joint limit controller subsystem. The approach I have taken is inspired by the
“spring/damper” collision model used in the software simulation dynamic model for the
Legbot (see Appendix C-4.2). However, the algorithm is equivalent to an
implementation of Pratt’s virtual model control [66]. The Legbot simulator’s collision

model calculates a ground reaction force based on the penetration of the robot into the

96

ground. In contrast, the Joint Limit Controller uses a similar calculation to determine an
overriding control torque to apply to joints that have moved beyond the predetermined
joint limit positions. The form of the collision model is an asymmetrical PD control

system, where:

As well as assisting control, this kind of joint limit enforcement can be applied to all of
the robot’s joints in order to ensure they remain within the desired or safe operating
range. Thus the Joint Limit Controller can be used to prevent damage to the robot, as

well as provide active assistance to the control system.

3.2.10 Emergency Stop Controller (ESC)

The Emergency Stop Controller is used in a physical robot to mitigate damage that
might occur to the robot due to incorrect control system outputs, or unexpected
situations. The robot monitors the system’s joint angles, and simply shuts off all power

to the robot’s actuators if any of the joint angles exceed a predetermined safety limit.

3.2.10.1 Objective

Unexpected external forces, hardware failures and software errors are all potential
causes of damage to the robot. The objective of the “Extreme limit controller” is to
prevent or minimise damage to the robot, in the event of a failure of other components
of the control system. Safety is not such a concern in our experiments, as the robots we
have built are all small, lightweight and weak. For larger robots, the purpose of this

subsystem should be extended to take into account safety considerations.

Together with impacts with the environment, internal collisions have the potential to
cause significant damage to a physical robot. Internal collisions occur as joints reach

their physical limit values while still travelling at large angular velocities. The potential

97

for damage can be compounded if the joint controllers continue to exert torque after a
collision in an attempt to drive the joint through its limit position. Control system errors
such as this are particularly common during the implementation and tuning stages of

control system development.

While environmental collisions are difficult to predict, and may be unavoidable, internal
collisions are much easier to manage. The “extreme limit controller” monitors the
robot’s joint measurements, and shutdowns all power to the actuators if any joint is
outside predetermined limits. While this action may not prevent the internal collision
from occurring, the likelihood of damage to the joint or actuators is reduced if the robot

1s inert.

The Emergency Stop Controller operates as a last resort failsafe mechanism; generally
the Joint Limit Controller component will already have had a chance to politely prevent

intrusion of the robot’s joint state into illegal states.

3.2.10.2 Implementation

%-JLC — | Emergency

Stop —_— fk
Controller
Xy — (ESC)

Figure 3-21 The emergency stop controller monitors the current system state, and prevents any
torque being sent to the robot joints if a failsafe condition has been tripped.

The Emergency Stop Controller simply monitors the current system state variables. If it

observes any joint position readings which transgress a set of pre-determined extreme

98

limit values, the Emergency Stop Controller will abort all control of the robot joints.

The robot will “crash stop”.

Selecting these joint extreme limits is relatively simple matter of selecting joint
positions that are well outside the expected operating range of the joint, and yet

(usually) within the maximum range of motion for a joint.

Because the emergency shutdown of robot actuators is unsupervised, there is some risk
in conducting a “crash stop” procedure. If the robot is busy walking, or running, and
“crash stops” it will fall to the ground, and may sustain damage as a result of the fall.
We don’t want to risk an emergency shutdown in the normal course of operation, so the
selected limits should not be close to the robot’s normal operating range. Similarly, if
the limits are too close to the extreme range of joint motion, then internal collisions may

still occur with some force.

6Mln

Figure 3-22 Example hip joint angle limits.

The diagram Figure 3-22 illustrates a possible configuration of hip joint limit positions.

99

Table 3-5 Example joint limits used by the JLC and ESC subsystems.

0, Hip joint angle measurement.

Orin > Ortn Physical joint limits.

O, 0,,,, Limits used by the ESC to initiate a crash stop.

Oi» 0y, Limits used by the JTC to initiate a corrective joint torque.

Sometimes it may be desirable to use the hardware joint limit to assist the robot motion
— for example the knee joint may be physically designed not to bend forwards, so that
no joint torque needs to be used to hold the knee still while stepping forwards. This
configuration allows for efficient walking gaits Pratt [66]. In this situation, it may still
desirable to implement an extreme limit, in case the knee joint breaks. Obviously, in
this example the shutdown will be too late to save the knee joint. Hopefully the
Emergency Stop Controller will prevent further damage to other parts of the system.

Figure 3-23 depicts a knee joint space diagram showing such a configuration.

Figure 3-23 Example knee joint angle limits. The ESC limits are outside the physical range of
motion of the knee, and will only be tripped if the knee joint has broken. This may still result in
reduced damage to other components of the system.

100

4 Experiments with Johnny Walker & Jack Daniels

This chapter describes a preliminary experiment conducted using the pre-existing
robotic platform “Johnny Walker”. The aim of the experiment was to review work
previously done by researchers in the robotics lab, to evaluate a number of sensors for
inclusion in later robotic designs and to gain some practical experience with the
challenges confronting developers of biped robots. Since the robots employ many of
the hardware and software components that would be utilised when developing
subsequent robots, these experiments also provided valuable experience in working with

the Eyebot robotic platform'.

Figure 4-1 Johnny Walker (left) and Jack Daniels, a pair of rigid link servo actuated experimental
robotic platforms, designed for investigations into bipedal robotic control.

' The Eyebot robotic platform is described in Appendix A-1.
101

4.1

Introducing Johnny and Jack

“Johnny Walker” and “Jack Daniels” are two prototype biped robots, developed by

honours students Pepper, Nicholls and Ng for the CIIPS research group at the

University of Western Australia. While these projects [1-3] were not particularly

successful in terms of producing a walking biped robot, they demonstrate a number of

valuable lessons. Some of the successes realised by these projects include:

Demonstrated that is possible to create low-cost biped robots, and control them
using the Eyebot controller.

A significant amount of work was done preparing software libraries to control
the robot hardware, and read sensors. While some of this work was specific to
the Johnny and Jack” platforms, I have been able to reuse some of this software
in later robots.

Some limited walking was achieved; Nicholls [2] reported a maximum
successful walking duration of three steps. A short video of his three-step

walking gait 1s available at http://robotics.ee.uwa.edu.au/eyebot/mpg/walk-

2leg/johnny.mpg. A qualitative evaluation of walking performance was not

provided by either Pepper or Ng [1], [3]. From their thesis discussions, it
appears as though the final performance achieved by all three researchers was

comparable.

More importantly, all three researchers have drawn similar conclusions regarding the

reasons for the failure of the Johnny Walker and Jack Daniels robots to successfully

execute a robust walking algorithm:

2 Robotic platforms “Johnny Walker” and “Jack Daniels” will be referred to as “Johnny” and “Jack”
during this discussion.

102

e An inability to apply a controllable acceleration or velocity to servo driven joints
results in “jerky” motion and vibrations that can be detrimental to the stability of
any control strategy.

e The inability to detect the positions of servo joints prevents the application of a
sophisticated control system. Servo joints are commanded to move to a certain
position by the controller, but there is no guarantee that they reach the
commanded position.

e Actuators need to be powerful enough to allow the robot to recover from falling
— it is not enough to provide actuators capable of simply holding the robot while
it is in an equilibrium state.

e When possible, actuator motors should use a different power source to sensor
equipment. The power drained by the robotic actuators can have an adverse

effect on the accuracy of sensor equipment.

4.2 Previous work with Johnny and Jack

4.2.1 Walking control systems

Control systems implemented by Nicholls and Ng [2], [3] on Johnny and Jack both
involved an off-line gait generation, played back as a time varying trajectory of set point
signals sent to the robot’s servos. Pepper developed a robot state display application
[1], which showed a graphical representation of the robot as its joints were set to user
specified angles. The program was used as a tool for designing a set point trajectory
that resulted in a “natural looking” walking gait. The resulting set point “program” was
then downloaded onto the robot for evaluation. This system was not a dynamic
simulation, so the effectiveness of candidate gait trajectories could not be evaluated in
the simulation. Initially the gait trajectory was determined “intuitively” — later a set of

trigonometric functions was used to generate a gait that could be modulated by varying

103

frequency of various gait components. Ng [2] based his robot gait on a study of human
gait trajectories resulting in a set of sinusoidal joint trajectories. Pepper did not attempt

walking, concentrating on sensor interpretation and static balance instead.
4.2.2 Sensor interpretation

Nicholls and Pepper concentrated much of their effort attempting to extract useful
inclination measurements from the analogue accelerometers mounted on Johnny
Walker. Various software and hardware filtering techniques were used to try and
reduce noise from the angle estimates. Part of the difficulty these researchers
experienced with the analogue accelerometers could be traced to problems with the
sensor interaction with the Eyebot’s RoBIOS software’. In order to read the digital
accelerometers mounted on Jack Daniels, Ng wrote a very useful assembly language

function for reading pulse-width modulated (PWM) signals into Eyebot registers.
4.2.3 PID control

The previous researchers working on Johnny and Jack attempted to implement a form of
positional feedback control on the robot to assist its balance. In all three cases, the only
useful state feedback available was a noisy hip or torso inclination angle measurement.
All three researchers tried to maintain balance by modifying the set point angles of
either hip or ankle joints, by an amount determined by a PID controller. The error
signal used was the difference between the sensor output during the execution of a trial,
and an “expected” sensor output trajectory. Rather than calculating the ideal or
“expected” sensor output, this measure was defined experimentally as the “average”
output trajectory of a large number of trial runs. Since all of the trials used to determine

a reference signal failed, it is not clear how this approach could be expected to result in

3 A serious error with the AD converter firmware has only recently been discovered and corrected.

104

a useful reference trajectory. Given the lack of success in producing walking gaits, it

follows that none of these attempts were particularly successful.

Even if the researchers could have had complete confidence in the reference sensor
signal, attempting to maintain balance by simply manipulating the body’s posture is
only an effective strategy in static balance scenarios. Force control will be required in

order to provide robust balance in a dynamic environment.

4.3 What do I want from these robots?

A practical reason for my interest in performing preliminary experiments on the robots
Johnny Walker and Jack Daniels was the desire to be able to present some kind of
working demo of a biped walking robot. Even though the best walking behaviour I
could achieve was very primitive (the behaviour achieved is described in Chapter 4.6),
being forced to work within the limitations of the existing robot design highlighted the
need to consider the totality of sensors, actuators, physical design and control system

design when developing a biped robot.

While a sophisticated walking algorithm is obviously difficult’ to implement on Johnny
Walker and Jack Daniels, these robots do have some advantages in terms of simplicity
and low cost. Experimenting on these existing robots was a good way for me to see
what components I might be able to take from them to reuse in the design of my own

robots.

One thing all researchers using Johnny and Jack have agreed on is the importance of
sensor data for control feedback during operation. An important lesson is that
appropriate sensors should be identified and evaluated before resources are committed

to building a new walking robot. The existing platforms Johnny and Jack allowed me to

* I believe such an algorithm is in fact impossible to implement on these platforms.

105

conduct some preliminary sensor evaluation before I began construction of my new
robots. One sense I was particularly interested in using was vision. While Johnny and
Jack were both already equipped with a camera, none of the researchers that had

experimented with them tried using the camera to assist with balance.

Finally, since much of the software to perform basic control actions on the existing
robots had already been written [1-3], working with these existing systems was fast way
to gain experience working with the Eyebot/RoBIOS platforms. This experience proved
to be valuable when I was developing my own experimental robots, discussed in

Chapters 5 and 6.

4.4 Construction and materials

4.4.1 Physical construction

Johnny and Jack are both rigid link robots, constructed predominantly out of folded
aluminium sheets. The robots are of equivalent height and weight, standing around 50
cm in height and weigh around 1.5 kg. The robots differ only slightly in the choice of
actuated joints and number of “degrees-of-freedom”. Construction details for Johnny

Walker are provided by Nicholls [2], while details for Jack Daniels are given by Ng [3].

Table 4-1 Construction summary for the robots Johnny Walker and Jack Daniels

Robot Johnny Jack
Weight 1.78 kg 1.8 kg
Height 50 cm 48 cm
Degrees of freedom 9 11
Actuated joints Left and right ankle Left and right knee
Left and right knee Left and right hip (bend)

106

Left and right hip (bend) Left and right hip (twist)

Left and right hip (twist) Torso

Torso Left and right shoulder

Passive joints None Left and right ankle

4.4.2 Controller

Both robots use the Eyebot controller for mobile robots, developed by Joker Robotics.

For information about the Eyebot controller, see Appendix A-1.

4.4.3 Actuators

Both Johnny Walker and Jack Daniels utilise servo motors for actuation. These motors
provide a form of positional control, where the servo attempts to move the current
position to a target angle specified by the controller. No feedback is provided by the
servo to the controller to allow a high level control system to verify whether the set

point position has been successfully reached.

Positional control is achieved by the servos through the use of an internal PD controller
that moves the servo to a position indicated by a pulse width modulated (PWM) input
signal. The proportional and differential parameters of the servo’s PD controller are
inaccessible to an external controller, which means the response of the servo cannot be
modified by the robots. Since most servos are designed to operate light loads, in a
robotics environment the loading experienced by the servo often means its performance

is sub-optimal.

107

Additionally, servos are usually designed to operate with a “dead band” zone around the
set point position. When the servo position is within the “dead band” zone, no torque
will be applied to the servo shaft. This is to prevent unnecessary servo actuation,
conserving power usage. Unfortunately it also means the servo cannot achieve accuracy

of more than about 1 degree.

Table 4-2 Joint actuators used on Johnny Walker and Jack Daniels

Robot Johnny Jack

Servo Futaba S9402 Servo Hitech Servo HS-300

4.4.4 Sensors

The robots Johnny and Jack are equipped with a similar array of sensors, consisting of

linear accelerometers, optical digital switches and a camera.

Table 4-3 Sensors installed on Johnny Walker and Jack Daniels

Robot Johnny Jack

Accelerometer 2 * ADXLOS 1-axis 1 * ADXL202 2-axis
analogue sensor digital sensor

Digital switches Honeywell optoelectronic | Honeywell optoelectronic
switches (HOA2498) switches (HOA2498)

Camera Connectix QuickCAM Connectix QuickCAM
colour camera B/W camera

4.4.4.1 Accelerometers

The accelerometers installed on the robots Johnny and Jack were originally intended to
measure the orientation (pitch and roll) of the robot link to which the sensor has been
attached. The analogue sensor on Johnny Walker is attached to the torso, while the

digital sensor on Jack Daniels is attached to the robot’s hip. Each robot’s

108

accelerometers are installed in such a way as to give readings of acceleration vectors in
the horizontal plane of the robot, measuring acceleration in the x-z plane (also known as
the transverse plane)’. Figure 4-2 illustrates the orientation of the x, y and z axis with
respect to the robot links. The x-y plane is aligned with the robot’s sagittal plane, while

the z-y plane is the frontal plane.

Figure 4-2 Axis orientation for Johnny Walker and Jack Daniels. Accelerometers installed on each
robot measure an acceleration vector in the x-z plane of the robot, also known as the “transverse”
plane.

The analogue and digital accelerometers used are very noisy, a problem compounded by
the unavoidable “servo jitter” experienced by the robot as the servos continuously work
to maintain their positions. Much of the early work with these robots was devoted to

finding appropriate filters to make the accelerometers usable [1], [2].

As an additional complication, my preliminary experiments with the analogue sensors
installed on Johnny confirmed Pepper’s observation that there were some problems
relating to the sensor interaction with the analogue input ports on the Eyebot platform.

Namely that:

> In the frames of reference used in [1-3], the accelerometers are aligned along the x and y directions.
The coordinate axes have been relabelled in this discussion to maintain consistency with the remainder of
the thesis.

109

e Occasional AD converter readings for particular channels would in fact read the
incorrect channel’s value.
e [fthe AD converter was not continuously being read, then the channel appears to

sometimes “hold” the last value.

These behaviours were unpredictable, and considerably reduced my confidence in using
the analogue accelerometers in experiments. The problems did not appear to occur if
only a single analogue sensor is being read, as was the case during my experiments with
an inclinometer sensor in Chapter 5.7. I understand that since these experiments were
conducted a fault with the Eyebot’s RoBIOS operating system has been identified,

which may resolve these problems.

Finally, experiments reading the accelerometer while the servos were under high load
showed highly variable results. 1 believe this is partly due to power drained by the

actuators adversely changing the reference voltage used by the accelerometer sensor.

4.4.4.2 Cameras

The robots are both equipped with a QuickCAM Connectix digital camera. These
cameras are able to take colour or black and white images at a resolution of 80 x 60
pixels. My preliminary investigations into using the camera as a sensor for assisting
balancing robots were not particularly encouraging, and have not been included in this

thesis.

4.4.4.3 Optical Switches

The robots were originally designed with four push-button switches mounted at the
corners of each foot. By the time I became involved in the project, the push-button

switches had been replaced by infra-red optical switches. These are calibrated to detect

110

contact between the robot’s feet and the ground. Unfortunately, depending on the
reflective properties of the surface the robot is walking on, the switches can give false
positive readings when they are close to the ground. Occasionally during preliminary
experiments, the robot foot could be as much as 1-2 cm above the ground while the

sensor signals a positive ground contact.

4.5 Experimental overview

A single preliminary experiment conducted using the Johnny Walker robotic platform is

described in this chapter:

1. Walking demo using Johnny Walker

Given the robot’s design limitations, what is the best kind of walking demo that can be
obtained? The aim of this experiment was to try and develop a demo walking gait for
one of the existing robots. The demo was to be completely autonomous, and not rely on
any external power sources. The most critical lesson learned from this exercise was the
importance of selecting appropriate sensors and actuators during the design of a robot

and its control system.

4.6 Walking demo using Johnny Walker

4.6.1 Introduction

This development of a walking demo for Johnny Walker was conducted in collaboration
with Martin Wicke, another student interested in bipedal robotics. The objective of this
experiment was to implement the best walking algorithm possible on the robot Johnny
Walker, given its design limitations. By determining what walking behaviour is
possible with a robot like Johnny Walker, this experiment identifies challenges that

need to be considered when developing a walking robot. A more immediately obvious

111

benefit was the ability to demonstrate a walking gait on a real robot. Even if the
resulting walking pattern is not sophisticated, it is always nice to be able to show

something concrete to visitors to the laboratory!

4.6.2 Materials

Johnny Walker was selected as the robot used to attempt a walking demo. This is
because unlike his “brother” robot Jack Daniels, Johnny has fully actuated ankles, and
was able to stand without needing active balance. Johnny Walker is a nine degree-of-
freedom biped robot, powered by servo actuators and equipped with a camera, a pair of
analogue accelerometers and an array of optical switches in its feet. The construction of

this robot is summarised in 4.4, and described in more detail by Nicholls [2].

The ankle, knee, hip and torso actuators installed on Johnny Walker are servo motors.
At any time, the servos can be commanded to a new set point angle, using the RoBIOS
function SERVOSet (Position). How the servo attempts to reach this set point is
not controllable by the Eyebot control system. Additionally, no information about the
servo position can be determined by the Eyebot control system. If the servo is unable to
reach the commanded position for any reason, the controller has no way of determining

this.

It 1s worthwhile reviewing the sensors installed on Johnny Walker, as no information
about the robot state can be used by the control system unless it has first been recorded

through the use of the installed sensors. Sensors installed on Johnny Walker include:

e Analogue accelerometers — read by Johnny as a pair of analogue input, using
RoBIOS function 0SGetAD (channel). Data obtained through these sensors

was not reliable enough for the sensor to be used as an inclination sensor.

112

Instead I used the accelerometers as vibration sensors, which is the purpose for
which they are best suited®.

e Optical switches — due to their lack of sensitivity, I did not use these sensors in
the demo walking control system.

e (Camera — the camera installed on Johnny Walker was not used during this

experiment.

As a consequence of the sensors installed, the following state information is available to

a control system implemented on Johnny Walker:

e Measure of vibration intensity.

e Bitmap image of the view from the robot’s camera.

Since no work has been done on utilising the camera, the only information Johnny can

detect is how badly he is shaking!

4.6.3 Methods

The sensors and actuators installed on a robot directly influence the kind of control
system that can be implemented. In the case of Johnny Walker, none of the more

sophisticated control systems discussed in Chapter 2 can be attempted. For example:

e Can’t do ZMP based walking — need force measurements of ground contact.
Contact switches are insufficient for calculating the centre of pressure.

e Can’t do Inverted pendulum control — even if the accelerometers used were able
to give timely and accurate measures of robot inclination, this approach requires

the ability to apply variable force to base of the robot “pendulum” — with the

% One of the primary applications for the ADXLO05 accelerometers used on Johnny Walker is to detect
vibrations induced by car collisions, for the deployment of protective airbag devices.

113

servo driven actuators installed on Johnny Walker we have no control over this
force.
e Not even static walking is possible, as we cannot read the servo positions — and

hence calculate the position of the robot’s centre of mass.

This means the only viable control system is a kind of experimentally developed “quasi-
dynamic” walking, where a joint trajectory is created using trial and error. The robot
has to trust that playback of the pre-determined trajectory will result in a repeatable
walking behaviour. The resulting control system is “quasi-dynamic” only by virtue of
the fact that at some stage during the joint trajectory playback, the robot’s centre of
mass is likely to be outside the supporting polygon’. This is more by accident than
conscious design, as there is nothing sophisticated about this kind of experimentally

determined gait. It is certainly not any “better” than a static walking approach.

Previously attempted control systems implemented on Johnny Walker were also
examples of this kind of heuristic technique [2]. Nicholls’ basic walking algorithm
consisted of a cyclical trajectory of joint set point positions, which would move the
robot’s limbs in a continuous and smooth walking pattern. Unfortunately the control
system developed by Nicholls was only able to take a maximum of three steps before
falling. Part of the explanation for this failure is that as the robot prepares to take each
step, the commands sent to the servos remain the same, regardless of the robot’s actual
position. Since we cannot read the positions of the robot’s joints, an assumption has to
be made that the joints positions at the start of each step will be identical. This is almost
never the case, and when the same control signals are repeated, errors in joint positions

are magnified each step until the robot falls.

7 See Chapter 2; all parts of the robot in contact with the ground delimit the outside border of the
supporting polygon.

114

In an effort to mitigate this problem of increasing uncertainty regarding the position of

the robot’s limbs, my approach was to have the robot take a single step, wait for the

robot joints to settle into their new positions, and only then attempt to take another step.

The approach is quite a bit simpler than attempting to make smooth, continuous steps.

An overview of the walking algorithm used in this experiment:

1. Initial position, with right leg back. Hips are angled with the leading leg’s hip

ahead of the trailing leg’s hip.

2. Quickly lift the rear leg forward:

a.

b.

Lean the torso forward by bending forward at both of the hip joints.
Swing the torso away from the rear leg, so the robot weight shifts
dynamically onto the forward leg.

Lift rear leg, bringing it forward and straighten support leg.

Begin to swivel hips, helping to bring the rear leg forward — continue to
straighten support leg as it takes the strain of the robot’s full weight.
Continue to swivel hips, as the raised leg now moves ahead of the
support leg.

Finish swivelling hips.

Lower raised leg, the robot joints now are a mirror image of the positions

at the beginning of step 2.

3. Wait for balance, by monitoring the digital accelerometer until large vibrations

ccase.

4. Repeat steps 2 & 3, swinging forward alternate legs.

The gait was experimentally synthesised, following the outline above, until a trajectory

of joint angles was found that resulted in a satisfactory walking performance. A number

115

of considerations influencing the robot’s posture and movement arose during the

experimental process of developing a repeatable walking pattern.

The walking demo was required to rely solely on on-board power sources — namely a
backpack of six AA sized rechargeable batteries. It proved to be frustratingly difficult
to balance the robot while it was wearing its battery pack in the designed configuration.
To improve the robot’s balance the backpack was broken into two groups of three
batteries, and redistributed about the robot. Three batteries remained on its back, while
the remaining three were slung beneath the torso. This redistribution significantly

improved the robots stability.

Previous attempts at creating walking behaviours with Johnny Walker attempted to
develop an anthropomorphic gait. Apart from aesthetics, there is no reason to constrain
the joint trajectory to make it walk like a human — in fact Johnny was more stable if it
bent its knees backwards, like a bird or dinosaur. This is the configuration used in the

walking demo.

The robot can stand quite firmly when both feet are down. It is not able to stand on one
leg for very long, before the weight of the robot causes joint angles to shift in
unpredictable ways. Since the walking algorithm relies on the robot joints being close
to a known position before each step is taken, we cannot afford to allow unpredictable
changes to the robot state. As a consequence, the robot needed to limit the amount of
time it spends in the “single support” phase of the gait. When walking forwards, it

needs to pick up and replace the rear foot as quickly as possible.

The torso can play an important role in assisting bipedal walking. In Johnny Walker,
the role of torso is to shift weight off the rear leg so that it can be brought forward

without causing the robot to fall. While previous researchers [1-3] relied on the static

116

weight of the torso to achieve this end, this experiment showed it can be far more
effective to use dynamic properties of the torso movement. Vigorously swinging the
torso in the direction of the supporting leg causes the weight of the robot to shift off the
leg being lifted when the torso reaches the limit of its movement. This effect is far more

pronounced than torque contributed by the robot’s weight.

4.6.4 Results

Using this method, a walking gait for Johnny Walker was developed that could
successfully take a series of steps. Figure 4-3 shows a sequence of images taken as
Johnny Walker executes a step during a walking demo. The full video can be

downloaded from: http://www.ee.uwa.edu.au/~suthe-aj/thesis/johnny/johnny.mpg.

F:375 F:376 F:377 F:378 F:379 F:380

Figure 4-3 Johnny Walker steps out. The step begins with the torso and hips swinging the weight of
the robot over the leading foot, and ends when the rear foot is replaced ahead of the robot. The
robot must then wait until it is steady before taking the next step.

Despite the care taken to create a repeatable walk, eventually the robot always falls. In
the video referenced above, the robot fell once after only two steps, then (once restarted)
walks for twenty steps before falling again. In a typical trial, the robot walked around
15-20 steps before falling. The most common reason for a fall is that the robot state has
drifted too far from the assumed “at start” positions before the robot attempts the step

on which it falls.

117

Another cause for walking failures is the changing behaviour of the robot servos as its
on-board power supply is drained through use. Servo actuation causes a significant
power drain, and their performance becomes noticeably degraded after only a few
minutes of operation. Since the robot gait relies on repeatability of actuator motion, any

the change to the servo response causes the robot gait to fail.

4.6.5 Discussion

We succeeded in the stated goal of this experiment, which was to produce a walking
demo using the existing robot, Johnny Walker. Through this experience, I gained some
important experience about some of the challenges that need to be considered when
developing a walking robot. The most important lesson gained is that a robot should be
designed and built with a specific control system already in mind. The choice of control
system is fundamental to the selection of actuation and sensing instruments, and these

things should all be designed in parallel.

The experiment has shown that an appropriate selection of sensor devices installed on a
robot is critical for supporting any proposed control strategy. An autonomous robot can
infer detail about its orientation within the environment from no other source than the
sensors it has been equipped with. The lack of suitable sensors on Johnny Walker
forced us to utilize a very primitive control system that was not able to adapt to any
unexpected situations. The minimum state variables that would need to be measured for

some of the control systems discussed in Chapter 2 include:

Table 4-4 Minimum state variables required for a selection of control system categories.

Static walking ZMP based Inverted pendulum based
Joint angles”’ Joint angles”’ Joint angles
Foot pressure sensors Inclination sensors

118

(*) Joint angle measurements may not be required if it can be safely assumed that

the actuator’s positional control will always be satisfied.

e Joint angles. Perhaps the biggest drawback of the servo driven systems is the
inability to know if the servo has actually moved to the position to which it was
commanded. Potentiometers or optical encoders would help overcome this
problem.

e Foot pressure sensors can be used to measure centre of pressure for ZMP based
walking systems.

e Robot inclination. The accelerometers installed on Johnny Walker were intended
to be used to detect inclination. The particular arrangement of sensors used on

Johnny Walker has proven to be inadequate for this purpose.

Another lesson learned is the importance to build confidence in the components being
used to operate the biped robot. If a complex robot falls, it is always difficult to isolate
the cause of the problem. This is especially true if the reason for failure could be as
basic as unsuitable system state measurements. Part of the design process should be an

evaluation of sensors in a controlled environment.

Sensors installed on the robot which require a constant reference voltage level may need
to be provided with a separate power source to high energy consuming components
such as actuator motors. The susceptibility of sensor measurements to interference from
other component’s power consumption is something that should be experimentally

determined before committing to applying a particular sensor/actuation plan.

Finally, it has become clear through the process of conducting this experiment that

actuator choice is another important issue. The servo based actuators used in Johnny

119

Walker and Jack Daniels, while inexpensive and simple to use, exhibit two critical

deficiencies when used for robot actuation:

e Servos lack positional feedback.

e Servo lacks force control.

While the lack of positional feedback could be compensated for through the use of
additional sensors, such as potentiometers or optical encoders, the inability to apply
variable force control to the robot joints rules out the use of inverted pendulum based
control systems. Since such systems are the basis of the Torso Driven Walking control
system, servo actuation was not employed on the robots discussed in the remainder of

this thesis.

Note that by physically modifying the servo motors, it would be possible to implement
some kind of force control. However in this case, the actuators would no longer be

SCrvos.

4.7 Johnny and Jack’s legacy

4.7.1 Lessons learned from Johnny and Jack

Through the course of conducting the preliminary experiments with the robots Johnny
Walker and Jack Daniels, a number of lessons were learned about the challenges
confronting researchers into bipedal walking robots. In addition, valuable experience
was gained in working with the Eyebot robotic platform, on which the balancing robots

described in Chapters 5 and 6 are built.

Some of the specific objectives achieved, and lessons learned were:

120

e The development of a successful (if primitive) walking demonstration with
Johnny Walker.

e Demonstrated the importance of selecting robotic sensors to suit planned control
systems.

e Demonstrated the importance of selecting appropriate actuators to suit planned
control systems.

e Discounted using the analogue acceleration sensor for inclination detection in

future robots.

At this stage I believe I have gained all that I can from the robots Johnny and Jack, and I

don’t plan to conduct any more work with them.

4.7.2 Related experiments

Some experiments continue to be conducted by researchers with Johnny and Jack-like
robots [27], [73], [74]. The robot “Andy Droid”, while much lighter, has an almost
identical construction to Johnny and Jack — including the use of servos for joint
actuation. An important difference is that the robot “Andy” has been constructed with
the addition of strain gauges in the feet. These sensors can be used to detect the centre
of pressure in each foot, which means the robot may well be suited to ZMP® based
walking algorithms. As ZMP based walking systems do not necessarily require joint

force control, the positional control supplied by the servo motors may be satisfactory.

This class of ZMP “dynamic” walking is not the focus of this thesis. The robots

described in Chapters 5 and 6 are designed to be fully dynamic balancers, utilising the

¥ ZMP — Zero Moment Point control systems are discussed in Chapter 2.3.1, “Zero Moment Point”. For
stability, these systems require that the measured “centre of pressure” does not approach the edge of the
robot’s feet.

121

inverted pendulum based “Torso Driven Walking” control system introduced in Chapter

3.

4.8 Experimental review

When developing a biped robot, it is clear that all components of the system must be
designed to work together. Design of a control system is just as important as planning
the physical construction of the robot and the selection of sensors and actuators. In fact
the type of control system to be implemented will directly impact the kinds of sensors
and actuators installed on the robot. The two key messages taken away from the

experiments in this chapter are:

e Robot state sensors must be chosen to suit the planned control system.

e Robot joint actuators must be chosen to suit the planned control system.

The “Torso Driven Walking” control system, introduced in Chapter 3, requires

measurements of the following system state information:

1. Torso inclination
2. Joint angles

3. Ground contact

Of these measurements, torso inclination is the most critical, and the most difficult to
obtain. There are a number of sensors that might provide usable inclination
measurements, including the accelerometers used in this chapter. Choosing a sensor
involves a trade off between performance measures of accuracy, sampling rate, resource

requirements, cost and ease of use.

In Chapter 5, a simple balancing robot designed to experimentally evaluate a variety of

sensors for the detection of torso inclination is introduced.

122

5 Experiments with the Ballybot

This chapter describes a series of experiments that were conducted while developing a
new experimental robot, the Ballybot. The robot was designed as an experimental
platform for investigating issues with the control of balancing robots, free from the
additional complexity required in order to control a legged robot. The two primary
issues for which the robot was intended were investigations into control systems for
dynamically balancing robots (in particular the Torso Driven Walking control system),

and the determination of an appropriate sensor configuration for determining inclination

angle that could be used in a more complex, balancing legged robot.

Figure 5-1 Ballybot, a simple autonomous inverted pendulum robot. The robot has been designed
as a tool for experimentally evaluating control systems and sensor configurations for balancing
robots.

123

5.1 Introducing Ballybot

The Ballybot is an autonomous, single degree of freedom mobile robot, based on the
model of an “inverted pendulum”. It consists of a rigid link, at the base of which are
mounted a pair of wheels. The two wheels are mounted in parallel, sharing a common
axis. As a result, the robot can rotate freely in the sagittal (x-y) plane, but is constrained
from rotating in the frontal (y-z) plane. This design effectively makes the Ballybot a
planar robot, simplifying the control system, sensor configuration and dynamic
simulation. Lessons learned from experiments with planar robots can easily be

extended to three dimensional systems.

6
0]
: mpendulum
Zpendulum
e _ Meart
F d Fx
L —— g
| IIIH\II\|I\\HIII\‘\IIIH\II I‘\IIIH\II I I I
0 5 10 0) 10
«— X —» “«— X -
(a) Ballybot system model (b) Inverted pendulum system model

Figure 5-2 The Ballybot’s system dynamics are very similar to that of the classic "Inverted
Pendulum" problem. The Ballybot generates its own balancing force F, by applying torque to the
wheel motors.

The Ballybot is an example of a “purely dynamic” balancing robot, meaning that at no

time will the robot be statically balanced. In order to maintain balance, the robot needs

124

to apply a variable horizontal force to its base. In traditional “inverted pendulum”
architectures, an external balancing force is applied directly to a cart on which the
pendulum is fastened. The Ballybot generates its own balancing horizontal force by
inducing a ground reaction force through the application of motor torque to the robot’s

wheels.

The robot has been designed to allow easy access to the controller’s I/O ports, to make
changing sensor configurations as simple as possible. Each wheel is independently
driven, to allow the robot to be driven straight, as well as change direction while
balancing. The resulting experimental robot is robust, simple to build and maintain, and

inexpensive.

5.2 Why build a Ballybot?

5.2.1 Ballybot for sensor evaluation

When a complex robotic system, such as a biped robot, fails to operate correctly it is
usually difficult to isolate the cause (or causes) of the failure. One of the theories
suggested for the failure to walk of the servo driven biped robots, Johnny Walker and
Jack Daniels (Chapter 4), was the lack of a suitable sensor capable of timely and
accurate inclination detection [1-3]. If we are to accept this analysis, the question that
has to be asked is “how fast/accurate do these sensors need to be?” The Ballybot robot

was developed to help answer this question experimentally.

The Ballybot robot design allows researchers to focus on the problem of sensor
selection and interpretation for balancing robots, without having to worry about any
additional issues encountered when working with more complex robots. The robot has
a single degree of freedom and is controlled by a single input variable, the DC motor

applied voltage. This simple design results in behaviour that can be described by a

125

relatively simple dynamic model, which has been used to create a software simulation.

Both the dynamic model and software simulation are described in Appendix B.

While the design has been kept as simple as possible, the robot still requires a fully
dynamic, balancing control system, to prevent it from falling over. The Ballybot needs
accurate and timely estimates of angular orientation in order to maintain balance. Since
the robot is essentially balancing on a “point”, it will need more accurate and faster
angular estimates than most legged balancing robots, which can use the foot and ankle

to contribute to balance in meaningful ways.

In addition to testing inclination sensors, experiments using the Ballybot allowed the
interaction between candidate sensors and the EyeCon controller to be tested in a “real-
world” operating environment. In some cases problems with a sensor may be
exacerbated, or even caused, by the interaction between the sensor and controller.
Examples of this were the problems experienced by the robot Johnny Walker, using an

analogue accelerometer with the EyeCon controller’.

The combination of a group of sensors, and the software algorithm that interprets their
signals, is considered a sensor “module” that can be experimentally evaluated on the
Ballybot platform. If a sensor module can be found that is able to maintain balance on
the Ballybot, then the same module should be suitable for more complicated robots,
such as the bipedal Legbot discussed in Chapter 6. If this more complicated robot falls
while using a sensor module proven on the Ballybot platform, the problem causing the
robot failure is unlikely to be with the sensors used, and other causes should first be

investigated.

? Experiments discussed in Chapter 4.6, “Walking demo using Johnny Walker”.

126

5.2.2 Ballybot for control system investigations

As well as providing a test bed for evaluating sensors, the Ballybot is an ideal platform
for experimenting with balancing control systems. Inverted pendulum models have
already been used as the basis of a number of bipedal walking strategies, including [7]-
[10]. In the Torso Driven Walking control system'® the balancing problem experienced
by the Ballybot robot is very similar to that encountered by the “Torso Attitude
Controller” sub-system. While the TAC controller tries to keep the robot torso upright
by applying torque to the robot’s hip joint, the Ballybot stays upright by applying torque

to the robot’s wheels.

One of the big divisions in classification of control system architectures is the
distinction between adaptive and conventional control systems''. Essentially, an
“adaptive” control system learns for itself how to perform its function, while a
“conventional” system needs to be told what to do. Adaptive control systems are
attractive, because they can be applied to systems that may not be completely

understood.

In this thesis, the Ballybot robot has been used to investigate the possibility of applying
an adaptive approach to a simple balancing control system. The hope was if a simple
robot like the Ballybot could be successfully balanced using a purely adaptive control
system, then it may be feasible to attempt the same thing with a more complicated

legged robot.

' The Torso Driven Walking control system is discussed in Chapter 3.
" The adaptive and classical control system classifications are discussed in Chapter 2 “Control Systems
for Walking Robots”.

127

5.3 Materials

5.3.1 Physical construction

The Ballybot’s frame consists of a single sheet of aluminium, cut to shape with
strategically drilled holes used to mount the EyeCon controller, DC motors, batteries
and various sensors. The design includes a mount for a digital camera, placed in the
head of the robot. This sensor was not used during the experiments in this chapter, as
my preliminary investigations in computer vision discouraged me from using the

camera as a sensor for active balance. The design of the Ballybot frame is shown in

Figure 5-3:
« 15cm + 45¢cm >
-] (<] \
(-] [}
© © © o
(-] [}
(=] o
_/

80cm

A

Figure 5-3 Ballybot frame is a single sheet of aluminium, with holes drilled to mount the controller,
batteries and various sensors and actuators.

During the course of these experiments it was found that while the motors were
operating, large vibrations propagated through the Ballybot’s aluminium frame. This is
because the metal frame was too flexible in the sagittal (x-y) plane. The addition of a
balsa wood “backbone” stiffened the frame sufficiently to prevent this oscillation

without adding significant weight.

128

5.3.2 Controller

The Ballybot robot uses the EyeCon controller for mobile robots, developed by Joker
Robotics [37]. For information about the EyeCon controller, see Appendix A-1,

“Eyebot robotic platform”.

The robot has been designed to allow easy access to the controller’s 10 ports, to
simplify the swapping of sensor devices. As a consequence, the controller itself is not
well protected against collisions with the ground, in case the robot falls. Care must be

taken when conducting experiments to prevent damage to the controller.

5.3.3 Actuators

The robot’s wheels are driven by a pair of Faulhaber series 2230/006S DC Motors, with
a 9:1 gearing ratio. Each motor shaft is directly connected to one of the Ballybot’s
wheels. These motors have encapsulated encoders, and can be used to measure the
displacement and velocity of the robot base. Most importantly, by using a DC motor it
is possible to generate a variable torque. This is a requirement for most inverted
pendulum based control systems. Further information about DC motors is provided in

Appendix A-2.2, “DC Motors”.

5.3.4 Sensors

One of the primary Ballybot design features was the ability to quickly change the
robot’s sensor configuration. Some of the sensors used in experiments with the

Ballybot included:

129

1. Gyroscope

The solid state gyroscope used in these experiments measures angular velocity. This
measurement can be integrated over time to provide a measure of the angular
displacement experienced by the robot. If the robot’s initial position is known, the
angular displacement can be used to determine the robot’s inclination. Experiment 5.7
“Sensors for balance” describes the process by which the robot tilt angle is estimated

using the gyroscope sensor.

il. Angular inclinometer

An inclinometer is used to measure tilt angles. Although similar in design to a linear
accelerometer, the output signal is a single angle estimate, rather than acceleration

vector components.

1il. Shaft encoders

Optical shaft encoders encapsulated in the DC motor housing provide easily accessible
measurements of motor shaft angle. In the Ballybot robot, assuming the robot wheels
do not slide or bounce over the ground, the shaft’s angular displacement is proportional
to the distance the robot has travelled. If the robot’s initial position is known, this
displacement can be used to determine the robot’s position within the workspace. This

technique for robot navigation is often referred to as “dead reckoning” [27], [38].

5.3.5 Software simulation

A software simulation can be an invaluable tool in the development of control systems
for robotic systems. Simulation allows us to design and test control systems in a wholly

controllable artificial environment, before we expose them to the challenge of real

130

world control. Some specific examples of advantages afforded through the use of

software simulations are:

Control systems can be investigated without risking damage to the physical

robot.

e Complications such as sensor noise and friction can be controlled, allowing the
system designer to concentrate on one problem at a time.

e Trials can be performed many times faster than may be possible on a physical
system. This is especially important when investigating adaptive approaches to
control.

e [tis easy to distribute demonstrations of control system designs.

e Developing a simulation requires a good understanding of the dynamics of the

system you are modelling. Knowledge which is also valuable when working

with the physical robot.

I have developed a software simulation of the Ballybot robot system, implemented as an
ActiveX control, which can be viewed on a web page using Microsoft’s web browser,
Internet Explorer. In an attempt to clarify this discussion, details about the development
of the Ballybot simulation system, have been omitted from the main body of this
document. These details include the software design and dynamic model derivation,

and have been provided in Appendix B.

5.4 Experimental Overview

A series of experiments were conducted while developing this robot, including:

Chapter 5.5 - Torso Attitude Controller for the Ballybot

The Torso Attitude Controller is the most critical component of the Torso Driven

Walking control system (Chapter 3), simultaneously responsible for maintaining

131

balance of the robot’s torso, and the horizontal displacement of the robot. In this
experiment, the Ballybot simulation is used to test the proposed “Torso Attitude

Controller” sub-system.

Chapter 5.6 - Force from voltage

Regardless of whether an inverted pendulum control system is adaptive or conventional,
it still needs to be able to regulate the application of force to the base of the Ballybot
robot. The Ballybot can control the output torque of its motors by adjusting the motor
input voltage. Unfortunately the relationship between applied voltage and resultant
force is not linear. In this experiment a mathematical model is developed that the
Ballybot’s control system uses to determine the required input voltage needed to

produce a specific ground reaction force requested by the control system.

Chapter 5.7 - Sensors for balance

One of the more difficult problems facing developers of bipedal walking robots is the
selection of appropriate sensors for maintaining balance. In this experiment, the
Ballybot robot is used to evaluate proposed robotic tilt sensors and sensor data
processing algorithms. Two inexpensive sensors in particular are examined: a piezo-
electric gyroscope designed for remote control helicopters, and an inclinometer. Results
demonstrate that the Torso Driven Walking control system is able to maintain balance
using the gyroscope, even though the sensor experiences a significant amount of bias
error. While balance is maintained, it is not possible to simultaneously control the
robot’s horizontal position unless both inclinometer and gyroscope are used co-

operatively to control the robot.

132

Chapter 5.8 - Comparison with a “first-principles” adaptive control system

Using the Ballybot software simulation'?, an artificial neural network based adaptive
control system was developed to balance the Ballybot robot. The resulting control
system is an example of a “first-principles” adaptive control system, such as those
described in Chapter 2.3.6. The development of this alternative control system allowed
the relative advantages of such an approach to be compared with that of the Torso
Attitude Controller sub-system of the Torso Driven Walking control system. While the
adaptive approach successfully learns to balance the robot, with no preconceived or pre-
programmed notion of how this should be achieved, significant disadvantages were
encountered. Most significantly, the control system requires a very large number of

training cycles and does not always converge to a satisfactory solution.

"2 Described in Appendix B.
133

5.5 Torso Attitude Controller for the Ballybot

Abstract: The Torso Attitude Controller is the most critical component of the Torso
Driven Walking control system (Chapter 3), simultaneously responsible for maintaining
balance of the robot’s torso, and the horizontal displacement of the robot. In this
experiment, the Ballybot simulation is used to test the proposed “Torso Attitude

Controller” sub-system.

5.5.1 Introduction

The “Torso Attitude Controller” is the central component of the “Torso Driven
Walking” control system for biped robots, introduced in Chapter 3. The Torso Attitude
Controller attempts to balance the robot’s torso by applying a variable torque to the hip
joint of a biped robot’s supporting leg. All other components of the Torso Driven
Walking system are indirectly controlled by the Torso Attitude Controller, so the
performance of the Torso Attitude Controller is critical to the success of the walking

algorithm.

The Ballybot robot was designed to be an experimental platform for developing and
testing the Torso Attitude Controller in isolation from the rest of the biped control
system. This is an example of the modular approach to control system synthesis that
was followed during these investigations. The Ballybot and a biped robot’s torso share
very similar system models. Consequently, a control system that can balance the
Ballybot should also be able to fulfil the function of “Torso Attitude Controller” in the

much more complicated Torso Driven Walking biped robot control system.

134

5.5.2 Materials

1. Ballybot simulator

This experiment makes use of the Ballybot software simulator, described in Appendix

B. The URL of the demo used during this experiment is:

http://www.ee.uwa.edu.au/~suthe-aj/thesis/ballybot/balbotdemo.htm.

The simulated robot’s profile has been configured to represent that of the physical

Ballybot robot. A screenshot taken of the simulation test environment can be seen in

Figure 5-4.
PID BalBot Demonstration
Add Sensor Noise Slow down factor: 2| Effective sample rate:| 50| Maximum force: 3.0
Force : 2.28895330429077| K1:32.0 K211 K325 K4:05 Max speed: 0.4962644

Figure 5-4 Screenshot of Ballybot software simulation in action. The profile of the robot is shown,
with the controller, batteries, motors and frame represented by a collection of rectangles and
circles. The robot’s centre of mass is indicated by a light red circle in the background of the image.

5.5.3 Methods

1. Implementing the Torso Attitude Controller on a Ballybot robot

The Torso Attitude Controller’s task is to determine, at each sample interval, a torque to
apply to a biped robot’s hip joints in order to maintain balance of the robot’s torso. In
the “Torso Driven Walking” control system, the Torso Attitude Controller applies the
balancing torque to the hip joint of the supporting leg only. The Ballybot robot has no

legs; rather the hip joints are replaced by a pair of motor driven wheels. Torque applied

135

evenly to the robot’s wheels translates directly into a balancing ground reaction force.

A comparison of the two systems shows that the system models are very similar (Figure

5-5):
eBALLYBOT
—,
r 3 F 3
f
Yupt------- X
yEIASE _______ (’
] WYHEELS i
1 f\(E
XEIASE : XHIF' :
(a2) Ballybot system model (b) Biped torso system model

Figure 5-5 The Ballybot and biped torso system models are almost identical.

In the Ballybot system, the base of the robot is constrained to remain in contact with the
ground. The vertical reaction force (fy) is a passive force, acting to prevent the base of

the robot from penetrating the ground. The horizontal reaction force (fx) is entirely

generated by the robot wheel torque (TwpggLs).

The vertical position of the hip joints of the biped torso, for which the TAC has been
developed, is not fixed. As the robot walks, it is very likely that the hip joint will move
up and down, in response to actions of the robot’s legs. The robot legs subject the

system to translational impulses and forces acting on the hip joints. The horizontal hip

joint force (fx) will not be solely dependent on hip torque (Tuips), and the vertical

136

reaction force (fy) is not entirely passive. However, as long as the rest of the “Torso
Driven Walking” control system components are doing their job correctly, these active
forces will be only a small component of the total force acting on the robot’s hip joints.

They are treated as noise, and ignored by the Torso Attitude Controller.
il. Control System

From Chapter 3.2.5, “Torso attitude controller (TAC)”: whenever the supporting foot is

in contact with the ground, the TAC takes the form:

Tsupporr (k) = aOpopeo +0 9TORS0 +c (xHIP — Xsp) +d (XHIP - xSP)_ Toree (k) (1)

On a Ballybot robot, both wheels are always in contact with the ground, and the support

torque is evenly distributed between the two wheels. There is no “free” leg, so:

Tsupporr = ¥ wHEELS

Tppee =0

In this experiment, the robot is being held steady in the centre of the workspace; the

displacement and velocity set points are both zero:

The Torso Attitude Controller control system is being applied to the Ballybot simulator,

which is controlled by applying a horizontal balancing force using the ActiveX control’s

137

ApplyForce () method”. Since the horizontal ground reaction force is proportional

to motor torque:

S (k) < T gpporr

The TAC controller equation can be reduced to the following equation:

fl)=w"-X(k) (2)
Where:
x(k) wy
% (0 =| *) w=| 2
o(k) W,
o(k) w,

Equation (2) is in the form of a commonly cited classical solution for the inverted

pendulum problem, from Ogata [26].

Table 5-1 Inverted pendulum control system variables.

X (k) State vector of Ballybot system. w Constant weight vector applied to
measured robot state.

x (k) Horizontal displacement of the | x(k) Horizontal velocity of the base of
base of the Ballybot. the Ballybot.

0 (k) Angle of inclination. 0(k) Angular velocity.

f (k) Horizontal force applied to the
base of the Ballybot.

Figure 5-6 shows the control flow diagram for the Torso Attitude Controller for

Ballybot control system:

13 The BalanceBot interface is described in Appendix B-3.

138

X , X Torso
e State k . fk Ballybot
—> e —_— Attitude — v
Sensors , Simulator
Controller

Figure 5-6 Control flow diagram for “Torso Attitude Controller”, as used to control the Ballybot

robot simulation.

An advantage of the conventional Torso Attitude Controller over the adaptive system
presented in Chapter 5.8 is its simplicity. In this experiment, the entire control system
is implemented by three lines of VBScript, as shown by the example code in Figure 5-7.

The script is called every 50 ms to read the system state, and calculate and apply the

balancing force.

\

State sample function, called every 50ms to
' determine an appropriate balancing force...
Sub ControlTimer OnTimer
' Get the system state
call BalanceBot.GetFullStateVariant (_
fX, fXVelocity, fAngle, fAngleVelocity)

' Calculate balancing force

fvalue =
K1 * fAngle + K2 * fAngleVelocity + _
K3 * fX + K4 * fXVelocity

' Apply balancing force
BalanceBot.ApplyForce (fValue)
End Sub

Figure 5-7 VBScript used to implement the Torso Attitude Controller. The object “BalanceBot” is
an instance of the “BalanceBot.ocx” ActiveX control, which encapsulates the Ballybot dynamic

system.

139

1il. Tuning the control system

The performance of the system can be modified by adjusting the weight vector

elements:
w,
~ w,
W =
Ws
w,

Values for these weights can be calculated analytically, for example by using the “pole
placement” technique described by Ogata [26]. However the calculations are complex,
and need to be repeated if any part of the system is changed — such as moving the
position of the battery pack on the robot or changing the rate at which samples are taken
and controls performed. Instead the appropriate weights are determined experimentally,

using the Ballybot simulator hosted in an HTML web page.

5.54 Results

Tuning of the weight vector was performed manually, using the software simulation to
observe the effect of modifying loop parameters. Using this approach, a set of control
system weights that successfully balanced the pendulum system can be determined in

minutes.

The tuning process is very forgiving, as there are many possible solutions that succeed
in balancing the simulated Ballybot. Each solution varies slightly in its behaviour, in

terms of settling time and damping in response to disturbances.

Due to the robust nature of the control system, minor changes to the system model do
not cause the system to fail. Major changes can quickly be accommodated by
experimentally readjusting the control parameters.

140

5.5.5 Discussion

The small number of trials needed to tune the Torso Attitude Controller on a simulated
Ballybot robot is a particularly promising result. This means that when the control
system is ported to a real robot, it should be possible to develop a satisfactory
implementation in a short amount of time, minimising unnecessary wear and tear on the

physical robot.

Obviously, controlling a simulated robot is very different to controlling a real robot in
the physical world. This experiment proved the Torso Driven Walking’s Torso Attitude
Controller subsystem can be used to balance the Ballybot. The main objective of the
remaining experiments in this chapter will be porting the system to a physical robot, and

using the resulting system to evaluate sensors for balancing robots.

141

5.6 Force from voltage

Abstract: Regardless of the type of control system to be implemented, successful
balancing of the Ballybot requires the ability to deliver an appropriate variable torque to
the robot’s wheels. This experiment investigates the relationship between applied motor

voltage, motor shaft velocity and resultant output torque on the physical Ballybot robot.

5.6.1 Introduction

Any control system that attempts to balance the Ballybot robot must do so by varying
wheel torque, in order to induce a balancing horizontal ground reaction force. The
Ballybot’s wheel torque is supplied by a pair of DC motors that are controlled by
applying an input voltage to the motors. In order to control the balancing force induced
by torque supplied to the robot’s wheels, a control system needs to be able to model the
relationship between applied voltage and resulting horizontal ground reaction force. If a
reliable model mapping desired motor torque to applied voltage can be found, then
future experiments with the Ballybot can concentrate on the problem of sensor

interpretation with confidence.

An overview of DC Motors is been presented in Appendix A-2.2. Using an equivalent
circuit model for a DC motor, it is shown that motor output torque is proportional to
applied voltage, and inversely proportional to angular velocity and the rate of change in

coil current;:

Tmotor = Kmotor (Vapplied - Ke @ - Linotor (dI/ dt)) / Rinotor (1)

142

Since a convenient tool for sensing (“/q) using the Ballybot’s EyeCon controller' is
unavailable, a simplified motor model, suggested by Briunl [27] is used. This model

assumes that Ly,oio;= 0 H, resulting in the relationship:

Tmotor = Kmotor (Vapplied - Ke o) / Rmotor (2)

The question that needs to be answered by this is experiment is: “is this a reasonable
approximation?” If so, an experimentally determined relationship should be planar, and
a graph would look something like Figure 5-8. If this experiment determines that it

does not, a more accurate system model must be formulated.

Figure 5-8 If the simplified motor model (equation 2) is valid, then a graph of motor torque vs.
shaft angular velocity for varying input voltages would look something like this.

There are many possible reasons why this simple, planar relationship may not be valid.

Some possibilities include:

' A possibility might be to add a resistor in series with the motor power supply, and use the Ballybot’s
analogue inputs to measure the voltage drop across the resistor, allowing current to be inferred. Due to
some issues encountered using multiple analogue inputs on the EyeCon controller, this was not attempted.

143

e Friction between the motor shaft and the motor casing or wheel mounts will
have a major impact on the torque/voltage/velocity relationship.

e Since the system is a real-world component, powered by batteries, there is a
good chance that the voltage cannot be accurately controlled. Large power
drains from other parts of the robotic system, degrading battery strength over
time, capacitances and other energy losses in the controller could all
influence the quality of voltage regulation.

e It is possible that the influence of the motor coil inductance cannot be

ignored.

Of these effects, friction definitely will have an effect on the effective wheel torque
generated by an applied voltage. The effect of this force can be modelled as a torque

working against the direction of angular velocity.

A number of models for calculating the magnitude of frictional forces have been used
by many researchers. A common approach is to use a static friction at zero velocity,
and a dynamic component while the system is moving (Liu [28], Dupont [29]). A
simple “kinetic/static” model for friction is shown in Figure 5-9. When the robot is

stationary, friction works against motor torque with a magnitude Tgie. When the robot

is moving, friction works against angular velocity with a magnitude Tiinetic.

144

I;"ric:titznn

<---- Tgtatic

)

,
o

—Tdynamic ~ 7"

Figure 5-9 A simple kinetic/static friction model

If this friction model is simplified further, by assuming Tgatic = Tkinetic, the influence of

friction on the ideal motor model can be illustrated by Figure 5-10:

Ve motor

?Q)%
Vs

S0
Ve

~gs, v
2y Frictional torque

Vs

\‘%% T
V. ,

B \\ m

Figure 5-10 Motor model incorporating simplified effects of friction.

Luckily, the Ballybot robot is a simple enough system that the relationship between
applied voltage, wheel torque and wheel angular velocity can be experimentally

determined. Since the experiment is using the motors “in-situ”, it is also testing other

145

implementation specific influences, such as effects of changing voltage due to power

drain or current limits, etc.

5.6.2 Materials

1. Ballybot robot

The physical Ballybot robot is used to conduct this experiment.

il. Toy truck

A toy truck was used to support the Ballybot’s “head” as it lay on the ground,
effectively turning the robot into a simple wheeled vehicle. The truck was not powered

in any way. Its wheels could be spun with very little frictional resistance'.

5.6.3 Methods

1. Software

A simple software program was written to record the robot’s translational displacement,
using the DC motor’s inbuilt optical encoders. At the end of a trial, the recorded
displacement measurements, together with corresponding timestamps were then

transmitted to a computer for processing.

il. Trial preparation

Before each trial, the Ballybot robot was rested on the toy truck, with the combined

system effectively becoming a single vehicle, as shown in Figure 5-11:

' Nevertheless, friction introduced by the toy car will be a component of the experimentally determined
friction in this experiment.

146

— ===

Figure 5-11 Ballybot robot lying on the tray of a toy truck. This system was used to experimentally
determine thee relationship between applied actuator voltage and resultant force.

1il. Trial execution

When a voltage is applied by the Ballybot controller to the DC motors, the system
accelerates across the bench top. A number of trial runs were taken to explore the effect
of changing motor voltage and robot velocity to the acceleration experienced by the

system.

During each trial, displacement of the robot was measured using the motor’s inbuilt
optical encoders. Velocity and acceleration of the robot were calculated from the first
and second derivatives of the measured displacement with respect to time. This
approach can be expected to introduce some measurement errors, since differentiating a
noisy measurement has the effect of amplifying the signal noise. Fortunately, for the

most part, the resulting trends do not exhibit an unreasonable level of noise.
Specific trial run scenarios included:

e Decelerations with zero voltage applied (to determine friction effects and
inductive influences at 0V).

e Accelerate robot from a standing start, with each trial applying a different
constant voltage.

e Accelerate robot from an initial negative velocity, with each trial applying a

different constant voltage.

147

During this experiment:

e Applied voltage level is expressed as a % value, ranging from -100% to +100%.
This is the representation used by the RoBIOS operating system. The
corresponding voltage level is not important to the Ballybot implementation.

e Acceleration measurements have not been converted to torque, since these terms
are linearly related.

e Robot velocity measurements have not been converted to wheel angular

velocity, since the terms are linearly related.

The goal of the experiment is to determine a mathematical model describing the
relationship between velocity, voltage and acceleration of the experimental system.
Hopefully the resulting measurements will either confirm the simple model illustrated

by Figure 5-10, or else a new model will be evident.

5.6.4 Results

The results presented here demonstrate the process by which the
acceleration/voltage/velocity relationship was investigated, finally culminating in a

proposed motor model to be used in subsequent experiments.

1. Accelerate from rest

Starting from rest, various steady voltages are applied. Changing accelerations are

recorded as velocity increases due to the applied voltage:

148

Voltage / Velocity / Acceleration

f i

25 *

—
on

—

Acceleration (ms '2)

0.5

0.5 -

Velocity (ms™)

Figure 5-12 Accelerating from rest, with varying applied voltage levels.

Observations:

e With an applied voltage of not much under 30%, the robot was unable to
overcome the static friction and remained motionless.

e Trends of acceleration vs. velocity are close to parallel (as predicted by equation
2). However, as voltage level drops trend gradients appear to become less steep.

e At lower velocities, the occurrence of noisy acceleration measurements
increases. This biases the linear regression lines shown on the chart for low

voltage trials.

149

il. Deceleration with zero voltage

The robot is accelerated to -1.5 ms™, then switches off power to the motors and records

the deceleration as the system rolls to a stop:

Zero voltage applied while moving

1 Q
L)
* 18
— T
] O + 1 4
w L
E, = $ * =2
* + :
s s & - 1 « OV
= = * = o i
© AP AR o B2 —Linear (0 V)
2 * *66
= .
8 t
= -
=L * * o
L -
fal
T T T LY
2 1.5 1 0.5 0

Velocity (ms™)

Figure 5-13 Deceleration acting on moving robot with zero applied voltage

Observations:

e The measured acceleration appears to be linear, and constant (although very
noisy).
¢ Signal noise measurements become greater at low velocities.

e The acceleration due to friction effects is approximately 0.85 ms™.

1il. Accelerate from initial negative velocity

Record acceleration as velocity increases due to applied voltage. Initial velocity is
negative, so the effects of friction should reverse as velocity moves from < 0 ms™ to > 0

-1
ms .

150

Figure 5-14 Two trials examine the transition from negative to positive velocity, with a constant
applied voltage.

Observations:

Acceleration through zero velocity

—_
a
-

-
e

& V=40%

V=T70%
—VLinear (V=40%)
—linear (V=70%)

-
N
o o o

du
lan]

a

an

Acceleration (ms?)

-2

‘.i
n‘ T a Yy .ﬁ“—;_-:a‘
s
A Ls Y
T T T T T T T T T T T T T T | T T TAJT 1 |_|'_|_|_|_
-15 -1 -05 0 0.5 1

4t
5 T

Velocity (ms™)

There is a large level of noise in acceleration measurements taken while the

applied voltage acts against the velocity. (In Figure 5-14, this is when velocity

is <0 ms™).

The step change in acceleration as velocity shifts from negative to positive is

due to friction effects. The magnitude of the step change is in the order of 1.8

ms™.

value. Consequently, this experiment suggests a “friction” deceleration of ~0.9

ms"z, which is consistent with the “friction” estimate of 0.85 ms™ made in trial

(ii).

I expected the magnitude of the step change to be twice the “friction”

151

e The slope of the linear regression lines on either side of the acceleration
discontinuity are close to parallel for the same applied voltage. Differences are
probably due to noisy acceleration measurements.

e The regression lines of trials taken using the two voltages (40% and 70%) are
significantly different, with the slope of the lower voltage trend less steep than

the higher voltage trend.

5.6.5 Motor model synthesis
Examining the experimental results above, it is obvious that velocity retarding factors,
collectively termed “friction”'®, have a large impact on the Ballybot motor model.

Other observations have included:

e The slope of regression line at constant voltage appears to be constant.
e The slope of regression line is less as the applied voltage magnitude is reduced.
e There is a friction related discontinuity in acceleration as the robot velocity

moves through 0 ms™.

Disregarding outlier measurements and extrapolating remaining samples from Figure
5-12, results in the graph shown by Figure 5-15. This graph relates acceleration to

velocity, for various applied voltages, ranging from +30 to +100%.

' Factors making up this “velocity retarding force” include frictional forces, but may also include factors
such as motor coil inductance, fluctuating power supply levels, etc.

152

Acceleration (ms=)

9

3.0 1

20 1

»
>

15 Velocity (ms™')

Figure 5-15 Approximate regression lines for acceleration vs. velocity for various voltages.

Since the robot velocity is always positive in this chart, the graph shows experimentally
measured acceleration levels that have been reduced by friction acting on the robot
system. The objective was to develop a motor model for the Ballybot that disregards
the effects of friction. Fiction compensation could then be explicitly added to this
“frictionless” model, in such a way as to keep the effects of friction a distinct

component of the final motor model.

Figure 5-16 redraws the experimentally determined acceleration/velocity relationships,
with the acceleration retarding effects of friction removed. This adds 0.85 ms™ to the

experimental measurements:

153

Acceleration vs. Velocity assuming zero friction

Acceleration {ms=2)
[3%)
(=)
.
>

1.0 1.¥=30
T e et S S S N

\J

05 1.0

Velocity (ms™)

Figure 5-16 This graph shows acceleration vs. velocity with a range of applied voltages. The graph
has been adjusted to remove the effects of friction, assuming that friction reduces acceleration by
0.85 ms™, while velocity is positive.

The relationship suggested by Figure 5-16 is used to develop a “frictionless” Ballybot
motor model for applied voltages > 0. Since the behaviour of the motors is
symmetrical, once a model for positive applied voltage is determined, a corresponding

model for negative applied voltage could be generated.

Assumption #1: The relationship between acceleration and velocity is

linear for a constant applied voltage.

Applying assumption #1, the model takes the form:

g Vo
oot Vegptea) (3)

accV+ (Vappl'ed H V) = ai1't'al (Vapplied) -
l " vmax (Vapplied)

Where:

154

aCCV+ (Vapplied ’ V)

v

applied

ainitial (Vupplied)

vmax (Vapplied)

Acceleration as a function of applied voltage and current

velocity, valid for V., = 0.

Applied voltage

Current velocity

Acceleration due to applied voltage, when velocity is

zero. This is the y-axis intercept.

Projected maximum velocity at a steady applied voltage

(assuming no friction). This is the x-axis intercept.

To calculate the relationship, first the functions a,,;,.; (V,,pueq) @and v, (V,,.q) must be

determined. Plotting the y-axis intercept values read from figure 30 suggests that

@it Vyppiica) €N be represented by a linear function.

a

Acceleration at zero velocity

[
n

]

Acceleration {ms™)

20 40 50 80 100
\oltage (%)

Figure 5-17 The relationship between initial acceleration and voltage can be represented by a

linear function.

155

Assumption #2: The relationship between applied voltage and initial

acceleration is linear.

From Figure 5-17, and applying assumption #2:

ainitial (Vapplied) ~ 0034 Vapplied (4)

Determining an equation to represent v, . (V,, .,) 1s more difficult. This function

represents the x-axis intercepts of trends in Figure 5-16. An examination of the graph
shows that all but the two lowest voltage trend lines cross the x-axis within 0.25 ms™ of
each other. I have assumed that variation in the position of the x-axis intercept is
caused by experimental errors. The noise experienced recording the lowest voltage
accelerations is most extreme, which might explain the high variation in x-axis intercept

positions for V, .., =30V and 40V .

Assumption #3: The terminal velocity of the robot in the absence of

friction is a constant value, independent of applied voltage.

As a result of assumption #3, a constant, scalar value was used to represent the

maximum robot velocity:

Voax Vo iiea) = 2.3 (5)

max (app

Substituting equations (4) and (5)— (3):

accy, (V. piiea»v) = 0.034 7 -0.0148V, .0V (6)

applied app.

156

The corresponding model for negative applied voltage is:

acc,_ (Vapp,ied,v) =0.034V +0.0148V_ ..V (7)

applied app.

Since the Ballybot requires the ability to specify a resultant ground reaction force, and
this force must compensate for any frictional forces, the motor force required to

compensate for friction must be calculated:

-1
f;notor = fbalance + ffrictinn > for V> 0 ms (8)

-1
f;notor = f balance f Sfriction > for v < O ms (9)
Where:

Jraance FOrce that the control system wants to apply to the base of the robot to

prevent it falling.

S iciion Magnitude of the frictional force acting against the current velocity of

the robot.

Jooor FOrce that must be generated by the motor (using the “frictionless” motor

model)

Using Equations (8) and (9), the motor model determines a “frictionless” force (f,,,,,)

that must be supplied by the motors to achieve the desired balancing force (f,,,,..)-

Using the relationship: f = Ma, and the fact that in the frictionless model, a positive

force can only be supplied by a positive voltage (and vice versa for negative force):

fmotor = M acc (Vapplied ° V) (10)

157

Fowor =M(0.034V, . —0.0148V, . v),if fro0 20 (11)

Fooor =M (0.034V, 40,0148V, . v),if f, . >0 (12)

app app
M = (Mass of Ballybot + mass of the toy truck) = 0.890 kg (13)

Substitute (13) — (11) and (12), and rearranging the equations:

7 .
V . - motor , 1
wrlied 00303 —0.013v

£ Sooor 20 (14)

f :
V. ied = i AP S <0 15
applied 0.0303+0.013v f;no ()

So the final system model requires the use of equations (8), (9), (14) and (15). These
equations were used by the Ballybot control system to operate the robot’s motors during

experiment 5.7.

5.6.6 Discussion

The process of using the Ballybot motor model to calculate voltage required to provide

a desired force, given a known current velocity is summarised here:

1. Calculate required motor force, using:
Sotor = Foatance * f friction for v >0 ms’ 3
Sotor = Foatance = f friction > for v <0 ms™ ©)
2. Calculate required input voltage, using:
Jmoror

£ fooior 20 (14)

Vo i
@t 00303 - 0.013v

158

f .
V) — motor , 1
@t 0.0303 +0.013v

£ fooor <0 (15)

This motor model is presented graphically in Figure 5-18. Voltages applied in the
direction of the robot’s motion have a diminishing impact on robot acceleration as the
magnitude of the robot’s velocity increases. Conversely, voltage acting against the
direction of the robot’s motion has increasing impact on deceleration with larger

velocities.

Ballybot motor model, including friction

100% 4 ¢
80% \ N
B0% ¥

\\\
40% w

20% W - \\

L S
S~
T~

Accelergion [ms'z]

&

100% W

Velocity (ms’)

Figure 5-18 A graphical representation of the full Ballybot motor model, used in subsequent
experiments.

If the Ballybot control system is doing its job correctly, in operation the Ballybot
velocity will be held close to 0 ms™”. The maximum velocity achieved by the robot
during the simulations conducted during experiment 5.5 was less than 1 ms™, even in
the presence of simulated sensor noise. This means that the operating Ballybot should
remain in the velocity envelope for which the system model has been experimentally

validated. As a result, the system model described here is suitable for use on the

159

Ballybot robot, and has been applied to the final Ballybot implementation, described in

Chapter 5.7.

5.7 Sensors for balance

Abstract: One of the more difficult problems facing developers of bipedal walking

robots is the selection of appropriate sensors for maintaining balance. In this
experiment, the Ballybot robot is used to evaluate proposed robotic tilt sensors and
sensor data processing algorithms. Two inexpensive sensors in particular are examined:
a piezo-electric gyroscope designed for remote control helicopters, and an inclinometer.
The results demonstrate that while it is not possible to balance the robot with only one

of these sensors, it is possible to use the sensors co-operatively to control the robot.

5.7.1 Introduction

In order to effectively maintain balance in biped machines, the selection of an
appropriate set of sensors for providing system state estimations is critical [1-3].
Additionally, if an evaluation of sensor performance is left until the completion of the
construction of a complex biped robot, it will be difficult to determine if a failure to
achieve the desired results is due to deficiencies in control algorithms, robot

construction, or poor sensor performance.

The primary motivation for building the Ballybot robot was to provide a test platform
for investigating the suitability of proposed sensor configuration and data processing
techniques to balancing robotic systems. The Ballybot is an example of an autonomous
inverted pendulum robot. This class of robot has already been used as the basis of a
number of bipedal walking strategies [7-10], the dynamics can be constrained to two

dimensions and the cost of producing the robot is low.

160

The Ballybot robot system consists of the physical Ballybot robot, the Ballybot “Torso
Attitude Controller” control system, the Ballybot “DC motor model” and state
estimation sensors. Through a series of previously conducted experiments (detailed in
5.5 & 5.6), a high degree of confidence has been established regarding the performance
of all components of the Ballybot robotic system, with the exception of sensors for tilt

angle estimation — the subject of this experiment.

Investigations into candidate sensors for detecting the robot’s tilt angle have
concentrated on evaluating two sensors for measuring the robot tilt angle: a piezo-
electric gyroscope and an inclinometer. While it was possible to balance the robot using
the gyroscope only, it was not possible to simultaneously control the horizontal
displacement of the robot. This is due to the way the control system automatically
compensates for the gyroscope’s bias error. When both the gyroscope and inclinometer
sensors were used cooperatively, it was possible to successfully balance the robot while

controlling its displacement.

Note that a number of other sensor types, such as pressure/force sensors and
encoders/potentiometers may also be useful in the control of humanoid robots,
especially for control strategies relying on the detection of the zero moment point [30-
32]. The Ballybot inverted pendulum based test platform is not suitable for evaluating

these kinds of sensors.

5.7.2 Materials

1. Ballybot robot

The physical Ballybot robot is used to conduct this experiment.

11. Tilt angle sensors being used

161

During the course of this experiment, the following tilt sensors were tested on the

Ballybot:

e Gyroscope (Hitec GY-130 piezo rate gyro). This is a piezo-electric gyroscope
designed for use in remote controlled vehicles, such as model helicopters. The
gyroscope modifies a servo control signal by an amount proportional to its
estimate of angular velocity. Instead of using the gyro to control a servo, we
read back the modified servo signal to obtain a measurement of angular velocity.
An estimate of angular displacement is obtained by integrating the velocity
signal over time.

e Inclinometer (SEIKA Inclinometer N3). This sensor outputs an analogue
signal, proportional to the angular displacement of the sensor. The sensor is

accurate within the range -30 to +30 degrees.

Neither sensor on its own completely solves the problem of balancing the physical
robot. The gyroscope performs best of the two sensors, consistently balancing the robot
for intervals longer than 2 minutes, after which the robot usually moves out of the
workspace and the experiment must be halted. The robot is unable to balance using

feedback from the inclinometer only.

Experiments using both sensors in a collaborative manner have provided the best
results. The most successful algorithm utilises data sampled from the inclinometer to

recalibrate the gyroscope "on-line".

5.7.3 Methods

A control system is implemented to balance the pendulum by regulating the voltage

supplied to the robot’s motors. Then various combinations of state sensors and data

162

processing algorithms were trialled, until a combination was found which successfully

balanced the Ballybot robot.

5.7.3.1 Control system

During this experiment, the Ballybot utilises the Torso Driven Walking subsystem
“Torso Attitude Controller”. This component has been tested using the software
simulation in Chapter 5.5, and is used in conjunction with the Ballybot’s “DC Motor
Model” developed in Chapter 5.6. The resulting system is represented by the control

flow diagram, in Figure 5-19:

Ballybot control system

X, State j{-’k Torso 1 Ballybot V. Ballybot Xy
—b %;11(' o > Attitude | ———e | DC MO0 | e— Robotic
Sensors
Controller Model System
3
X

Figure 5-19 Control flow diagram for the complete Ballybot robotic system

The system variables referenced by the control flow diagram, and all other components

of the control system are summarised in Table 5-2:

Table 5-2 Ballybot control system variables.

X, State vector of the Ballybot | W Constant weight vector applied to
system: measured robot state:
X, wy
- w
)?k _ xk W: 2
0, Ws
ék Wy
)%k Estimate of the state vector of the | x, Estimated horizontal velocity of
Ballybot system. the base of the Ballybot.
X, Horizontal displacement of the | 6, Angle of inclination.
base of the Ballybot.

163

X, Horizontal velocity of the base of | g, Angular velocity.
the Ballybot.

i Horizontal force applied to the | V, Voltage applied to Ballybot
base of the Ballybot. motors (-100% to +100%).

Sowowr Force that must be generated by | f.,,, Magnitude of the frictional force

the motor torque. acting against the current velocity
of the robot. (= 0.85N)

1. Torso Attitude Controller (for Ballybot)

This system was developed during experiment 5.5, “Torso Attitude Controller for the
Ballybot”. The controller takes an estimate of the four state variables (x,, %,, 6,, 6,)
as inputs, and determines an appropriate balancing force (£,) to keep the robot upright

and centred. The required balancing force is calculated using equation (1):

fi=9"%, (1

The weight vector components (w1 SWy, Wy, w4) were determined experimentally, using

initial settings obtained using the software simulation in Chapter 5.5.
ii. Ballybot DC motor model

The Ballybot utilises the “DC motor model”, developed in Chapter 5.6. Using the
experimentally determined relationship, the robot determines an applied voltage level

(V,) that will result in the desired balancing force (f;), given the current estimate of

robot velocity (x .)- This voltage is determined by:

1. Calculate required motor force, using:

164

2 1
fmomr = fk + f_/'rictmn b for xk > O ms (2)

0 -1
fmotor = fk - ffriction > for xk < O ms (3)

2.

k

k

Calculate required input voltage, using:

fmotur

=) 1
0.0303-0.013x

metOV

f fmotor Z 0 (4)

= =5 1
0.0303+0.013x

f fmotor < 0 (5)

Since the voltage is expressed as a percentage of maximum applicable voltage, it is

restricted to the range (-100%, +100%).

5.7.3.2 Obtaining system state measurements:

The proportional control strategy selected for implementation on the physical robot, and

described by (1), requires a measurement of four state variables: (x, X, 0, 9).

Table 5-3 Ballybot control system input.

Variable | Description | Sensor(s)
x Position Shaft encoders built in to motors.
X Velocity Estimated by differentiating the encoder’s x reading.
0 Angle i. Estimated by integrating the gyroscope’s 6 reading.
ii. Measured directly from inclinometer.
0 Angular i. Measured directly from gyroscope.
velocity ii. Estimated by differentiating inclinometer’s 6 reading.

Angle and angular velocity are the state variables of interest to biped robot applications.

The two sensors for reading angular state variables that are investigated in this

165

experiment are the SEIKA Inclinometer N3 (Analogue output model) and Hitec GY-

130 piezo rate gyro.

166

1. Reading the gyroscope

The Hitec GY-130 Piezo Gyroscope is a single rate, single axis gyroscope, designed for
use in remote control helicopters and fixed wing aircraft applications [34]. The
gyroscope is intended to be placed between a remote controlled aircraft’s receiver and

its rudder servo, as shown in Figure 5-20.

PWM modified signal

=

Servo

R/C Receiver = ev-130
TPUout | e | i

PWM control signal

Figure 5-20 Intended sensor configuration for GY-130 Rate Gyro. The gyroscope is used to
counteract rotation of the aircraft by adjusting the signals being sent to the rudder servo.

The gyro is used to adjust the Pulse Width Modulated (PWM) control signal being sent
to the rudder servo by an amount proportional to the angular velocity measured by the
sensor. In this way, the gyroscope makes the aircraft easier for a pilot to control, as it

works to automatically dampen rotational velocity experienced by the aircratft.

In order to use the gyroscope to provide measurements of angular velocity to a
controller, the physical configuration must be changed. Instead of using the gyroscope
to adjust a servo control signal, the gyroscope output can be fed back into the EyeCon

controller, as shown in Figure 5-21:

167

PWM modified signal
EyeCon

Controller =" ——1 o&v130
TPUout|] |

PWM baseline signal

Figure 5-21 The EyeCon controller can obtain an estimate of angular velocity by comparing the
modified PWM signal output by the gyroscope to a baseline signal being sent to the gyroscope’s
input.

During operation the EyeCon’s output TPU channel PWM signal is held to a steady,
baseline value. The gyroscope modifies the PWM signal by an amount proportional to
the angular velocity experienced by the sensor. Since the baseline signal is being held
steady, any changes in the PWM modified signal will be proportional to its estimate of

angular velocity.

Assuming the velocity measurements are conducted frequently enough, an estimate of

angular displacement can then be obtained by integrating the velocity signal.

In order for the velocity and displacement estimates to be useful, the gyroscope signals

need to be calibrated. For the initial calibration of the gyroscope:

e The gyro signal for zero angular velocity (0= 0) is obtained by holding the
sensor steady for a large number of samples, and averaging the sensor output
during calibration.

e The gyroscope is then rotated through 90 degrees, and the angular velocity (8)
signal integrated as the gyroscope moves, giving the scale of the gyroscope’s
angular () measurement.

e Finally, the gyroscope needs to be moved to a known position before the trial
begins, so the angular displacement determined by the sensor can be used to

provide an angle estimate.

168

11. Reading the inclinometer

The Seika/NTT N3 Inclinometer is a capacitive liquid based sensor with integrated
sensor electronics [33]. The model being investigated here is an analogue instrument;

however the manufacturer does supply a digital version.

The sensor output is a linear analogue signal, providing an estimate for tilt angle while
the sensor is operating between (-30, +30) degrees. Outside this range the sensor output
is no longer linear. The inclination estimate of the sensor is based on a reading of the
linear acceleration vector acting on the sensor. The sensor assumes this acceleration is
caused by the gravitational effect of the earth'’. If additional linear acceleration
components are acting on the sensor (if for example, the robot is moving), the sensor

accuracy will be reduced.

The inclinometer’s analogue output can be easily read using the RoBIOS function
OSGetAD (). Since the inclinometer only requires a single analogue input, potential

EyeCon problems with switching analogue input channels will be avoided'®.

Angular velocity can be derived from the angle estimates by differentiating the sensor
signal with respect to time. Care must be taken, since differentiating a noisy signal will

result in magnified noise in the derived signal [26].

One major advantage the inclinometer sensor has over the gyroscope is that there is no
need to calibrate the sensor. The angular measurement is an absolute angle, and the

range of sensor output values is invariant.

17 Although the inclinometer’s specification sheet does make the point that the sensor will also work on
the surface of the moon!

'8 In Chapter 4.4.4, an issue with accessing sensor data when switching analogue input channels was
encountered. At the time this experiment was conducted, this fault could still be reproduced. It is my
understanding that the issue has been recently identified and corrected.

169

1il. Raw sensor data

Raw angular displacement readings obtained from both of these sensors, while the robot

moves between +/- 30.0 degrees can be seen below, in Figure 5-22.

Gyro Angle and Raw Inclinometer

8000 80

6000 G0
S A—A

. \ [\ (I »

S Y S | 1’ 1 M\A\l J w\ o [om
= = - —|nclinge

e S B, W . i e w—

-6000 \ \. / x_ -60

-8000 -80

Figure 5-22 Raw sensor output, read from the gyroscope and inclinometer. The inclinometer
signal is noisy and lags behind the gyroscope output, while the gyro signal “drifts” over time.

There are some obvious problems exhibited by the raw sensor output, which may

impact the usefulness of the sensors. Sensor specific problems encountered include:

e Inclinometer noise: The inclinometer readings can display a significant amount
of noise, especially during and shortly after changes to angular velocity, as can
be seen in Figure 5-22.

e Inclinometer "lag": The inclinometer readings lag behind the gyroscope by about
50 ms. Figure 5-23 compares trends of both sensor measurements as the
Ballybot robot begins to fall forward. The portion of the trend examined follows
the inclinometer output as it moves through its linear range of (-30, +30)

degrees.

170

Inclinometer lag
60
—Inclinometer

m 40 e (GYIOSCOPE / al
@ -/
2 20
g M)——'—//
E 0 e L e B B B B B
-]
E’ 20 D 20 40 60 80
g al

-40

-60

Time (tics)

Figure 5-23 The inclinometer signal appears to lag behind the gyroscope by about 5 tics
(approximately 50 ms).

e Gyroscope "velocity drift": Figure 5-24 shows a trend of the raw gyroscope
output data, while the sensor is being held still. Over time, the "zero velocity"
signal received from the gyroscope drifts away from its initial “zero” reading.
This means that the sensor’s estimate of angular velocity, and therefore angle

becomes increasingly inaccurate after a short time.

Gyro Drift over Time

00:00.0 02:52.8 05:45.6 08:36.4 11:31.2 14:24.0
a0

0

-20
-100
-130

Raw gyro output

Figure 5-24 The gyroscope output signal "drifts" over time, even though the sensor itself is being
held still. This gyroscope “drift” results in an increasing error in angular velocity estimation.
Since the angle estimate is generated by integrating the velocity signal, a small velocity error
quickly becomes a large angular error.

171

5.7.3.3 Experimental procedure

The procedure followed to investigate various sensors was to iteratively perform the

following steps:

1. Propose candidate sensor and data processing algorithm for obtaining state
estimates. Each combination of sensor(s) and algorithm is referred to as a sensor
“module”.

2. Install sensor module on Ballybot robot.

3. Operate the robot, manually tuning the control loop parameters (w1 SWy, Wy, W,),

trying to balance robot.

4. If no success, then alter sensor or data processing algorithm and repeat.

Tuning of the parameters is a quick process, and should take no longer than 20 minutes
or so for a trial. If it is taking longer, and the robot does not look like it is about to

balance, then the proposed sensor and/or data processing algorithm are inadequate.

5.7.4 Results

The results presented here demonstrate the process by which inclination sensor modules
for the Ballybot robot were investigated, finally culminating in a proposed sensor

configuration to be used in subsequent biped robots.
5.7.4.1 Balance using gyroscope only

The first experiment makes use of the Gyroscope reading of angular velocity, and the
derived angle estimate, to control the robot. Samples of angular velocity are taken from
the gyroscope every 10 ms, and this value is integrated to provide an estimate of the
current angle. The controller samples the measured state variables every 30 ms to

determine the sequence of control signals to apply to the robot motors.

172

Sensor recording (gyro only)

04 1
03 e wf"h\ - 1 0
2 0z M""’““%. o~y A__F’N T-1 8
E 0.1 - mw 3 E
0 el . T S
01 { 10 20 20 40 S0 =) 5

Time (=)

Angle (radians) wim

Figure 5-25 Sensor recording of control by gyroscope.

The resulting behaviour is a robot that maintains its balance well, remaining upright
indefinitely. As time progresses, the robot begins to wander from the origin point, until
it moves out of the workspace or collides with an obstacle. Figure 39 shows a recording

of measured angle and displacement state variables during the course of an experiment.
Observations:

An examination of the sensor readings in Figure 5-25, suggests that the cause of the
robot's increasing displacement is the gyroscope "velocity drift" observable in Figure
5-24. This velocity drift introduces an increasing error to the gyroscope's estimate of
angle. Importantly, the robot does not fall, because as this error increases, the robot's

displacement increases to compensate:

From equation (1), we see that the balancing force calculated by the control system is:
fo=wix, +wyx, Tws 0, +wy 6, (6)

And so the displacement observed during the experimental trial is proportional to the

error in gyroscope angle estimate:

173

eermr ~ - Wl a (7)

W

It may be possible to correct for this error using the robot displacement to modify angle.
This kind of solution would not be portable to other kinds of balancing robot'’, as it
relies on the use an inverted pendulum balancing model, as well as the ability to

accurately measure displacement.

5.7.4.2 Balance using inclinometer only

In the second experiment, the inclinometer is used to provide a measure of robot angle.
Using this approach the robot is unable to balance, as corrective actions in response to
changing angles were applied too slowly. The response of the system appeared to be
sluggish. This is likely due to the ~50 ms lag that can be observed in the inclinometer

output (Figure 5-23).

Note that it is possible that the lag and noise observed in the inclinometer output signal
may not have been caused by the inclinometer sensor itself. Instead these problems
may have been introduced by the EyeCon controller's analogue input hardware.
Another possibility is that the robot power source providing a reference voltage to the
inclinometer may not be constant, as the same battery used to drive the motors also
provides power to the robot's sensors. Experiments to investigate these scenarios were

not undertaken.

5.7.4.3 Balance using gyroscope and inclinometer cooperatively

The third experiment in this series uses the gyroscope control system described in

5.7.4.2 and the inclinometer co-operatively. The one real advantage the inclinometer

1t is, however, suitable for use in biped robots controlled using the “Torso Driven Walking” control
system.

174

sensor has over the gyroscope is that its output signal for a given angle does not drift
over time. This property is used to implement an algorithm that continuously
recalibrates the gyroscope while the gyroscope is used by the controller to actively

balance the robot.

The online recalibration algorithm is summarised below:

1. Use the gyroscope to control the robot motion, exactly as in experiment 5.7.4.2.

2. Monitor the variance of the inclinometer signal, while the robot is operating.

3. When a low variance is observed, the algorithm assumes that a reliable angular
measurement has been taken from the inclinometer, and that the robot angle is
not changing currently.

4. Whenever receiving a good signal, the inclinometer measure of angle is used to
recalibrate the gyroscope angle and angular velocity.

5. The algorithm includes a minimum interval between recalibrations, to allow the
control system time to adjust to large changes in estimated angle when errors are

corrected.

Results of this experiment can be seen in Figure 5-26:

Sensor recording (inclinometer & gyroscope)

Radian=s
Metres

-0 -2
Time (=)

Angle (radians) Hm)

Figure 5-26 Cooperative sensor control of the Ballybot, results in both a balanced and centred
robot.

175

The robot balances as well or better than the system described in 5.7.4.2. However, due
to the online recalibration of the robot angle the drift in displacement is also minimised.

A video of the robot balancing with this control strategy can be seen at this URL:

http://robotics.ee.uwa.edu.au/eyebot/mpg/balancing/ballybotlb.mpg

This combined sensor approach should prove portable to other varieties of balancing
robot, including biped robots, since its estimate of robot angle and angular velocity

relies solely on measurements taken from the gyroscope and inclinometer sensors.

5.7.5 Discussion

In this series of experiments, the Ballybot experimental platform was used to investigate
sensors and sensor data processing algorithms for tilt angle detection in balancing

robotic systems.

Of the sensors that were investigated, the Hitec GY-130 piezo rate gyro proved to be
most effective in providing accurate and timely estimates of robot angle and angular
velocity. This was the only sensor which the Ballybot control system was able to use on

its own to successfully balance the robot.

The gyroscope does exhibit its own idiosyncratic problems. The most obvious of these
is a drift in its measurement of “zero” angular velocity. Despite this problem of “gyro
drift”, the BallyBot’s “Torso Attitude Controller” control system is able to maintain
balance due to the fact that changing robot displacement can counteract angle
measurement errors — as long as the error bias does not change too quickly. Instead of

falling over, the robot simply moves away from the centre of the workspace.

176

Gyroscope drift, or bias, is a well known problem. Most solutions require a second
sensor to be used to provide an absolute reference signal for the gyroscope. For
example, Roumeliotis [36] describes a system which tracks the position of the sun to
recalibrate a gyro signal. The SEIKA N3 inclinometer is used to provide an absolute
reference signal, allowing on-line recalibration of the gyroscope. When using the

inclinometer to recalibrate the gyroscope, the robot is able to both remain balanced and

keep to the centre of the workspace.

Figure 5-27 Ballybot robot balances in the dining room, using the gyroscope for active balance and
the inclinometer to perform on-line recalibration of the gyro.

Due to the success of the gyroscope/inclinometer sensor package in balancing the
Ballybot robot, the same configuration of sensors should be suitable for more general

Torso Driven Walking applications.

177

5.8 Comparison with a “first-principles” adaptive control system

Abstract: Using the Ballybot software simulation™, an artificial neural network based
adaptive control system was developed to balance the Ballybot robot. The resulting
control system is an example of a “first-principles” adaptive control system, such as
those described in Chapter 2.3.6. Initially, the control system knows nothing about
relative quality of various pendulum states. All this knowledge must be found by trial
and error during training of the networks, while all performance feedback is limited to a

single error signal when the pendulum has crashed.

The development of this alternative control system allowed the relative advantages of
such an approach to be compared with that of the Torso Attitude Controller sub-system
of the Torso Driven Walking control system. While the adaptive approach successfully
learns to balance the robot, with no preconceived or pre-programmed notion of how this
should be achieved, significant disadvantages were encountered. Most significantly, the
control system requires a very large number of training cycles and does not always

converge to a satisfactory solution
5.8.1 Introduction

In this experiment, the Ballybot simulation described in 7.4 is used to investigate the
feasibility of applying a fully adaptive control system to the problem of biped robot
control. If an adaptive approach can successfully control the Ballybot simulation, then

perhaps the technique could be extended to a more complex biped robot system.

The resulting “first-principles” adaptive control system is used as a comparison to the
more conventional solution used by the Torso Driven Walking control system in its

Torso Attitude Controller subsystem. If the adaptive approach were to prove

2 Described in Appendix B.
178

advantageous in the simple “Ballybot” environment, the experiment could be extended

to the more complicated legged robot platform.

The inverted pendulum has become a classic subject for studies into adaptive control of
non-linear systems. There are a large number of published approaches to adaptive
control of inverted pendulums, including [11-22]. A common goal of many of these
systems is to learn to balance the inverted pendulum without being given any external
assistance. For instance, the system should learn for itself that keeping the pole as

upright as possible is a good way to avoid falling over.

1. Problem specification

An adaptive control system is desired that, beginning from a state of complete
ignorance, can learn to balance the simulated Ballybot robot by applying a variable

horizontal force to the base of the robot.

The control system must learn the task of balancing the robot even when all feedback
regarding the quality of its control decisions is limited to a single failure signal, raised

when the pendulum falls or moves too far from the centre of the robot’s workspace.

In addition, the system must be able to operate with a large enough interval between
state samples to permit some ru