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Abstract 
 

 

Fuzzy inference systems (FIS) are information processing systems using fuzzy logic 

mechanism to represent the human reasoning process and to make decisions based on 

uncertain, imprecise environments in our daily lives. Since the introduction of fuzzy set 

theory, fuzzy inference systems have been widely used mainly for system modeling, 

industrial plant control for a variety of practical applications, and also other decision-

making purposes; advanced data analysis in medical research, risk management in 

business, stock market prediction in finance, data analysis in bioinformatics, and so on.  

 

Many approaches have been proposed to address the issue of automatic generation of 

membership functions and rules with the corresponding subsequent adjustment of them 

towards more satisfactory system performance. Because one of the most important 

factors for building high quality of FIS is the generation of the knowledge base of it, 

which consists of membership functions, fuzzy rules, fuzzy logic operators and other 

components for fuzzy calculations. The design of FIS comes from either the experience 

of human experts in the corresponding field of research or input and output data 

observations collected from operations of systems. Therefore, it is crucial to generate 

high quality FIS from a highly reliable design scheme to model the desired system 

process best. 

 

Furthermore, due to a lack of a learning property of fuzzy systems themselves most of 

the suggested schemes incorporate hybridization techniques towards better performance 

within a fuzzy system framework. A fuzzy system combined with neural networks is a 

representative example of hybrid fuzzy systems incorporated to learn the pattern of 

input and output relations so that the fuzzy systems trained can produce the output 

against new unknown input data. Other hybridization cases are, for instance, genetic 

fuzzy systems to optimize the corresponding objective function according to their 

system purposes, statistical function-combined fuzzy systems for modeling and 

analyzing huge data gathered for extracting useful information, and so on. 

 

Even though most of these systems mentioned have provided very encouraging and 

satisfactory results to achieve their goals and solve problems, they have suffered from 

the computational complexity needed to calculate their system outputs. One problem 



 3 

lies in the difficulties associated with the maximum number of resulting fuzzy rules, 

which increases exponentially when higher number of input features is employed. As a 

consequence, the computational load required to search for a corresponding fuzzy rule 

becomes very heavy. The fuzzy rules generated also need to be examined for their 

validity for use as appropriate fuzzy rules before carrying out the inference process. 

This validity checking process is to ensure a full coverage of the generated rules to 

represent the given knowledge. Another is that the initially obtained membership 

functions and rules based on a prior knowledge are often in need of advanced system 

adjustment and refinement towards higher accuracy. This systematic enhancement is 

required to update the FIS in order to produce flexible and robust fuzzy systems for 

unexpected unknown inputs from real-world environments.  

 

This thesis proposes a general framework of Adaptive T-S (Takagi-Sugeno) type 

Rough-Fuzzy Inference Systems (ARFIS) for a variety of practical applications in order 

to resolve the problems mentioned above in the context of a Rough-Fuzzy hybridization 

scheme. Rough set theory is employed to effectively reduce the number of attributes 

that pertain to input variables and obtain a minimal set of decision rules based on input 

and output data sets. The generated rules are examined by checking their validity to use 

them as T-S type fuzzy rules. Using its excellent advantages in modeling non-linear 

systems, the T-S type fuzzy model is chosen to perform the fuzzy inference process. A 

T-S type fuzzy inference system is constructed by an automatic generation of 

membership functions and rules by the Fuzzy C-Means (FCM) clustering algorithm and 

the rough set approach, respectively. The generated T-S type rough-fuzzy inference 

system is then adjusted by the least-squares method and a conjugate gradient descent 

algorithm towards better performance within a fuzzy system framework.  

 

To show the viability of the proposed framework of ARFIS, the performance of ARFIS 

is compared with other existing approaches in a variety of practical applications; pattern 

classification, face recognition, and mobile robot navigation. The results are very 

satisfactory and competitive, and suggest the ARFIS is a suitable new framework for 

fuzzy inference systems by showing a better system performance with less number of 

attributes and rules in each application. 
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Chapter 1 

1.   Introduction  
 

 

The decision-making process in human brains is one of the most important information 

processing routines that act in response, and according to the given input. Human 

beings obtain data from the external environment as a Data Acquisition process using 

their sensors, such as eyes, ears, skin, and so on. Then different sets of abstract 

categories are created related to the data gathered, which is called Data Interpretation. 

These categorized sets are classified according to previously accumulated experience of 

recognition and linked with pre-established or new concepts as a Knowledge Base. The 

interpreted knowledge of the given input is fed into the Reasoning Mechanism to 

produce the final decision. Finally, the decision output leads to an action for humans to 

react according to the given input. These procedures described are shown in Figure 1.1 

as a series of modules for carrying out the decision-making process. 

 

 
Figure 1.1 The decision–making process 

 

1.1 Introduction and Main Goals 
 

The fuzzy inference process is a type of information processing, which represents 

decision-making using fuzzy set theory about uncertainty, imprecision, and vagueness 

of objects that are of research interest. In fuzzy inference systems, the reasoning task is 

carried out based on fuzzy rules composed by fuzzy system developers using fuzzy 

linguistic variables assigned with the corresponding concept of the interpreted input 

data. The decision output of the reasoning is calculated by a fuzzy inference engine 

linked with other components in the knowledge-base of fuzzy inference systems (FIS).  
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The fuzzy inference system in Figure 1.2 shows the main process of fuzzy inference. 

When a given input is fed into the pre-designed fuzzy inference system based on a 

priori  knowledge, each attribute of the input is fuzzified using membership functions in 

the knowledge-base. The fuzzified input data are fed into fuzzy inference rules to 

produce rule output for each rule. The rule outputs are calculated according to the 

design of fuzzy operators in fuzzy rules. Then a final output is calculated by de-

fuzzification process. During the calculations of all fuzzy operations mentioned, the 

fuzzy logic operators stored in the knowledge-base of the FIS are employed.  

 

 
Figure 1.2 The fuzzy inference process 

 

Since the first initiation of fuzzy logic by Zadeh [1], fuzzy inference systems have been 

developed to improve performance in the decision-making scheme over the past 

decades in; non-linear system modeling [2], [3], [4], industrial plant control [5], [6], 

robotics [7], [8], system identification [9],  [10], [11], and so on. A number of 

approaches have been suggested to enhance the fuzzy logic-based decision-making 

mechanism in order to resolve its problems and handle issues related to fuzzy inference 

systems.  

 

The main attention in the development of fuzzy inference systems has been focused on 

the automatic generation of membership functions and rules, and the hybrid techniques 

for providing the conventional fuzzy systems with a learning capability towards better 

system performance. One of the significant factors to assess the performance of fuzzy 
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inference systems is the design of the knowledge-base, because the design scheme of a 

choice of fuzzy logic operators, a type of membership functions, and a composition 

strategy of fuzzy rules will produce a final output in order to approximate the given 

input. Every FIS has a different system purpose and details according to the objective of 

the system. The design of a FIS is determined by either the experience of experts in a 

particular field of the research or input and output data collection from system 

operations. Accordingly, the quality and the system performance of a FIS are dependent 

on the system design. In other words, it is critical to design a better quality FIS by a 

highly reliable system design scheme to achieve the desired system process. 

 

Hybrid techniques in fuzzy inference systems have been proposed to supplement the 

existing fuzzy systems mainly with learning and optimizing capabilities due to the lack 

of flexibility of the conventional fuzzy inference system itself. A common hybrid 

system is a neural-fuzzy system which is a combination of neural networks and fuzzy 

systems [12], [13], [14], [15]. For other examples, there are GA(Genetic Algorithm)-

fuzzy systems to optimize their objective function using GA according to their system 

purposes [16], [17], [18], and statistical function-combined fuzzy systems [19], [20] to 

analyze extremely high dimensional data sets or to model complex systems based on 

massive data observations to extract information of research interest. 

 

However, most of the fuzzy inference systems mentioned above have been hampered by 

the computational complexity to calculate the final output of their systems. Once a 

higher number of input features is used, the maximum number of resulting fuzzy rules 

is increased exponentially. Accordingly, the computational burden for fuzzy systems to 

search for a corresponding fuzzy rule to fire is extremely heavy. This difficulty may 

cause system delay or even system malfunction. Also the generated knowledge-base 

should be investigated for its validity for use at the stage of the system design. In 

particular, the obtained fuzzy rules should be examined to ensure the full coverage of 

the input and output relation of the given information. Moreover, the initial system 

design of FIS should be enhanced through a system evaluation process towards higher 

system performance and better robustness against all the possible unpredicted inputs 

from the real-world environment. 

 

The major contribution of this thesis is a development of a framework of Adaptive T-S 

(Takagi-Sugeno) type Rough-Fuzzy Inference Systems (ARFIS) to solve the problems 
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described and to handle issues mentioned in the context of a Rough-Fuzzy hybridization 

scheme. Rough set theory [36] here is utilized to reduce the number of features using 

the dependency of attributes, and to generate rules using decision rule generation. An 

efficient knowledge-reduction is carried out according to the proposed rough set 

approach. The T-S type fuzzy model [7] is chosen to perform fuzzy inference utilizing 

its advantages as a universal approximator. The membership functions and fuzzy rules 

in the knowledge-base are generated using the Fuzzy C-Means (FCM) clustering 

method [22] and the rough set approach, respectively. After the rule generation, the 

rules are examined for validity and their suitability as T-S type fuzzy inference rules to 

ensure the full coverage of the input and output relation of the given knowledge. Once 

the whole system is established, the system performance evaluation is done based on the 

Root-Mean-Square-Error (RMSE) measure between the desired target output and the 

actual current output. If the RMSE measure is not satisfactory, the adjustment of 

membership functions and the rule refinement procedure is activated towards better 

system performance.  

 

The proposed system was applied to a variety of applications to show the viability of 

the proposed framework of ARFIS. Results shown in experimental evaluation section 

are highly competitive, and suggest that the ARFIS is a suitable new framework for 

rough-fuzzy inference systems. 

 

1.2 Thesis Outline 
 

The rest of this thesis is organized as follows: 

 

● Chapter 1: Introduction to this research. The decision-making process of the human 

brain, fuzzy inference systems, the system design scheme, problems of FIS and the 

existing approaches, and the main contribution of this thesis are briefly described.  

 

● Chapter 2: Background of the T-S type fuzzy model. The T-S type fuzzy model is 

reviewed giving its basic definition and theory of a general T-S fuzzy model as a 

universal approximator. In this chapter, the focus is on the examination of the T-S type 

fuzzy model as an excellent tool representing the universal approximator to show its 

advantages in non-linear system modeling.  
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● Chapter 3: Review of Rough Set theory. This chapter presents the review of most of 

the functionalities of rough set theory; from the definition of rough sets to decision rule 

generation and knowledge-reduction methods.  Most of the functionalities in rough set 

theory are described via examples, since it is the best way to explain rough set theory 

for readers. 

 

● Chapter 4: Theoretical modeling of Rough-Fuzzy hybridization. A theoretical 

investigation of rough sets, fuzzy sets, and rough-fuzzy sets is mentioned and focused 

on the combination of rough sets and fuzzy sets. This hybrid technique is explained 

from the perspective of α-level sets as a tool for set analysis. Many proposals on the 

combination of fuzzy and rough sets are reviewed. 

 

● Chapter 5: Development of a framework of Adaptive T-S type Rough–Fuzzy 

Inference Systems (ARFIS). This is the main contribution of this thesis. This chapter 

describes all the modules of the proposed system to build a framework of ARFIS using 

the automatic generation of the T-S type fuzzy model and the efficient knowledge-

reduction method.  

 

● Chapter 6: Applications to Pattern Classification, Face Recognition, and Mobile 

Robot Navigation. The proposed framework of ARFIS was applied to each application 

to obtain better system performance with less number of input features and rules. As a 

result, the proposed approach has produced better results in each application with the 

absolute minimal size of the given knowledge without losing its original essential 

information. It has been shown that the system performance of the proposed framework 

of ARFIS is very encouraging, satisfactory, and competitive. 

 

● Chapter 7: Conclusion and Discussion. The advantages and the potentials of this 

research are discussed. From the perspective of rough-fuzzy hybridization scheme, a 

variety of issues are mentioned about theoretical and practical aspects of this research 

including the future direction in this field of research. This chapter also describes the 

future work which is definably required to enhance the proposed system towards more 

reliable, robust, and flexible system performance. In order to do this, six systematic 

measures are described to extend the capability of the proposed framework. 
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Chapter 2  

2.   An Introduction to T-S type Fuzzy Model 
 

 

The representation of decision-making via human reasoning as a way of how human 

beings process and express the given information can be interpreted as a series of 

modules in the human brain. As mentioned in Chapter 1, it is a series of these following 

processes; extracting information by sensing the environment, converting the received 

information into abstract classes or concepts, linking the processed inputs with the 

associated reasoning, and performing the action according to the given inputs. 

 

In mathematics, the abstract classes can be represented to sets in set theory. Once the set 

has been defined, each element of interest becomes either included or excluded from the 

set. For example, the concept “belongs to”, or equivalently “a member of”, is the 

principal mechanism of set theory. In classical set theory, a crisp set is defined as a 

collection of precise objects and an element in a crisp set either belongs to a set or not. 

This dichotomization process can be modeled by a characteristic function of the crisp 

set over a certain universe of discourse.  

 

2.1 General Description 

 

In fuzzy set theory [1], a fuzzy set is a collection of distinct elements with a varying 

“degree of relevance or membership”. The characteristic function of a fuzzy set, which 

is known as a membership function, takes interval values between 0 and 1, often shown 

as [0, 1]. The membership values express the degrees with which each object is 

compatible with the properties or features that are distinctive to the collection. In other 

words, a fuzzy set is a generalization of the concept of a set whose characteristic 

function only takes binary values {0, 1}. 

  

Using the definition and properties of fuzzy sets, the series of human brain behaviors 

mentioned earlier can be modeled as a process of fuzzy inference. Labeling the 

categorized classes of abstract sets into the interpreted data sets corresponds to the 

fuzzification process of inputs using membership functions. Linking the fuzzified inputs 
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with the associated reasoning mechanism can be seen as a step of building the 

knowledge base in a fuzzy inference system. Processing to take a final action from the 

associated reasoning can be modeled as performing the fuzzy inference process to 

produce the final system output.  

 

The fuzzy inference systems as a model of human reasoning have been widely used for 

a variety of practical industrial areas over the past decades; non-linear system modeling 

[2], [3], control engineering [5], [6], robotics [8], [9] and so on. There are two major 

types of fuzzy inference systems; a language-driven type and a data-driven type fuzzy 

inference system. Language-driven type fuzzy systems, for instance Mamdani type [21], 

are designed via human language variables and rules, which is based upon the 

experience of fuzzy experts and/or experts in the specific field. Data-driven type fuzzy 

inference systems, for example, Takagi-Sugeno (T-S) type [7], are designed based on 

the experimental input-output data collected from actual experimentation.  

 

In regard to advantages and disadvantages of those two types of fuzzy inference 

systems, language-driven type fuzzy inference systems are comparatively easier to 

design and fast to calculate outputs, but their de-fuzzification process is very time-

consuming and the systematic fine-tuning is extremely difficult to handle. Meanwhile, 

data-driven type fuzzy inference systems are excellent in mathematical modeling by the 

design for their rule consequents, but it is often difficult to assign any appropriate 

linguistic terms to the rule consequent which is a non-fuzzy membership function as an 

output variable. 

 

However, in order to utilize the advantage of the mathematical modeling of data-driven 

type fuzzy inference systems, the Takagi-Sugeno (T-S) type fuzzy model is chosen in 

this thesis to perform the fuzzy inference process.  

 

In this chapter, the Takagi-Sugeno (T-S) type fuzzy inference model is introduced 

mentioning its theoretical model, aspects, and analyses as a universal approximator with 

the associated approximation theories. 
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2.2 Fuzzy System Models 

 

There are two major models of fuzzy systems; Mamdani [21] and Takagi-Sugeno (T-S) 

[7] fuzzy systems. The main difference between these two types of fuzzy systems lies in 

the consequent variable of fuzzy rules. Mamdani type fuzzy systems use linguistic 

fuzzy sets as consequent variables in fuzzy rules as defined by (2.1), whereas the T-S 

type fuzzy systems employ a linear combination of input variables as a rule consequent 

variable as defined by (2.2). 

 

Ri : IF xk1 is Fi1 AND xk2 is Fi2 … AND xkm is Fim 

         THEN yi is F*
i                                                                                                                                                         (2.1)  

 

Ri : IF xk1 is Fi1 AND xk2 is Fi2 … AND xkm is Fim 

         THEN yi = ci0 + ci1xk1 + … + cimxkm                                                                         (2.2) 

 

 where  

Ri (i=1, 2, …, N): the i-th fuzzy rule 

xkj (j=1, 2, …, m): the j-th input feature of the k-th pattern vector 

Fij: a fuzzy variable of the j-th input feature in the i-th rule 

F*
i: a linguistic fuzzy set of the i-th Mamdani type rule consequent 

cij: a coefficient of inputs of the i-th T-S type rule consequent. 

  

Both types of fuzzy models have been deployed widely as effective tools in a variety of 

practical applications, especially in non-linear system modeling and control system over 

past decades. 

 

2.2.1 T-S type Fuzzy Model 

 

The T-S type fuzzy model suggested by Takagi and Sugeno [7] is able to represent a 

general class of non-linear systems. The consequent variables of its fuzzy rules are 

defined as a linear combination of input variables as defined by (2.3). 

 

Ri : IF xk1 is Fi1 AND xk2 is Fi2 … AND xkm is Fim 

      ∑
=

+=
m

j
kjijii xccyTHEN

1
0                                                                                      (2.3) 
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 where 

Ri (i=1, 2, …, N): the i-th T-S type fuzzy rule 

xkj (j=1, 2, …, m):  the j-th input feature of the k-th pattern vector 

Fij: a fuzzy variable of the j-th input feature in the i-th rule 

cij: a coefficient of the T-S type rule consequent 

П: a fuzzy T-norm (‘AND’ ) operator 

wi: a rule firing strength of the i-th rule 

yi: the i-th rule output 

y: the total output 

 

The T-S type fuzzy model approximates non-linear systems using a combination of 

several linear systems by decomposing the entire input domain into several partial 

spaces and representing each input and output space with a linear function. In order to 

find the coefficients of the linear systems, the least-square fit method has been widely 

used. 

 

One of the most significant advantages of T-S type fuzzy model is that the 

representation of the system output is designed using a mathematical equation – a linear 

combination of inputs, which means it is very effective to describe and calculate the 

characteristics of non-linear systems. Most of the practical T-S fuzzy systems have used 

linear functions of input variables as rule consequent variables. The linear rule 

consequent variable is critical to the practicality and usefulness of T-S fuzzy systems. 

This is because when non-linear rule consequent variables are used, determining the 

structures and parameters of the rule consequents properly is extremely difficult. 

Furthermore, compared with well-established traditional polynomial approximators, the 

fuzzy system with non-linear rule consequent variables is greatly disadvantageous in 

terms of computational complexity and practical usefulness. Also using the statistical 

estimation methods to obtain the coefficients of the consequent variables of the T-S 

fuzzy rules, the system identification task can be evaluated and enhanced by the 

statistical analysis towards better system performance.  
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A collection of input-output data is required to build T-S type fuzzy models due to its 

mathematical definition of the rule consequent variables. A prior knowledge can be 

gathered by human experts in the corresponding area based on the data observations.  

Using the collected information, a knowledge base that consists of membership 

functions and fuzzy rules can be constructed. In general, a supervised or unsupervised 

clustering method determines the partition of the given knowledge, and membership 

functions for each feature can be obtained according the resulting partition information. 

The T-S type fuzzy rules can be obtained as a form of Generalized Modus Ponen 

(GMP) inference through T-S type rule design schemes based on the statistical 

approaches. Once the T-S type fuzzy inference model is built, when the unknown input 

is fed into the pre-built T-S type fuzzy system its output is calculated via a method of 

the generalized de-fuzzifiers. This is a simple description of the systematic mechanism 

of the T-S type fuzzy inference model. 

 

2.2.2 Design of Membership Functions and Fuzzy Rules 

 

The common types of membership functions are; singletons, triangles, trapezoids, 

Gaussians, and so on. Every type of membership function has its advantages and 

disadvantages. For instance, triangular membership function is very easy to implement 

and fast to calculate on real-time based systems. However, it is very difficult for 

triangles to adjust adaptively using statistical methods in on/off-line learning schemes 

towards better system performance due to their discontinuity in their mathematical 

form. In the context of control systems, obviously the priority of the system often lies 

on the speed of real-time system performance in most of the industrial control systems. 

Thus the triangle type membership function has been employed widely in control 

engineering. 

 

For Gaussian functions, it takes time to calculate their output, but they have an 

advantage for describing the gathered data as a naturally distributed statistical model, 

and also the exponential term in Gaussian functions allows the adaptive mechanism to 

adjust them with the statistical learning functions. This property of Gaussian basis 

functions provides higher accuracy and more flexibility to model the non-linear systems 

in system modeling. 
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To design the membership functions for input data, an unsupervised clustering method 

can be utilized for practical systems. The Fuzzy C-Means (FCM) clustering approach 

[22], for example, has been used in many papers [23], [24], [25] to find the C number of 

adaptive fuzzy clusters for each feature of input data. Once the fuzzy clusters are 

obtained, the type of membership functions can be chosen to model membership 

functions for fitting the processed membership values. 

 

In regard to the design of fuzzy rules, the antecedent part of the T-S type fuzzy rules is 

composed with linguistic fuzzy sets, whereas the consequent part of them is defined as 

the linear combination of input variables as defined in (2.3). The antecedent variables of 

the T-S type fuzzy rules can be designed using a particular type of membership function 

and a fitting process. However, it should be noted that a particular type of the fuzzy 

membership function for antecedent parts should be determined according to the system 

objectives and the characteristics of the T-S type fuzzy system towards a specific goal. 

The consequent part, as stated earlier, is defined as a weighted summation of inputs to 

represent the non-linear characteristic functions as a general class. In order to estimate 

the coefficients of the rule consequent, the least squares estimation has been widely 

used. 

 

2.2.3 Fuzzy Inference Process for the T-S type Fuzzy Model 

 

Using the designed membership functions and fuzzy rules, the fuzzy inference process 

in the T-S type model can approximate the unknown input data. When the unknown 

input is fed into the T-S type fuzzy inference system, each feature value of the unknown 

input vector is fuzzified, i.e., converted to a fuzzy number, through their membership 

functions in the knowledge base. The fuzzified inputs are calculated with the ‘AND’ 

operator using a fuzzy T-norm operator in which the algebraic minimum function is 

generally employed. Its output is then linked with ‘THEN’ operator, which is an 

implication operator to calculate the level of the rule firing strength for each rule. The 

rule output for each rule now can be determined by its linear combination equation as 

defined (2.3). A total output is obtained by (2.4) as a special case of the ‘generalized de-

fuzzifiers’. This fuzzy inference process for the T-S type fuzzy model is shown in 

Figure 2.1.  
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Figure 2.1 Fuzzy inference process for the T-S type fuzzy model 

 

2.3 General T-S type fuzzy models are Universal Approximators 

 

The issue of fuzzy systems as universal approximators has been addressed as one of the 

important research interests in the past decade [26], [27], [28], [29], [30], [31].  As Ying 

mentioned in [30], the basic question is “Can fuzzy systems approximate any real 

continuous functions to any degree of accuracy on a compact domain?” It is obvious 

that the answer of this question is crucial to theoretical and practical aspects of fuzzy 

systems. This approximation question asks in the context of fuzzy control whether or 

not a fuzzy controller can be constructed to approximate any continuous non-linear 

control solution. In the context of modeling, the question of interest is whether or not a 

fuzzy model is capable of approximating any physical dynamic model that is continuous 

and non-linear. 

 

In regard to T-S type fuzzy models as universal approximators, the questions include;  

1) Are T-S fuzzy systems with linear rule consequent universal approximators?  

2) What are the sufficient and necessary conditions for T-S fuzzy systems with 

linear rule consequent as universal approximators? 

 

One of the best approaches to answer these questions has been done in Ying’s study in 

[29], [30], [31] proving that the general class of T-S type fuzzy systems can uniformly 

approximate 1) any polynomial arbitrarily well and 2) any continuous function with 

arbitrarily high precision for both Single-Input-Single-Output (SISO) and Multi-Input-

Single-Output (MISO) type T-S fuzzy systems by utilizing the Weierstrass 
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approximation theorem [32]. In this section, the proof and the associated theorems 

related to the questions mentioned above are reviewed according to Ying’s 

investigation. 

 

2.3.1 Configuration for General T-S type Fuzzy Systems with Linear Rule 

Consequent 

 

The general T-S type fuzzy systems in Ying’s investigation uses a p-dimensional 

continuous-time or discrete-time multi input vector x(t) as defined by (2.5). 

  

))(,),(),(()( 21 txtxtxtx pL≡                                                                                      (2.5) 

where  

t: time and -1 ≤ xl(t) ≤ 1 ( l = 1, 2, …, p )   

 

For the fuzzification process, N = 2n+1 (n ≥ 1) number of fuzzy sets, denoted Fj, are 

used for each input with arbitrary continuous membership function type. The 2n equal 

intervals are partitioned in [-1, 1] for each input, each of which is [j/n, (j+ 1)/n] (j = 0, 

±1, …, ±n) so that the (2n + 1)p = Np fuzzy rules are used to cover all Fjl.  

 

2.3.2 General MISO T-S Fuzzy Systems 

 

The Np numbers of MISO T-S type fuzzy rules are expressed with linear rule 

consequents as shown in (2.6). 
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 where 

Ri (i=1, 2, …, Np): the i-th MISO T-S type fuzzy rule 

Fi
jl (j = 0, ±1, …, ±n, l = 1, 2, …, p ): the j-th fuzzy set for the l-th input vector 

in the i-th rule 

yi: the i-th rule output 

cil: the design parameters whose values are determined by the fuzzy system 

developer. 
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There are p+1 design parameters in each rule. Thus, there are in total (p + 1)Np system 

parameters for Np rules.  Obviously in different rules, the values of these parameters are 

different. 

 

In order to reduce the number of design parameters, Ying has proposed a simplified 

linear T-S rule consequent in [33], [34] using SISO T-S type model as an example, 

which is defined by (2.7). 

 

))(()(: tbxakyTHENFistxIFR iijii +=                                                            (2.7) 

 where 

Ri: the i-th T-S type fuzzy rule (i = 1, 2, …, M) 

yi: the i-th rule output 

a, b, ki : design parameters whose values are determined by the fuzzy system 

developer. 

 

As mentioned in [30], the major advantage in using the simplified T-S rule consequent 

over the original one is the significant reduction in the number of design parameters. 

Because all the rule consequents in (2.7) used the same linear function a + bx and all 

the rules are proportional to each other. The reduction to the example SISO model in 

(2.7) is by a factor of (M - 2) / 2M, which is almost 50% for larger M. In order to 

illustrate another extended example of the reduction, a SISO fuzzy system that uses ten 

fuzzy rules is considered (M=10) as an example. The original T-S rule consequent will 

require 20 parameters whereas the simplified consequent only 12, which means a 40% 

reduction.  

 

For MISO type T-S fuzzy systems, the reduction is even greater; the more the number 

of input variables, the greater the reduction. Applying this simplified model for 

reduction to the MISO T-S type model (2.7), the reduction is by a factor of { pNp – (p 

+1) } / {(p +1) Np }. For instance, if the input vector had nine multi-variables, or p = 9, 

then the parameters of simplified MISO T-S type fuzzy rule consequent have almost a 

90% reduction. This kind of parameter reduction is not only desirable, but also 

necessary in many practical applications, especially control applications.  

 

Also the simplified linear T-S rule consequent is a special case of the original linear T-S 

type rule consequent [30] as shown in (2.8). 
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In regard to the defuzzification process, using the general rule consequent (2.6), the 

generalized defuzzifier [35] is used to calculate the total system output y, which actually 

is a mapping ψn: [-1, 1] → (-∞, +∞), as defined by (2.9). 
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where  

 µi : the membership for the rule consequent in i-th rule. 

 µi = ∏ µF
i
jl ,  П: a fuzzy T-norm operator (‘AND’ fuzzy logic ) 

 

Different defuzzification results can be obtained by using different α values where 0 ≤ α 

≤ +∞. The most widely used centroid defuzzifier is a special case of this generalized 

defuzzifier when α = 1, and the popular mean of maximum defuzzifier is another special 

case when α = ∞. The ψn(x) is a function sequence with respect to n. The mapping ψn(x) 

will be used to represent the general MISO T-S type fuzzy systems. 

 

2.3.3 General T-S Fuzzy Systems are Universal Approximators 

 

In order to prove that the general T-S fuzzy systems with T-S linear consequent are 

universal approximators, firstly Ying has proved that the general MISO T-S fuzzy 

models can uniformly approximate any polynomial to any degree of accuracy. Then 

utilizing the Weierstrass approximation theorem [32], he has proved that the general T-

S fuzzy models can uniformly approximate any multivariate continuous function with 

arbitrary precision. In this section, the proved theorems and associated approximation 

theorems will be reviewed. For further details of proofs, refer to the literature [29], [30], 

[31]. 

 

Theorem 1 

ψn(x) can uniformly approximate, with arbitrarily high precision, any polynomial Ph(x) 

defined on [-1, 1]. 
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where  

h: the order of the polynomial.  

 

The final formula of the proof for this theorem is as follows.  
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where  

ε: a positive approximation error bound 

n* : a positive integer based on a given function and approximation error ε 

 

In other words, proving Theorem 1 is equivalent to proving that there exists a positive 

integer n* that satisfies the equation (2.11). By having derived (2.11), it has been proven 

that the general T-S type fuzzy systems can approximate any polynomials uniformly 

with arbitrarily high accuracy. Now the Weierstrass approximation theorem [32] is 

briefly mentioned as a basis to the next theorem.  

 

Weierstrass Approximation Theorem 

To any continuous function G(x) on a closed interval, given approximation error bound 

ε>0, there always exists a polynomial that can approximate G(x) uniformly with the 

desired accuracy. In general, the smaller the ε, the higher the polynomial degree. 

 

Theorem 2 

The general MISO T-S type fuzzy systems with linear rule consequent can uniformly 

approximate any continuous function on a closed interval to any degree of accuracy.  

 

The proof for theorem 2 is as follows. The polynomial Ph can uniformly approximate 

G(x) with arbitrary accuracy according to the Weierstrass approximation theorem. The 

result of the proof is as follows in (2.12), which means ψn(x) can uniformly approximate 

G(x) arbitrarily well.    

0,0,, 2121 >∀>∀+==−+−≤− εεεεεεψψ GPPG hhnn                      (2.12) 

It has been proved that the general MISO T-S fuzzy models are universal 

approximators. 



 28 

Chapter 3  

3. Rough Sets Theory 
 

 

Knowledge discovery is a process that combines techniques from machine learning, 

statistics, pattern recognition, fuzzy and rough sets, etc. to extract knowledge, or 

information, from vast amounts of data. Often it is used to support human decision-

making processes or to explain observed phenomena. Knowledge discovery is a process 

that helps to make sense of data in more readable and applicable form. The knowledge 

discovery process and its data mining tools are becoming the focus of many fields, 

particularly in data-rich and knowledge-poor processing scenarios. 

 

This kind of process usually starts with sampling, feature selection or discretization, 

transformation or projection, dimensionality reduction, extraction of data, and physical 

phenomena models, usually followed by algorithms. These algorithms here generate 

hypotheses about extracted data. These hypotheses are used as new extracted 

knowledge. Sufficient methods of extracting knowledge from database or multivariate 

experimental data sets belong to basic information processing steps. In particular, 

consideration of implicit, imprecise, and insufficient knowledge in databases or 

experimental data sets is of importance in developing knowledge-based systems. 

Another fundamental issue in multi-dimensional pattern processing is feature extraction 

and reduction relevant for robust prediction and performance. 

 

3.1  Introduction 
 

The rough sets theory has been developed for knowledge discovery in databases and 

experimental data sets. This theory provides a powerful foundation to reveal and 

discover important structures in data and to classify complex objects. The attribute-

oriented rough sets technique reduces the computational complexity of learning 

processes and eliminates the unimportant or irrelevant attributes so that the knowledge 

discovery in the database or in experimental data sets can be learned efficiently. 

 

Rough Set theory was introduced by Zdzislaw Pawlak [36] to provide a systematic 

framework for studying imprecise and insufficient knowledge. The information system 
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proposed by Pawlak is for representing knowledge and discovering relationships in 

data. Rough set theory has been studied in medical databases analysis [40], [41], [42], 

image analysis for medical applications [43], [44], [45], decision support systems [46], 

[47], pattern recognition [48], [49], [50], and machine learning [51], [52] and so on. 

Using rough sets has been shown to be very effective for revealing relationships within 

imprecise data, discovering dependencies among objects and attributes, evaluating the 

classificatory importance of attributes, removing data redundancies and thus reducing 

the size of information systems, and generating decision rules. 

 

Some classes or categories of objects in an information system cannot be distinguished 

in terms of the available attributes. They can only be roughly or approximately defined. 

The idea of rough sets is based on equivalence relations which partition a data set into 

equivalence classes, and consist of the approximations of a set by a pair of sets, called 

lower and upper approximations. The lower approximation of a set of object (a concept) 

contains all objects that, based on the knowledge of a given set of attributes, can be 

classified as certainly belonging to the concept. The upper approximation of a set 

contains all objects that cannot be classified categorically as not belonging to the 

concept. A rough set is defined as an approximation of a set using a pair of sets: the 

upper and lower approximations of the set. 

 

The rough sets theory also deals with information that can be represented in a form of a 

table. This table consists of objects (or cases) and attributes. The entries in the table are 

the categorical values of the features (attributes) and, for some information systems, 

possibly also associated classes (categories). Many data processing problems can be 

easily converted into a data table representation and analysis. By processing information 

using the rough sets theory, a classification of objects in an information system can be 

discovered. 

 

The rough sets theory can be applied to a variety of information processing. For 

example, it can be used for the followings. 

• Creating a decision table representing an information system containing 

uncertain or imprecise data 

• Analyzing the relationships of data in given knowledge 

• Computing lower and upper approximations of sets 

• Evaluating dependencies of attributes in data sets 
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• Computing a quality and an accuracy of approximation 

• Calculating reducts as sets of minimal number of attributes describing concepts 

• Reducing data with information preservation by removing superfluous attributes 

• Reasoning with uncertainties 

• Deriving decision algorithms as a set of decision rules. 

 

The basic definition and the most of the all functionalities of rough set theory are 

reviewed in this chapter in order to guide the reader easily by following the example-

based review.  

 

3.2  Information System 

 

An information system is a representation of data gathered from measurements of some 

physical phenomena, for example, speech signals, sequences of images, industrial 

process signals, and so on. An information system denoted by S is composed of four 

elements as defined in (3.1). 

 

  >=< fVQUS ,,,                                                                                                     (3.1) 

where  

U: a closed universe which is a finite non-empty set of N objects{x1,x2,…,xN } 

Q: a finite and non-empty set of n attributes {q1, q2, …, qn } 

U
Qq

VqV
∈

= : a domain of attributes  

 f: U×Q→V : a total decision function which maps elements of attributes 

 

Any pair (q, v) for Qq∈ , Vqv∈  is called the descriptor in an information system S. 

The information system can be represented as a finite data table, in which the columns 

are labeled by attributes, the rows by objects and the entry in column q and row x has 

the value f(x, q). Each row in the table describes the information about some object in S. 

Any non-empty set of objects X is called a concept in S. A concept might have a certain 

meaning. For example, as shown in Example 3.1, in a medical data set with tests and 

diagnoses, one can define a concept as a set of objects representing sick patients. 
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[Example 3.1] 

Suppose a simple example of a data set called MEDICAL representing medical 

findings. 

 

Table 3.1 A medical data set MEDICAL (modified from [53]) 

Object Attributes 

U c1 c2 c3 d 
x1 0 L N 0 
x2 0 H N 1 
x3 0 H N 1 
x4 0 L N 0 
x5 1 H Y 1 
x6 1 H Y 1 
x7 1 H Y 1 
x8 2 L Y 0 
x9 2 L Y 1 
x10 2 H Y 0 
x11 2 H Y 1 

 

In the information system S describing this data set, the universe U consists of ten 

objects, U = { x1, x2… x10} each representing one patient. Each patient is described by 

the set of three attributes Q = { q1, q2, q3, q4}  = { c1, c2, c3, d}, with discrete values 

(numerical and symbolic), representing results of the medical tests and diagnoses. The 

set of all discrete (numerical) values of the attribute c1 is Vc1 = { 0, 1, 2} . The second 

attribute c2 takes two discrete non-numerical values Vc2 = {L, H}  (L=LOW, H=HIGH). 

The third attribute c3 is with two discrete non-numerical values Vc3= { N, Y} (N=NO, 

Y=YES). The fourth attribute d, with two binary values Vd = { 0, 1} , represents an 

expert’s (doctor’s) decision, being a diagnosis about a certain disease based on test 

results. The decision attribute d = 0 denotes the diagnosis that a patient does not have a 

disease, and d =1 that he or she does. Values of information function f(x, q) are 

included in Table3.1. For example, for the object x1 and the attribute c1, the information 

function values if f(x1, c1) = 0. A set of objects {x2, x3, x5, x6, x7, x9, x10} can be defined 

as an example of a concept (sick patients) in the considered information system. 

 

3.3 Indiscernibility Relation 

 

Let >=< fVQUS ,,,  be an information system, QA ⊆  be a subset of attributes, and 

Uyx ∈,  be objects. Then objects x and y are indiscernible by the set of attributes A in S 
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(denoted by yAx
~

) iff f(x, a) = f(y, a) for every Aa∈ . For any given subset of 

attributes QA ⊆ , the IND (A), denoted by Ã, is an equivalence relation on universe U 

and is called an indiscernibility relation. The indiscernibility relation, IND (A) is 

defined as follows in (3.2). 

 

)},(),(,:),{()( ayfaxfAaUUyxAIND =∈∀×∈=                                            (3.2) 

 

If the pair of objects (x, y) belongs to the relation )))(),(()( AINDyxAIND ∈=  then 

objects x and y are called indiscernible with respect to A. In other words, one cannot 

distinguish object x from y in terms of attributes from set A only. The indiscernibility 

relation IND (A) as a binary equivalence relation splits the given universe U into a 

family of equivalence classes {X1, X2, …, Xr}. The family of all equivalence classes {X1, 

X2, …, Xr}, defined by the relation IND (A) on U, generates a partition of U and it is 

denoted by A*, The family of equivalence classes A* is also referred as classification and 

also denoted by U / IND (A).  

 

Objects belonging to the same equivalence class Xi are indiscernible; otherwise objects 

are discernible with respect to the attribute subset A. The equivalence classes Xi, 

i=1,2,..,r of the relation IND (A) are called A-elementary sets in an information system 

S. An A-elementary set [x]A, or an equivalence class, including an object x is defined by 

(3.3). 

 

}
~

,,)(:{][ yAxoryAxINDUyx A ∈=                                                                             (3.3) 

  

For a given information system S, a given subset of attributes QA ⊆  generates an 

indiscernibility relation IND (A) (an equivalence relation). An ordered pair AS = (U, 

IND (A)) is called an approximation space. Any finite union of elementary sets in AS is 

called a definable set of a composed set in AS. DesA(X) denotes the description of A-

elementary set *AX ∈  (an equivalence class) and it is defined as follows in equations 

(3.4) and (3.5). Equation (3.4) is often denoted as equation (3.5). 

 

},,),(:),{()( AaXxbaxfbaXDesA ∈∈∀==                                                           (3.4) 

},,),(:){()( AaXxbaxfbaXDesA ∈∈∀=== .                                                      (3.5) 
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[Example 3.2] 

Let us analyze an information system, MEDICAL from Table 3.1 and assume only 

results of tests are considered, representing by the subset of attributes A = {c1, c2, c3} 

and contained in the reduced Table 3.2. 

 

Table 3.2 The MEDICAL data set with the reduced attribute set A = {c1, c2, c3} 

Object Attributes 

U c1 c2 c3 
x1 0 L N 
x2 0 H N 
x3 0 H N 
x4 0 L N 
x5 1 H Y 
x6 1 H Y 
x7 1 H Y 
x8 2 L Y 
x9 2 L Y 
x10 2 H Y 
x11 2 H Y 

 
Equivalence classes: 

E1 =[x1]A = [x4]A = {x1, x4} 

E2 = [x2]A = [x3]A = {x2, x3} 

E3 = [x5]A = [x6]A = [x7]A  = {x5, x6, x7} 

E4 = [x8]A = [x9]A = {x8, x9} 

E5 = [x10]A = [x11]A = {x10, x11} 

 

From Table 3.2 it can be seen that objects can be divided into five disjoint groups 

according to equal values of attributes c1, c2 and c3 from the subset A. Objects in the 

same group have the same values for all attributes as the other objects from this group. 

For example, in the first group it has two objects x1, x4 since no other objects have 

values c1 = 0, c2 = L and c3 = N for attributes from A. The object x1 belongs to the 

equivalence class E1 = [x1]A = [x4]A = {x1, x4}. Objects x2 and x3 with equal values for all 

attributes c1 = 0, c2 = H, c3=N form the second group. It can be observed that objects in 

this group cannot be distinguished based on attributes c1, c2 and c3 from the set A only. 

They belong to the equivalence class E2 = [x2]A = [x3]A  = {x2, x3} . Similarly, it can be 

found that other equivalence classes in S for set A; E3 = [x5]A = [x6]A = [x7]A  = { x5, x6, 

x7}, E4 = [x8]A = [x9]A = {x8, x9}, E5 = [x10]A = [x11]A = {x10, x11}. 
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As shown, a subset of attributes QA ⊆  imposes an indiscernibility relation IND (A) on 

the whole set of objects from the universe U. It can be implied that a relation IND (A) 

as; All pairs of objects (xi, xj) in S for which values of all attributes from A are all equal. 

 

3.4 Discernibility Matrix 

 

Frequently discernibility of objects is more interesting than specific values of attributes. 

In these cases an information system may be represented as a discernibility matrix. 

Skowron and Rauszer have introduced two notions [37], the discernibility matrix and 

the discernibility function, which help to construct efficient algorithms related to the 

generation of minimal subsets of attributes sufficient to describe all concepts in a given 

information system. With these two notions, the differences between the attributes of 

each pair of objects can be stored into a matrix called a discernibility matrix. The 

discernibility matrix contains fewer data than those of an information system but holds 

all essential information used to check whether a set of attributes is a minimal one that 

describes concepts. 

 

Let >=< fVQUS ,,,  be an information system and assume that U = {x1, x2, …, xN },  

Q = {a1, a2, …, an }.  A discernibility matrix M(Q) for an information system S with the 

set of attributes Q is a square N × N dimensional matrix, with rows and columns labeled 

by objects xi (i=1,2,…N). Each entry mij of a discernibility matrix (for a given row i and 

a column j representing two objects xi and xj from U) is a subset of attributes which 

discerns these objects. Therefore, a discernibility matrix can be defined by (3.6). 
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(3.6)   

where  

Uxx ji ∈,   

 

The entry mij contains all these attributes whose values are not identical for both xi and 

xj, which means that xi, xj belong to different classes of partition generated by IND (Q). 

The discernibility matrix M(Q) is symmetric and mii = 0, thus it is sufficient to compute 

only entries in the lower triangle of M (Q), i.e., the mij with 0 ≤  j < i  ≤ N-1. 
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A discernibility function fS for an information system S is a Boolean function of n 

Boolean variables naaa ,,, 21 K  corresponding to the attributes naaa ,,, 21 K  

respecttively. It is defined by equation (3.7). 

 

},1:)({),,,( 21 φ≠≤<≤∨∧= ijijnA mnijmaaaf K                                                  (3.7) 

where  

)( ijm∨ : A disjunction of all variables a  such that ijma∈   

 

[Example 3.3] 

Suppose a given information system MEDICAL as shown in Table 3.2. The 

discernibility matrix M (Q) can be obtained as shown in Table 3.3. (mii ≠ 0,  mij  =  mji 

for i, j=1,…,6)  

 

Table 3.3 Discernibility Matrix M(Q) 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x11 

x1            

x2 c2 Ø          

x3 c2 Ø          

x4 Ø c2 c2         

x5 c1c2c3 c1c3 c1c3 c1c2c3        

x6 c1c2c3 c1c3 c1c3 c1c2c3 Ø       

x7 c1c2c3 c1c3 c1c3 c1c2c3 Ø Ø      

x8 c1c3 c1c2c3 c1c2c3 c1c3 c1c2 c1c2 c1c2     

x9 c1c3 c1c2c3 c1c2c3 c1c3 c1c2 c1c2 c1c2 Ø    

x10 c1c2c3 c1c3 c1c3 c1c2c3 c1 c1 c1 c2 c2   

x11 c1c2c3 c1c3 c1c3 c1c2c3 c1 c1 c1 c2 c2 Ø  

 

The discernibility function is as follows. 

)()()(),,( 321312121321 ccccccccccccfS ∨∨∧∨∧∨∧∧=  

 

3.5 Decision Tables 
 

Information systems can be designed as a decision table if the attribute set Q is divided 

into two disjoint sets which are condition attribute set C and decision attribute set D, i.e. 
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Q = C ∪ D. For example, for a data set gathered for a classification task, a set C of 

condition attributes may represent elements of a pattern x describing an object and a set 

D may represent a classification decision, for instance, a categorical class assigned to an 

object. In a given information system S, a decision table DT is defined by (3.8). 

 

DT = < U, C ∪ D, V, f >                                                                                             (3.8) 

where  

U: a closed universe which is a finite non-empty set of N objects{x1,x2,…,xN }  

C: a non-empty set of condition attributes (features of input pattern vectors)  

D: a non-empty set of decision attributes (target classes) 

V: a domain of attributes 

f: a total decision function, or an information function in a DT  

 

A decision table is called deterministic if each object’s decision attributes values are 

uniquely specified by a particular object’s condition attributes. If a number of decision 

attribute values may be taken for a given condition attribute, it is called non-

deterministic. Some of non-deterministic decision tables may be decomposed into two 

sub-tables; deterministic and totally non-deterministic. A totally non-deterministic 

decision table does not contain a deterministic sub-table. 

 

[Example 3.4] 

The MEDICAL data set from Example 3.1 can be interpreted as a decision table as 

shown in Table 3.4. 

Table 3.4 A decision table MEDICAL 

Object Attributes 

 C 
(medical diagnoses) 

D 
(disease class) 

U c1 c2 c3 d 
x1 0 L N 0 
x2 0 H N 1 
x3 0 H N 1 
x4 0 L N 0 
x5 1 H Y 1 
x6 1 H Y 1 
x7 1 H Y 1 
x8 2 L Y 0 
x9 2 L Y 1 
x10 2 H Y 0 
x11 2 H Y 1 
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3.6 Approximation of Sets 
 

Some subsets of objects in an information system cannot be distinguished in terms of 

the available attributes. They can only be approximately defined. The idea of rough sets 

consists of an approximation of a set by a pair of sets, called a lower and an upper 

approximation of this set. 

 

A given subset of attributes QA ⊆  in a given information system S, determines the 

approximations space AS = (U, IND (A)) in S. For a given QA ⊆  and UX ⊆ , an A-

lower approximation XA and an A-upper approximation XA of set X in AS are defined 

as follows in (3.9) and (3.10). 

 

U }:{}][:{ * XYAYXxUxXA A ⊆∈=⊆∈=                                                          (3.9) 

U }:{}][:{ * φφ ≠∩∈=≠∩∈= XYAYXxUxXA A                                            (3.10) 

where 

[x]A: an equivalence class which contains x on an equivalence relation IND (A) 

 

A lower approximation XA of a set X is a union of all equivalence classes that are 

subsets of X. For any XAx∈ , it is certain that x belongs to X. In other words, a lower 

approximation XA of a set X contains all objects that, based on the knowledge of 

attributes A, can be classified as certainly belonging to the concept X. 

 

An upper approximation XA of a set X is a union of all equivalence classes that have 

non-empty intersections with X. For any XAx∈ , it can be said that x can possibly 

belongs to X. In other words, an upper approximation XA of a set X contains all objects 

that cannot be classified as not belonging to the concept X. 

 

An A-boundary region of a set X in AS, as a doubtful region of IND (A) is defined as 

follows in (3.11). For any Ux∈  belonging to BNA(X), it is impossible to determine that 

x belongs to X based on the description of elementary sets of IND (A). 

 

XAXAXBNA −=)(                                                                                                 (3.11) 
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An A-lower approximation of a set X is a possibly (the greatest) definable set in A of a 

set X and an A-upper approximation of a set X is a certainly (the smallest) definable set 

in A of a set X. An A-boundary is a doubtful region in A of a set X. 

 

 
Figure 3.1 A set approximation of an arbitrarily set X in U 

 

Given an approximation space AS for QA ⊆  and a set UX ⊆ , the universe can be 

partitioned into the following three regions as follows: 

 

1. An A-positive region POSA(X) of X in S: XA                                                (3.12) 

2. An A-boundary region BNA(X) of X in S: XAXAXBNA −=)(                   (3.13) 

3. An A-negative region NEGA(X) of X in S: U - XA                                        (3.14) 

 

If XA = XA  then it can be said that UX ⊆  is A-exactly approximated in AS. In this 

case the A-boundary region BNA(X) = 0. If XA ≠ XA then UX ⊆  is A-roughly 

approximated in AS and the A-boundary region BNA(X) ≠ 0. The A-boundary of A-exact 

set is an empty set. 

 

Here are some properties about the lower and the upper approximation of a set X in A. 

1. XAXXA ⊆⊆  

2. φφφ == AA  

3. UAUUA ==  

4. YAXAYXA ∪⊇∪ )(  

5. YAXAYXA ∪=∪ )(  
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6. YAXAYXA ∩=∩ )(  

7. YAXAYXA ∩⊆∩ )(  

8. XAXA −=− )(  

9. XAXA −=− )(  

10. XAXAAXAA ==  

11. XAXAAXAA ==   

 

[Example 3.5]  

Suppose a subset X1 of objects from U in an information system S from Table 

MEDICAL, representing sick patients (a “sick” concept: d = 1).  

X1 = {x2, x3, x5, x6, x7, x9, x11} 

According to the definition of the lower and the upper approximation of a set X1, based 

on a subset of attributes A = { c1, c2, c3}, the lower approximation is the largest 

composed set of A-elementary sets in S that is contained in the subset X1.   

},,,,{}},,{},{{ 76532765321 xxxxxxxxxxXA =∪=  

The lower approximation contains all A-elementary sets such that every element of the 

elementary set is also an element of X1. A lower approximation consists of patients that 

surely have a disease. 

 

The upper approximation of set X1 is the smallest composed set of A-elementary sets in 

S that contain a subset X1.  An upper approximation consists of patients that possibly 

have a disease. 

},,,,,,,,{}},{},{},,{},{{ 11109876532111098765321 xxxxxxxxxxxxxxxxxxXA =∪∪∪=  

The A-boundary region (A-doubtful region of IND (A)) of the set X1 in S based on A, is 

},,,{)( 111098111 xxxxXAXAXBNA =−= . 

This boundary region consists of the composed set of A-elementary sets from S whose 

elements, based on the subset of attributes A, cannot be classified as belonging to X1 or 

not. 

 

In rough sets theory, a set X is either definable or un-definable. A set UX ⊆  is 

definable in A, denoted by A-definable, iff XA = XA , otherwise X is not definable, 

denoted by A-non-definable. In other words, a set X is definable if every object Ux∈  
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can be determined with certainty whether Xx∈ or not. Then the lower approximation 

of X will be equal to the upper approximation of X, and the boundary of X will be equal 

to the empty set. 

 

1. A set X is roughly A-definable iff φ≠XA  and UXA ≠ . 

The lower and upper approximation of a set X can be defined. Thus it is possible 

to decide for some elements of U whether they belong to X or –X. 

2. A set X is externally A-non-definable in S iff φ≠XA  and UXA = . 

It cannot be said that any Ux∈  is not an element of X. Thus it can be 

determined that for some elements of U they belong to X, but it cannot be said 

that for any element of U they belong to –X or not. 

3. A set X is internally A-non-definable in S iff φ=XA  and UXA ≠ . 

It cannot be said that any Ux∈  is an element of X. Thus it can be determined 

that for some elements of U they belong to -X, but it cannot be said that for any 

element of U they belong to X or not. 

4. A set X is totally A-non-definable in S iff φ=XA  and UXA = . 

The approximations cannot be defined at all. For any element Ux∈ , it cannot 

be decided to belong to X or –X. 

 

[Example 3.6] 

From example 3.2, the equivalence classes of MEDICAL data set with A = {c1, c2, c3} 

are as follows. 

E1 = {x1, x4}  E2 = {x2, x3} 

E3 = {x5, x6, x7}  E4 = {x8, x9} 

E5 = {x10, x11} 

A set X1 is an example of A-definable sets. 

X1 = {x2, x3, x8, x9} 

A set X2 is an example of roughly A-definable sets as obtained by its approximations: 

X2 = {x2, x3, x7, x8, x9, x11} 

=∪= 422 EEXA { x2, x3, x8, x9}  

=∪∪∪= 54322 EEEEXA { x2, x3, x5, x6, x7, x8, x9, x10, x11}  

A set X3 is an example of externally A-non-definable sets as obtained by its 

approximations: 
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X3 = {x1, x3, x6, x8, x9, x10} 

== 43 EXA { x8,  x9}  

== UXA 3 { x1,  x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}  

A set X4 is an example of internally A-non-definable sets as obtained by its 

approximations: 

X4 = {x2, x5, x10} 

φ=4XA  

=∪∪= 5324 EEEXA { x2, x3, x5,  x6,  x7,  x10, x11} 

A set X5 is the example of totally A-non-definable sets. 

X5 = {x2, x4, x6, x9, x10} 

 

3.7 Accuracy of Approximation 

 

Rough sets provide quantitative, numerical evaluation of the quality of approximation 

(accuracy measure) of a set UX ⊆  in the approximation space AS = (U, IND (A)), 

using all equivalence classes of IND (A) generated by the subset of attributes QA ⊆ . 

Let >=< fVQUS ,,,  be an information system, let QA ⊆  and UX ⊆  determining 

the approximation space AS = (U, IND (A)). The accuracy of an approximation of a set 

X by the set of attributes A (shortly accuracy of X) is defined by (3.15). 

 

)(

)(
)(

XAycardinalit

XAycardinalit
XA =α                                                                                         (3.15) 

 

It can be easily seen that if a set X is A-exactly approximated in the approximation space 

defined by A, then αA (X) = 1. If a set X is A-roughly approximated in AS, then the range 

of αA (X) is 0 < αA (X) < 1. The alternative accuracy of an approximation is defined by 

(3.16). 

 

)(1)( XX AA αρ −=                                                                                                    (3.16) 

 

This is called roughness (A-roughness) of a set X. Roughness, as opposed to accuracy, 

represents a degree of inexact approximation of a set X in the approximation space AS = 

(U, IND(A)) defined by QA ⊆ . 
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The accuracy of approximation αA(X) has the following properties: 

1. For any QA ⊆  and UX ⊆ , 0 ≤ αA(X) ≤ 1.    

2. A-boundary region of X, φ=)(XBNA  ( XA = XA  and the set X is A-definable) 

iff αA(X) = 1. 

3. A-boundary region of X, φ≠)(XBNA  (the set X is A-non-definable) iff αA(X) < 

1. 

 

A vague concept description can contain boundary-line objects from a universe, which 

cannot be with absolute certainty classified as satisfying the description of a concept. 

Uncertainty is related to the idea of membership of an element to a set. From rough sets 

perspective a set membership function can be defined, which is related to the rough sets 

concept. This can be considered as another numerical measure of imprecision 

(uncertainty). The rough (A-rough) membership function of an object x to a set X is 

defined by (3.17). 
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X xycardinalit

Xxycardinalit
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∩=µ                                                                                 (3.17) 

where  

0 ≤ µA
X (X) ≤ 1 

 

The measure characterizing a degree of uncertainty of membership of an element x in 

universe to the set X with respect to the possessed knowledge (in an information 

system) is defined by (3.18). 

 

)(

)]([
)(

Uycardinalit

Xxycardinalit
x A

X

∩=µ                                                                                 (3.18) 

 

It is possible in rough sets to find a strict connection between vagueness and 

uncertainty. Vagueness is related to sets of objects (concepts), whereas uncertainty is 

related to elements of sets. Rough sets show that vagueness is defined in terms of 

uncertainty. 

 

The rough set membership function can be used to define the lower and upper 

approximation of a set and the boundary region as in (3.19) 
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 }1)(:{ =∈= xUxXA A
Xµ                                                                                          (3.19) 

}0)(:{ >∈= xUxXA A
Xµ  

}1)(0:{)( <<∈= xUxXBN A
XA µ  

 

[Example 3.7] 

From example 3.5, for A = {c1, c2, c3} and X1 = {x2, x3, x5, x6, x7, x9, x11} the accuracy of 

an approximation of a set X1 by the set A is: 
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3.8 Approximation and Accuracy of Classification 

 

The concept of set approximations can be extended to approximations of a classification 

related to the family Γ of subsets {X1, X2, …, Xn} from U. Let >=< fVQUS ,,,  be an 

information system, and let QA ⊆  and Γ = { X1, X2, …, Xn} for every subset 

)1( niUX i ≤≤⊆ be a classification (or a partition; a family of subsets) of U. The 

family of sets Γ ={ X1, X2, …, Xn} is a classification in U of S, if Xi ∩Xj = Ø for every i,j 

≤ n, i ≠ j and U
n

i
i UX

1=

= . Sets Xis are called classes of Γ.   

 

For QA ⊆ , the A-lower and A-upper approximation of a classification of Γ on S, 

denoted by ΓA  and ΓA  respectively, are defined as follows by (3.20) and (3.21). 

 

},...,,{ 21 nXAXAXAA =Γ                                                                                          (3.20) 

},...,,{ 21 nXAXAXAA =Γ                                                                                          (3.21) 

 

The set ΓA  is called A-positive region of a classification Γ and BNA (Γ)= ΓA - ΓA  is 

called A-boundary region of a classification Γ.  The A-positive region of a classification 

Γ with respect to A is defined by (3.22). 

 

U
Γ∈

=Γ
iX

iA XAPOS )(                                                                                                    (3.22) 
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A union of boundary regions of a classification Γ with respect to A is called A-doubtful 

region of a classification Γ in S as defined by (3.23). 

 

U
Γ∈

=Γ
iX

iA XBNBNA )()(                                                                                              (3.23) 

 

There is no A-negative region of a classification Γ in S, because U
Γ∈

=
iX

iXAU .  

A classification Γ is called A-definable iff every class Γ∈iX  is A-definable; otherwise 

the classification is called A-non-definable. And the classification Γ is called roughly A-

definable iff φ≠Γ∈∃ ii XAX , . 

 

The accuracy of approximation of a classification by the set of attributes A, or accuracy 

of a classification, is defined by (3.24). 
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The quality of approximation of a classification by A, or quality of a classification, is 

defined by (3.25). 
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Uycardinalit

XAycardinalit
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∑
==Γρ                                                                                    (3.25) 

This represents a ratio of all A-correctly classified objects to all objects in the system S. 

 

The idea of accuracy of a classification allows us to define how close one can 

approximate a partition (classification B*) generated by a set of attributes QB ⊆  by 

another partition A* generated by a set of attributes QA ⊆ . The accuracy of 

approximation of classification B* by A* can be defined by (3.26). The following 

inequality holds 1)(0 * ≤≤ BAρ  for every QBA ⊆, . 
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where 

U
*
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BX
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i

XABPOS
∈

= : a classification Γ with respect to A                           (3.27) 

 

[Example 3.8] 

From the information system MEDICAL, suppose that there is a classification Γ={Y1, 

Y2, Y3, Y4} where Y1 = {x2, x4, x5}, Y2 = {x1, x3, x6, x7}, Y3 = {x8, x9, x10}, Y4 = {x11}. 

The accuracy and the quality of a classification Γ is 

}},,{,,{},,,{},,,{ 9844321 φφφφφφ xxEYAYAYAYAA ===Γ           
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Therefore, it can be said that the accuracy of this classification is very poor and the 

classification process has to be improved towards higher accuracy. 

 

3.9 Classification and Reduction 

 

In many applications a classification of objects is one of the most frequently 

encountered tasks. Classification can be considered as a process of determining a 

unique class for a given object. A given set of objects, characterized by the set of 

condition and decision attributes, can be classified into a disjoint family of classes with 

respect to values of decision attributes. Each class can be determined in terms of 

features of corresponding condition attributes belonging to a class. If a given set of 

objects with a given set of attributes is classifiable, a classification may be possibly 

achieved by some subsets of attributes. Frequently only a few important attributes are 

sufficient to classify objects. This is consistent with human perception and classification 

ability based on intelligent attention, and selection of most important features of objects. 

Some attributes in an information system may be redundant and can be eliminated 

without losing the essential classificatory information. The process of finding a smaller 

set of attributes than the original one with the same or the closest classificatory power 
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as the original set is called attribute reduction. As a result the original larger 

information system may be reduced to a smaller system containing fewer attributes. 

 

Rough sets allow us to determine for a given information system the most important 

attributes from a classificatory point of view. A reduct is the essential part of an 

information system related to a subset of attributes that can discern all objects 

discernible by the original information system. A core is a common part of all reducts. 

Core and reduct are fundamental rough sets concepts which can be used for knowledge 

reduction. Some attributes may depend on each other. A change of a given attribute may 

cause changes of other attributes in some non-linear ways. Rough sets determine a 

degree of attributes’ dependency and their significance. In an indiscernibility relation, a 

dependency of attributes is one of the important features of information systems. 

 

Given an information system >=< fVQUS ,,, , with condition and decision attributes 

Q = C ∪ D, for a given set of condition attributes CA ⊂ , the A-positive region POSA 

(D) in the relation IND (D) can be defined by (3.28). 

 

U )}(|{)( DINDXXADPOSA ∈=                                                                           (3.28) 

 

The positive region POSA (D) contains all objects in U which can be classified perfectly 

without error into distinct classes defined by IND (D), based only on information in 

relation IND (A). The definition of the positive region can be formed for any two 

subsets of attributes, QBA ⊂, in the information system S.  It is known that the subset 

of attributes QB ⊂ defines the indiscernibility relation IND (B) and thus the 

classification B* (U / IND (B)) with respect to the subset. The A-positive region of B is 

defined by (3.29). The A-positive region of B contains all objects that, by using 

attributes A, can be certainly classified to one of distinct classes of the classification B*. 

 

U
BX

A XABPOS
∈

=)(                                                                                                    (3.29) 

 

The rough sets define a degree of dependency for sets of attributes. The cardinality of 

the A-positive region of B is used to define a measure )(BAγ  called a degree of 
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dependency of the set of attributes B on A in (3.30). It can be said that the set of 

attributes B depends on the set of attributes A to the degree )(BAγ . 

 

)(

))((
)(

Uycardinalit

BPOSycardinalit
B A

A =γ                                                                                 (3.30) 

 

Suppose an information system >=< fVQUS ,,, and two sets of attributes QBA ⊆, . 

A set of attributes B depends on a set A in S, denoted by A→B, iff an equivalence 

relation satisfies IND (A) ⊆  IND (B). The sets A and B are independent in S iff neither 

A→B nor  

B → A holds. A set B is dependent to a degree k on the set A in S, as denoted in (3.31). 

 

,10, ≤≤→ kBA k  if k = )(BAγ                                                                            (3.31) 

where  

)(BAγ : a degree of dependency of a set of attributes B on A 

 

If k = 1 a set B is totally dependent on A (or B → A), if k = 0 a set B is totally 

independent on A and otherwise a set B is roughly dependent on A. 

 

A level of significance of attributes from a set A with respect to the classification B* (U 

/ IND (B)) generated by IND (B) may be different. The measure of significance (co-

efficient of significance) of the attribute Aa∈  from the set A with respect to the 

classification B* (U / IND (B)) generated by a set B is defined by (3.32). 
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, Uycardinalit

BPOSycardinalitBPOSycardinalit
a aAA
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=µ                                    (3.32) 

 

The significance of the attribute a in the set QA ⊆  computed with respect to the 

original classification Q* generated by the entire set of attributes Q from the 

information system S is denoted as )()( , aa QAA µµ = . 

 

These are the properties of an attribute set A in an information system S as follows. 

1. A set QA ⊂  is dependent in S iff AB ⊂∃  such that IND (B) = IND (A). 

( )()( XX AB αα = ) 
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2. A set QA ⊂  is independent in S iff AB ⊂∀  such that IND (B) ⊃  IND (A). 

( )()( XX AB αα < ) 

3. A set QA ⊂  is superfluous in Q iff IND (Q-A) = IND (Q). 

( )()( XX AAQ αα =− ) 

4. A set QA ⊆  is a reduct of Q in S iff Q-A is superfluous in Q and A is dependent 

in S. 

 

A given information system may have many different reducts. If for a given information 

system >=< fVQUS ,,, , a subset QA ⊂  is a reduct, then the corresponding 

information system >=< ',,,' fVAUS  with the attribute set equal to a reduct A, is 

called a reduced system (where f’  is the restriction of a function f to a set U×A). In other 

words, a reduced system S’ is constructed from the original system S by removing 

columns related to attributes not included in a reduct A. 

 

[Example 3.9] 

For an information system MEDICAL, suppose there are two subsets of attributes, A = 

{ c1, c2, c3}, B = {c3}.  

The partition A*, which is a classification U / IND (A) related to the equivalence relation 

IND (c1, c2, c3), is  A* = {Y1, Y2, Y3, Y4, Y5} = { { x1, x4}, { x2, x3}, { x5, x6, x7}, { x8, x9}, 

{ x10, x11} }.  

In regard to the partition B*, which is classification U / IND(B) corresponding to the 

equivalence relation IND (c3), is B* = {Z1, Z2} = { { x1, x2, x3, x4}, { x5, x6, x7, x8, x9, x10, 

x11} }. 

The A-positive region of B is 

},,,,,,{},,,{)( 111098765432121
*

xxxxxxxxxxxZAZAZABPOS
BZ

A +=+==
∈
U . 

A degree of dependency of the set of attributes B on A is 

0.1
11

11

)(

))((
)( ===

Uycardinalit

BPOSycardinalit
B A

Aγ  

Therefore, it can be said that the set of attributes B is totally dependent on a set A, 

BA → 0.1 . 

  

For a given original information system some attributes may be redundant with respect 

to a specific classification A* generated by a set of attributes QA ⊂ . It means that an 



 49 

information system may be overloaded by this redundant information. The classifiers 

defined for overloaded information systems may exhibit a poor generalization for new 

unseen objects. By virtue of the dependency properties of attributes, we can find a 

reduced set of the attributes, by removing superfluous attributes, without a loss of 

classification power of the reduced information system. It can lead to the substantial 

reduction of an information system by finding the optimal set of attributes sufficient for 

a robust classification with a higher degree of generalization. 

 

For an information system S and a subset of attributes QA ⊂ , an attribute Aa∈  is 

called dispensable in a set A if IND (A) = IND (A-{ a}), which means that 

indiscernibility relations generated by sets A and A-{a} are identical. Otherwise a 

parameter a is indispensable in A. It appears that the dispensable attribute does not 

improve the classification of the original information system S. It can be said that the 

absence of the dispensable attribute does not reduce the classificatory power of an 

information system and does not change the dependency relationship of the original 

system. On the other hand, the indispensable attributes carry the essential information 

about objects of an original information system, and cannot be removed without 

changing the classificatory power of the original system.  

 

The set of all indispensable attributes in a set QA ⊂  is called a core of a set A in S and 

it is denoted by CORE (A). The core contains all attributes that cannot be removed from 

the set A without losing the original classification A*.  

 

Consider two subsets of attributes QBA ⊂,  in S. An attribute a is called B-dispensable 

in the set A if )()( }{ BPOSBPOS aAA −= . Otherwise the attribute a is B-indispensable. If 

every attribute of A is B-indispensable, then A is indispensable with respect to B. The 

set of all B-indispensable attributes from the set A is called B-relative core (or B-core) 

of A and denoted by COREB (A) as defined in (3.33). 

 

)}()(:{)( }{ BPOSBPOSAaACORE aAAB −≠∈=                                                       (3.33) 

 

A set QA ⊂  is called orthogonal if all its attributes are indispensable. A proper subset 

AE ⊂  is defined as a reduct set of A in S if E is orthogonal and preserves the 
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classification generated by A. Thus a reduct set of A, denoted by RED (A), is defined by 

(3.34). 

 

)),()(,()( orthogonalEAINDEINDAEAREDE −=⊂⇔=                                  (3.34) 

 

All reducts, or a family of reducts, of a set A are denoted by REDF (A). The intersection 

of all reducts of a set A is a core of A as defined in (3.35). 

 

I )()( AREDACORE =                                                                                             (3.35) 

 

[Example 3.10] 

For a given information system MEDICAL, suppose there are two reducts B1 and B2 of 

the set of condition attributes C = {c1, c2, c3} with respect to the decision attribute D = 

{ d} as follows: B1 = {c1, c2}, B2 = {c2, c3}. 

Then the core of the set of attributes B1 and B2 is obtained as follows. 

I }{)( 221 cBBCCORED ==  

It can be said that the c2 attribute is the most significant attribute and B1 and B2 are the 

sets of attributes that discriminate the decision attributes. 

By choosing a reduct B1, for example, the reduced decision table can be obtained by 

simply removing the superfluous attribute c3 as shown in Table 3.5. The reduced 

decision table has the same information as the original one from the point of view of 

classificatory power. 

Table 3.5 A reduced MEDICAL decision table 

Object Attributes 

 C 
(medical diagnoses) 

D 
(disease class) 

U c1 c2 d 
x1 0 L 0 
x2 0 H 1 
x3 0 H 1 
x4 0 L 0 
x5 1 H 1 
x6 1 H 1 
x7 1 H 1 
x8 2 L 0 
x9 2 L 1 
x10 2 H 0 
x11 2 H 1 
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3.10 Decision Rules 

 

One of the important applications of rough sets is a generation of decision rules for a 

given information system for a classification of known objects, or a prediction of 

classes for new objects unseen during design. Using an original or a reduced decision 

table, one can find rules classifying objects through determining the decision attribute 

value based on values of condition attributes. 

 

Let >∪=< fVDCUDT ,,,  be a decision table with C as a set of condition attributes 

and D as a set of decision attributes. A decision table DT can be classified as follows: 

1. DT is deterministic iff D depends on C, 1*)(; =⇒ DDC Cρ . 

2. DT is roughly deterministic iff D depends on C, 1*)(0 << DCρ . 

3. DT is totally non-deterministic iff D does not dependent on C, 0*)( =DCρ . 

If DT is deterministic, a set of condition attributes C discriminates a set of decision 

attributes D. If DT is roughly deterministic, D depends on C, but C cannot discriminate 

D. If DT is totally non-deterministic, C is not related to D.  

 

For a deterministic decision table, unique decisions can be determined when some 

conditions are satisfied (attributes taking certain values). Conversely, for a roughly-

deterministic decision table, decisions are not uniquely determined by the conditions. 

For  

a non-deterministic decision table, a subset of decisions is defined, which can be taken 

for specific conditions. This kind of situation is interpreted as inconsistency or 

uncertainty in the decision table, and thus decisions determined by the decision table are 

not well-defined. The properties characterizing dependency of attributes can be applied 

to test whether a given decision table is deterministic or non-deterministic. The notion 

of a reduct can be used to reduce the original decision table while preserving its 

classificatory power. This may lead to a design of robust classifiers with better 

generalization ability.  

 

Decision rules can be derived from a decision table DT. Let },,,{ 21
*

rXXXC K=  and 

},,,{ 21
*

lYYYD K=  be a C-definable and a D-definable classification of U. A class Yi 

from a classification D*  can be identified with the decision i (i=1,2,…,l), denoted also 

by r ij. A set of decision rules r ij for all D-definable sets Yj is defined by (3.36). 
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},,:)()({}{ ** DYCXforYXYDesXDesr jijijDiCij ∈∈≠⇒= φI                                   (3.36) 

where 

DesC(Xi),DesD(Yj): unique descriptions of classes Xi and Yj, respectively 

 

The decision rules r ij are logically described as follows: IF (a set of conditions) THEN 

(a set of decisions). 

A rule r ij is said to be deterministic iff ),...,2,1,( riXYXYX ijiji ==∩⊆  in a decision 

table DT, which means C→D, otherwise a rule is non-deterministic. In other words, if 

DesC (Xi) uniquely implies DesD (Yj), then the rule r ij is deterministic; otherwise r ij is 

non-deterministic. The set of decision rules for all classes Yj generated by a set of 

decision attributes D (D-definable classes in S) is called a decision algorithm resulting 

from the information system S. 

 

[Example 3.11] 

Consider the decision table in Table 3.4 with the decision attribute D = {d}, Vd = {0, 1}. 

The resulting partition D* = {Y1, Y2} = {{ x2, x3, x5, x6, x7, x9, x11}, { x1, x4, x8, x10}} for 

DesD (Y1)=(d=1) and DesD (Y2)=(d=0). If a reduct A = { c1, c2} of the condition attribute 

is considered, a partition of the universe U corresponding to the equivalence relation 

IND(A) can be determined as below. 

 

}},{},,{},,,{},,{},,{{},,,,{)(/* 111098765324154321 xxxxxxxxxxxXXXXXAINDUA === . 

 

The unique descriptions of the classes Xis on the set A are: 

DesA(X1) = (c1 = 0, c2 = L) 

DesA(X2) = (c1 = 0, c2 = H) 

DesA(X3) = (c1 = 1, c2 = H) 

DesA(X4) = (c1 = 2, c2 = L) 

DesA(X5) = (c1 = 2, c2 = H). 
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Firstly, decision rules for the class Y1 (sick; d=1) can be designed as follows. 

Calculation                   Decision rules              Decision rules logically written  

φ=∩ 11 YX  

),1()()0()(},{ 211213212 sickdTHENHiscANDiscIFYDesrxxYX D =⇒=∩
),1()()1()(},,{ 2113176513 sickdTHENHiscANDiscIFYDesrxxxYX D =⇒=∩  
),1()()2()(}{ 21141914 sickdTHENLiscANDiscIFYDesrxYX D =⇒=∩  

),1()()2()(}{ 211511115 sickdTHENHiscANDiscIFYDesrxYX D =⇒=∩
 
Next, the decision rules for the class Y2 (no disease; d=0) can be obtained as below. 

Calculation                   Decision rules              Decision rules logically written  

),0()2()01()(},{ 2124121 diseasenodTHENLiscANDiscIFYDesrxxYX D =⇒=∩
φ=∩ 22 YX  

φ=∩ 23 YX  

),0()2()21()(}{ 242824 diseasenodTHENLiscANDiscIFYDesrxYX D =⇒=∩
),0()2()21()(}{ 2521025 diseasenodTHENHiscANDiscIFYDesrxYX D =⇒=∩

 
Therefore, the entire decision algorithm is a set of decision rules {r21, r31, r41, r51, r12, 

r42, r52} for both classes.                
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Chapter 4 

4. Rough-Fuzzy Hybridization 
 

 

Fuzzy and rough sets theories are generalizations of set theory in mathematics to 

describe vagueness, uncertainty, and imprecision. A characteristic function of a fuzzy 

set uses a degree of membership in [0, 1], whereas a characteristic function of a rough 

set employs three membership functions; a reference set, its lower and upper 

approximations in an approximation space. There have been extensive theoretical 

contributions on the relationships between rough sets and fuzzy sets [54], [55], [56] and 

many approaches have been proposed on the combination of rough and fuzzy sets [57], 

[58], [59]: rough-fuzzy sets, fuzzy-rough sets. 

 

The main objective of this chapter is to review theoretical approaches on combination 

of rough and fuzzy sets by utilizing α-level set method, which is based on relationships 

between rough sets and fuzzy sets. Most of the mathematical symbols for representing 

fuzzy sets and rough sets are identical as defined in Chapter 2 and 3, respectively. 

 

4.1 Introduction 
 

In particular, a rough-fuzzy set is defined as an approximation of a fuzzy set in a crisp 

approximation space, while a fuzzy-rough set is defined as an approximation of a crisp 

set in a fuzzy approximation space. In generalization, the category of an approximation 

can be interpreted in these three different areas; a family of rough sets, a family of 

rough- fuzzy sets, and a family of fuzzy-rough sets. The approximation of a fuzzy set in 

a fuzzy approximation space leads to a more general framework. 

 

By definition, analysis, and operation of a set with fuzzy concepts, it is simpler to utilize 

a set-method, for instance, the use of α-level sets of a fuzzy set. One example of using a 

set-method on combination of rough and fuzzy sets is a more general framework 

suggested by Klir and Yuan [60].  
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4.2 Fuzzy Sets 
 

Fuzzy sets are a generalization of sets in which their membership functions are defined 

in [0, 1] of real number domain.  

The α-level set, or α-cut, of a fuzzy set F is defined by (4.1). 

 

})(|{ αµα ≥∈= xUxF F                                                                                             (4.1) 

where 

 U: a universe 

 x: an element in U 

 F: a fuzzy set on U 

 µF: a membership function of a fuzzy set F on U 

 α: a real number in [0, 1] 

 

A fuzzy set determines a family of nested subsets of U through α-cuts. On the other 

hand, a fuzzy set F can be re-constructed from its α-level sets as defined by (4.2). 

 

}|sup{)( ααµ FxxF ∈=                                                                                              (4.2) 

 

The equality and inclusion of two fuzzy sets, F1 and F2 can be represented by (4.3). 

 

UxxxFF

UxxxFF

FF

FF

∈∀≤⇔⊆

∈∀=⇔=

)()(

)()(

21

21

21

21

µµ
µµ

                                                                   (4.3) 

 

Employing of α-level sets, equations in (4.3) can be equivalently defined by (4.4). 

 

]1,0[

]1,0[

2121

2121

∈∀⊆⇔⊆
∈∀=⇔=

α
α

αα

αα

FFFF

FFFF
                                                                      (4.4) 

 

Thus, either definition of fuzzy sets can be used. One of main advantages of these set-

based representations is that it establishes a linkage between fuzzy sets and sets, which 

shows the inherent structure of a fuzzy set. 
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Utilizing the standard max-min system proposed by Zadeh [1], the fuzzy-set 

complement, intersection, and union are defined by (4.5). 

 

)(1)( xx FF µµ −=¬                                                                                                     (4.5) 

])(),(min[)(
2121

xxx FFFF µµµ =∩                                                                              

])(),(max[)(
2121

xxx FFFF µµµ =∪                                                                           

where  

F1, F2: two fuzzy sets defined in a universe U 

)(xF¬µ : a membership function of the complement of a fuzzy set F 

)(
21

xFF ∩µ , )(
21

xFF ∪µ : membership functions of sets of the intersection, union of 

F1 and F2, respectively 

 

Using α-level sets, equations in (4.5) are represented by (4.6). 

 

ααα

ααα

αα

2121

2121

)1(1

)(

)(

)(

FFFF

FFFF

FF

∪=∪
∩=∩

¬=¬ +−

                                                                                              (4.6) 

where 

 Fα+: a strong α-cut of a fuzzy set F, which is defined by (4.7) 

           })(|{ αµα >∈=+ xUxF F                                                                                 (4.7) 

 

An important feature of fuzzy set operations is that they are truth-functional [21]. The 

membership functions of the complement, intersection, and union of fuzzy sets can be 

obtained, which is based only on the membership functions of the fuzzy sets involved. 

 

4.3 Rough Sets  
 

Given an information system >=< fVQUS ,,,  and QA ⊆  as a subset of attributes.  

For any given subset of attributes QA ⊆ , the indiscernibility relation on A, IND (A) 

denoted byA
~

, is an equivalence relation on universe U. For a given arbitrary 

set UX ⊆ , it may or may not be possible to describe the arbitrary set X exactly in its 

approximation space (U, A
~

). In rough sets theory, an arbitrary set in a universe can be 
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represented or characterized by its lower and upper approximations as defined by (4.8). 

The pair ( XA , XA ) is called a rough set on U with a reference set X. 

 

}][|{:

}][|{:

:

φ≠∩∈=

⊆∈=
⊆

XxUxXAionapproximatupper

XxUxXAionapproximatlower

UXsetreference

A

A                                                (4.8) 

 

The characteristic functions of XA and XA are called strong and weak membership 

functions [55]. The physical meaning of lower and upper approximations may be 

understood better by the following two representations in (4.9) and (4.10). 

 

}
~

),(,|)(sup{)(

}
~

),(,|)(inf{)(

AyxUyyx

AyxUyyx

XXA

XXA

∈∈=

∈∈=

µµ

µµ
                                                                    (4.9) 

 

}|),(sup{)(

}|),(1inf{)(

~

~

Xyyxx

Xyyxx

AXA

AXA
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∉−=

µµ
µµ

                                                                            (4.10) 

 

The weak and strong membership functions of a rough set can be computed from the 

membership function of the reference set if the equivalence relation is used to select 

elements to be considered. Alternatively, they can also be computed from the 

membership functions of the equivalent relation if the reference set is used to select 

elements to be considered. These two views are important on the combination of rough 

and fuzzy sets. For convenience, the strong and weak membership functions of a rough 

set can be represented by (4.11). 

 

}|)],(),(sup{min[)(

}|)],(1),(inf{max[)(

~

~

Uyyxyx

Uyyxyx

AXXA

AXXA

∈=

∈−=

µµµ
µµµ

                                                       (4.11) 

 

Rough sets are monotonic with respect to set inclusion as shown by (4.12). 

 

2121

2121

XAXAXX

XAXAXX

⊆⇒⊆

⊆⇒⊆
                                                                                     (4.12) 

where  
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 X1 and X2: arbitrary sets in U 

 

Let 1

~
A and 2

~
A  be two equivalence relations on U. The first equivalence relation1

~
A  is a 

refinement of 2

~
A , or 2

~
A is a coarsening of1

~
A , if ⊆1

~
A 2

~
A . A refinement relation further 

divides the equivalence classes of a coarsening one. That is, 1

~
A is a refinement of 2

~
A iff 

Uxxx
AA

∈∀⊆
21

~~ ][][ . The finest equivalence relation is the identity relation, whereas 

the coarsest relation is the Cartesian product U × U.  

 

Rough sets are monotonic with respect to refinement of equivalence relations. If an 

equivalence relation 1

~
A is a refinement of another equivalence relation2

~
A , for 

any UX ⊆ , the property of equivalence relation with respect to set inclusion is shown 

by (4.13). 

 

XAXAAA

XAXAAA

2121

2121

~~

~~

⊆⇒⊆

⊇⇒⊆
                                                                                      (4.13) 

 

Approximation of a set in an approximation space refined is more accurate in the sense 

that both lower and upper approximations are closer to the given set. The two 

monotonic properties of rough sets are useful to the combination of rough and fuzzy 

sets. 

 

4.4 Combination of Rough and Fuzzy Sets 
 

There have been different proposals of rough-fuzzy sets and fuzzy-rough sets for 

defining such terms mathematically. The main results are briefly reviewed before 

presenting some of their analysis.  

 

Rough-Fuzzy Sets defined by Dubois and Prade deal with the approximation of fuzzy 

sets in an approximation space [58]. Given a fuzzy set F, the result of approximation is 

a pair of fuzzy sets on the equivalence class, U / IND (A) as defined by (4.14). 

 

[ ] [ ]
[ ] [ ] }|)(sup{)(

}|)(inf{)(

AFAFA
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xyyx
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µµ

                                                                            (4.14) 
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where  

U: a universe 

A: a subset of attributes QA ⊆  in a given information system S  

IND (A), orA
~

: an indiscernibility relation, or an equivalence relation on U 

FA : a lower approximation of a given fuzzy set F 

FA : a upper approximation of a given fuzzy set F 

[x]A: an equivalence class which contains x on an equivalence relation IND (A)   

y: an element belongs to [x]A in U 

 

Using the extension principle, the pair can be extended to a pair of rough sets on the 

universe U as defined by (4.15). 

 

[ ]
[ ] }|)(sup{)(

}|)(inf{)(

AFFA

AFFA

xyyx

xyyx
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∈=

µµ
µµ

                                                                                 (4.15) 

 

This pair can be represented in another way by expressing rough sets using the 

characteristic functions of lower and upper approximation as defined by (4.16). 
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                                             (4. 16) 

The pair ( FA , FA ) is called a rough-fuzzy set on U with reference fuzzy set F. 

 

Fuzzy-Rough Sets defined by Dubois and Prade [59] are originated from Waillaeys and 

Malvache [61] for defining a fuzzy set with respect to a family of fuzzy sets. It deals 

with the approximation of fuzzy sets in a fuzzy approximation space defined by a fuzzy 

similarity relation or defined by a fuzzy partition. The results for fuzzy-rough sets 

reviewed here are based on a fuzzy similarity relation. A fuzzy similarity relation R~  is a 

fuzzy subset of U ×  U and has three properties defined by (4.17). 
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Given a fuzzy similarity relationR~ , the pair (U, R
~ ) is called a fuzzy approximation 

space. A fuzzy similarity relation can be used to define a fuzzy partition of the universe. 

A fuzzy equivalence class [x] of elements close to x is defined by (4.18). 

 

),()( ~][ ~ yxy
Rx R

µµ =                                                                                                     (4.18) 

 

A family of all fuzzy equivalence classes is denoted by U / R
~ . For a fuzzy set F, its 

approximation in the fuzzy approximation space is called a fuzzy-rough set, which is a 

pair of fuzzy sets on U / R
~  as defined by (4.19). 
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The pair can be extended to a pair of fuzzy sets on the universe U as defined by (4.20). 
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The approximation of a crisp set in a fuzzy approximation space may be considered as a 

special case. By comparing Equations (4.16) and (4.20), it can be concluded that rough-

fuzzy sets are special cases of fuzzy-rough sets as defined by Dubois and Prade. 

Although the names of rough-fuzzy sets and fuzzy-rough sets are symmetric, the roles 

played by them are not symmetric. 

 

Nakamura [62] defined a fuzzy rough set by using a family of equivalence relations 

induced by different level sets of a fuzzy similarity relation. Nanda and Maumdar [63] 

suggested a different proposal for the definition of fuzzy rough sets by extending the 

work of Iwinski [64]. Their definition is based on a fuzzification of the lower and upper 

bounds of Iwinski rough sets. It may be related to the concept of interval-valued fuzzy 

sets. The same definition was also used by Biswias [57]. Kuncheva [65] defined the 

notion of fuzzy rough sets which models the approximation of a fuzzy set based on a 

weak fuzzy partition. It uses measures of fuzzy set inclusion. A number of different 

definitions may indeed be obtained with various measures of fuzzy set inclusion.  
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The review shows that the same notions of rough fuzzy set and fuzzy rough sets are 

used with different meanings by different authors. The functional approaches clearly 

defined various notions mathematically. However, the physical meanings of these 

notions are not clearly interpreted. In the rest of this chapter, this issue will be 

addressed.  

 

The approximation of a fuzzy set in a crisp approximation space is called a rough fuzzy 

set, to be consistent with the naming of rough set as the approximation of a crisp set in a 

crisp approximation space. The approximation of a crisp set in a fuzzy approximation 

space is called a fuzzy rough set. Such a naming scheme has been used by Klir and 

Yuan [60], and Yao [66]. Under this scheme, these two models are complementary to 

each other, in a similar way that rough sets and fuzzy sets complementary to each other. 

In contrast to the proposal of Dubois and Prade [59], rough fuzzy sets are not 

considered as special cases of fuzzy rough sets. As a result, the framework of the 

approximation of a fuzzy set in a fuzzy approximation space is considered to be a more 

general model which unifies rough fuzzy sets and fuzzy rough sets. All these notions 

are interpreted based on the concept of alpha-level sets, which may be useful for their 

successful applications. 

 

Because most of the studies mentioned on the combination of rough and fuzzy sets are 

based on the functional approach (i.e., the α-level sets of a fuzzy set), the α-level set-

based functional approach is used for the combination of fuzzy and rough sets. 

 

4.4.1 Rough-Fuzzy Sets 

 

Suppose the approximation of a fuzzy set F = (Fα)α, ]1,0[∈α  in an approximation 

space (U, IND (A)). For each α-level set Fα, a rough set is defined by (4.21). 

 

}][|{:
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The pair ( αFA , αFA ) is a rough set with a reference set, Fα.  
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The use of α-level sets provides a clear interpretation of rough-fuzzy sets. A fuzzy set F 

is described by a pair of fuzzy sets in an approximation space. It lies between the lower 

and upper approximation. In other words, a rough-fuzzy set is characterized by three 

fuzzy sets defined by (4.22). 

 

)}(),(,|)(sup{)(:

)}(),(,|)(inf{)(:

:

AINDyxUyyxionapproximatupper

AINDyxUyyxionapproximatlower

setfuzzyreference

FFA

FFA

F

∈∈=

∈∈=

µµ
µµ

µ
                (4.22) 

 

An α-level set of a rough-fuzzy set is defined by (4.23) in terms of the α-level sets of a 

fuzzy set F. 

 

))(,)((),(),( ααααα FAFAFAFAFAFA ==                                                 (4.23) 

 

Rough-fuzzy sets have the following properties in (4.24) for two fuzzy sets F1 and F2. 

i) )()(),()( 1111 FAFAFAFA ¬=¬¬=¬                                                          (4.24) 
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iii) 
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iv) 1111 , FAFFFA ⊆⊆  

v) 1111 ))(()),(( FFAAFAAF ⊆⊆  

vi) 1111 ))(()),(( FAFAAFAAFA ⊆⊆  
 

Rough-fuzzy sets are monotonic with respect to fuzzy set inclusion as shown by (4.25). 
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They are also monotonic with respect to refinement of equivalence relations for two 

equivalence relations 21

~
,

~
AA  and a fuzzy set F, as shown by (4.26). 
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4.4.2 Fuzzy-Rough Sets 

 

The concept of approximation spaces can be generalized by using fuzzy relations [67], 

[58]. Suppose a fuzzy approximation space (U, R
~

), where R
~

is a fuzzy similarity 

relation. Each ofR
~

’s β-level sets is an equivalence relation [68]. The relationR
~

can be 

represented by a family of equivalence relations as defined by (4.27). 
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This family defines a family of approximation spaces, (U, βR
~

) β. 

 

Given a subset X of U, suppose its approximation in each of the approximation spaces. 

For ]1,0[∈β , a rough set is defined by (4.28). 
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With respect to a fuzzy approximation space, we obtain a family of rough sets as 

defined by (4.29). 

 

]1,0[,)
~

,
~

( ∈ββββ XRXR                                                                                        (4.29) 

 

The pair of fuzzy sets )
~

,
~

( XRXR  is called a fuzzy-rough set with reference set X. A 

fuzzy-rough set is characterized by a crisp set and two fuzzy sets as defined by (4.30). 
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A β -level set of a fuzzy-rough set is defined by (4.31) in terms of the β -level sets of the 

fuzzy similarity relation, which is a rough set with a reference set X in the 

approximation space (U, βR
~

). 
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Based on the properties of rough sets, properties of fuzzy-rough sets are shown by 

(4.32) for X1, X2 in U. 
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Fuzzy-rough sets are monotonic with respect to set inclusion as shown by (4.33). 
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They are monotonic with respect to the refinement of fuzzy similarity relations. A fuzzy 

similarity relation 1

~
R is a refinement of another fuzzy similarity relation 2

~
R  if 1

~
R  

belongs or equal to2

~
R , which is a straightforward generalization of the refinement of 

crisp relations. The monotonicity of fuzzy-rough sets with respect to the refinement of 

the fuzzy similarity relation can be expressed by (4.34). 
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4.4.3 Approximation of Fuzzy Sets in Fuzzy Approximation Spaces 

 

This section examines the approximation of a fuzzy set in a fuzzy approximation space. 

In this framework, there is a family of α-level sets, ]1,0[,)( ∈αααF , representing a 

fuzzy set F; whereas there is another family of β-level sets, ]1,0[,)
~

( ∈βββR , 

representing a fuzzy similarity relation R
~

. Each α-level set Fα is a crisp set, and each β-



 65 

level relation βR
~

 is an equivalence relation. Therefore, rough sets, rough-fuzzy sets, 

and fuzzy-rough sets can be viewed as special cases of a generalized model. 

 

For a fixed pair of number ]1,0[]1,0[),( ×∈βα , a sub-model is obtained, in which a 

crisp set Fα is approximated in a crisp approximation space (U, βR
~

). The result is a 

rough set )
~

,
~

( αβαβ FRFR with the reference set Fα. For a fixed β, a sub-model is found 

in which a fuzzy set ]1,0[,)( ∈αααF  is approximated in a crisp approximation space 

(U, βR
~

).  The result is a rough-fuzzy set )
~

,
~

( FRFR ββ  with the reference fuzzy set F. 

On the other hand, for a fixed α, a sub-model is also identified in which a crisp set Fα is 

approximated in a fuzzy approximation space ]1,0[,))
~

,(( ∈βββRU . The result is s 

fuzzy-rough set )
~

,
~

( αα FRFR with the reference set Fα. In a generalization model, both α 

and β are not fixed. The result may be interpreted in three different views. 

 

A family of rough sets: 
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( ∈∈ βααβαβ FRFR                                                                     (4.35) 

This represents the rough set approximation of each α -level set of a fuzzy set F in an 

approximation space induced by a β -level relation of a fuzzy similarity relationR
~

. 

Under this interpretation, the relationships between different α -level sets of F, and the 

relationships between different β -level relations ofR
~

, are not taken into consideration. 

 

A family of rough-fuzzy sets: 

]1,0[)
~

,
~

( ∈ββββ FRFR                                                                                      (4.36) 

The second category takes into consideration the relationships between different α-level 

sets of a fuzzy set F. The relationships between β -level sets of a fuzzy similarity 

relation R
~

 are not considered. 

 

A family of fuzzy-rough sets: 

]1,0[)
~

,
~

( ∈ααα FRFR                                                                                          (4.37) 
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By employing the relationship between different β-level relations of a fuzzy relationR
~

, 

a family of fuzzy rough sets is obtained. It does not take account the relationships 

between different α-level sets of a fuzzy set F. 

 

The above interpretations depend on the ways in which the family of rough sets, 

]1,0[],1,0[),
~

,
~

( ∈∈ βααβαβ FRFR , are grouped. An interesting problem is how to take 

into consideration both relationships between different α-level sets of fuzzy sets, and the 

relationships between different β-level relations of fuzzy similarity relations. It can be 

concluded that membership functions of rough sets, rough-fuzzy sets, and fuzzy-rough 

sets can be computed uniformly using the same scheme defined by (4.38). 

 

}|)],(),(min[sup{)(

}|)],(1),(max[inf{)(

)(

)(

Uyyxyx

Uyyxyx

∈=

∈−=

Γ∆∆Γ

Γ∆∆Γ

µµµ
µµµ

                                            (4.38) 

where 

Г: a variable which takes either an equivalence relation or a fuzzy similarity   

relation as its value 

∆: a variable that takes either a crisp set or a fuzzy set as its value  

 

The same scheme is used by Dubois and Prade [58] to define a pair of fuzzy sets as the 

result of approximating a fuzzy set in a fuzzy approximation space. This involves the 

combination of degrees of memberships of a fuzzy set and a fuzzy similarity relation. 

The physical meaning is not entirely clear. It is questionable that an element with α 

degree membership belonging to a fuzzy set would have the same physical 

interpretation as a pair with α degree membership belonging to a fuzzy relation, as the 

universes of the former and latter are quite different. For this reason, in this study here it 

is not mixed between the membership functions of a fuzzy set and a fuzzy similarity 

relation. As seen from equations, the inf and sup operations are performed on one 

membership function.  
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Chapter 5 

5. A framework of Adaptive T-S type Rough-
Fuzzy Inference Systems (ARFIS) 

 

 

In past decades, fuzzy systems have been combined popularly with neural networks for 

performing pattern classification tasks. Many approaches [69], [70], [71] have been 

proposed to address the issue of automatic generation of membership functions and 

fuzzy rules from input-output data sets and also subsequent adjustment of them towards 

more satisfactory performance. Most of these schemes that incorporate the learning 

property of neural networks within a fuzzy system framework have provided 

encouraging results. However, most of these techniques have drawbacks associated with 

the maximum number of resulting fuzzy rules, which increase exponentially when 

higher numbers of input variables are employed. As a result, the computational load 

required to search for a corresponding fuzzy rule becomes very heavy. 

 

Rough set theory has recently been deployed with fuzzy inference systems to obtain 

more compact information from the given data and to effectively reduce the given 

knowledge [72]. This is an attributes-reduced information system resulting in the 

absolute minimal set of decision rules. Rough set theory provides a methodology to do 

this in data analysis based on empirical data and it has been applied to a variety of 

practical applications. The effective knowledge-reduction using feature reduction 

approaches can be applied to the existing fuzzy systems to resolve the difficulties 

mentioned above. The Takagi-Sugeno (T-S) type fuzzy model [7] has an ability to 

exactly approximate non-linear systems using a combination of linear systems. It is a 

very powerful tool as a universal approximator [29], [30] in non-linear system 

modeling.  

 

Consequently, if a minimal set of rules generated by the rough set approach is suitable 

to carry out the T-S type fuzzy inference, not only the number of fuzzy antecedent 

variables involved but also the number of fuzzy inference rules can be effectively 

reduced. The advantages of both the rough set approach and the T-S fuzzy model are 

combined in order to introduce a new framework of Adaptive T-S type Rough-Fuzzy 
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Inference Systems (ARFIS). Without a loss of generality, a Multi-Input-Single-Output 

(MISO) type fuzzy inference system is assumed since it is known that Multi-Input-

Multi-Output (MIMO) fuzzy systems can be decomposed into a number of MISO fuzzy 

systems [73].  

 

A functional block diagram of the proposed framework of ARFIS is shown in Figure 

5.1. As a brief overview, a pre-processing is applied on the given input and output data 

to generate two major components of the proposed system; 1) adaptive fuzzy clusters 

for the input using the Fuzzy C-Means (FCM) clustering and 2) decision rules of the 

given information using the decision rule generation algorithm in the rough set 

approach. The obtained fuzzy clusters and decision rules are used to model membership 

functions and T-S type fuzzy rules in the knowledge-base. Once the T-S type rough-

fuzzy inference system is constructed with training data, a system evaluation process is 

carried out as a post-processing. If the system performance is not satisfactory, an 

advanced adjustment is applied to the knowledge-base towards better accuracy. 

 

 
Figure 5.1 A functional block diagram of the proposed framework of ARFIS 

 
 

5.1 Automatic Generation of Membership Functions 
 

In order to build a T-S type rough-fuzzy inference system, firstly an automatic 

generation of membership functions is required. The Fuzzy C-Means (FCM) clustering 

algorithm [22] is employed to find each cluster by minimizing the FCM objective 

function which measures distances between data points and cluster prototypes. The 

FCM clustering algorithm is an unsupervised clustering method whose aim is to 
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establish a fuzzy partition of a set of pattern vectors in C number of clusters and the 

corresponding set of cluster prototypes towards the local minimum of their objective 

function. An objective function J defined by (5.1) measures the fitting between the 

clusters and their cluster prototypes. 
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where  

]1,0[∈iku  : a membership degree of the k-th pattern vector to the i-th cluster 

represented by its cluster prototype vi  

v   : a cluster prototype of ui  

dik : Euclidean distance, ikik vxd −=  on Rp if a pattern vector is in a p-

dimensional space 

m : a weighting exponent so-called fuzzifier, ),1[ ∞∈m , which makes the 

resulting partitions more or less fuzzy 

 

After the FCM clustering, each membership function of the j-th feature, xj, is obtained 

by plotting the elements of each row of the membership matrix M versus xj values. Two 

procedures are applied for each membership function to form their shapes and to fit 

their membership values. 

 

1) Finding outer shapes: Amongst all data points of each membership function 

after plotting the entries as above, select only the maximum membership degree 

for each value of the j-th feature, xj. These maximum membership degrees will 

be used in the fitting process to generate prototypes of their corresponding 

membership functions as follows. 

2) Removing false representation:  

0.1
1

=∑
=

C

i
iku                                                                                                       (5.2) 

Since the FCM clustering algorithm applies normalization as defined by (5.2), 

this condition causes a pattern vector to have a very small amount of 

representation within a membership function where it should have no 

membership values in the ideal case. In other words, the FCM algorithm assigns 

a small noise as a same membership value 1/C to each cluster. To overcome this 
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handicap due to the false representation, a modified α–cut method [91] is 

utilized to remove the noise. 

 

Then to fit those processed membership values for each fuzzy set, a modified 

asymmetric Gaussian membership function defined by (5.3) is chosen for the Adaptive 

Membership Function Scheme (AMFS) that provides more flexibility. 
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The membership value µij is determined by the j-th feature value of the k-th pattern 

vector, xkj, the cluster prototype value for the j-th feature of the i-th cluster, vij, and two 

different standard deviations, σ1 and σ2. The Levenberg-Marquardt type non-linear least 

square fit is utilized to estimate the parameters, { vij1 vij2 σij1 σij2} for each membership 

function for each fuzzy cluster. The initial values of cluster prototypes vij are obtained 

from the final cluster prototypes using the FCM, and deviations σij1, σij2 are initialized to 

the average deviation of pattern vectors in each cluster. The height of this modified 

asymmetric Gaussian membership function initialized as 1.0, but it is able to be 

controlled to be less than 1.0 during the fitting process when vij1 >  vij2. This 

characteristic regarding the height of the membership function provides the proposed 

rough-fuzzy inference system with more flexibility to model the best shapes of the 

training data using Gaussian basis functions. 

 

For example, the automatic generation of membership function is carried out for one 

feature, petal length of the Iris data set in pattern classification scheme. Figure 5.2 

shows the membership values of features in three clusters after the FCM clustering for 

petal length. Based on these membership values, the removal of false information is 

done as shown in Figure 5.3. The final fitting for the processed membership values to 

model membership functions is shown in Figure 5.4. 
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Figure 5.2 Membership values after the FCM clustering for petal length 

 

 
Figure 5.3 Membership values after removal of false representation 

 

                        
                                Figure 5.4 Final fitting to model membership functions for petal length 

 

 

 



 72 

5.2 Encoding Decision Tables 
 

Once pattern vectors of a training data set are obtained, these vectors can be considered 

as features that compose a conditional attribute set C of an information system. The 

associated feature used to determine its output composes a decision attribute set D. 

These feature vectors and their target vectors constitute an information system as a 

decision table, DT = < U, C ∪ D > according to the rough set theory. The original 

decision table from the training data may be encoded using the adaptive fuzzy partitions 

obtained. In the proposed system, an adaptive fuzzy partition method is applied by 

utilizing the Fuzzy C-Means (FCM) clustering algorithm. If the partitioned regions are 

described as intervals of each dimension for each feature, which replaced the numeric 

values of pattern vectors by the label of the fuzzy clusters, the original decision table 

may be converted into an encoded decision table shown as Table 5.1. For example, the 

encoded decision table for training data set from the Iris data is shown in Figure 5.5. 

The ‘x#’s in Figure 5.5 stand for arbitrarily assigned input vectors extracted from Iris 

data set. 

Table 5.1 Encoded Decision Table using adaptive fuzzy partitions 

             Attributes  

Objects 
a1 a2 … am DECISION 

1 3 1 … 2 1 

2 2 4 … 3 2 

… … … … … … 

n 1 3 … 4 3 

 

 
Figure 5.5 Encoded decision table for training data set from the Iris data 
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5.3 Dimensionality Reduction by Rough Set Approach 
 

The encoded decision table constructed may contain much superfluous and conflicting 

data. As stated earlier, one of the main advantages of the rough set methodology is that 

it reduces the given knowledge using the degree of dependency of attributes. This 

process requires finding reducts of condition attributes with respect to the decision 

attribute in order to obtain the smallest possible number of attributes and decision rules 

for higher compactness. Thus the problem associated with the number of fuzzy rules 

can be resolved by finding a minimal set of attributes and decision rules.  

 

An algorithm based on the decision-relative discernibility matrix [74] with Boolean 

calculation is selected for the reduction of attributes. The algorithm for the reduction of 

attributes is as follows. Firstly, obtain the discernibility matrix, mij defined by (5.4) with 

respect to the decision attribute, d. 
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Then, calculate Tij, the disjunctive Boolean expressions with the entries of the 

discernibility matrix as defined by (5.5). 
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Compute the Boolean expression in conjunctive normal form as defined by (5.6). 
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Calculate the Boolean expression in disjunctive normal form as defined by (5.7). 

 

 i
i
TT ∨=*                                                                                                                      (5.7) 

 

Finally, find a minimal set of attributes, or a reduct, which has the least number of 

attributes from the normal form of T*. 
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In addition, in order to select the ‘best’ reduct amongst those candidate reducts, a fuzzy 

similarity measure [75] is applied. The degree of overlaps of membership functions for 

each feature for each reduct is measured using a fuzzy similarity measure defined by 

(5.8). A reduct, which has the smallest overlap degree on average, is chosen as the final 

best reduct towards better accuracy in the pattern classification scheme. 
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A fuzzy similarity s in (5.8) is defined as the ratio of the squared sum of the degree of 

the intersection over the squared sum of the union between two fuzzy sets Fi, Fj. This 

ratio emphasizes the degree of overlaps, which is very sensitive for small changes of 

overlaps. As the operators of the intersection and the union calculations, the arithmetic 

minimum and maximum functions are used respectively. 

 

For instance, the described attributes-reduction method is applied on the Iris data set 

after the FCM clustering and encoding processes were done. As a result, the obtained 

candidate reducts for Iris data sets are; { Sepal Length, Petal Length, Petal Width }, 

{ Sepal Width, Petal Length, Petal Width }. The best reduct among these candidates is 

{ Sepal Length, Petal Length, Petal Width }. 

 

5.4 Generation of Decision Rules 
 

To generate decision rules of the given information using the obtained best reduct, all 

training data are partitioned into corresponding disjoint equivalence classes with respect 

to the decision attribute. Based on these obtained equivalence classes, the decision rules 

are generated by applying the equation (3.36) in Chapter 3. This decision rule 

generation process is shown as a simple diagram in Figure 5.6. For example, the 

partitioned training data from the Iris data set are shown in Figure 5.7. The generated 

decision rules for the Iris data set are shown in Figure 5.8. 

 

 



 75 

 

 
Figure 5.6 Decision Rule Generation using the final reduct, disjoint equivalence classes 

 
 

 
Figure 5.7 The partitioned equivalence classes for training data using the obtained best reduct 
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Figure 5.8 The generated decision rules for the Iris data set 

 

Regarding the generated decision rules, there are a couple of things to point out. Firstly, 

the reduct which is a minimal set of attributes reduces the number of decision rules. 

Accordingly, the computational complexity is less than the case when the system is 

using all input features to generate fuzzy rules. Secondly, it can be seen that there are 

Non-Deterministic (ND) rules among the generated decision rules in Figure 5.8. This 

means the generated rules have some conflict rules which have the same inputs for the 

different outputs. Obviously, these rules need to be tuned or enhanced later towards 

better system performance. Finally, an investigation is definitely required to examine 

that these rules are suitable to process the T-S type fuzzy inference. This examination 

will be carried out in the next section to ensure that the generated rules have a full 

coverage of input and output relations of the given information. 

 

5.5 Validity Checking of Generated Decision Rules 
 

After the generation of a minimal set of decision rules, their validity must be 

ascertained for use as the T-S type fuzzy inference rules. The number of antecedent 

fuzzy variables in the generated minimal set of decision rules may be less than the total 

amount of input variables of the whole fuzzy inference system. However, according to 

the definition of the T-S type fuzzy model [7], the T-S type fuzzy rules have a form of a 

combination of linear systems with all input variables as defined by Takagi and Sugeno. 

Hence, there is a need to investigate the validity of the generated rules in order to model 

the suitable T-S type fuzzy inference rules of the proposed system. 
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The question is whether the decision rules provide a full coverage of the information 

inherent within the training data. The decision rules are obtained using the final reduct, 

the partition algorithm, resulting equivalence classes, and decision rule generation 

algorithm according to the rough set approach. Since the partition algorithm divides a 

whole universe of the given information system into the disjoint equivalence classes via 

the corresponding indiscernibility relation determined by the reduct, all equivalence 

classes are unique in terms of their input and output relations. Using these equivalence 

classes, the decision rule generation algorithm produces the minimal set of decision 

rules. Also the partitions using the final reduct provide the same partition in the case 

when all attributes are deployed. In other words, the minimal set of decision rules 

obtained offers a full coverage of the given information and a unique set of partitions of 

the training data with respect to the decision attribute.  

 

However, the antecedent variables in the decision rules may not show all input variables 

since some of them have been eliminated in the reduction process. In order to form a 

complete numeric mapping using all input and output information according to the 

definition of the T-S type fuzzy model, the reduced antecedent variables should be 

complemented in their rules. Therefore, the T-S type fuzzy rules with input information 

complemented may be represented as defined by (5.9). For estimating the values of 

coefficients of the complemented T-S type fuzzy rules, a weighted least-squares 

algorithm can be deployed to minimize the additional errors from the complemented 

information. 
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where  

yi
’: a decision rule with reduced attributes 

yi
*: a complementing rule 

 

It is crucial that this investigation regarding the validity of the generated decision rules 

should be carried out in the process of an automatic fuzzy rule generation to provide a 

full input and output relation of the given knowledge for the proposed rough-fuzzy 

inference systems. 
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5.6 Construction of ARFIS 
 

Once parameters of antecedent membership functions are found via the FCM clustering 

and the T-S type fuzzy rules are obtained through the rough sets approach, the proposed 

framework of Adaptive Rough-Fuzzy Inference Systems (ARFIS) can be constructed. 

The proposed framework is built as a MISO T-S type fuzzy model as mentioned earlier. 

All attributes are assigned as antecedent variables with the corresponding adaptive 

cluster information after the FCM clustering. Through the validity checking for the 

generated decision rules, the T-S type fuzzy inference rules are modeled using the 

complemented decision rules. A type of Generalized Modus Ponens (GMP) 

compositional rules is used to form fuzzy rules in the knowledge base. The algebraic 

minimum operator is utilized to calculate the fuzzy T-norm operation (‘AND’) between 

the antecedent variables. The coefficients of the consequent variables are fitted by the 

least squares fitting towards the corresponding target values. The Figure 5.9 shows the 

construction stage of the proposed system. 

 

 
Figure 5.9 Construction stage of the proposed rough-fuzzy inference system 

 

5.7 Adaptive Mechanism of Tuning the Knowledge-base 
 

The performance of the proposed system needs to be evaluated and enhanced towards 

better achievement. After coefficients of the consequent variables of the T-S type fuzzy 

rules are fitted with the training data, the performance evaluation is done first with the 

training data to compare the RMSE measure defined by (5.10) with a user-defined error 

criterion. If the RMSE is not satisfactory, the adjustment of antecedent membership 
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functions is carried out on the training data set by employing the Polak-Ribiere 

conjugate gradient algorithm to minimize the system error. 

 

n

err
RMSE

n

i
i∑

== 1

2)(
 , od

i yyerr −=                            (5.10) 

where 

  erri : the error between the desired output and the actual output 

  n : the number of pattern vectors 

  yd : the desired output 

  yo : the actual output from the fuzzy inference system at one epoch  

 

Moreover, the modeled T-S type fuzzy rules from the generated decision rules need to 

be tuned to get rid of some conflicts as mentioned earlier. For those rules which have 

same inputs but different outputs, the average rule firings can be calculated during the 

first system evaluation stage. The rules have the lower average rule firings can be 

deleted in the rule base towards higher accuracy of the proposed system. The system 

evaluation and the associated adjustment mechanism mentioned are shown in Figure 

5.10. 

 
Figure 5.10 The system evaluation and the adjustment mechanism of the proposed system 

 

5.8 Performance Metrics 
 

Measuring how well a system performs its tasks could be dependent on the objectives of 

the system. In most cases, however, it is often intuitionally straightforward. Most 
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common approaches are; 1) a calculation of the percentage of correct answers in testing 

environment and the subsequent comparison of it with other results under the same 

conditions, and 2) a measurement of the system performance regarding on robustness 

when the additional noise are applied. In this section, three performance metrics are 

described and used to measure the performance of the proposed system within the 

scheme of computational intelligence systems. 

 

5.8.1 Cross Validation  
 

Cross validation is a method that enables the system to estimate how well a system 

performs on the testing data which are unseen in the training phase. It is actually a 

prediction of generalization ability of a system. The procedure of cross validation is as 

follows. The whole data sets are partitioned into subsets for training and testing 

according to the partition strategy. The partition strategy could be simple, such as a 

selection of training or testing data sets in order from the first pattern vector. Or it could 

be a random selection in, for instance, Jackknife estimate [115]. 

The N-fold cross validation using random selection is deployed for measuring the 

system performance of the proposed framework of ARFIS. Using this technique, the 

whole data set is partitioned into N different subsets, and N-1 subsets are used for 

training and one subset is used for testing in an iterative procedure. This process is 

continued repeatedly N times until all N subsets are used for testing purposes. The 

testing results after N iterations can be calculated to produce an error estimate and the 

variance of the results decreases as N increases. The choice of N is dependent on the 

characteristics of data sets and the problem domain as well.. 

 

5.8.2 Root-Mean-Square-Error (RMSE) 
 

The RMSE error measure is a widely-used one for the differences between target 

outputs from a supervised model and actual current outputs from an estimated model. In 

statistics, the MSE of an estimator is one of many approaches to quantify the amount 

that an estimator differs from the true value of the quantity being predicted. The 

difference occurs due to the no-account of an estimator on some information which 

could produce a more accurate estimation. The RMSE error measure defined by (5.10) 

is employed for the proposed system to obtain the system error rates. 
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5.8.3 Confusion Matrices 
 

For those systems that have multiple output classes, the confusion matrix is very useful 

to calculate the percent correct as an analogous performance metric. If there are m 

classes, an m × m matrix is constructed and its rows and columns are designated as 

target classes and estimated classes, respectively. The value in each entry in the matrix 

represents the total number of pattern vectors predicted in the testing environment. The 

diagonal entries are the instances classified correctly. After the classification by a 

system, the resulting confusion matrix can be used to produce an average percent 

correct for the system by adding all the entries on the diagonal of the matrix and 

dividing the result by the number of classes. For the proposed system, the confusion 

matrix has been applied to applications to obtain the accuracy of the system 

performance. 

 

5.9 Summary 
 

As the main contribution of this thesis, this chapter presented a development of a new 

framework of Adaptive T-S type Rough-Fuzzy Inference Systems (ARFIS) to generate 

membership functions and rules automatically and to resolve the existing difficulties 

regarding the number of fuzzy rules within the Rough-Fuzzy hybridization scheme. The 

subsequent adaptive mechanism is proposed in the system evaluation and enhancement 

stage towards higher system performance. In addition, the investigation on the 

generated decision rules is carried out regarding their validity for use in the T-S type 

fuzzy inference process to ensure that the rules have a full coverage of input and output 

relations of the given information. It is seen that the generated rules have the same 

capacity to represent the given knowledge by the aid of the rough set approach. Also it 

is noted that the rules are complemented with the eliminated input features to model 

them as the T-S type fuzzy rules. This is a crucial process to generate the T-S type fuzzy 

rules automatically in the construction stage of the proposed system. Some performance 

metrics have been applied to show how well the proposed system performs.  

 

For the further analysis of the proposed system within the context of a framework of 

fuzzy inference systems, there must be some more systematic measures to show that the 

proposed system is a suitable tool to achieve the system objectives. More issues and 

systematic metrics are described and suggested later to enhance the proposed system. 
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Chapter 6 

6. Applications 
 

 

The proposed framework of ARFIS has been applied to some applications to show its 

viability as a framework for rough-fuzzy inference systems. The application domains 

are; pattern classification, face recognition, and mobile robot navigation. As the nature 

of problems in each application is different, the proposed framework has been tailored 

for each application according to its system objectives. 

 

The rest of this chapter is organized as follows.  

In section 6.1, the proposed system has been applied to pattern classification on three 

data sets; the Fisher’s Iris, the Wisconsin Breast Cancer, and the new Wisconsin 

Diagnostic Breast Cancer data sets retrieved from [92]. The objective of the application 

is to classify those data sets towards higher accuracy using less number of input 

variables and fuzzy rules via the proposed approach. The results from each data set have 

been compared with other existing pattern classifiers. It has been shown that the results 

are very satisfactory and competitive. 

The face recognition is carried out as the next application in section 6.2 on the face 

image database from the MIT Media Lab [100]. The aim is to reduce the high 

dimensionality of face images using the rough set approach and to recognize them using 

the proposed fuzzy inference system. The results of this task have been compared with 

other approaches to show that the results are very encouraging with much more research 

potential in this field of research. 

The final application for the proposed system is the mobile robot navigation and is 

described in section 6.3. The wall-following robotic behavior has been performed for a 

variety of environments; straight walls, circular walls, arbitrary-shaped walls, and 

sharp-corner (90 degrees) walls. The methods employed for a comparison of the system 

performance are the following; a Bang-Bang controller, a PID controller, a conventional 

(standard) fuzzy controller, a GA-fuzzy controller, and a rough-fuzzy controller. The 

system objective is to get a better control with a reduced number of input features and 

fuzzy control rules by applying the rough set approach. The results have shown that the 

quality of the control using the proposed rough-fuzzy inference system is relatively 

better than other controllers with satisfactory performance. 
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6.1 Pattern Classification 
 

In the past, many different approaches have been suggested to achieve a higher 

accuracy on a variety of data sets in the pattern classification scheme. For instance, as 

reported in [91], a conventional method [85] and fuzzy-based classifiers; the Adaptive 

Fuzzy Leader Clustering (AFLC) [86], Wu and Chen’s algorithm [87], the Fuzzy 

Entropy-Based Fuzzy Classifier (FEBFC) [90], and the Influential Rule Search Scheme 

(IRSS) [91] have been applied on the Fisher’s Iris data [92] and the Wisconsin Breast 

Cancer data set [92] to achieve better performance. However, some of these approaches 

still have difficulties especially with the number of fuzzy rules when a higher 

dimensional data set is applied, because the size of their knowledge-base in fuzzy 

inference systems is directly associated with the computational complexity and the 

system performance.  

 

The Fisher’s Iris, the Wisconsin Breast Cancer, and the new Wisconsin Diagnostic 

Breast Cancer data sets were obtained from the UCI machine learning repository [92] 

for the experiment. For each data set, the experiment was carried out under the 

following same conditions in the training and the testing environment. The details of the 

experiment for each data set are described in the next sections. 

 

• The N-fold cross validation using random selection with N = 10 

• The FCM clustering with C = 5 

• The modified α-cut method with α = 0.02 for the removal of false representation 

during the FCM clustering 

• The initialized values of deviations of membership functions as the average 

deviation within the clusters obtained the FCM clustering 

• The reduction of the given information with respect to the decision attribute 

• The assigned user-error criterion for the RMSE measure as 0.2 in the adjustment 

process of antecedent membership functions 

• The fine tuning of modeled fuzzy rules for the removal of conflict rules 

• The different 10 independent runs for the average of results 

• The statistical test ANOVA (analysis of variance) applied to demonstrate the 

statistical differences in results produced by different approaches 
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6.1.1 The Fisher’s Iris Data 

 

The Fisher’s Iris data set [92] contains 150 pattern vectors with four features (Sepal 

Length, Sepal Width, Petal Length, and Petal Width) and one output of three classes 

(Iris Setosa, Iris Versicolor, and Iris Virginica). The scatter plots for the Fisher’s Iris 

data are shown in Figure 6.1. 

 

 

 
Figure 6.1 The scatter plots for the Fisher’s Iris Data Set 

 

The antecedent membership functions were automatically generated for Iris data set and 

one example for an attribute, ‘Sepal Length’ is shown in Figure 6.2. It can be seen each 

membership function was fitted to different shapes of asymmetric Gaussian function.  
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Figure 6.2 The generated antecedent membership functions for Sepal Length 

 

Utilizing 10-fold cross validation, the proposed ARFIS randomly selected 9 subsets for 

training and 1 subset for testing in each fold. The validation process was repeated 10 

times, with each of the data vectors used exactly once as the validation data. 

The best final reduct calculated for the Iris data set was {Sepal Length, Petal Length, 

Petal Width} (3 features). The number of reduced fuzzy rules was 23 on average after 

the 10 independent runs. One set of the generated rules is already shown in Fig 5.8 as an 

example. In contrast to the number of the generated fuzzy rules in the IRSS [91] which 

increased exponentially as 5 × 5 × 5 × 5, our proposed system achieved a massive 

amount of reduction, 96 % for this data set, on the number of fuzzy rules. Accordingly, 

the computational complexity was reduced effectively by the proposed rough set 

approach. The result of the classification accuracy as the average percent correct is 

shown in Table 6.1 with results from other classifiers for a comparison of system 

performance. It can be seen that the classification accuracy produced by the proposed 

framework of ARFIS is very competitive compared to results of other classification 

approaches. 

   

Table 6.1 Classification accuracy on the Fisher’s Iris Data 

Algorithms 
Setosa 
(%) 

Versicolor 
(%) 

Virginica 
(%) 

Average 
classification 
ratio (%) (+σ) 

GVS [85] 100 94.00 94.00 96.00 

AFLC [86] 100 86.00 100 95.33 

Wu and Chen [87] 100 93.38 95.24 96.21 

FEBFC [90]    97.12 

IRSS [91] 100 92.00 96.00 96.00 

ARFIS [93], [113] 100 92.05 96.67 96.24 (+2.18) 
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6.1.2 The Wisconsin Breast Cancer Data 
 

The Wisconsin Breast Cancer data set [92] is used to test our proposed system on a 

higher dimensional data. It has 699 medical instances with nine attributes 

(ClumpThickness, UniformityOfCellSize, UniformityOfCellShape, MarginalAdhesion, 

SingleEpithelialCellSize, BareNuclei, BlandChromatin, NormalNucleoli, Mitoses) and 

one output of two classes (Benign and Malignant). In order to create subsets for training 

and testing, a couple of steps were applied as follows. Amongst all 699 pattern vectors 

from the original data set, samples that include missing attributes (‘?’) were firstly 

removed. Then, the 10-fold cross validation technique was employed to estimate the 

classification results. Scatter plots for this Cancer data set are shown in Figure 6.3. 

 

 
Figure 6.3 The scatter plots for the Wisconsin Breast Cancer Data Set 
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The experiment was performed in the same manner utilized for the Fisher’s Iris data set. 

The generated antecedent membership functions for an attribute, Clump Thickness are 

shown in Figure 6.4. The best final reduct found for this Cancer data set was {CT, 

UCSize, UCShape, MA, SECS, NN} (6 features). The number of reduced fuzzy rules 

was 128 on average after the 10 simulations. As shown above, the effective knowledge-

reduction is achieved on the number of attributes and decision rules on this high 

dimensional data set. Regarding the results of the classification accuracy, it is shown 

with its statistics in Table 6.2 to compare with results from other approaches. Note that 

our proposed ARFIS produced very competitive and much higher accuracy on a higher 

dimensional data set in the pattern classification scheme. This can be seen in Figure 6.5 

as a difference in distributions of classification accuracy for approaches applied on this 

data set. Based on results in Table 6.2, the statistical test ANOVA was applied to show 

the statistical difference of outcomes produced by Setiono’s Neuro Classifier [88] and 

ARFIS, and it is shown in Table 6.3. 

 

 
Figure 6.4 The generated antecedent membership functions for Clump Thickness 

Table 6.2 Classification accuracy on Wisconsin Breast Cancer Data 

Algorithms Accuracy (%) (+σ) 

Setiono’s Neuro 
Classifier [88] 

93.99 (+4.81) 
 

MSC [89] 
94.90 
 

FEBFC [90] 
95.14 
 

IRSS [91] 
95.89 
 

ARFIS [93], [113] 
96.47 (+2.05) 
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Figure 6.5 The distribution of classification accuracy for approaches on Wisconsin Breast Cancer Data 

 

Table 6.3 The ANOVA test on classification results on WBC data 

Source 
Sum of 

Squares (SS) 
Degree of 

freedom (df) 
Mean of 

Squares (MS) 
F p 

Between-Groups (Col) 6.085 1 6.085 76.404 0.0001 

Within-Groups (Row) 14.698 110 0.133613 1.678  

Error 8.761 110 0.079   

Total 29.543 221    

 
In brief, the ANOVA test compares means by examining the F ratio, which is the ratio 

of between-groups variance divided by within-groups variance. The F ratio effectively 

provides an estimate of the extent to which the distributions from two (or more) groups 

or conditions overlap. The more the distributions overlap the less likely it is that the 

means differ and vice versa. The larger difference in the means causes F to be greater so 

increasing the likelihood of a significant difference between the means. 

From Table 6.3, it can be seen from a simple visual inspection on test result that the 

between-groups MS (variance) is far greater than the within-groups MS. This means 

that the variability across the different approaches of classification is much higher than 

the other which is from one subject to another for points in distribution of classification 

accuracy. In addition, the ARFIS has achieved higher accuracy with smaller deviation 

than result from Setiono’s. Therefore, it can be stated that the ANOVA test on 

classification results indicated that the proposed system achieved statistical significance 

of differences in means of classification accuracy on the Wisconsin Breast Cancer data 

set. This statistical test showed another quantitative proof that the proposed system 

produced better results than other approaches on this data set in the pattern 

classification scheme.  
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6.1.3 The Wisconsin Diagnostic Breast Cancer (WDBC) Data 

The Wisconsin Diagnostic Breast Cancer (WDBC) data set [92] is one of the later 

versions of Wisconsin Breast Cancer data with different medical features computed 

from a digitized image of a fine needle aspirate of a breast mass. These attributes 

represent characteristics of the cell nuclei present in the image. It has 569 instances in 

total with 30 real-valued input features and the same output of two classes (Benign and 

Malignant). Ten real-valued features are computed for each cell nucleus; radius, texture, 

perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and 

fractal dimension. The mean, standard error, and worst or largest of these features were 

computed for each image, resulting in 30 features. The scatter plots for the Diagnostic 

Cancer data are shown in Figure 6.6. 

 
Figure 6.6 The scatter plots of the Wisconsin Diagnostic Breast Cancer Data Set 
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As the Wisconsin Diagnostic Breast Cancer data set has been popularly used in the 

literature [94], [95] for one of the benchmark of higher dimensional data, the proposed 

system was applied to this data set under the same procedure. The generated antecedent 

membership functions for the first attribute are shown in Figure 6.7. The best final 

reduct found for this data set was {F1, F3, F4, F5, F6, F8, F9, F12, F15, F18, F19, F21, 

F23, F24, F25, F26, F29} (17 features). The reduced number of fuzzy rules was 278 on 

average after the 10 simulations. As shown, the reduction is achieved much more 

effectively on the number of attributes and fuzzy rules on such a high dimensional data 

set. The results of the classification accuracy are shown with statistics in Table 6.4 for a 

comparison with results produced by other approaches. The distribution of classification 

accuracy for approaches is shown in Figure 6.8. Note that our proposed framework of 

ARFIS produced much higher accuracy compared to most of other approaches on this 

higher dimensional data. The statistical ANOVA test was also applied to results 

produced by other approaches and ARFIS, and it is shown in Table 6.5. 

 
Figure 6.7 The generated antecedent membership functions for the first feature, F1 

 

Table 6.4 Classification Accuracy on Wisconsin Diagnostic Breast Cancer Data 

Algorithms Accuracy (%) (+σ) 

PLV [94] 
93.15 
 

RB [95] 
93.69 (+3.38 max) 
 

KD [95] 
94.93 (+2.12 max) 
 

SS1 [95] 
96.11 (+0.51 max) 
 

ARFIS  
95.59 (+1.41) 
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Figure 6.8 The distribution of classification accuracy for approaches on Wisconsin Diagnostic Breast 

Cancer Data 
 

Table 6.5 The ANOVA test on classification results on WDBC data 

Source 
Sum of 

Squares (SS) 
Degree of 

freedom (df) 
Mean of 

Squares (MS) 
F p 

Between-Groups (Col) 10.827 3 3.609 75.532 0.0001 

Within-Groups (Row) 28.975 110 0.263 5.513  

Error 15.767 330 0.048   

Total 55.568 443    

 
The ANOVA test results in Table 6.5 showed that the between-groups variance which is 

across the different approaches is greater than that of MS for within-groups case. Also 

the F ratio shown is quantitatively large than another which is driven by within-groups 

source. This means that the proposed ARFIS produced statistical significance in 

differences of means on the Wisconsin Diagnostic Breast Cancer data set. As seen, even 

though the best result was not produced by ARFIS on this data set, the proposed ARFIS 

achieved a comparatively higher classification result and a statistical significance on 

difference in means of accuracy in pattern classification.  

 

6.1.4 Conclusion 

 

This chapter described the application of the proposed framework of ARFIS in the 

pattern classification scheme. In order to assess the viability of the proposed system, 

three data sets were utilized to show the performance of ARFIS using different 

dimensionality and complexity of the example data set. The pattern classification task 

for these data sets is carried out under the same conditions as stated earlier. In each 

section for the experiment for each data set, their characteristics were mentioned with 

brief overview and the results were shown with the reduced size of the input features 
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and fuzzy rules. Regarding the classification accuracy, results on each data set were 

compared with other approaches in the context of the pattern classification. 

By the comparison of the classification results, it can be stated that the proposed 

framework of ARFIS has a very efficient knowledge-reduction process to reduce the 

high complexity of the given information, and excellent generalization ability with the 

proposed adaptive mechanism to adjust its knowledge-base towards better achievement 

in the pattern classification scheme. Based on the system performance of ARFIS in this 

application, it can be seen that there is much potential for this research in pattern 

recognition on high dimensional data within the context of fuzzy inference systems. 

 

 

6.2 Face Recognition 
 

Recently, the face recognition has been applied to a variety of practical systems such as 

identification systems in airports, security surveillance systems and so on. The most 

well known approach is Eigenface model [96], [97] using the Principal Component 

Analysis (PCA). The PCA is an unsupervised statistical method that finds the most 

relevant information to represent the given data. It has been used widely for the past 

decades in the face recognition area. However, the dimensionality of features from face 

images is obviously too high to process them. The processed data using the PCA 

approach have still too much computational complexity to calculate. In order to resolve 

this problem, further analysis of face recognition using the ICA [98] along with the 

comparisons with the PCA, and the rough set approach [99] have recently been 

considered for the effective feature-reduction in this research area to achieve better 

results. The advantages of both the rough set approach and the T-S type fuzzy model are 

combined to develop a T-S type PCA-Rough-Fuzzy Inference System for face 

recognition. Also, a theoretical similarity in the representation of the given information 

as a combination of linear systems in between the T-S type fuzzy model and the 

Eigenface model has led the authors to propose a new face recognition approach using 

the proposed system framework. 

 

6.2.1 Eigenface Model 

 

An information theory approach for coding and decoding face images has led M. Turk 

and A. Pentland to develop a face recognition system [96], [97] using principal 
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components of face images. In order to extract the most relevant information of face 

images from a database, the PCA (Principal Component Analysis) method has been 

applied. The eigenvalues of the covariance matrix of the set of face images have been 

used to rank the corresponding eigenvectors. An eigenvector associated with the largest 

eigenvalue holds the most relevant information that contributes to describe the 

distribution of face images in the ‘face space.’ Using these most relevant eigenvectors 

considered as a set of features, to characterize the variation of face images, each face 

image in a training set can be represented as a form of a linear combination of the 

eigenvectors. Each eigenvector can be displayed as a 2-D vector image that is called an 

‘eigenface’ due to its face-like appearance. 

 

The algorithm of the face recognition process using the eigenface model [96] takes the 

following steps. 

1. Calculate the eigenfaces of the training set of face images. 

2. If a face image is fed to the system as an input, calculate a set of weights based 

upon the M’  eigenfaces and the input vector by projecting the input face image 

onto each of eigenfaces. 

3. When the Euclidean distance between the projection vector and the face space 

is sufficiently small, determine the input face image as a face. 

4. If the input is a face image, classify its projection vector as a known or 

unknown individual. 

 

In the training set of face images Г1, Г2, … , ГM, the average face is defined by (6.1). 

 

∑
=

Γ=Ψ
M

i
iM 1

1
   i=1, 2, … , M                                                                                     (6.1) 

 

The difference between the average face and each face image can be obtained by (6.2). 

 

Ψ−Γ=Φ ii       i=1, 2, …, M                                                                                      (6.2) 

 

The difference images above are then used to find a set of M orthonormal vectors, or 

eigenvectors uk, and the associated eigenvalues λk of the covariance matrix defined by 

(6.3), 
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  i=1, 2, …, M                                                                     (6.3) 

where  

A = [Ф1 Ф2 … ФM]  

 

If the dimension of each face image is N2, the size of this covariance matrix is N2 × N2, 

which means its computational complexity is extremely high. However, it is possible to 

determine the eigenvectors by solving the M × M matrix [97]. This calculation reduces 

the dimension from N2 (the order of the number of pixels in the images) to M (the order 

of the number of images in the training set) to become computationally feasible. 

 

After the eigenfaces are obtained as above, the face recognition becomes a pattern 

classification task. The M’  eigenfaces which are selected based on the largest associated 

eigenvalues span a M’ -dimensional subspace of the original N2 image space. Now a new 

face image Г is projected onto the face space by each eigenface as defined by (6.4). 

 

)( Ψ−Γ= T
kk uω    k=1, 2, …, M’                                                                           (6.4) 

 

The M’  number of projection vectors ωk form a vector, or a ‘face class’ Ω, as defined by 

(6.5). A face class describes the contribution of each eigenface to the representation of 

the input face image, treating eigenfaces as a basis set of face images. 

 

[ ]'21 M
T ωωω L=Ω                                                                                                     (6.5) 

 

The Euclidean distance, єk is used in (6.6) to find the nearest face class k that provides 

the best representation of an input face image. 

 

єk = )( kΩ−Ω    Ωk: k-th face class vector                                                               (6.6) 

 

Finally, a face image is classified to class k when a minimum єk is below a threshold θє, 

otherwise the face is classified as unknown. 
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6.2.2 Design of a PCA-Rough-Fuzzy Inference System 

 

The proposed PCA Rough-Fuzzy Inference System [113] is built as a MISO T-S type 

fuzzy system. All attributes (projection weights, ωk) from the training face images are 

set as the antecedent fuzzy variables with equally distributed fuzzy clusters. Using these 

fuzzy partitions, the given information is converted as an encoded decision table. The 

best final reduct is found via the proposed knowledge-reduction process. The decision 

rules were generated using the best reduct and the rule generation algorithm in the 

rough set approach. Through the validity investigation for the generated decision rules, 

the minimal set of decision rules are used as a set of T-S type fuzzy inference rules. The 

coefficients of the T-S type fuzzy rules are estimated with target values which are  

distances from the origin point to the projection of the input vector in an M’ -

dimensional subspace. During the estimation process, a system performance evaluation 

is carried out using the RMSE measure towards higher accuracy. The functional block 

diagram of the construction of the proposed system is shown in Figure 6.9. 

 

 
Figure 6.9 The functional block diagram of the proposed PCA-Rough-Fuzzy Inference System 

 

In the recognition stage of the proposed system, a set of testing face images is projected 

onto the pre-determined eigenvectors through the PCA method. If a projection vector of 

an input face image is near the face space, then the input is classified as a face. If not, it 

is a non-face. The corresponding projection vectors are normalized for each feature and 

they are used to build a decision table. This decision table is then filtered and reduced 
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by the best reduct found in the construction phase of the proposed system. The feature 

values from the reduced decision table are fed into the constructed T-S type fuzzy 

inference system to identify their personal IDs. An arbitrary threshold is applied on the 

difference errors between the desired value and the T-S type fuzzy output to classify an 

input face image into one of the person IDs. 

 

6.2.3 Results 

 

Since the previous successful work [93] on the pattern classification task, the face 

recognition scheme is applied as another application to the proposed framework of 

Adaptive Rough-Fuzzy Inference Systems (ARFIS) in [113].  In order to assess the 

viability of the proposed system, the MIT Media Labs face image database [100] was 

employed. In the MIT face image database, each face of 16 people was digitized 27 

times, varying the head orientation, the lighting, and the scale in three types for each. 

The images were then filtered and sub-sampled to produce six levels of a Gaussian 

pyramid. Example raw face images from the MIT Media Labs face image database are 

shown in Figure 6.10. 

 

 
Figure 6.10 Example face images from the MIT Media Labs face image data base 

 

In our experiment, only full-scale and frontal face images for 16 people were considered 

for assessing the performance of the proposed system. For each individual, 5 face 

images were used in the training set and 4 face images were used in the testing set. 

Once the system was implemented and tested with those data sets, the training and the 

testing data were swapped using the N-fold cross validation technique.  

 

In the construction stage, the pre-designed antecedent membership functions were used 

for fuzzy partitions. Regarding the knowledge-reduction process, the number of input 

features was reduced from 15 to 8 and the number of the generated rules was reduced to 
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16 on average after the 10 independent runs. Based on the reduced knowledge, the 

proposed system was built as a MISO T-S type fuzzy inference system. 

In the recognition phase, the face images in the training set were classified as one of the 

sixteen individuals and no faces were rejected as unknown. The recognition accuracy 

was 93.75% on average after 10 independent runs. During the performance evaluation 

stage after the estimation of the coefficients of the T-S type fuzzy system, the RMSE 

measure between the actual and the target outputs was satisfactory. Towards better 

performance, an adjustment process on the antecedent membership functions and fuzzy 

rules can be applied using the conjugate gradient algorithm based on the RMSE 

measure. If this adaptive process were to be employed, it is expected that the system 

performance on this task would be much better with the flexibility of the knowledge-

base of the proposed system.  

 

Given this potential of the proposed system, the results in the experiment can be seen as 

encouraging and satisfactory when it is compared with the results of the conventional 

Eigenface model reported in [96], [98]. Note that the proposed system effectively 

reduced the high computational complexity of the given problem by deploying the 

rough set approach. Also the employed T-S type fuzzy inference system achieved the 

classification task using its good generalization ability. 

 

There are a couple of key points identified in the experiment. These are as the 

followings.  

1. The recognition accuracy using reduced feature sets, or reducts, is higher than 

the results using the full feature set. 

2. The most relevant features associated with the largest eigenvalues are in reduced 

feature sets at all times. 

 

The first point is ensured by the rough set theory, but no literature to date has clarified 

the characteristic for the second one in terms of the theoretical linkage between the PCA 

and the rough set theory. This fact may indicate positive potential for the rough set 

approach on the knowledge-reduction scheme in the pattern recognition area. 
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6.2.4 Conclusion 

 

This section described the face recognition task as another application of the proposed 

framework of ARFIS. In order to test the proposed system, the face images from the 

MIT Media Labs face database were employed to perform the given task. The 

experiment is carried out to construct the proposed PCA-Rough-Fuzzy Inference 

System from the training set and to test the system with the testing set under the system 

configurations as mentioned. In the experiment, the properties of the chosen face 

images were described and the results were shown with the reduced number of the input 

features and the fuzzy rules. The recognition accuracy on the face images was compared 

with the result of the conventional Eigenface model. 

 

Based on the comparison of the system performance, it can be said that the system 

performance of the proposed PCA-Rough-Fuzzy Inference System on the face 

recognition scheme produced encouraging and satisfactory results with a reduced 

number of input features and fuzzy rules. This achievement was done by deploying the 

effective knowledge-reduction process of the rough set approach and by employing the 

excellent generalization work of the T-S type fuzzy model. It is expected that the 

recognition accuracy would be much better if the advanced tuning process was applied 

to the knowledge-base of the proposed system towards better system performance. Note 

that the proposed system has future potential in this field of research in terms of the 

theoretical development or clarification of the relations in the knowledge-reduction 

process in between the PCA and the rough set theory. 
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6.3 Mobile Robot Navigation 
 

In the field of mobile robotics, most of the robotic behaviors have been hampered by a 

large number of uncertainties in real world environments. The uncertainty factors 

mainly come from the sensory inputs, which are often very noisy and sometimes 

unreliable. Fuzzy logic has been applied to handle this problem, which is widely 

deployed to achieve goals in robotic control [8], [9], [101]. However, due to the lack of 

a learning property of conventional fuzzy systems, there has been a need to tune their 

system parameters of the knowledge-base.  For the past few years, many researchers 

have suggested various methods of learning for fuzzy systems towards better 

adaptability to the external environment [12], [13], [14], [15], [80], [102]. 

 

In this chapter, we propose a new system for a Rough-Fuzzy Controller (RFC) for 

robotic behavior, a wall-following navigation. The controller uses rough-membership 

functions to improve its uncertainty reasoning. This ‘rough-fuzziness’ [103], [104] 

allows the whole system to analyze its environments in a more robust and reliable 

manner. A database from the conventional fuzzy system on the input and output feature 

domain has been generated as a priori  knowledge for the proposed system. Using this 

set of sample data, the partition process on the given data has been carried out to 

produce their equivalence classes according to the rough set theory. While the robot 

follows the given wall, the rough-fuzzy membership degree of an input vector has been 

calculated to create the ‘rough-fuzziness’ of the input to perform better analysis on the 

uncertainty of the environment. 

 

The proposed system has been tested in a number of environments with the EyeSim 

simulator [105], [106] and a real robot, LabBot [106]. Experimental results have shown 

that the best system performance has been carried out using the proposed rough-fuzzy 

system for the wall-following behavior as compared with other controllers including a 

Bang-Bang controller, a PID controller, a conventional (standard) fuzzy controller, and 

an adaptive fuzzy controller using GA (Genetic Algorithms).  

 

6.3.1 Rough-Fuzzy Membership Functions 

 

The rough-fuzzy membership function [103], [104] of an input Ux∈  for a given fuzzy 

set F can be defined by (6.7). 
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where  

cardinality(F):  the cardinality of the given fuzzy set  
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       µF(x): a conventional fuzzy membership function of an input x for a fuzzy set F  

 

In the literature [104], the input pattern vectors that have the same input representation 

of a pattern xi form a parallelepiped space on the space of input patterns. This 

parallelepiped contains all the patterns from the equivalence class [xi]. The ‘roughness’ 

is created in the parallelepiped when the parallelepiped contains more than one pattern 

and when these patterns have different fuzzy membership values. Also, the ‘fuzziness’ 

appears in the parallelepiped when the fuzzy membership values lie in (0, 1). Therefore, 

the presence of both the roughness and the fuzziness creates the ‘rough–fuzziness’. In 

terms of the spatial structure, the rough–fuzzy membership of the pattern xi is the 

volume occupied by the overlapped space divided by the volume of the complete 

parallelepiped. In other words, the volume of the overlapped space is approximated by 

the weighted number of patterns in the space, where the weight of each pattern is 

quantified by its fuzzy membership value. The concept of the rough-fuzzy membership 

function mentioned above is shown in Figure 6.11. 

 

 
Figure 6.11 The concept of the rough-fuzzy membership functions. Adapted from the literature [104] 
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6.3.2 Design of a Rough-Fuzzy Controller 

 

The proposed Rough-Fuzzy Controller (RFC) is built on the basis of a conventional 

fuzzy system and the rough set approach is utilized to analyze the uncertainty of the 

fuzziness of the input data. The rough-fuzzy membership functions were designed on 

top of the pre-designed fuzzy system to enhance the uncertainty reasoning. The wall 

following robotic behavior is applied to test our proposed system. It is a popular robotic 

task for exploring in structured or unknown environments. The quality of a good wall 

following behavior can be characterized by the following three conditions as discussed 

in [107]; to maintain a desired distance from the wall, to move at a constant velocity as 

high as possible, and to avoid sharp changes of direction and speed. It is assumed in our 

experiment that the robot follows the given wall on its left side. Following another side 

of the given wall can be easily implemented by changing the sensory inputs. 

 

The design of the conventional fuzzy controller for wall following task is described first 

as follows. The knowledge-base is designed by the human expert in mobile robotics or a 

fuzzy expert with sufficient experience for the goal-specific design of a fuzzy system. In 

order to design the system, the choice of fuzzy logic operators is determined for use 

based on the characteristics of the given task and purpose. The goal in our case is to 

make the robot follow a given wall at the desired distance from the wall maintaining a 

constant maximum velocity. The fuzzy operators are selected as shown in Table 6.6 for 

the control scheme in mobile robot navigation. 

 

Table 6.6 The choice of fuzzy logic operators 

Operator Method 

T-norm Algebraic min  

T-conorm Algebraic max  

Implication Mamdani  

Aggregation Algebraic max  

Defuzzification  Center Of Area  

 

The type of membership functions also has to be determined based on the 

characteristics of the goal. Towards better outcomes of the fuzzy system in the control 

scheme of mobile robot navigation, the standard Gaussian membership function is 

selected for sensory inputs as an antecedent variable and for heading angle as a 

consequent variable. The membership functions for the sensory input and the heading 

angle are shown in Figure 6.12 and 6.13, respectively. The sensory input is designed as 
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a single left side sensor to measure the distance to the wall and a front one is used to 

detect the obstacles in front of the robot. 

 

 
Figure 6.12 Antecedent membership functions for a sensory input 

 

 
Figure 6.13 Consequent membership functions for the heading angle 

 

The antecedent membership functions have five fuzzy linguistic variables; 

{VERY_NEAR (VN), NEAR (N), MODERATE (M), FAR (F), VERY_FAR (VF)}. 

The value of the desired distance from a given wall is 200mm and is set to the mean of 

the fuzzy membership function of ‘MODERATE’. The other membership functions are 

equally partitioned within the value of two times of the desired distance, while the total 

universe of the discourse of the antecedent is [0, 5000] mm. 

The consequent membership functions are designed using five standard Gaussian 

functions in the range of [-45, 45] degrees in local coordinates of the robot. They have 

the following fuzzy linguistic variables; {FAR_LEFT (FL), LEFT (L), ZERO (Z), 

RIGHT (R), FAR_RIGHT (FR)}. The mean value of ‘ZERO’ is set to 0.0 as the desired 



 103 

heading angle is perpendicular to the given wall while the robot follows it. The other 

membership functions are spread by equal intervals of 15 degrees.  

The simple rule base of the conventional fuzzy system is constructed as Mamdani-type 

fuzzy inference rules and they are composed as shown in Figure 6.14. Note that the 

given wall is located at the left side of the robot.  

 

 
Figure 6.14 The designed rule base for wall following behavior 

 

The proposed Rough-Fuzzy Controller is implemented on the basis of the designed 

conventional fuzzy system. The rough-fuzzy system has the ability of approximation of 

an input value for a given fuzzy set according to its definition. The degree of ‘rough-

fuzziness’ of an input leads to a better representation of uncertainties linked to the 

environment. Using the definition of a rough-fuzzy membership function in references 

[103] and [104], the rough-fuzzy membership value of a pattern xi is the volume 

overlapped space by an intersection between the volume of a parallelepiped for the 

equivalence class [xi]R and the conventional fuzzy membership function for a given 

fuzzy set F as in Figure 6.15. In other words, the volume of the overlapped region is 

approximated by the fuzzy-weighted number of data patterns in the space of the 

equivalence class [xi]R. 

 
Figure 6.15 The rough-fuzzy membership function on the feature domain 
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In order to implement the proposed rough-fuzzy controller, a set of 1,205 input-output 

examples is gathered via the conventional fuzzy controller to enhance uncertainty 

reasoning about unknown inputs in real-time. Each data vector in the database consists 

of three features; a distance measured to the given wall, a linear velocity measured of a 

robot, and a heading angle measured while following the wall. These features are 

considered to calculate the rough-fuzzy membership degree of the input vector. After 

the partitioning process applied to the set of examples, an input vector can be 

categorized into one of the equivalence classes [x]R by calculating the nearest distance 

to the nearest equivalence class in the input space. Then the rough-fuzzy membership 

value of the input vector can be obtained by the cardinality of the corresponding 

equivalence class and the standard fuzzy membership values of features; a distance 

measured and a heading angle measured. When calculating the rough-fuzziness of each 

feature for each input vector, two given membership functions are considered. The 

‘MODERATE’ antecedent fuzzy membership function for the sensory input and the 

‘ZERO’ consequent membership function for the heading angle are used to produce the 

rough-fuzzy membership degree of the input vector. Based on the rough-fuzzy 

membership values of the input vector, the corresponding fuzzy inference rule is fired 

only when those rough-fuzzy membership values are higher than the threshold values. 

The threshold values are determined in a heuristic way as 0.8 for both ‘MODERATE’ 

and ‘ZERO’ membership degrees. The algorithm described above is summarized in 

Figure 6.16. 

 

 
Figure 6.16 The algorithm to construct the proposed rough-fuzzy controller 
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6.3.3 Experiments 

 

The mobile robot navigation scheme is applied to the proposed framework of Adaptive 

Rough-Fuzzy Inference Systems (ARFIS) as another application.  In order to test the 

proposed system, the 3D mobile robot simulator, EyeSim [105] and a real robot, LabBot 

[106] are utilized. The experiments are carried out in five different environments to 

enable the robot to face different situations in navigation. The EyeSim 3D mobile robot 

simulator and the LabBot are shown in Figure 6.17. 

 

 

       
Figure 6.17 The LabBot and the EyeSim mobile robot simulator  

 

In experiments, the desired distance from the left wall was set to 200 mm and the 

desired linear velocity was set to 200 mm/sec. The linear velocity of the robot was 

initialized as a constant value, but while the robot encounters obstacles in front 450 mm 

in front of the robot the velocity is designed to reduce by 10 mm/sec in each control 

step ti to avoid obstacles. At the same time, the robot turns at the pre-defined angle of 

30 degrees to avoid obstacles in front. As soon as the robot avoids the obstacles 

successfully, the linear velocity is designed to be increased to reset it up to the desired 
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speed. This velocity control procedure and the obstacle avoidance routine are applied to 

all the following controllers.  

 

For the comparison of the system performance of different methods, the following five 

controllers are implemented and applied for the wall-following behavior; a Bang-Bang 

controller, a PID controller, a conventional standard fuzzy controller, an adaptive fuzzy 

controller using GA, and the proposed rough-fuzzy controller. 

 
1) The Bang-Bang control 

This is the simplest control approach for the wall-following task. The Bang-Bang 

controller implemented here is designed to move the robot between the minimum and 

the maximum distances from the given wall. The maximum and the minimum distance 

from the wall are designed to DEISRED + (MARGIN/2) mm, respectively. In here, the 

value for MARGIN is set to 90 mm. If the robot measures the minimum distance to the 

given wall, the robot turns away from the wall at a pre-defined heading angle of 15 

degrees. In a similar way, if the robot goes too far by exceeding the maximum distance 

from the wall, the robot moves back toward the wall. This simplest case produces a 

Bang-Bang motion between the minimum and the maximum distance offsets from the 

wall.  

 

2) The PID control 

The conventional PID (Proportional-Integral-Derivative) controller has been widely 

used for control functions in the industrial process. For the past couple of decades, a 

number of approaches have been proposed in order to tune PID gains. For instance, the 

classical techniques such as Ziegler-Nichols [108], Kalman [109], and trial and error 

methods have been employed to adjust gains of PID controllers. Recently, more 

complex approaches have been utilized to re-adjust PID parameters, which are the 

hybrid self-organizing fuzzy PID controller [6] and an adaptive hierarchical tuning 

scheme for fuzzy PID controllers [4]. The classical PID controller is designed here to 

determine the heading angle of the robot for wall-following behavior. The mathematical 

formula of PID control is defined by (6.9). 
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 e(t): the difference between the desired and the actual heading angle 

 KP, KI, KD : the PID gain parameters 

 

The error function e(t) is designed as the difference between the desired heading angle 

and the actual heading angle measured. The trial and error method is applied in order to 

adjust PID parameters (KP, KI, KD) for the PID controller. The three gain parameters 

(KP, KI, KD) are tuned as (0.2, 0.05, 0.3) respectively using this tuning approach to 

obtain a smooth motion for the robot to follow the given wall. 

 

3) The conventional fuzzy control 

The design of the conventional fuzzy system is described in the previous section. 

 

4)  The adaptive fuzzy control using GA 

The classical GA approach was applied to adjust the antecedent and the consequent 

membership functions of the conventional fuzzy system. In this experiment, the 

chromosome encodes the values of the mean and the deviation of each fuzzy 

membership function. The heights of the Gaussian membership functions are fixed to 

1.0 for simplicity. The initial seeding is given randomly with equal probability within 

the universe of the discourse of each parameter. The fitness function to minimize at 

each control step, ti is defined by (6.10). 

 

{ }222 ))(())(())(()( desimvdesimdesimdi vtvtdtdtf −⋅+−⋅+−⋅= ωφφωω φ                             (6.10) 

where  

wd, wφ, wv : the weights for the distance from the wall, the heading angle of a 

robot, and the linear velocity, respectively 

ddes, φdes, vdes : the constants for the desired distance, the desired heading angle, 

and the desired constant linear velocity , respectively 

dm, φm, vm : the variables measured at each control step, ti 

 

The weights, wd, wφ, wv are set to 0.8, 0.1, and 0.9, respectively. The off-line learning 

was chosen for the tuning scheme. The parameters of antecedent membership functions 

were adjusted when the consequent was fixed. In a similar way, the parameters of the 

consequent variable were tuned while the antecedent was fixed. The final tuned 

antecedent and consequent membership functions are shown in Figure 6.18 and 6.19, 

and their final parameters are listed in Table 6.7 and 6.8. 
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Figure 6.18 The adjusted antecedent membership functions 

Table 6.7 The adjusted parameters of antecedent membership functions using GA 

Tuning Before After 

 m             σ m             σ 

VN 0.0 60.0 9.62 16.06 

N 100.0 60.0 115.18 88.22 

M 200.0 60.0 200.0 91.22 

F 300.0 60.0 338.24 89.93 

VF 400.0 60.0 532.18 41.46 

 
Figure 6.19 The adjusted consequent membership functions 

Table 6.8 The adjusted parameters of consequent membership functions using GA 

Tuning Before After 

 m             σ m             σ 

FL -30.0 9.0 -31.56 3.21 

L -15.0 9.0 -29.18 3.64 

Z 0.0 9.0 0.0 12.96 

R 15.0 9.0 22.68 3.02 

FR 30.0 9.0 34.83 8.29 
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5) The Rough-Fuzzy control 

As stated earlier, the proposed rough-fuzzy controller is implemented based on the pre-

designed conventional fuzzy controller. The system design of the rough-fuzzy controller 

and its algorithm to calculate the rough-fuzziness of an input is described in the 

previous section. 

 

6.3.4 Results 

 

The application of the proposed system on a wall-following behavior was carried out in 

different types of environments; straight, circular, arbitrary-shaped, and 90-degree 

walls. The desired distance from the left wall was set to 200 mm and the constant linear 

velocity was initialized to 100 mm/sec. The independent ten runs were carried out for 

each environment and for each control methods using a zero-error model on EyeSim. 

Also, five runs of the actual experiments were done with a real mobile robot, LabBot. 

Some of the experimental results have been published in [110], [113] and extended in 

[111].  

 

In order to measure the system performance, the Performance Index (PI) is defined by 

(611).  The formula used for calculating the PI is adapted from the fitness function 

defined by (6.10) excluding the component for the heading angle. Since the heading 

angle changes all the time, the PI value will be accumulating in response to the shape of 

the environments. Note that the PI values close to zero represent a better performance of 

the system. 

 

{ }22 ))(())(()( desimvdesimdi vtvdtdtPI −⋅+−⋅= ωω                                      (6.11) 

 

Regarding the test results for each control method in each environment, there are five 

performance metrics for wall following behavior; the average distance (mm) measured 

by the sensor to the left wall, the average total time (s) spent by the robot along the path, 

the average total length (m) of the path in environment, the average performance index 

(PI), and the average linear velocity (m/s) of the robot. The measurements in each table 

for each result are done using EyeSim and they are the average after 10 independent 

runs for each control scheme. 
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1)  Straight wall environment 

The proposed system was applied to the straight wall following task. The five control 

methods showed their movements for following the given wall. This experiment in 

straight walls was carried out using EyeSim first, and then done with the real robot, 

LabBot. The trajectory of each controller on EyeSim for a part of the straight wall 

following is shown in Figure 6.20 and their results are shown in Table 6.9. Based on the 

results shown in the figure and the table, the proposed rough-fuzzy controller performed 

relatively better in the straight wall environment in terms of the uncertainty reasoning 

and the PI measure. 

 

 
Figure 6.20 The trajectory of the straight wall following behavior on EyeSim 

 

Table 6.9 The results of the straight wall following 

 Dist (mm) Times (s) Path (m) PI Vel (m/s) 

BB 519.77 225 56.1 129.02 0.2 

PID 512.65 211 45.9 114.85 0.2 

StdFuz 493.57 185 41.4 97.00 0.2 

GAFuz 498.23 183 40.1 76.35 0.2 

RoughFuz 503.37 185 40.5 17.92 0.2 
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Figure 6.21 The column chart for results of the straight wall following  

 

2)  Circular wall environment 

The wall following behavior was tested in a circular wall environment. The trajectories 

of the robot for the circular wall following for each control method are shown in Figure 

6.22. The trajectories in Figure 6.22 and the results in Table 6.10 also indicated that 

fuzzy-based systems performed better than a Bang-Bang controller, a PID controller 

and also the Rough-Fuzzy controller had comparatively better outcomes over the 

standard fuzzy system and the GA-applied fuzzy system. Note that in this circular 

environment there are some oscillations of the navigation due to the corners from the 

line segments used to approximate the circular course. 

 

     
(a) Bang-Bang      (b) PID      (c) Standard Fuzzy 

     
(d) GA-Fuzzy   (e) Rough-Fuzzy 

Figure 6.22 The trajectory of the circular wall following behavior on EyeSim 
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Table 6.10 The results of the circular wall following 

 Dist (mm) Times (s) Path (m) PI Vel (m/s) 

BB 221.32 148.7 12.80 34.50 0.198 

PID 214.53 134.0 12.78 29.17 0.194 

StdFuz 212.38 128.5 12.66 23.92 0.2 

GAFuz 210.34 131.0 12.59 26.25 0.2 

RoughFuz 210.41 129.3 12.55 24.27 0.2 

 

 
Figure 6.23 The column chart for results of the circular wall following 

 

3) Arbitrary-shaped wall environment 

All different control methods were applied to the arbitrary-shaped environment as 

shown in Figure 6.24. This type of environments presents local unknown arbitrary 

corner models for the robot to face more complicated situations during the navigation. 

The arbitrary-shaped environments are suitable for testing the quality of the proposed 

approach for wall-following task. The results of this experiment are shown in Table 

6.11. The proposed Rough-Fuzzy method showed generally better results than any other 

method. 

      
(a) Bang-Bang                              (b) PID                                    (c) Standard Fuzzy 
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(d) GA-Fuzzy                    (e) Rough-Fuzzy 

Figure 6.24 The trajectory of the arbitrary-shaped wall following behavior on EyeSim 
 

Table 6.11 The results of the arbitrary-shaped wall following 

 Dist (mm) Times (s) Path (m) PI Vel (m/s) 

BB 230.35 172.75 13.83 51.77 0.189 

PID 213.67 162.67 13.61 19.57 0.192 

StdFuz 209.91 141.25 13.44 18.40 0.197 

GAFuz 210.52 141.33 13.45 18.42 0.197 

RoughFuz 209.83 142.33 13.43 18.38 0.197 

 

 
Figure 6.25 The column chart for results of the arbitrary-shaped wall following 

 

4) Sharp-corner 90-degrees wall environment 

The more complex environment including sharp 90 degrees corners shown in Figure 

6.26 was used in order to compare the quality of the five controllers in sharp 

movements. This 90-degree wall environment has four concave and eight convex 

corners with a length of 39 meters. Convex corners are obviously difficult situations, 

because the robot sensors may not be able to detect the wall correctly at a certain 

control step ti when driving at a corner. The results in Table 6.12 indicated that the 
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proposed rough-fuzzy controller approach produced better outcomes when compared 

with other methods in spite of the difficulties as mentioned above. 

 

     
(a) Bang-Bang                                (b) PID                               (c) Standard Fuzzy 

      
(d) GA-Fuzzy                          (e) Rough-Fuzzy 

Figure 6.26 The trajectory of the sharp-corners wall following behavior on EyeSim 
 

Table 6.12 The results of the sharp corners wall following 

 Dist (mm) Times (s) Path (m) PI Vel (m/s) 

BB 246.08 575.5 54.57 70.91 0.188 

PID 241.38 546.0 46.86 40.01 0.191 

StdFuz 224.04 520.75 44.70 35.73 0.194 

GAFuz 222.70 523.33 44.33 33.70 0.194 

RoughFuz 223.49 518.0 43.11 34.35 0.194 

 



 115 

 
Figure 6.27 The column chart for results of the sharp corners wall following 

 

The results in figures and tables showed that the Bang-Bang controller had the worst 

performance and fuzzy logic controllers outperform the Bang-Bang and the PID 

controllers. The adaptive fuzzy controller using GA produces better results compared 

with the conventional standard fuzzy controller. Our proposed rough-fuzzy controller 

produced better results than the standard fuzzy system. Based on the results of wall 

following behavior in a variety of environments, it can be stated that the proposed 

Rough-Fuzzy controller produced comparatively better system performance compared 

with other control approaches. It is expected that if the proposed system had some more 

multiple inputs and adaptive mechanism to tune itself, then much better uncertainty 

reasoning process would be done via the proposed rough-fuzzy approach. 

 

It is crucial to remark that the improvement of the uncertainty reasoning process of the 

standard fuzzy system was achieved by the analysis of the “rough-fuzziness.” The 

rough-fuzzy approximation of an input vector led to better uncertainty reasoning 

process related to the environment in control scheme for mobile robot navigation.  

 

6.3.5 Conclusion 

 

This section mentioned the mobile robot navigation as one of the applications of the 

proposed framework of ARFIS. In order to apply the proposed system to the robot 

navigation, the input and output data samples were collected via the pre-designed 

conventional fuzzy system to perform the given task. The experiment is carried out to 

design the proposed Rough-Fuzzy Controller (RFC) from the database and to compare 
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its performance with other control approaches. In each experiment, the wall following 

behavior is carried out using different five control methods in each environment. 

 

Based on the comparison of the system performance, it can be stated that the system 

performance of the proposed rough-fuzzy controller in robot navigation scheme 

produced satisfactory and competitive results with small values of the PI (Performance 

Index). It was achieved by utilizing the uncertainty analysis of the rough-fuzziness of 

the given input. It is expected that the control output would be much enhanced if the 

advanced adaptive process was applied to the proposed system towards better system 

performance. A further study is continuing on the development of the MISO T-S type 

RFC on point-to-point navigation towards more robust, faster, and efficient mobile 

robot navigation. 
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Chapter 7 

7. Conclusion and Discussion  
 

 

In conclusion, the proposed framework of Adaptive T-S type Rough-Fuzzy Inference 

Systems (ARFIS) has been developed to resolve the difficulties of the existing fuzzy 

systems;  

1) the curse of the high dimensionality of the knowledge base when more inputs 

are involved,  

2) the automatic generation of membership functions and rules with the absolute 

minimal information of the given knowledge, and  

3) the adaptive mechanism for systematic tuning towards better system 

performance.  

In order to assess the capability of the proposed system, it has been applied to a variety 

of applications; pattern classification on the Fisher’s Iris and Wisconsin Breast Cancer 

data sets, face recognition on the MIT Media Lab face database, and mobile robot 

navigation on wall-following and point-to-point robotic behaviors. Results from the 

experiments have shown that the performance of the proposed ARFIS is satisfactory, 

and competitive. It can be said that the proposed framework is a suitable tool to achieve 

the given task within the context of the rough-fuzzy hybridization scheme. 

 

In this research, there are some important issues to consider for further investigation and 

development of the proposed system. 

Firstly, as the objective of knowledge-reduction is to obtain the absolute minimal form 

of the given knowledge, a comparison with other reduction methods should be 

investigated and carried out. For instance, the PCA, the ICA, and other reduction 

approaches in rough set theory should be compared on the same data set under the same 

constraints of the variables in their test conditions. This, of course, does not always 

provide the best one as a fixed case, because knowledge-reduction really depends on the 

data set applied, the properties of the reduction methods, and the goal of the application. 

However, a comparison with other knowledge-reduction approaches with statistical 

analysis of their results would help to provide a deeper insight to help choose the 

appropriate knowledge-reduction method for a particular application.  
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Secondly, within the T-S type fuzzy system framework, it has not yet been clarified 

how to exactly assign the appropriate meaningful linguistic terms to the associated 

membership functions at the system design and adjustment stages. This is one of the 

general problems of fuzzy system design for fuzzy experts. Even though, a T-S type 

fuzzy system incorporates very reliable system design in a particular field with a huge 

amount of data, this system might not work as expected for unknown inputs. After the 

initial construction of ARFIS, the proposed system would have a system performance 

evaluation stage towards better achievement including the tuning process. After the 

tuning stage, the initially assigned physical meaning of the membership functions would 

be quite different from the first ones. Then in this case the system needs a verification 

and/or validation for the unknown input and the expected output. Therefore, an update 

process of system modeling would be required to amend the initial system design of T-S 

type fuzzy models. 

Moreover, when the proposed system handles extremely high dimensional data the 

proposed system needs a faster process to reduce the given knowledge, because the 

rough set approach calculates for all the given input features by comparing all the pairs 

of them. Thus, a fast knowledge-reduction method would be in great demand in an 

adaptive speed-up manner for higher dimensional data sets. For instance, a feature 

transformation into a lower dimensional data set would help to analyze and reduce the 

given heavy data sets. This issue will lead to many new hybrid techniques to enhance 

the system performance towards fast speed calculation. 

Finally, as the Rough-Fuzzy hybridization has been deployed as a new trend in 

decision-making over the past decades, a more general mathematical model is required 

for the theoretical combination of fuzzy sets and rough sets. This generic model would 

then contribute to this field of study for researchers to model a variety of application 

systems with ease. 

 

7.1 Future Work 
 

Even though fuzzy inference systems have been used very successfully in real world 

applications for the past decades, they also need to have system improvement towards 

better performance. Due to the lack of an adaptation process within themselves, some 

techniques from soft computing and computational intelligence have been applied to 

contribute to the adaptive mechanism of the fuzzy inference systems. In general, the 

adjustment of fuzzy systems means the tuning of membership functions and fuzzy rules. 
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There are some issues to examine and problems of fuzzy systems to resolve for system 

enhancement. In this section, six systematic measures are described for future work to 

improve the proposed framework of ARFIS by investigating problems and suggesting 

fuzzy system metrics towards better system behavior.  

 

Regarding the adaptation of fuzzy systems, the common problem of the tuning of 

membership functions is that the shape of membership functions is changed drastically 

so that some of fuzzy subsets lose their originally designed physical meanings. Also by 

the effect of the adjustment process, the fuzzy subsets can no longer cover the whole 

range of the input domain. In this case, the fuzzy partitioning of the input is incomplete. 

In other words, the fuzzy system produces no output when the value of the input is in 

the uncovered range. Thus, the examination on the completeness of fuzzy systems is 

crucial especially for the automatically generated fuzzy systems from data. 

Prior to further discussion, it is required to define the term, “completeness”. As Jin 

suggested in [76], a fuzzy system is said to be complete if 

1) the fuzzy partitioning for each input is complete and 

2) the rule structure of fuzzy rules is complete. 

The fuzzy system is incomplete if one of these conditions is violated. 

In this section, the first condition is described further. For the second condition, it is 

explained in the later section for compactness of fuzzy systems from the rough set 

perspective. 

 

After the adjustment of the membership functions, the fuzzy partitions of input 

variables are no longer complete, because the adaptation produces re-distribution of 

membership functions to minimize or maximize the designed objective function to 

optimize the fuzzy system. However, there is an issue of ‘over-fitting’ in the 

optimization process. The over-fitting of membership functions causes the problems of 

incompleteness of fuzzy partitions, the loss of the physical meanings of them, and the 

resulting lack of distinguishability (or interpretability) of fuzzy subsets.  

In order to avoid the over-fitting of membership functions, some systematic procedures 

or measures must be considered in the optimization process. For the system 

enhancement of ARFIS, a fuzzy similarity measure is used to check the completeness of 

fuzzy partitions of input variables and to preserve the distinguishability of them. The 

fuzzy similarity measure defined by the equation (5.8) in chapter 5 is employed. The 
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Figure 7.1 shows the concept of the similarity of two neighboring fuzzy sets Fi, Fj using 

the fuzzy similarity measure. 

 
Figure 7.1 The similarity of two fuzzy sets using the fuzzy similarity measure 

 

If the similarity of any two fuzzy subsets for input variables can be suitably controlled, 

the completeness of fuzzy partitions can be achieved and also the distinguishability can 

be improved. However, the whole fuzzy system could be incomplete even if the fuzzy 

partitions of the input are complete. That is to say, the completeness of fuzzy rules also 

has to be investigated to guarantee the completeness of the fuzzy systems. This issue 

will be discussed with the compactness of fuzzy systems. 

 

There is another adjustment for fuzzy systems and it is for fuzzy rules, especially for 

rules generated from data. Here we have to deal with conflicting rules that have the 

same antecedents but difference consequents. This is called inconsistency of fuzzy 

rules. If the rules are generated from data mixed with noise, the problem is more 

serious. In most of the suggestions so far, a degree of belief or strength of rule firing is 

assigned to each rule and the one with the maximum degree will be accepted to resolve 

the inconsistency of the generated fuzzy rules. 

It is desirable to provide the definition of consistency first. As Jin mentioned in [76], 

[77], fuzzy rules are considered to be inconsistent if 

1) fuzzy rules have very similar antecedent variables but rather different 

consequent variables and 

2) they are in conflict with the expert knowledge. 

It is possible that two fuzzy rules may be inconsistent when their antecedents are very 

similar, not necessarily the same. For example, there are two cases of possible 

inconsistency between two fuzzy rules as shown in Figure 7.2 and 7.3. These examples 
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are extracted from the generated rules on the Fishers’ Iris data set using the rough set 

approach. 

 

 
Figure 7.2 The two fuzzy rules with the same antecedents but different consequents 

 

 
Figure 7.3 The two fuzzy rules with similar antecedents but different consequents 

 

It is essential to provide a certain measure of similarity between two rules, since the 

concept of the consistency is quite abstract. We adapted the definition of the 

consistency of fuzzy rules using a fuzzy similarity from Jin’s proposal in [76], [77], 

because it is a very good model to consider the similarity of fuzzy rules for the 

closeness between two rules even when the antecedents are not the same.  

The definition of the consistency in [76] is generally suitable for the Mamdani type 

fuzzy model. But, the proposed system is the T-S type fuzzy system in which the 

consequent part of fuzzy rules is a function of a linear combination of input variables. If 

the T-S type consequent part is simplified as a constant, it is possible to use the 

mathematical equation in [76] to calculate the consistency because a normal fuzzy set 

can be reduced to a form of a fuzzy singleton. If the consequent is retained as a 

function, it is difficult to calculate the consistency between rules because of the 

difficulty to understand the physical meaning of the real functions. This point should be 

examined further with more theoretical supports. 

 

In general, the generated fuzzy rules from data are quite redundant which means it is not 

optimal. This leads to a need for the compactness for fuzzy systems. In the case of full 

combination of all input variables to build a fuzzy system, the total number of fuzzy 

rules is an exponential number which is a computational burden for the system. As 

mentioned earlier, the compactness of a fuzzy system is strongly required to reduce the 

system complexity when the number of input features is increased, especially for the T-

S type fuzzy model. 

As suggested in chapter 5, the rough set approach is applied to the proposed framework 

of ARFIS to make the generated fuzzy system compact by deploying the knowledge-

reduction process without losing its original classification power. Also the theoretical 



 122 

investigation on the generated rules to ensure the full coverage of the input and output 

relationship of the given information is carried out as proposed earlier. This is to 

guarantee the completeness of the rule structure and to optimize the T-S type fuzzy 

rules towards the compactness of the proposed system. 

 

The interpretation of the flexibility  of a certain system is dependent on the system 

design or objective. In general, the flexibility for a system is used as a term for a 

capability of a system to achieve its aim under the different conditions of operations in 

the environment. Here, the flexibility of fuzzy systems is defined as applicability of a 

system onto different problems or application domains. 

In order to show the viability of the proposed system, we applied our system to different 

application domains to resolve the different problems. Firstly, the pattern classification 

scheme is chosen to prove that the proposed system is an excellent tool as a framework 

of ARFIS by achieving better classification accuracy even on complex higher 

dimensional data sets. Next, the face recognition task is selected to reduce the huge 

number of features generated which are from 2D face images and to recognize each 

person as an identified object using the compact fuzzy rule system. As a result, by 

deploying the PCA-Rough-Fuzzy system, the number of input features is reduced 

effectively and the recognition rate is very competitive. For the final application, the 

mobile robot navigation is chosen to demonstrate better robot navigation behavior in a 

number of different environments. It is shown that the navigation using the proposed 

rough-fuzzy system is generally better than other control schemes. 

 

For better adaptability  of fuzzy systems, a number of approaches have been suggested 

so far as mentioned earlier. This topic has been one of the popular issues of research in 

the fuzzy community. A number of different learning approaches have been applied to 

fuzzy systems, for instance, supervised and unsupervised learning [78], [79], 

reinforcement learning [80], neural networks-based learning [12], and so forth. In this 

thesis, the definition of the adaptability is the capability of learning within the context 

of fuzzy systems. 

Regarding the proposed system, we selected the least square estimate and the conjugate 

gradient descent method for the adaptive mechanism of the ARFIS. To find the 

coefficients of the consequents of the T-S type fuzzy rules during the system 

construction with the training sample data, the least square method is utilized. Once the 

system is established with the training data set, the Polak-Ribiere conjugate gradient 
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function is employed to adjust the parameters of antecedent membership functions 

towards a smaller RMSE error value. 

 

In a data-driven fuzzy model, one of the biggest issues is the interpretability  of a fuzzy 

system. According to the original concept of fuzzy sets theory in Zadeh’s paper [1], it is 

well known that one of the motivations to use fuzzy systems in system modeling is that 

with a fuzzy system designed using human linguistics it is easy to understand the 

characteristics of the system behavior. However, the initial system design with good 

interpretability could be lost after the adaptation process of fuzzy systems. In order to 

resolve this problem, many approaches have been suggested. For example, the 

interpretability is controlled by limiting the position of membership functions in [81]. 

As an alternative, the overlapped and similar membership functions are merged to 

adjust the fuzzy system to be more interpretable in [82]. For the T-S type fuzzy rules, 

the interpretability of their consequents is considered in [83] during the local learning 

process. 

The interpretability of fuzzy systems heavily depends on the distribution of the 

membership functions. The generated fuzzy partition should be complete and 

distinguishable towards better fuzzy rule generation and more precise meaning of fuzzy 

subsets. The distinguishability of the fuzzy subsets is the first priority to improve the 

interpretability of fuzzy systems. There are no clear discussions or definitions so far for 

the interpretability of a fuzzy system. Also there are no well-established criteria for the 

distinguishability of fuzzy subsets. The fuzzy similarity-based approach has been 

discussed in [77] with the regularized learning method to improve the interpretability of 

a fuzzy system.  

For the proposed system, the improvement of the interpretability is being developed to 

extend this work towards better distinguishability of fuzzy partition of the input domain. 

There will be more theoretical development for better definition of the interpretability. 
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