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Abstract

Fuzzy inference systems (FIS) are information pgeicey systems using fuzzy logic
mechanism to represent the human reasoning precesto make decisions based on
uncertain, imprecise environments in our dailydivBince the introduction of fuzzy set
theory, fuzzy inference systems have been widegd usainly for system modeling,

industrial plant control for a variety of practicapplications, and also other decision-
making purposes; advanced data analysis in medgsaarch, risk management in

business, stock market prediction in finance, datlysis in bioinformatics, and so on.

Many approaches have been proposed to addresssine of automatic generation of
membership functions and rules with the correspandubsequent adjustment of them
towards more satisfactory system performance. Becaune of the most important
factors for building high quality of FIS is the geation of the knowledge base of it,
which consists of membership functions, fuzzy rufegzy logic operators and other
components for fuzzy calculations. The design & Edmes from either the experience
of human experts in the corresponding field of aesle or input and output data
observations collected from operations of systefimgrefore, it is crucial to generate
high quality FIS from a highly reliable design soteeto model the desired system

process best.

Furthermore, due to a lack of a learning propeftfunzy systems themselves most of
the suggested schemes incorporate hybridizatidmigges towards better performance
within a fuzzy system framework. A fuzzy system ¢omed with neural networks is a
representative example of hybrid fuzzy systems rpm@ted to learn the pattern of
input and output relations so that the fuzzy systeérained can produce the output
against new unknown input data. Other hybridizattases are, for instance, genetic
fuzzy systems to optimize the corresponding objectfunction according to their
system purposes, statistical function-combined yuzystems for modeling and
analyzing huge data gathered for extracting usefatrmation, and so on.

Even though most of these systems mentioned hawdded very encouraging and
satisfactory results to achieve their goals anglesproblems, they have suffered from
the computational complexity needed to calculatgrthystem outputs. One problem
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lies in the difficulties associated with the maximunumber of resulting fuzzy rules,
which increases exponentially when higher numbenpit features is employed. As a
consequence, the computational load required telsdar a corresponding fuzzy rule
becomes very heavy. The fuzzy rules generated radedl to be examined for their
validity for use as appropriate fuzzy rules befoeerying out the inference process.
This validity checking process is to ensure a @dVerage of the generated rules to
represent the given knowledge. Another is that itigally obtained membership
functions and rules based anprior knowledge are often in need of advanced system
adjustment and refinement towards higher accurdibis systematic enhancement is
required to update the FIS in order to produceilblexand robust fuzzy systems for

unexpected unknown inputs from real-world environtae

This thesis proposes a general framework of AdepfivS (Takagi-Sugeno) type
Rough-Fuzzy Inference Systems (ARFIS) for a vargdtgractical applications in order
to resolve the problems mentioned above in theesdmif a Rough-Fuzzy hybridization
scheme. Rough set theory is employed to effectivetiuce the number of attributes
that pertain to input variables and obtain a miniset of decision rules based on input
and output data sets. The generated rules are egdrhy checking their validity to use
them as T-S type fuzzy rules. Using its excelleshtamtages in modeling non-linear
systems, the T-S type fuzzy model is chosen tooperthe fuzzy inference process. A
T-S type fuzzy inference system is constructed Iy aatomatic generation of
membership functions and rules by the Fuzzy C-M¢a@M) clustering algorithm and
the rough set approach, respectively. The gener&t8dtype rough-fuzzy inference
system is then adjusted by the least-squares methdda conjugate gradient descent

algorithm towards better performance within a fugggtem framework.

To show the viability of the proposed frameworkARFIS, the performance of ARFIS
is compared with other existing approaches in g&taof practical applications; pattern
classification, face recognition, and mobile rolmatvigation. The results are very
satisfactory and competitive, and suggest the AR&18 suitable new framework for
fuzzy inference systems by showing a better sygierformance with less number of
attributes and rules in each application.
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Chapter 1

1. Introduction

The decision-making process in human brains isafriee most important information
processing routines that act in response, and diogpito the given input. Human
beings obtain data from the external environmerd Bsita Acquisitionprocess using
their sensors, such as eyes, ears, skin, and sdhmn different sets of abstract
categories are created related to the data gathetrech is calledData Interpretation
These categorized sets are classified accordipgetdously accumulated experience of
recognition and linked with pre-established or remmcepts as Knowledge BaseThe
interpreted knowledge of the given input is fedoirihe Reasoning Mechanisito
produce the final decision. Finally, the decisiatput leads to an action for humans to
react according to the given input. These proceddescribed are shown in Figure 1.1

as a series of modules for carrying out the decisi@aking process.

Decision-making System

External
Environment DECISIONS
Data Knowledge Reasoning
Interpretation Base Mechanism
Data
L Action
Acquisition ctio

Figure 1.1 The decision—making process

1.1 Introduction and Main Goals

The fuzzy inference process is a type of infornmatprocessing, which represents

decision-making using fuzzy set theory about umdety, imprecision, and vagueness

of objects that are of research interest. In funtgrence systems, the reasoning task is
carried out based on fuzzy rules composed by figmsyem developers using fuzzy

linguistic variables assigned with the correspogdooncept of the interpreted input

data. The decision output of the reasoning is tatled by a fuzzy inference engine

linked with other components in the knowledge-batseizzy inference systems (FIS).
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The fuzzy inference system in Figure 1.2 showsntlaén process of fuzzy inference.
When a given input is fed into the pre-designedzyuinference system based an

priori knowledge, each attribute of the input is fuzzifiesing membership functions in
the knowledge-base. The fuzzified input data awck ifdo fuzzy inference rules to
produce rule output for each rule. The rule outpares calculated according to the
design of fuzzy operators in fuzzy rules. Then raalfioutput is calculated by de-
fuzzification process. During the calculations df fazzy operations mentioned, the

fuzzy logic operators stored in the knowledge-lEHgdbe FIS are employed.

A priori

knowledge

‘,

Input / Pre-designed Fuzzy Inference System \ Output

ore De-

4 1

e ™
Knowledge-base

- Fuzzy Membership Functions
\\_ Fuzzy Rules, Operators, etc y /

Figure 1.2 The fuzzy inference process

Since the first initiation of fuzzy logic by Zad¢h], fuzzy inference systems have been
developed to improve performance in the decisiokinga scheme over the past
decades in; non-linear system modeling [2], [3], jAdustrial plant control [5], [6],
robotics [7], [8], system identification [9], [10]J11], and so on. A number of
approaches have been suggested to enhance the lagizybased decision-making
mechanism in order to resolve its problems and leasdues related to fuzzy inference
systems.

The main attention in the development of fuzzy lafee systems has been focused on
the automatic generation of membership functiortsrates, and the hybrid techniques
for providing the conventional fuzzy systems witkearning capability towards better

system performance. One of the significant factorassess the performance of fuzzy
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inference systems is the design of the knowledge;haecause the design scheme of a
choice of fuzzy logic operators, a type of membigrdhnctions, and a composition
strategy of fuzzy rules will produce a final outpntorder to approximate the given
input. Every FIS has a different system purposedsidils according to the objective of
the system. The design of a FIS is determined theethe experience of experts in a
particular field of the research or input and otitplata collection from system
operations. Accordingly, the quality and the sysfarformance of a FIS are dependent
on the system design. In other words, it is criticadesign a better quality FIS by a

highly reliable system design scheme to achievelésé&red system process.

Hybrid techniques in fuzzy inference systems hagenbproposed to supplement the
existing fuzzy systems mainly with learning andimiing capabilities due to the lack
of flexibility of the conventional fuzzy inferenceystem itself. A common hybrid
system is a neural-fuzzy system which is a comlanadf neural networks and fuzzy
systems [12], [13], [14], [15]. For other exampldsere are GA(Genetic Algorithm)-
fuzzy systems to optimize their objective functigsing GA according to their system
purposes [16], [17], [18], and statistical functiocombined fuzzy systems [19], [20] to
analyze extremely high dimensional data sets anddel complex systems based on

massive data observations to extract informatioreséarch interest.

However, most of the fuzzy inference systems maeticabove have been hampered by
the computational complexity to calculate the fimaltput of their systems. Once a
higher number of input features is used, the marainmumber of resulting fuzzy rules
is increased exponentially. Accordingly, the conapiohal burden for fuzzy systems to
search for a corresponding fuzzy rule to fire isrexely heavy. This difficulty may
cause system delay or even system malfunction. &isogenerated knowledge-base
should be investigated for its validity for usethé stage of the system design. In
particular, the obtained fuzzy rules should be eramhto ensure the full coverage of
the input and output relation of the given inforroat Moreover, the initial system
design of FIS should be enhanced through a systaination process towards higher
system performance and better robustness againteapossible unpredicted inputs

from the real-world environment.

The major contribution of this thesis is a develeptof a framework of Adaptive T-S

(Takagi-Sugeno) type Rough-Fuzzy Inference Syst@R$-1S) to solve the problems
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described and to handle issues mentioned in thiextoof a Rough-Fuzzy hybridization
scheme. Rough set theory [36] here is utilizedettuce the number of features using
the dependency of attributes, and to generate udeg) decision rule generation. An
efficient knowledge-reduction is carried out acdogdto the proposed rough set
approach. The T-S type fuzzy model [7] is chosepedorm fuzzy inference utilizing
its advantages as a universal approximator. Thebaeship functions and fuzzy rules
in the knowledge-base are generated using the F@zkjeans (FCM) clustering
method [22] and the rough set approach, respegtivter the rule generation, the
rules are examined for validity and their suitapias T-S type fuzzy inference rules to
ensure the full coverage of the input and outplattien of the given knowledge. Once
the whole system is established, the system pediocmevaluation is done based on the
Root-Mean-Square-Error (RMSE) measure between és@atl target output and the
actual current output. If the RMSE measure is raitsfactory, the adjustment of
membership functions and the rule refinement proceds activated towards better

system performance.

The proposed system was applied to a variety oficGgtons to show the viability of
the proposed framework of ARFIS. Results shownxipeemental evaluation section
are highly competitive, and suggest that the ARBI@& suitable new framework for

rough-fuzzy inference systems.

1.2 Thesis Outline

The rest of this thesis is organized as follows:

e Chapter 1: Introduction to this researchlhe decision-making process of the human
brain, fuzzy inference systems, the system desoiperse, problems of FIS and the

existing approaches, and the main contributiomisfthesis are briefly described.

e Chapter 2: Background of the T-S type fuzzy moddéle T-S type fuzzy model is
reviewed giving its basic definition and theory afgeneral T-S fuzzy model as a
universal approximator. In this chapter, the foisusn the examination of the T-S type
fuzzy model as an excellent tool representing thizeusal approximator to show its

advantages in non-linear system modeling.
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e Chapter 3: Review of Rough Set theoifhis chapter presents the review of most of
the functionalities of rough set theory; from thefidition of rough sets to decision rule
generation and knowledge-reduction methods. Mb#te functionalities in rough set
theory are described via examples, since it isbdst way to explain rough set theory

for readers.

e Chapter 4: Theoretical modeling of Rough-Fuzzy hybridizatigh theoretical
investigation of rough sets, fuzzy sets, and rofugizy sets is mentioned and focused
on the combination of rough sets and fuzzy setss Tgbrid technique is explained
from the perspective ai-level sets as a tool for set analysis. Many prajsosn the

combination of fuzzy and rough sets are reviewed.

e Chapter 5: Development of a framework of Adaptive T-S typegRekuzzy
Inference Systems (ARFIS)his is the main contribution of this thesis. §lwhapter
describes all the modules of the proposed systeuitd a framework of ARFIS using
the automatic generation of the T-S type fuzzy rhadel the efficient knowledge-
reduction method.

e Chapter 6: Applications to Pattern Classification, Face Reatign, and Mobile
Robot NavigationThe proposed framework of ARFIS was applied tcheapplication
to obtain better system performance with less nurobenput features and rules. As a
result, the proposed approach has produced betalts in each application with the
absolute minimal size of the given knowledge withénsing its original essential
information. It has been shown that the systemoperdnce of the proposed framework

of ARFIS is very encouraging, satisfactory, and petitive.

e Chapter 7: Conclusion and Discussiomhe advantages and the potentials of this
research are discussed. From the perspective gh#fuzzy hybridization scheme, a
variety of issues are mentioned about theoretiodl @actical aspects of this research
including the future direction in this field of emrch. This chapter also describes the
future work which is definably required to enharice proposed system towards more
reliable, robust, and flexible system performanoeorder to do this, six systematic

measures are described to extend the capabilttyegbroposed framework.
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Chapter 2
2. An Introduction to T-S type Fuzzy Model

The representation of decision-making via humaisaeag as a way of how human
beings process and express the given informationbea interpreted as a series of
modules in the human brain. As mentioned in Chaptéris a series of these following
processes; extracting information by sensing theremment, converting the received
information into abstract classes or concepts,idigkthe processed inputs with the

associated reasoning, and performing the actioordicg to the given inputs.

In mathematics, the abstract classes can be repees® sets in set theory. Once the set
has been defined, each element of interest beceitines included or excluded from the
set. For example, the concept “belongs to”, or \emantly “a member of”, is the
principal mechanism of set theory. In classical teebry, a crisp set is defined as a
collection of precise objects and an element inspcset either belongs to a set or not.
This dichotomization process can be modeled ohaacteristic functiorof the crisp

set over a certain universe of discourse.

2.1 General Description

In fuzzy set theory [1], a fuzzy set is a collentiof distinct elements with a varying
“degree of relevance or membership”. Tdmaracteristic functiorof a fuzzy set, which
is known as anembership functigriakes interval values between 0 and 1, often show
as [0, 1]. The membership values express the degnéd which each object is
compatiblewith the properties or features that are distugcto the collection. In other
words, a fuzzy set is generalizationof the concept of a set whose characteristic

function only takes binary values {0, 1}.

Using the definition and properties of fuzzy sébe series of human brain behaviors
mentioned earlier can be modeled as a process zdy finference. Labeling the
categorized classes of abstract sets into thepistid data sets corresponds to the

fuzzification process of inputs using membershipctions. Linking the fuzzified inputs
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with the associated reasoning mechanism can be asea step of building the
knowledge base in a fuzzy inference system. Prougs$s take a final action from the
associated reasoning can be modeled as perforrhadguzzy inference process to

produce the final system output.

The fuzzy inference systems as a model of humasonéag have been widely used for
a variety of practical industrial areas over thetgiecades; non-linear system modeling
[2], [3], control engineering [5], [6], robotics J[8[9] and so on. There are two major
types of fuzzy inference systems; a language-drtype and a data-driven type fuzzy
inference system. Language-driven type fuzzy systéon instance Mamdani type [21],
are designed via human language variables and, rwagch is based upon the
experience of fuzzy experts and/or experts in pexific field. Data-driven type fuzzy
inference systems, for example, Takagi-Sugeno (Ty% [7], are designed based on

the experimental input-output data collected frartual experimentation.

In regard to advantages and disadvantages of ttwesetypes of fuzzy inference
systems, language-driven type fuzzy inference systare comparatively easier to
design and fast to calculate outputs, but theifudeHication process is very time-
consuming and the systematic fine-tuning is extigrdéficult to handle. Meanwhile,

data-driven type fuzzy inference systems are excelh mathematical modeling by the
design for their rule consequents, but it is oftkfiicult to assign any appropriate
linguistic terms to the rule consequent which isa-fuzzy membership function as an

output variable.

However, in order to utilize the advantage of thethrematical modeling of data-driven
type fuzzy inference systems, the Takagi-Sugen8)(Type fuzzy model is chosen in

this thesis to perform the fuzzy inference process.
In this chapter, the Takagi-Sugeno (T-S) type fur#grence model is introduced

mentioning its theoretical model, aspects, andyasealas a universal approximator with

the associated approximation theories.
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2.2 Fuzzy System Models

There are two major models of fuzzy systems; Mamfdrj and Takagi-Sugeno (T-S)
[7] fuzzy systems. The main difference betweendhe® types of fuzzy systems lies in
the consequent variable of fuzzy rules. Mamdanetygzzy systems use linguistic
fuzzy sets as consequent variables in fuzzy rudedefined by (2.1), whereas the T-S
type fuzzy systems employ a linear combinatiomeii variables as a rule consequent

variable as defined by (2.2).

R : IF x¢1is K1 AND X is Fy ... AND ¥mis Fim
THEN jis F i (2.1)

R : IF Xk11s Ky AND %2 is Faz ... AND ¥mis Fnm
THEN y= Cip + CitXkr + ... + GmXkm (2.2)

where
R (i=1, 2, ..., N) thei-th fuzzy rule
X (=1, 2, ..., m)thej-th input feature of thi-th pattern vector
Fij: a fuzzy variable of thgth input feature in theth rule
F'i: a linguistic fuzzy set of thieth Mamdani type rule consequent
cj: a coefficient of inputs of thieth T-S type rule consequent.

Both types of fuzzy models have been deployed widsleffective tools in a variety of
practical applications, especially in non-lineasteyn modeling and control system over

past decades.
2.2.1 T-S type Fuzzy Model

The T-S type fuzzy model suggested by Takagi angeal [7] is able to represent a
general class of non-linear systems. The consequaaidbles of its fuzzy rules are

defined as a linear combination of input varialasglefined by (2.3).

R : IF Xk11s K1 AND %2 is Faz ... AND ¥mis Fn
m
THENY, =Co + > C; X 3P
=1
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2 WY,

y=—%r——,w=ﬁawm (2.4)

2w

i=1

where
R (i=1, 2, ..., N) thei-th T-S type fuzzy rule
X (=1, 2, ..., m) thej-th input feature of thi-th pattern vector
Fij: a fuzzy variable of thgth input feature in theth rule
cj: a coefficient of the T-S type rule consequent
IT: a fuzzyT-norm(‘AND’) operator
w;: a rule firing strength of thieth rule
yi: thei-th rule output
y: the total output

The T-S type fuzzy model approximates non-lineasteyns using a combination of
several linear systems by decomposing the entpetitlomain into several partial
spaces and representing each input and output sp#cea linear function. In order to
find the coefficients of the linear systems, thastesquare fit method has been widely

used.

One of the most significant advantages of T-S typezy model is that the
representation of the system output is designetyusimathematical equation — a linear
combination of inputs, which means it is very efifee to describe and calculate the
characteristics of non-linear systems. Most ofgteetical T-S fuzzy systems have used
linear functions of input variables as rule conssduvariables. The linear rule
consequent variable is critical to the practicatityd usefulness of T-S fuzzy systems.
This is because when non-linear rule consequenahlas are used, determining the
structures and parameters of the rule consequewnigenty is extremely difficult.
Furthermore, compared with well-established tradai polynomial approximators, the
fuzzy system with non-linear rule consequent vaeshs greatly disadvantageous in
terms of computational complexity and practicalfukess. Also using the statistical
estimation methods to obtain the coefficients & tonsequent variables of the T-S
fuzzy rules, the system identification task can eésaluated and enhanced by the

statistical analysis towards better system perfogea
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A collection of input-output data is required toildurl-S type fuzzy models due to its
mathematical definition of the rule consequent afalgs.A prior knowledgecan be
gathered by human experts in the corresponding lzasad on the data observations.
Using the collected information, a knowledge bakat tconsists of membership
functions and fuzzy rules can be constructed. Imega, a supervised or unsupervised
clustering method determines the partition of theery knowledge, and membership
functions for each feature can be obtained accgrttia resulting partition information.
The T-S type fuzzy rules can be obtained as a fofnGeneralized Modus Ponen
(GMP) inference through T-S type rule design sclerbased on the statistical
approaches. Once the T-S type fuzzy inference medualilt, when the unknown input
is fed into the pre-built T-S type fuzzy systematgput is calculated via a method of
the generalized de-fuzzifiers. This is a simplecdpsion of the systematic mechanism

of the T-S type fuzzy inference model.

2.2.2 Design of Membership Functions and Fuzzy Rules

The common types of membership functions are; stogk, triangles, trapezoids,
Gaussians, and so on. Every type of membershiptibtmtas its advantages and
disadvantages. For instance, triangular membefshigtion is very easy to implement
and fast to calculate on real-time based systenmsveMer, it is very difficult for
triangles to adjust adaptively using statisticathods in on/off-line learning schemes
towards better system performance due to theirodiswity in their mathematical
form. In the context of control systems, obviousig priority of the system often lies
on the speed of real-time system performance irnt ofahe industrial control systems.
Thus the triangle type membership function has bemployed widely in control

engineering.

For Gaussian functions, it takes time to calculdieir output, but they have an
advantage for describing the gathered data asumafigtdistributed statistical model,
and also the exponential term in Gaussian functadiosvs the adaptive mechanism to
adjust them with the statistical learning functiofifiis property of Gaussian basis
functions provides higher accuracy and more fldixybio model the non-linear systems

in system modeling.
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To design the membership functions for input datapnsupervised clustering method
can be utilized for practical systems. The Fuzzié&ans (FCM) clustering approach
[22], for example, has been used in many papeis [248], [25] to find theC number of

adaptive fuzzy clusters for each feature of inpatad Once the fuzzy clusters are
obtained, the type of membership functions can besen to model membership

functions for fitting the processed membership galu

In regard to the design of fuzzy rules, the antenegart of the T-S type fuzzy rules is
composed with linguistic fuzzy sets, whereas thesequent part of them is defined as
the linear combination of input variables as define(2.3). The antecedent variables of
the T-S type fuzzy rules can be designed usingtecpkar type of membership function
and a fitting process. However, it should be ndteat a particular type of the fuzzy
membership function for antecedent parts shoulddsermined according to the system
objectives and the characteristics of the T-S fyjzey system towards a specific goal.
The consequent part, as stated earlier, is defuseal weighted summation of inputs to
represent the non-linear characteristic functions @eneral class. In order to estimate
the coefficients of the rule consequent, the Isagtares estimation has been widely

used.

2.2.3 Fuzzy Inference Process for the T-S type Fuzzy Motle

Using the designed membership functions and fualgsr the fuzzy inference process
in the T-S type model can approximate the unknomput data. When the unknown
input is fed into the T-S type fuzzy inference syst each feature value of the unknown
input vector is fuzzified, i.e., converted to aZymumber, through their membership
functions in the knowledge base. The fuzzified ispare calculated with theAND
operator using a fuzzy merm operator in which the algebraic minimum functien i
generally employed. Its output is then linked WitfHEN operator, which is an
implication operator to calculate the level of tlde firing strength for each rule. The
rule output for each rule now can be determinedtdiinear combination equation as
defined (2.3). A total output is obtained by (2a4)a special case of the ‘generalized de-
fuzzifiers’. This fuzzy inference process for theSTtype fuzzy model is shown in

Figure 2.1.
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Figure 2.1 Fuzzy inference process for the T-S fygey model

2.3 General T-S type fuzzy models are Universal Approxnators

The issue of fuzzy systems as universal approxireditas been addressed as one of the
important research interests in the past decade[4, [28], [29], [30], [31]. As Ying
mentioned in [30], the basic question is “Can fuzzgtems approximate any real
continuous functions to any degree of accuracy @omapact domain?” It is obvious
that the answer of this question is crucial to tegoal and practical aspects of fuzzy
systems. This approximation question asks in theest of fuzzy control whether or
not a fuzzy controller can be constructed to apijpnaie any continuous non-linear
control solution. In the context of modeling, theegtion of interest is whether or not a
fuzzy model is capable of approximating any phygigmamic model that is continuous

and non-linear.

In regard to T-S type fuzzy models as universal@gmators, the questions include;
1) Are T-S fuzzy systems with linear rule consequgrversal approximators?
2) What are the sufficient and necessary conditfong-S fuzzy systems with

linear rule consequent as universal approximators?

One of the best approaches to answer these quesiasnbeen done in Ying's study in
[29], [30], [31] proving that the general classTe type fuzzy systems can uniformly
approximate 1) any polynomial arbitrarily well a@yl any continuous function with
arbitrarily high precision for both Single-Inputrgie-Output (SISO) and Multi-Input-
Single-Output (MISO) type T-S fuzzy systems by imtlg the Welerstrass
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approximation theorem [32]. In this section, th@gérand the associated theorems
related to the questions mentioned above are redewccording to Ying's

investigation.

2.3.1 Configuration for General T-S type Fuzzy Systems wh Linear Rule

Consequent

The general T-S type fuzzy systems in Ying's inigadion uses g-dimensional

continuous-time or discrete-time multi input vect@) as defined by (2.5).

X(t) = (%, (1), X, (1), -+, X, (1) ) (2.5)
where
t:timeand -Ex@t)<1(1=1,2,...p)

For the fuzzification proces®y = 2nt+1 (n > 1) number of fuzzy sets, denotégl are
used for each input with arbitrary continuous mership function type. Therequal
intervals are partitioned in [-1, 1] for each inpe&ch of which isj[n, (j+1)/n] (j = 0O,

+1, ..., #n) so that theqn+ 1)’ = NP fuzzy rules are used to cover Bjl
2.3.2 General MISO T-S Fuzzy Systems

The N° numbers of MISO T-S type fuzzy rules are expresséith linear rule
consequents as shown in (2.6).

R: IF x(t)isF'j1 ANDX,(t)isF'j2 AND--- AND X, (t)isF ' 2.6)
THEN Yy, =c,, + ¢, (1) + ¢, %, (1) +--- + ¢, %, (1)
where
R (i=1, 2, ..., N)): thei-th MISO T-S type fuzzy rule
Fij| (G=0,%1, ..., m,1=1, 2, ...,p ) thej-th fuzzy set for thé-th input vector
in thei-th rule
yi: thei-th rule output
ci: the design parameters whose values are deternfipeitie fuzzy system

developer.
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There arg+1 design parameters in each rule. Thus, therenamgal ( + 1)NP system
parameters foN® rules. Obviously in different rules, the valudshese parameters are

different.

In order to reduce the number of design parame¥rg has proposed a simplified
linear T-S rule consequent in [33], [34] using SIFES type model as an example,
which is defined by (2.7).

R: IF x(t)isF, THENY, =k (a+bx() 2.7)

where
R: thei-th T-S type fuzzy ruleiE 1, 2, ...,M)
yi: thei-th rule output
a, b, k : design parameters whose values are determingtebfuzzy system

developer.

As mentioned in [30], the major advantage in ugheysimplified T-S rule consequent
over the original one is the significant reductionthe number of design parameters.
Because all the rule consequents in (2.7) usedadhe linear functiom + bx and all
the rules are proportional to each other. The réoludo the example SISO model in
(2.7) is by a factor ofM - 2) / 2\, which is almost 50% for largevl. In order to
illustrate another extended example of the redoc@oSISO fuzzy system that uses ten
fuzzy rules is consideredE10) as an example. The original T-S rule consegquwih
require 20 parameters whereas the simplified caresggonly 12, which means a 40%

reduction.

For MISO type T-S fuzzy systems, the reductionvisnegreater; the more the number
of input variables, the greater the reduction. Ap@ this simplified model for
reduction to the MISO T-S type model (2.7), theuaibn is by a factor of pN° — (p
+1) }/ {(p +1) N }. For instance, if the input vector had nine mutiriables, op = 9,
then the parameters of simplified MISO T-S typezfurule consequent have almost a
90% reduction. This kind of parameter reductionn@ only desirable, but also

necessary in many practical applications, espgatalhtrol applications.

Also the simplified linear T-S rule consequent spacial case of the original linear T-S

type rule consequent [30] as shown in (2.8).
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In regard to the defuzzification process, using glee@eral rule consequent (2.6), the
generalized defuzzifier [35] is used to calcul&e total system outpyt which actually

is @ mappingyy: [-1, 1] — (-0, +0), as defined by (2.9).

(2n+1)P
Z(,Ui)a {Cip +Cip Xy +Ci X, +"'+Cipxp)
Y,(x)=y=—"= (2.9)

(2n+1)P

Z(/Ji)”

where

Ui - the membership for the rule consequenttimrule.

Ui = H/ll:i]] , IT: a fuzzyT-normoperator (‘AND’ fuzzy logic )

Different defuzzification results can be obtaingdusing differentx values where & «

< +oo. The most widely used centroid defuzzifier is &gl case of this generalized
defuzzifier whern = 1, and the popular mean of maximum defuzziBeanother special
case whem = . Theyy(X)is a function sequence with respechtdhe mapping/,(x)

will be used to represent the general MISO T-S fypey systems.
2.3.3 General T-S Fuzzy Systems are Universal Approximate

In order to prove that the general T-S fuzzy systewth T-S linear consequent are
universal approximators, firstly Ying has provedttiihe general MISO T-S fuzzy
models can uniformly approximate any polynomialatoy degree of accuracy. Then
utilizing the Weierstrass approximation theorem|[32 has proved that the general T-
S fuzzy models can uniformly approximate any maltiate continuous function with
arbitrary precision. In this section, the proveddtems and associated approximation
theorems will be reviewed. For further details oiqds, refer to the literature [29], [30],
[31].

Theoreml
wn(X) can uniformly approximate, with arbitrarily highegision, any polynomiaP,(x)
defined on [-1, 1].

26



R.(x) = Zh',ﬂ X! (2.10)

where

h: the order of the polynomial.

The final formula of the proof for this theoremeis follows.

B+ 28] @ -1
n > iz - , On>n (2.11)

where
g: a positive approximation error bound

n : a positive integer based on a given function @mgfoximation erros

In other words, proving Theorem 1 is equivalenptoving that there exists a positive
integern” that satisfies the equation (2.11). By having\deti(2.11), it has been proven
that the general T-S type fuzzy systems can apmprate any polynomials uniformly
with arbitrarily high accuracy. Now the Weierstrasggproximation theorem [32] is

briefly mentioned as a basis to the next theorem.

Weierstrass Approximation Theorem
To any continuous function G(x) on a closed intergeven approximation error bound
>0, there always exists a polynomial that can apgrate G(x) uniformly with the

desired accuracy. In general, the smaller ¢hthe higher the polynomial degree.

Theorem 2
The general MISO T-S type fuzzy systems with linede consequent can uniformly

approximate any continuous function on a closeervatl to any degree of accuracy.

The proof for theorem 2 is as follows. The polynahit, can uniformly approximate
G(x) with arbitrary accuracy according to the Weiersgrapproximation theorem. The
result of the proof is as follows in (2.12), whieteansy,(x) can uniformly approximate
G(x) arbitrarily well.

lw, -G|<|w, -R|+|R -G|=¢, e=¢ +¢, 0 >00¢,>0 (2.12)

It has been proved that the general MISO T-S fuzrmgdels are universal

approximators.
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Chapter 3
3. Rough Sets Theory

Knowledge discovery is a process that combinesniqales from machine learning,
statistics, pattern recognition, fuzzy and rougis,setc. to extract knowledge, or
information, from vast amounts of data. Often itused to support human decision-
making processes or to explain observed phenonkeravledge discovery is a process
that helps to make sense of data in more readabl@gpplicable form. The knowledge
discovery process and its data mining tools areotéwy the focus of many fields,

particularly in data-rich and knowledge-poor pr@ieg scenarios.

This kind of process usually starts with samplifegture selection or discretization,
transformation or projection, dimensionality redoif extraction of data, and physical
phenomena models, usually followed by algorithmisese algorithms here generate
hypotheses about extracted data. These hypothesesused as new extracted
knowledge. Sufficient methods of extracting knovgedrom database or multivariate
experimental data sets belong to basic informapoocessing steps. In particular,
consideration of implicit, imprecise, and insuffioi knowledge in databases or
experimental data sets is of importance in devalppknowledge-based systems.
Another fundamental issue in multi-dimensional @attprocessing is feature extraction

and reduction relevant for robust prediction andgrmance.

3.1 Introduction

The rough sets theory has been developed for kidgeleliscovery in databases and
experimental data sets. This theory provides a polwdoundation to reveal and
discover important structures in data and to dpssimplex objects. The attribute-
oriented rough sets technique reduces the compné&ticomplexity of learning
processes and eliminates the unimportant or iragleattributes so that the knowledge
discovery in the database or in experimental detan be learned efficiently.

Rough Set theory was introduced by Zdzislaw Pay&{ to provide a systematic
framework for studying imprecise and insufficiemokviedge. The information system
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proposed by Pawlak is for representing knowledge discovering relationships in
data. Rough set theory has been studied in medatabases analysis [40], [41], [42],
image analysis for medical applications [43], [44B], decision support systems [46],
[47], pattern recognition [48], [49], [50], and nim@we learning [51], [52] and so on.
Using rough sets has been shown to be very efee@bivrevealing relationships within
imprecise data, discovering dependencies amongtshgamd attributes, evaluating the
classificatory importance of attributes, removiregadredundancies and thus reducing

the size of information systems, and generatingsa®ctrules.

Some classes or categories of objects in an infitmmaystem cannot be distinguished
in terms of the available attributes. They can dsdyroughly or approximately defined.

The idea of rough sets is based on equivalencgamgawhich partition a data set into
equivalence classes, and consist of the approamaif a set by a pair of sets, called
lower and upper approximations. The lower approxiomeof a set of object (a concept)
contains all objects that, based on the knowledga given set of attributes, can be
classified as certainly belonging to the concegte upper approximation of a set
contains all objects that cannot be classified gmteally as not belonging to the

concept. A rough set is defined as an approximatioa set using a pair of sets: the

upper and lower approximations of the set.

The rough sets theory also deals with informatiat tan be represented in a form of a
table. This table consists of objects (or cased)adtributes. The entries in the table are
the categorical values of the features (attributes), for some information systems,
possibly also associated classes (categories). Matey processing problems can be
easily converted into a data table representationaaalysis. By processing information
using the rough sets theory, a classification gécis in an information system can be

discovered.

The rough sets theory can be applied to a variétynfmrmation processing. For
example, it can be used for the followings.
 Creating a decision table representing an infommatsystem containing
uncertain or imprecise data
* Analyzing the relationships of data in given knosge
» Computing lower and upper approximations of sets

* Evaluating dependencies of attributes in data sets
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* Computing a quality and an accuracy of approxinmatio

» Calculating reducts as sets of minimal number witattes describing concepts
* Reducing data with information preservation by remg superfluous attributes
* Reasoning with uncertainties

» Deriving decision algorithms as a set of decisides.

The basic definition and the most of the all fuoetlities of rough set theory are
reviewed in this chapter in order to guide the eszaghsily by following the example-

based review.
3.2 Information System

An information systens a representation of data gathered from measntnof some
physical phenomena, for example, speech signatpjesees of images, industrial
process signals, and so on. An information systenmotid byS is composed of four

elements as defined in (3.1).

S=<U,Q)Vv,f > B
where

U: aclosed universahich is a finite non-empty set bf objectsfi, X, ... % }

Q: a finite and non-empty set ofattributes{q:, &, ..., G }

V= UVq: adomain of attributes
aQ

f: UxQ—V : a totaldecision functiorwhich maps elements of attributes

Any pair (@, V) forq0Q, vOVq is called thedescriptorin an information systerfs.

The information system can be represented as t@ filsita table, in which the columns
are labeled bwttributes the rows byobjectsand theentryin columng and rowx has
thevalue f(x, g) Each row in the table describes the informatiooua some object i6.
Any non-empty set of objeci$is called a concept i A concept might have a certain
meaning. For example, as shown in Example 3.1, nmedical data set with tests and

diagnoses, one can define a concept as a setaftslbgpresenting sick patients.
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[Example 3.1]
Suppose a simple example of a data set called MEDI@presenting medical
findings.

Table 3.1 A medical data set MEDICAL (modified fr¢&8])
Object Attributes

U
X1

(@)
iy
¢
N
[¢)
w

X2
X3
X4

X5
X6
X7
Xg
X9
Xic
X11

== R R =

NINNNRRROOOO
T\ |- |||z ||| |-
<|<|<|<|<|<|<|zZ|Z|Z|Z

In the information systen$ describing this data set, the univetdeconsists of ten
objects,U = {xi, %... %o} each representing one patient. Each patient serdzed by
the set of three attributed = {q;, @, &G, ga} = {C1, &, G, d}, with discrete values
(numerical and symbolic), representing resultshef inedical tests and diagnoses. The
set of all discrete (numerical) values of the btttecl is V.= {0, 1, 3. The second
attributec, takes two discrete non-numerical valdgs= {L, H} (L=LOW, H=HIGH).
The third attributecs is with two discrete non-numerical valués= {N, Y} (N=NO,
Y=YES. The fourth attributed, with two binary values/y = {0, 1}, represents an
expert’'s (doctor’s) decision, being a diagnosisuab® certain disease based on test
results. The decision attributie= 0 denotes the diagnosis that a patient does notdave
disease, andl =1 that he or she does. Values of information fumcti(x, g are
included in Table3.1. For example, for the obpa@nd the attribute;, the information
function values iff(x;, ¢;) = 0. A set of objectsXp, X3, X%, X, X7, X0, X120} can be defined

as an example of a concept (sick patients) in éimsidered information system.

3.3 Indiscernibility Relation

Let S=<U,Q,V, f > be an information systenA 1 Q be a subset of attributes, and

X, yOU be objects. Then objectsandy areindiscernibleby the set of attributesin S
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(denoted byo&y) iff f(x, @ = f(y, @ for everyallA. For any given subset of
attributesA 0 Q, theIND (A), denoted byA, is anequivalence relatiomn universeU

and is called arnindiscernibility relation The indiscernibility relationIND (A) is
defined as follows in (3.2).

IND(A) ={(x,y) OU xU : DaOd A f(x,a) = f(y,a)} (3.2)

If the pair of objectsx, y) belongs to the relatiofND(A) = ((x,y) O IND(A))) then
objectsx andy are calledndiscerniblewith respect toA. In other words, one cannot
distinguish objeck from y in terms of attributes from sét only. The indiscernibility
relation IND (A) as a binary equivalence relation splits the giveiverseU into a
family of equivalence classeX{, X;, ..., X}. The family of all equivalence classeX{

Xo, ..., %}, defined by the relatiodND (A) on U, generates a partition &f and it is
denoted byA', The family of equivalence classasis also referred as classification and
also denoted by / IND (A).

Objects belonging to the same equivalence ckasse indiscernible; otherwise objects
are discernible with respect to the attribute sulseThe equivalence classes,
i=1,2,..,r of the relationND (A) are calledA-elementary seti& an information system
S An A-elementary sdi]a, or an equivalence class, including an objeist defined by
(3.3).

[X], ={yOU : xXIND(A)y, or, XAy} (3.3)

For a given information syster§, a given subset of attribute& [ Q generates an

indiscernibility relationIND (A) (an equivalence relation). An ordered paB = (U,
IND (A)) is called arapproximation spaceAny finite union of elementary sets ASis

called adefinable sebf a composed sah AS Des(X) denotes the description of A-

elementary seX 0 A" (an equivalence class) and it is defined as fdlawequations
(3.4) and (3.5). Equation (3.4) is often denoted@sation (3.5).

Des,(X) ={(a,b): f(x,a) =b,Ox0 X,ald A (3.4)
Des,(X) ={(a=Db): f(x,a) =b,0Ox0X,al] A}. (3.5
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[Example 3.2]
Let us analyze an information system, MEDICAL frarable 3.1 and assume only
results of tests are considered, representing é\stinset of attribute& = {c1, &, G}

and contained in the reduced Table 3.2.

Table 3.2 The MEDICAL data set with the reducedtaite setA = {c,, ¢, G}

Object Attributes
U cl c2 c3
X1 0 L N
X2 0 H N
X3 0 H N
X4 0 L N
X5 1 H Y
X6 1 H Y
X7 1 H Y
Xg 2 L Y
Xg 2 L Y
X1c 2 H Y
X11 2 H Y

Equivalence classes:

E1 =[xa]a = [Xa]a = {X1, X4}

Ez = [xo]a = [Xg]a = {X2, X3}

Es = [Xs]a = [Xe]a = [X7]a = {Xs, X6, X7}
Es = [Xg]a = [Xo]a = {Xg, X0}

Es = [X10]a = [X12]a = {X10,X11}

From Table 3.2 it can be seen that objects caniwided into five disjoint groups
according to equal values of attributgsc, andc; from the subseA. Objects in the
same group have the same values for all attricagdbe other objects from this group.
For example, in the first group it has two objexisxs since no other objects have
valuesc; = 0, c, = L andcz = N for attributes fromA. The objectx; belongs to the
equivalence clags; = [x1]a = [X4]a = {X1, Xs}. Objectsx, andxs with equal values for all
attributesc; = 0, ;= H, cs=N form the second group. It can be observed thatotdjn
this group cannot be distinguished based on atedmy c, andc; from the sefA only.
They belong to the equivalence cl&s= [X2]a = [X3]a = {X2 X3} . Similarly, it can be
found that other equivalence classesSiior setA; Ez= [Xs]a = [Xs]a = [X7]a = { X5, X,

X7}, Ea= [Xg]a = [Xo]a = {Xg,Xo}, Es= [X10]a = [X11]a = {X10,X11}.
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As shown, a subset of attributés] Q imposes an indiscernibility relatidhND (A) on

the whole set of objects from the univeks$elt can be implied that a relatidND (A)

as; All pairs of objectsx(, x) in Sfor which values of all attributes fromare all equal.

3.4 Discernibility Matrix

Frequently discernibility of objects is more intgtiag than specific values of attributes.
In these cases an information system may be regezs@s a discernibility matrix.
Skowron and Rauszer have introduced two notion§ [Bé discernibility matrix and
the discernibility function, which help to consttruefficient algorithms related to the
generation of minimal subsets of attributes swgfitito describe all concepts in a given
information system. With these two notions, thdedénces between the attributes of
each pair of objects can be stored into a matrileadaa discernibility matrix The
discernibility matrix contains fewer data than thag an information system but holds
all essential information used to check whetheetao$ attributes is a minimal one that

describes concepts.

Let S=<U,Q,V, f > be an information system and assume that{xs, %, ..., X },

Q={a, &, ..., & }. Adiscernibility matrixM(Q) for an information syster with the
set of attribute®) is a squar®&l x N dimensional matrix, with rows and columns labeled
by objectsx (i=1,2,...N). Each entryn; of a discernibility matrix (for a given rowand

a columnj representing two objects andx from U) is a subset of attributes which

discerns these objects. Therefore, a discernibilggrix can be defined by (3.6).

10 X, X; Othesameequivaleneclassof IND(Q) 36
M = {abQ: f(x,a) # f(x;,a)} X, X; Odifferentequivalene classesf IND(Q)( )
where
X, x; 0U

The entrym; contains all these attributes whose values arédeatical for bothx and
Xj, which means thag, x; belong to different classes of partition generdigtND (Q).
The discernibility matrixM(Q) is symmetric anan; = 0, thus it is sufficient to compute
only entries in the lower triangle & (Q), i.e., them; withO < j<i <N-1.
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A discernibility functionfs for an information systen$ is a Boolean function of

Boolean variablef1,,a,,...,a, corresponding to the attributeés,, a,,... ,a,

respecttively. It is defined by equation (3.7).

fa@ ... a,) =0m):1s j<isnm #g ®
where

O(m): A disjunction of all variables such thaaOm,

[Example 3.3]

Suppose a given information system MEDICAL as shoiun Table 3.2. The
discernibility matrixM (Q) can be obtained as shown in Table 3%.£40, m; = m
fori, j=1,...,6)

Table 3.3 Discernibility MatribxM(Q)

X1 x2 X3 X4 X5 | X | X Xg | X9 | X11 | X11
X1
X2 | C %]
X3 | & %]
Xa | D o) C

X5 | C1C2C3 | C1C3 C1C3 C1C2C3

Xs | C1CoC3 | C1C3 C1C3 Ci1CC3 | O

X7 | C1CC3 | €C1C3 C1C3 CiCC3 | D (]

Xg | C1C3 C1C2C3 | C1C2C3 | C1C3 C1C2 | C1C2 | C1C2

Xg C1C3 C1CoC3 | C1CoC3 | C1C3 C1Co | C1Co | C1C2 %]

X10 | C1C2C3 | C1C3 Ci1C3 C1CC3 | C1 C1 C1 C| C

X11 | C1CoC3 | C1C3 C1C3 C1CC3 | C1 C1 C1 C| C 0]

The discernibility function is as follows.
fs(c,,¢,,¢5) =¢ Uc, U(c, Uc,) U(c, Ug,) U(c, Uc, Ucy)

3.5 Decision Tables

Information systems can be designed as a decialda if the attribute sé is divided

into two disjoint sets which are condition attriewetC and decision attribute sBY, i.e.
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Q = C ID. For example, for a data set gathered for a ¢leagon task, a seC of
condition attributes may represent elements ofteepex describing an object and a set
D may represent a classification decision, for imstg a categorical class assigned to an
object. In a given information syste®na decision tabl®T is defined by (3.8).

DT=<U,CUD,V,f> (3.8)
where

U: aclosed universahich is a finite non-empty set bfobjects{, %, ..., % }

C: a non-empty set of condition attributes (featwkmput pattern vectors)

D: a non-empty set of decision attributes (targatsks)

V: a domain of attributes

f: a total decision function, or an information ftina in aDT

A decision table is calledeterministicif each object’s decision attributes values are
uniquely specified by a particular object’s cormftiattributes. If a number of decision
attribute values may be taken for a given conditatiribute, it is callednon-
deterministic Some of non-deterministic decision tables maylbeomposed into two
sub-tables; deterministic antbtally non-deterministic A totally non-deterministic

decision table does not contain a deterministictabhe.

[Example 3.4]
The MEDICAL data set from Example 3.1 can be intetgd as a decision table as

shown in Table 3.4.
Table 3.4 A decision table MEDICAL

Object Attributes
C D
(medical diagnoses) | (disease class
U cl c2 c3 d
X1 0 L N 0
X2 0 H N 1
X3 0 H N 1
X4 0 L N 0
X5 1 H Y 1
X6 1 H Y 1
X7 1 H Y 1
Xg 2 L Y 0
X9 2 L Y 1
X10 2 H Y 0
X11 2 H Y 1
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3.6 Approximation of Sets

Some subsets of objects in an information systemmatabe distinguished in terms of
the available attributes. They can only be apprexaty defined. The idea obugh sets
consists of an approximation of a set by a paiseif, called dower and anupper

approximationof this set.

A given subset of attributed 0 Q in a given information syster§ determines the
approximations spac&S = (U, IND (A)) in S For a given A Q andX OU , anA-

lower approximationAX and anA-upper approximatiorﬁx of setX in ASare defined

as follows in (3.9) and (3.10).

AX ={x0OU:[x], O0X}=( {YOA :YOX} (3.9)
AX ={xOU:[x,n Xzg@ = {YOA :Yn X zg (3.10)
where

[X]a: @an equivalence class which contain an equivalence relatiodND (A)

A lower approximationAX of a setX is a union of all equivalence classes that are
subsets oK. For anyx[1 AX , it is certain thak belongs taX. In other words, a lower
approximation AX of a setX contains all objects that, based on the knowleoige

attributesA, can be classified as certainly belonging to theceptX.

An upper approximatiorAX of a setX is a union of all equivalence classes that have
non-empty intersections witk. For annyﬂX , It can be said that can possibly

belongs toX. In other words, an upper approximati®ix of a setX contains all objects

that cannot be classified as not belonging to treeptX.
An A-boundaryregion of a seK in AS as adoubtful regionof IND (A) is defined as

follows in (3.11). For anyk [JU belonging toBNa(X), it is impossible to determine that

x belongs toX based on the description of elementary setSIDf(A).

BN, (X) = AX - AX (311
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An A-lower approximatiorof a setX is apossibly(the greatest) definable setAnof a
setX and anA-upper approximatiownf a setX is acertainly (the smallest) definable set

in A of a seiX. An A-boundaryis a doubtful region i\ of a seiX.

An arbitrary set, X
Universe, U
Negative Region
\_r"‘_ \
\ Upper Approximation

. Lower Approximation

Figure 3.1 A set approximation of an arbitrarily Xeén U

Given an approximation spadeS for AL Q and a seK U , the universe can be

partitioned into the following three regions adduls:

1. An A-positiveregionPOS(X) of Xin S AX (31
2. An A-boundaryregionBNa(X) of X in S BN, (X) = AX — AX (3.13)
3. An A-negativeregionNEGx(X) of Xin S U - AX (3.14)

If AX = AX then it can be said that OU is A-exactlyapproximated iPAS In this

case theA-boundary region BNa(X) = 0. If AX # AX then X OU is A-roughly
approximated ilASand theA-boundaryregionBNa(X) # 0. TheA-boundaryof A-exact

set is an empty set.

Here are some properties about the lower and therwgpproximation of a set X in A.
1. AX O X O AX
2. Ap=~Ap=¢
3. U=AU=U
4. AXDOY)DOAXOAY
5. AXDOY)=AX 0OAY
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6. AXNnY)=AXn AY
7. AXNnY)OAX nAY
8. A(-X)=-AX

9. A(-X)=-AX

10. AAX = AAX = AX

11. AAX = AAX = AX

[Example 3.5]

Suppose a subsef; of objects fromU in an information systen§ from Table
MEDICAL, representing sick patients (gsi¢K' concept:d = 1).

Xi={X2, Xa, X5, %6, X7, %o, X1}

According to the definition of the lower and thepep approximation of a set, based
on a subset of attribute& = {c;, ¢ c3}, the lower approximation is the largest

composed set #-elementargets inSthat is contained in the subsét

Axl ={{ XZ'XS} D{XS'XG’X7}} ={X2'X3' XS'XG’X7}
The lower approximation contains all A-elementagisssuch that every element of the
elementary set is also an elemenkafA lower approximation consists of patients that

surely have a disease.

The upper approximation of s¥t is the smallest composed setfeélementary sets in
Sthat contain a subsel. An upper approximation consists of patients fhadsibly
have a disease.

AX, =0 % 00, %, X 00, X} O {0, X3} = {0 X0 X1 X1 Xr1 X1 X1 Xi01 %)
The A-boundaryregion A-doubtfulregion ofIND (A)) of the sei; in Sbased o, is
BNA(Xl) =RX1 - AX, Z{XS' X91 %10 X11} .

This boundary region consists of the composed fsétedlementary sets froi§ whose

elements, based on the subset of attribAfesannot be classified as belongingxioor

not.

In rough sets theory, a s&t is either definable or un-definable. A sEt[JU is

definable inA, denoted byA-definable iff AX = AX , otherwiseX is not definable,

denoted byA-non-definableln other words, a sef is definable if every object0U

39



can be determined with certainty whether X or not. Then the lower approximation
of X will be equal to the upper approximation)gfand the boundary of will be equal

to the empty set.

1. AsetXisroughly A-definableff AX £ ¢ andAX zU .

The lower and upper approximation of a Xetan be defined. Thus it is possible

to decide for some elementsliwhether they belong 9 or —X.
2. A setXisexternallyA-non-definablen Siff AX # ¢ andAX =U .
It cannot be said that any[JU is not an element oK. Thus it can be

determined that for some elementslbthey belong toX, but it cannot be said

that for any element df they belong to X or not.
3. AsetXisinternally A-non-definablen Siff AX =¢ andAX zU .
It cannot be said that anyl1U is an element oK. Thus it can be determined

that for some elements tf they belong toX, but it cannot be said that for any

element olU they belong tX or not.
4. A setXistotally A-non-definablen Siff AX =¢ andAX =U .

The approximations cannot be defined at all. For @lemenk [JU , it cannot

be decided to belong ¥ or —X.

[Example 3.6]

From example 3.2, the equivalence classes of MEDIGAta set withA = {ci, ¢, C3}
are as follows.

E1 = {x1,xs} Ez = {x, X3}

Es = {Xs, %6, X7} Es = {Xg, Xo}

Es = {X10,X11}

A setX;is an example oA-definablesets.

X1 = {X2, X3, Xg, Xo}

A setX; is an example abughly A-definablesets as obtained by its approximations:
X2 = {X2,X3,X7,Xg, X9, X11}

AX, =E, U E, ={X2,X3,Xs,Xo}

AX, =E,0E,0E, 0E, ={Xa, Xs X5, X6, X7, Xa, Xo. X10, X1}
A set X3 is an example ofexternally A-non-definablesets as obtained by its

approximations:
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Xs = {X1,Xs, X6, X8, X9, X10}

AX; = E, ={Xg, Xo}

KX3 =U ={X1 X2 X3 X4, X5 Xg,X7,Xg, X9, X10,X11}

A set X, is an example ofinternally A-non-definablesets as obtained by its
approximations:

X4 = {X2, X5, X10}

AX,=¢

KX4 =E, 0E, 0E, ={X, X3, X5, X6, X7, X10,X11}

A setXs is the example dbtally A-non-definableets.

X = {X2, X4, X6, X0, X10}
3.7 Accuracy of Approximation

Rough sets provide quantitative, numerical evatmatf the quality of approximation
(accuracy measure) of a sKt[1U in the approximation spackS = (U, IND (A)),
using all equivalence classesIbiD (A) generated by the subset of attribuAds Q.
Let S=<U,Q,V, f > be an information system, I&€ 0 Q and X JU determining
the approximation spadeS =(U, IND (A)). Theaccuracy of an approximatioof a set
X by the set of attribute& (shortlyaccuracyof X) is defined by (3.15).

_ cardinality(AX)

— = (3.15)
cardinality(AX)

a,(X

It can be easily seen that if a ¥at A-exactlyapproximated in the approximation space
defined byA, thenaa (X) = 1. If a setX is A-roughlyapproximated irAS then the range
of aa (X) is 0 <aa (X) < 1. The alternative accuracy of an approximateodefined by
(3.16).

PA(X) =1=a,(X) 18)

This is calledroughnesgA-roughnesgsof a setX. Roughness, as opposed to accuracy,
represents a degree of inexact approximation et A 81 the approximation spa&es =
(U, IND(A)) defined byA Q.
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The accuracy of approximatien(X) has the following properties:
1. ForanyAQ andX OJU , 0<aa(X)< 1.

2. A-boundaryregion ofX, BN,(X) =¢ (AX = AX and the seX is A-definablé
iff aa(X) = 1.

3. A-boundaryregion ofX, BN, (X) # ¢ (the setX is A-non-definableiff aa(X) <
1.

A vague concept description can contain bounday-tibjects from a universe, which
cannot be with absolute certainty classified asfyatg the description of a concept.
Uncertainty is related to the idea of membershiproklement to a set. From rough sets
perspective a set membership function can be dgfimkich is related to the rough sets
concept. This can be considered as another nurhemeasure of imprecision
(uncertainty). Theough (A-rough) membership functi@i an objectx to a setX is
defined by (3.17).

cardinality([x] , n X)

— (3.17)
cardinality([x] »)

Uy (X) =

where
0</A(X)<1

The measure characterizing a degree of uncertaintgembership of an elemenrtin
universe to the seX with respect to the possessed knowledge (in anrnrEbon
system) is defined by (3.18).

cardinality([x] , n X)
cardinality(U)

Hy (X) = (3.18)

It is possible in rough sets to find a strict cactien between vagueness and
uncertainty. Vagueness is related to sets of abj@mncepts), whereas uncertainty is
related to elements of sets. Rough sets show thgilleness is defined in terms of

uncertainty.

The rough set membership function can be used fmede¢he lower and upper

approximation of a set and the boundary regiom48.1L9)
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AX ={x0OU : g (x) =1} (3.19)
AX ={x0OU : xp(x) >0}
BN, (X) ={x0OU :0< g (x) <1}

[Example 3.7]
From example 3.5, foh = {c1, & 3} and Xy = {X2, X3, X5, X6, X7, X0, X1} the accuracy of
an approximation of a s&t by the sef is:

cardinality(AX,) _ cardinality({ x,, X5, X5, Xg, X;}) 5

— 1~ = — =—=0.556
cardinality(AX,) cardinality({X,, X5, X5, Xg, X;, Xg: X, %105 X33}) 9

an(X,)=

3.8 Approximation and Accuracy of Classification

The concept of set approximations can be extermlagproximations of a classification

related to the family” of subsets Xi, Xz, ..., %} from U. Let S=<U,Q,V, f > be an
information system, and leA0Q and I" = {X3, X, ..., %} for every subset
X, OU@<i<n)be a classification (or a partition; a family ofbsets) ofU. The

family of sets/" ={ Xy, X, ..., %} is a classification irJ of S if X; NX;= @ for everyi,

<n,i#] andU X, =U . SetsX;s are called classes of

i=1

For A0 Q, the A-lower and A-upper approximatiorof a classification of” on S

denoted byA™ and Al respectively, are defined as follows by (3.20) éha1).

(3.20)

=

{

AX,, AX,,
A ={AX,, AX,,. (3.21)

The setA is called A-positiveregion of a classificatiod” and BNa (I)= A" - AT is
called A-boundaryregion of a classification. TheA-positiveregion of a classification

I" with respect t&\ is defined by (3.22).

POS,(N) = | JAX; 43)

X,0r
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A union of boundary regions of a classificatibnwvith respect tdA is calledA-doubtful
region of a classificatiofi in Sas defined by (3.23).

BNAT) = | BN,(X;) (3.23)

X,0r

There is nAA-negativeregion of a classificatioff in S,becausd) = UZXi .
X 0r

A classification/” is calledA-definableiff every classX, OIT is A-definable otherwise

the classification is called-non-definableAnd the classificatiod” is calledroughly A-
definableiff OX, O, AX, # @.

Theaccuracy of approximation of a classificatiby the set of attribute&, oraccuracy
of a classificationis defined by (3.24).

n

> cardinality(AX;)
a,(r) == (3.24)

icardinanty(ﬂxi)

i=1

The quality of approximation of a classificatidsy A, or quality of a classificationis
defined by (3.25).

Zn:cardinality(AXi)

Pa0) = e dinaliy©) (3.25)

This represents a ratio of &tcorrectlyclassified objects to all objects in the syst&m

The idea of accuracy of a classification allows tasdefine how close one can

approximate a partition (classificatid®) generated by a set of attributBs] Q by
another partitionA” generated by a set of attributds]1Q . The accuracy of
approximation of classificatio®” by A" can be defined by (3.26). The following
inequality holdsO< p,(B") < Ifor everyA BO Q.
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cardinality(POS,(B")) (3.26)
cardinality(U) .

PA(B) =

where

POS,(B") = | JAX; : a classification” with respect ta\ (3.27)

X;0B"

[Example 3.8]
From the information system MEDICAL, suppose thare is a classification={Y,
Y2, Y3, Ya} whereYr= {Xz, X4, X6}, Y2= {X1, X3, X6, X7}, Y3={Xg, X9, Xa0}, Ya= {Xu1}.

The accuracy and the quality of a classificatits

A ={AY, A, A A ={@ @ B, @ ={@ @ {%, X}, @

A ={AY, AY,, AY,, AY,} ={{ E,, E,, E;}, {E,, E,, EL{E,, EgJ{Es}} =
:{{ X1’X2’X3’X4’X5’X6’X7}! {X:l.’X2’X3’X4’X5’X61X7}1{X8’X9’X10’X11}! {X10’X11}}

2
N =2<=018
pA()11

Therefore, it can be said that the accuracy of ¢hassification is very poor and the

classification process has to be improved towaiglsen accuracy.

3.9 Classification and Reduction

In many applications a classification of objects dee of the most frequently

encountered tasks. Classification can be considas@ process of determining a
unique class for a given object. A given set ofeotg, characterized by the set of
condition and decision attributes, can be clagsiiito a disjoint family of classes with

respect to values of decision attributes. Eachsclzan be determined in terms of
features of corresponding condition attributes bgiog to a class. If a given set of
objects with a given set of attributes is clasbifia a classification may be possibly
achieved by some subsets of attributes. Frequently a few important attributes are
sufficient to classify objects. This is consistesith human perception and classification
ability based on intelligent attention, and setactdf most important features of objects.
Some attributes in an information system may beainddnt and can be eliminated
without losing the essential classificatory infotimoa. The process of finding a smaller

set of attributes than the original one with themeaor the closest classificatory power
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as the original set is calledttribute reduction As a result the original larger

information system may be reduced to a smalleesysiontaining fewer attributes.

Rough sets allow us to determine for a given inftion system the most important
attributes from a classificatory point of view. duct is the essential part of an
information system related to a subset of attributkat can discern all objects
discernible by the original information systemc@éreis a common part of all reducts.
Core and reduct are fundamental rough sets conedyts can be used for knowledge
reduction. Some attributes may depend on each.dthgrange of a given attribute may
cause changes of other attributes in some nonrlinegs. Rough sets determine a
degree of attributes’ dependency and their sigamfoe. In an indiscernibility relation, a

dependency of attributes is one of the importaatuiees of information systems.

Given an information systeBi=<U,Q,V, f >, with condition and decision attributes

Q = C UD, for a given set of condition attributag] C, the A-positiveregionPOS
(D) in the relatiodND (D) can be defined by (3.28).

POS, (D) = J{AX | X OIND(D)} (3.28)

The positive regiof?OS, (D) contains all objects i which can be classified perfectly
without error into distinct classes defined IND (D), based only on information in
relation IND (A). The definition of the positive region can be fodmr any two
subsets of attributeg), B 0 Qin the information syster8. It is known that the subset
of attributes B [0 Q defines the indiscernibility relatioiND (B) and thus the
classificationB™ (U / IND (B)) with respect to the subset. TAepositive regiorof B is
defined by (3.29). TheéA-positive region ofB contains all objects that, by using

attributesA, can be certainly classified to one of distinetssles of the classificati@?.

POS,(B) = | JAX 49)

XOB

The rough sets define a degree of dependency fero$attributes. The cardinality of

the A-positive region ofB is used to define a measuyg(B) called a degree of
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dependency of the set of attributBson A in (3.30). It can be said that the set of
attributesB depends on the set of attribufeso the degreg, (B) .

cardinality(POS, (B))
cardinality(U)

ya(B) = (3.30)

Suppose an information syste®=<U,Q,V, f >and two sets of attributésB 0 Q.
A set of attributedB depends ora setA in S denoted byA—B, iff an equivalence
relation satisfiesND (A) L1 IND (B). The setA andB are independent i§ iff neither
A—B nor

B — Aholds. A seB is dependent to degreek on the seAin S as denoted in (3.31).

A¥- B, 0<sk<1 ifk= y,(B) (3.31)
where

YA (B) : a degree of dependency of a set of attribBtea A

If Kk =1 a setB is totally dependenbn A (or B — A), if k = 0 a setB is totally

independenbn A and otherwise a s8tis roughly dependerdnA.

A level of significance of attributes from a getvith respect to the classificati@ (U

/ IND (B)) generated byND (B) may be different. Theneasure of significancéo-
efficient of significanceof the attributeald A from the setA with respect to the
classificationB™ (U / IND (B)) generated by a sBtis defined by (3.32).

cardinality(POS,(B)) - cardinality(POS,_,, (B))

— (3.32)
cardinality(U)

HUps(@) =

The significance of the attribute in the setA[0 Q computed with respect to the
original classificationQ* generated by the entire set of attribu®s from the

information systen$is denoted ag, () = (£, (a) .

These are the properties of an attributeAsietan information syster8 as follows.
1. Aset A Q isdependenin Siff [B [J A such thatND (B) = IND (A).

(as(X) =a,(X))
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2. Aset A Q isindependenin Siff (0B 0 A such thatND (B) O IND (A).
(as(X) <a,(X))

3. Aset AQ issuperfluousn Qiff IND (Q-A) = IND (Q).
(aga(X) =an(X))

4. Aset AOQ isa reductof Q in Siff Q-Ais superfluousn Q andA is dependent
inS

A given information system may have many diffeneatucts. If for a given information

system S=<U,Q,V,f >, a subsetAOQ is a reduct, then the corresponding
information systemS'=<U, AV, f'> with the attribute set equal to a redugtis

called areduced systerfwheref’ is the restriction of a functiointo a setUxA). In other
words, a reduced syste®i is constructed from the original systegby removing
columns related to attributes not included in aicté.

[Example 3.9]

For an information system MEDICAL, suppose there taro subsets of attribute&,=
{c1, &, ca}, B={cs}.

The partitionA’, which is a classificatiol / IND (A) related to the equivalence relation
IND (C1, &2,C3), is A = {Y1, Ya, Y3, Ya, Yo} = { { X1, s}, { X2, %a}, { X5, %6, X7}, { Xe, X},
{X10, X1} }.

In regard to the partitioB’, which is classificatiord / IND(B) corresponding to the
equivalence relatiofND (c3), is B = {Z1, Zo} = { { X1, %, Xs,Xa}, { X5, %6, X7, Xa, X, X10,
X11} }-

The A-positive region oB is

POS,(B) = ( JAZ = AZ, + AZ, ={X;, Xy Xg, Xs} +{ X5, X6, Xy, Xg X, X100 X1} -

Z0B"
A degree of dependency of the set of attrib@es A is

cardinality(POS, (B)) _11
cardinality(U) 11

Ya(B) = =10

Therefore, it can be said that the set of attrib@ds totally dependent on a sat

AOH - B.

For a given original information system some attt#s may be redundant with respect

to a specific classificatioA* generated by a set of attribufes Q. It means that an
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information system may be overloaded by this redahdnformation. The classifiers
defined for overloaded information systems may leixla poor generalization for new
unseen objects. By virtue of the dependency prigzedf attributes, we can find a
reduced set of the attributes, by removing supeuBuattributes, without a loss of
classification power of the reduced informationtsgs It can lead to the substantial
reduction of an information system by finding theimal set of attributes sufficient for
a robust classification with a higher degree ofegahzation.

For an information syster and a subset of attributés] Q, an attributea A is
called dispensablein a setA if IND (A) = IND (A-{a}), which means that
indiscernibility relations generated by seisand A-{a} are identical. Otherwise a
parametera is indispensablein A. It appears that the dispensable attribute doés no
improve the classification of the original infornmat systemS. It can be said that the
absence of the dispensable attribute does not eethe classificatory power of an
information system and does not change the depegd&tationship of the original
system. On the other hand, the indispensable atidsbcarry the essential information
about objects of an original information systemd arannot be removed without

changing the classificatory power of the originatem.

The set of all indispensable attributes in aAét Q is called ecore of a setA in Sand

it is denoted bYCORE (A) The core contains all attributes that cannotemeaved from

the setA without losing the original classificatioh.

Consider two subsets of attributésB [0 Q in S. An attributea is calledB-dispensable
in the setA if POS,(B) = POS,, (B) . Otherwise the attribute is B-indispensablelf

every attribute ofA is B-indispensablethenA is indispensable with respectBo The
set of allB-indispensablattributes from the set is calledB-relative core (or B-core)
of A and denoted b€OREs (A) as defined in (3.33).

CORE,(A) ={a0 A: POS,(B) # POS,_,, (B)} (3.33)

A set A0 Q is calledorthogonalif all its attributes are indispensable. A propebset

E O A is defined as aeductset of A in Sif E is orthogonal and preserves the
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classification generated #y Thus a reduct set @& denoted byRED (A) is defined by
(3.34).

E =REDA) ~ (E O A IND(E) = IND(A), E - orthogona) (3.34)

All reducts, or a family of reducts, of a gefare denoted bRED™ (A). The intersection

of all reducts of a sét is a core ofA as defined in (3.35).
CORHA) = (| RED(A) (3.35)

[Example 3.10]

For a given information system MEDICAL, supposer¢hare two reductB; andB, of
the set of condition attribute&3 = {c;, ¢, G} with respect to the decision attribube=
{d} as follows:B; = {c, &}, B2 ={c, c3}.

Then the core of the set of attribu#&sandB; is obtained as follows.

CORE,(C) = BB, ={c,}

It can be said that the attribute is the most significant attribute @dandB, are the
sets of attributes that discriminate the decisitbmbaites.

By choosing a reduds;, for example, the reduced decision table can heirdd by
simply removing the superfluous attribute as shown in Table 3.5. The reduced
decision table has the same information as thenadigpne from the point of view of

classificatory power.
Table 3.5 A reduced MEDICAL decision table

Object Attributes
C D
(medical diagnoses)(disease class

U cl c2 d
X1 0 L 0
X2 0 H 1
X3 0 H 1
X4 0 L 0
X5 1 H 1
X6 1 H 1
X7 1 H 1
Xg 2 L 0
Xg 2 L 1
X10 2 H 0
X11 2 H 1
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3.10Decision Rules

One of the important applications of rough seta generation of decision rules for a
given information system for a classification ofokwn objects, or a prediction of
classes for new objects unseen during design. Usingriginal or a reduced decision
table, one can find rules classifying objects tigtodetermining the decision attribute

value based on values of condition attributes.

Let DT =<U,COD,V, f > be a decision table wit@ as a set of condition attributes
andD as a set of decision attributes. A decision t&lecan be classified as follows:

1. DT isdeterministiaff D depends o, C = D; p.(D*) = 1.
2. DT isroughly deterministieff D depends o, 0< p.(D*) <1.
3. DT istotally non-deterministidf D does not dependent @) p.(D*) = 0.

If DT is deterministic a set of condition attributeS discriminates a set of decision
attributesD. If DT is roughly deterministicD depends o, butC cannot discriminate

D. If DT is totally non-deterministicC is not related t®.

For a deterministicdecision table, unique decisions can be determimkdn some
conditions are satisfied (attributes taking certaaues). Conversely, for sughly-
deterministicdecision table, decisions are not uniquely deteeahiby the conditions.
For

anon-deterministialecision table, a subset of decisions is defimddch can be taken
for specific conditions. This kind of situation isterpreted as inconsistency or
uncertainty in the decision table, and thus dengsitetermined by the decision table are
not well-defined. The properties characterizingetefency of attributes can be applied
to test whether a given decision table is detestitior non-deterministic. The notion
of a reduct can be used to reduce the originalst@etitable while preserving its
classificatory power. This may lead to a designralbust classifiers with better

generalization ability.

Decision rules can be derived from a decision téble Let C" ={X,, X,,...,X,} and
D" ={VY,,Y,,...,Y} be aC-definable and @-definable classification of). A classY;

from a classificatiorD” can be identified with the decisior(i=1,2,...,1), denoted also

by ;. A set of decision rules; for all D-definable set¥; is defined by (3.36).
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{r;} ={Des(X;)=Des (Y,): X;NY, ¢ for X, 0C",Y, 0D’} (3.36)

where

Des(X),Des(Y)): unique descriptions of classésandy;, respectively

The decision rules; are logically described as followi: (a set of conditions) THEN

(a set of decisions).
A rulerj is said to beleterministicff X; OY; (X; nY, = X;,i =12,...,r) in a decision

table DT, which mean€—D, otherwise a rule iaon-deterministicln other words, if
Des (X)) uniquely impliesDes, (Y)), then the rulej is deterministic otherwiser; is
non-deterministic The set of decision rules for all classgsgenerated by a set of
decision attribute® (D-definableclasses irf) is called adecision algorithnresulting
from the information syster@

[Example 3.11]

Consider the decision table in Table 3.4 with theision attributd = {d}, V4= {0, 1.
The resulting partitioD” = {Y1, Yo} = {{ X2, Xa, %6, X6, X7, X0, Xa1}, { X1, Xa, Xs, Xao}} for
Des (Y1)=(d=1) andDes (Y2)=(d=0). If a reductA = {c;, ¢} of the condition attribute

is considered, a partition of the univetdecorresponding to the equivalence relation

IND(A) can be determined as below.

A =UTIND(A) ={ X, X5, X5 X Xsb =6 X 1%, Xk %6, %6, X3 {60 %o} {00, X0} -

The unique descriptions of the clas¥gson the seA are:
Des(X1) = (c1=0,=1L)

Des(Xz) = (1 =0, = H)

Des(Xz) =(c1=1,=H)

Des(Xe) =(c1=2,=1)

Desi(Xs) = (€1 =2, = H).
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Firstly, decision rules for the cla¥s (sick;d=1) can be designed as follows.

Calculation Decision rules Decision rules logically written
X,nY,=¢

X, nY, ={X,, X;} r,, = Deg, (Y,) IF (c,is0) AND(c,isH) THEN(d =1, sick)
Xy nY, ={X, X%, %} 15 = Deg (Y,) IF (c,is1) AND(c,isH)THEN(d =1, sick)
X, nY, ={x} r,, = Des, (Y)) IF (c,is2) AND(c,isL) THEN(d =1, sick)
Xs NY; ={X,} r, = Des, (Y,) IF (c,is2) AND(c, isH)THEN(d =1, sick)

Next, the decision rules for the clags(no diseasel=0) can be obtained as below.

Calculation Decision rules Decision rules logically written

X, nY, ={x,X%,} r, = Des, (Y,) IF (clis0) AND(c2isL) THEN(d =0, nodiseasg

X, nY,=¢

X;nY,=¢@

X, nY, ={X} r,, = Des (Y,) IF (clis2) AND(c2isL)THEN(d =0, nodiseas#
Xs nY, ={X,} r, = Des, (Y,) IF (clis2) AND(c2isH) THEN (d =0, nodiseasg

Therefore, the entire decision algorithm is a dedexision rules {21, r31, ra1, Is1, 12,

r42, I'sy} for both classes.
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Chapter 4
4.Rough-Fuzzy Hybridization

Fuzzy and rough sets theories are generalizatibnseotheory in mathematics to
describe vagueness, uncertainty, and imprecisionhaacteristic function of a fuzzy
set uses a degree of membership in [0, 1], whexedmaracteristic function of a rough
set employs three membership functions; a referesee its lower and upper
approximations in an approximation space. Thereehbgen extensive theoretical
contributions on the relationships between rough aed fuzzy sets [54], [55], [5@hd

many approaches have been proposed on the conobirdtrough and fuzzy sets [57],

[58], [59]: rough-fuzzy sets, fuzzy-rough sets.

The main objective of this chapter is to reviewafetical approaches on combination
of rough and fuzzy sets by utilizinglevel set method, which is based on relationships
between rough sets and fuzzy sets. Most of the enadtical symbols for representing
fuzzy sets and rough sets are identical as defm€&dhapter 2 and 3, respectively.

4.1 Introduction

In particular, a rough-fuzzy set is defined as ppraximation of a fuzzy set in a crisp
approximation space, while a fuzzy-rough set isngef as an approximation of a crisp
set in a fuzzy approximation space. In generabratihe category of an approximation
can be interpreted in these three different araafgmily of rough sets, a family of
rough- fuzzy sets, and a family of fuzzy-rough sétse approximation of a fuzzy set in

a fuzzy approximation space leads to a more gefraraework.

By definition, analysis, and operation of a setwitzzy concepts, it is simpler to utilize
a set-method, for instance, the use-dével sets of a fuzzy set. One example of using a
set-method on combination of rough and fuzzy sst@ imore general framework

suggested by Klir and Yuan [60].
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4.2 Fuzzy Sets

Fuzzy sets are a generalization of sets in whielr thembership functions are defined
in [0, 1] of real number domain.
Thea-level set, ow-cut, of a fuzzy sef is defined by (4.1).

F, ={x0U | 4 (x) 2 a} (4.1)
where

U: a universe

x: an element itJ

F: a fuzzy set oty

Ur: @ membership function of a fuzzy $ebonU

a: a real number in [0, 1]

A fuzzy set determines a family of nested subséts ¢througha-cuts. On the other

hand, a fuzzy sdt can be re-constructed from itdevel sets as defined by (4.2).

e (%) = supfar | XOF,) (4.2)

The equality and inclusion of two fuzzy sdtgs,andF, can be represented by (4.3).

F,=F = e (X)) =p(x) OxOU

(4.3)
FOF = e (s (x) DxOU
Employing ofa-level sets, equations in (4.3) can be equivalaefjned by (4.4).
F,=F, - F,=F, UOaU[01] 4.4)

FOF - F,U0F, Oa0[01]

Thus, either definition of fuzzy sets can be ugade of main advantages of these set-
based representations is that it establishes agmketween fuzzy sets and sets, which

shows the inherent structure of a fuzzy set.
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Utilizing the standard max-min system proposed bgdeh [1], the fuzzy-set
complement, intersection, and union are define(by).

Hoe () =1- 12 (%) S0
He,nr, (X) = min[ e (%), pe, (X ]
U e, (%) = max] g, (), e, (¥) ]
where
Fi1, F2: two fuzzy sets defined in a univerde

M - (X): a membership function of the complement of a yuztF
He e, (X) s U0, (X) 1 membership functions of sets of the intersectionion of

F, andF,, respectively

Usinga-level sets, equations in (4.5) are represented l6y.

(_' Fl)a' = _|F(1_a)+
(FnF)s=F,nFy (4.6)
(Fl D Fz)a = Fla D F2a

where
F.+: a strongu-cut of a fuzzy sef, which is defined by (4.7)
I:0/+ :{XDU |/’1F(X)>a} (47)

An important feature of fuzzy set operations i ti@y are truth-functional [21]. The
membership functions of the complement, intersactamd union of fuzzy sets can be

obtained, which is based only on the membershiptions of the fuzzy sets involved.

4.3 Rough Sets

Given an information syster8 =<U,Q,V, f > and A0 Q as a subset of attributes.

For any given subset of attributés] Q, the indiscernibility relationon A, IND (A)

denoted by,&, is an equivalence relationon universeU. For a given arbitrary

setX U, it may or may not be possible to describe thdtrary setX exactly in its

approximation spaceU(Z). In rough sets theory, an arbitrary set in a erse can be
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represented or characterized by its lower and ugpproximations as defined by (4.8).

The pair (AX ,ZX) is called a rough set dhwith a reference set

referenceset: X OU
lower approximaion: AX ={xUOU |[x], O X} n.8

upperapproximaton : AX ={xOU |[X],n Xz @

The characteristic functions o&kX andAX are called strong and weak membership

functions [55]. The physical meaning of lower anpper approximations may be
understood better by the following two representsiin (4.9) and (4.10).

e (X) =0 £, (y) | YOU, (%, y) O A}

~ (4.9)
Hyy (X) =sup{u, (y) [ yOU, (x,y) O A}

Hax (X) =inf{1-pz (% y) | yO X} (4.10)
ey (X) =sup{u; (%, y) | yUO X}

The weak and strong membership functions of a raejhcan be computed from the

membership function of the reference set if theivadence relation is used to select
elements to be considered. Alternatively, they @so be computed from the

membership functions of the equivalent relationh# reference set is used to select
elements to be considered. These two views arertancon the combination of rough

and fuzzy sets. For convenience, the strong ané wesmbership functions of a rough

set can be represented by (4.11).

Hax (X) =inf{maxpy (y), 1- pz (x, y)] | y OU}

. (4.11)
Moy (X) =sup{minfu, (y), 4z (%, y)] | yOU}
Rough sets are monotonic with respect to set ifwiusgs shown by (4.12).
X, 00X, = AX,0AX
o o (4.12)
X, OX, = AX,OAX,
where
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X1 andXy: arbitrary sets itJ

Let ,&iand ,&2 be two equivalence relations @h The first equivalence relati(ﬁg is a
refinement oﬁ&z, or ,&zis a coarsening (ﬁl if ,&1 O ,&2 A refinement relation further

divides the equivalence classes of a coarsening Tdre is,ﬂiis a refinement oﬁziff

[X]A ] [x]/12 Ox U . The finest equivalence relation is the ident#iation, whereas

the coarsest relation is the Cartesian protustU.

Rough sets are monotonic with respect to refinenoérgquivalence relations. If an
equivalence relatiorA is a refinement of another equivalence relatign, for

anyX U , the property of equivalence relation with resgecset inclusion is shown
by (4.13).

AOA = AXOAX
AR 2 ATA @13
AOA = AXOAX

Approximation of a set in an approximation spadaeel is more accurate in the sense
that both lower and upper approximations are cldserthe given set. The two

monotonic properties of rough sets are useful ®dbmbination of rough and fuzzy

sets.

4.4 Combination of Rough and Fuzzy Sets

There have been different proposals of rough-fugets and fuzzy-rough sets for
defining such terms mathematically. The main rasalte briefly reviewed before
presenting some of their analysis.

Rough-Fuzzy Setgdefined by Dubois and Prade deal with the approtionaof fuzzy
sets in an approximation space [58]. Given a fusgy, the result of approximation is
a pair of fuzzy sets on the equivalence class|ND (A) as defined by (4.14).

e ((X0) = infl e (V) |y O[]0}

4.14
t. (X],) = supfie (v) 1 yO[x] 0} (4-14)
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where
U: a universe

A: a subset of attribute& [0 Q in a given information syste®

IND (A), orA: an indiscernibility relation, or an equivalenetation onU

AF : a lower approximation of a given fuzzy set

AF:a upper approximation of a given fuzzy Bet
[X]a: @an equivalence class which contairen an equivalence relatidND (A)

y: an element belongs tg]j in U

Using the extension principle, the pair can be rcéel to a pair of rough sets on the
universelU as defined by (4.15).

Hae ) =inf 1 (v) | Y O[]}
(4.15)

e (9 = supfe (v) |y O[x].)

This pair can be represented in another way by esgimg rough sets using the

characteristic functions of lower and upper appration as defined by (4.16).

Hae (X) =inf{ max[ e (Y), Minoay (X Y) 11 yDOU}

. (4.)16
M (X) =sup{min[ z (y),1- Hino(ny (xy) ]lyou}

The pair (AF | AF ) is called a rough-fuzzy set dhwith reference fuzzy set F.

Fuzzy-Rough Setglefined by Dubois and Prade [59] are originatedhfiWVaillaeys and
Malvache [61] for defining a fuzzy set with respézta family of fuzzy sets. It deals
with the approximation of fuzzy sets in a fuzzy apgmation space defined by a fuzzy
similarity relation or defined by a fuzzy partitiofhe results for fuzzy-rough sets
reviewed here are based on a fuzzy similarity i@atA fuzzy similarity relationr is a

fuzzy subset o) x U and has three properties defined by (4.17).

reflexivity : OxOU, gz (%,x) =1
symmetry Ox, yOU, gz(xy) = 4z (Y, X) (4.17)
transitivity : 0x,y,z0OU, gz(x,2) = min[iz (X, Y), 4z(Y, 2)]
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Given a fuzzy similarity relatior , the pair U,R) is called a fuzzy approximation
space. A fuzzy similarity relation can be usedd@ree a fuzzy partition of the universe.

A fuzzy equivalence clasg][of elements close twis defined by (4.18).

M (Y) = Hz (X y) .18)

A family of all fuzzy equivalence classes is dedoby U / R. For a fuzzy seF, its
approximation in the fuzzy approximation spaceaked a fuzzy-rough set, which is a

pair of fuzzy sets o) / R as defined by (4.19).

Mg ([X]5) = inf{ max[ e (y), 1= g4, (y) 11y OU} @)
Mz ([X]5) = sup{min[ ke (y), f4,. (y) 11y U}

The pair can be extended to a pair of fuzzy sethemniverse) as defined by (4.20).

Hege (X) =inf{ max[pe (y),1- pz(x,y) 11y DU} (4.20)

Mz (X) = sup{min[ z (y), #z(x,y) 1| ydU}

The approximation of a crisp set in a fuzzy appration space may be considered as a
special case. By comparing Equations (4.16) and)4i2can be concluded that rough-
fuzzy sets are special cases of fuzzy-rough setdefised by Dubois and Prade.
Although the names of rough-fuzzy sets and fuzaghosets are symmetric, the roles

played by them are not symmetric.

Nakamura [62] defined a fuzzy rough set by usinigraily of equivalence relations
induced by different level sets of a fuzzy simiianielation. Nanda and Maumdar [63]
suggested a different proposal for the definitidrfuzzy rough sets by extending the
work of lwinski [64]. Their definition is based onfazzification of the lower and upper
bounds of Ilwinski rough sets. It may be relatedh® concept of interval-valued fuzzy
sets. The same definition was also used by Biswb@E Kuncheva [65] defined the
notion of fuzzy rough sets which models the appr@ation of a fuzzy set based on a
weak fuzzy partition. It uses measures of fuzzyiselusion. A number of different

definitions may indeed be obtained with various suees of fuzzy set inclusion.
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The review shows that the same notions of roughyfiset and fuzzy rough sets are
used with different meanings by different authdree functional approaches clearly
defined various notions mathematically. However tbhysical meanings of these
notions are not clearly interpreted. In the resttlut chapter, this issue will be

addressed.

The approximation of a fuzzy set in a crisp appration space is called a rough fuzzy
set, to be consistent with the naming of roughasdhe approximation of a crisp set in a
crisp approximation space. The approximation ofispcset in a fuzzy approximation
space is called a fuzzy rough set. Such a namihgnse has been used by Klir and
Yuan [60], and Yao [66]. Under this scheme, these mnodels are complementary to
each other, in a similar way that rough sets amdyfisets complementary to each other.
In contrast to the proposal of Dubois and Pradg, [s@ugh fuzzy sets are not
considered as special cases of fuzzy rough setsa Aesult, the framework of the
approximation of a fuzzy set in a fuzzy approxiratspace is considered to be a more
general model which unifies rough fuzzy sets amkyurough sets. All these notions
are interpreted based on the concept of alpha-kstsl which may be useful for their

successful applications.

Because most of the studies mentioned on the catibmof rough and fuzzy sets are
based on the functional approach (i.e., dHevel sets of a fuzzy set), thelevel set-
based functional approach is used for the comlmnatf fuzzy and rough sets.

4.4.1 Rough-Fuzzy Sets

Suppose the approximation of a fuzzy Bet (F,),, @ [0,1] in an approximation

space |, IND (A)). For eaclu-level setr,, a rough set is defined by (4.21).

referenceset: F,
lower approximaion: AF, ={xOU |[x], O F,} (4.21)

upperapproximaton: AF, ={x0OU [[X], n F, Z @&

The pair (AF, ,ZFO,) is a rough set with a reference $€t,
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The use oix-level sets provides a clear interpretation of tefigzzy sets. A fuzzy sét

is described by a pair of fuzzy sets in an appraxiom space. It lies between the lower
and upper approximation. In other words, a rougteyuset is characterized by three
fuzzy sets defined by (4.22).

referencefuzzyset: p
lower approximaton: 4, (X) =inf{ 4 (y)|yOU, (x,y) OIND(A)} (4.22)

upperapproximaton: 44 (X) =sup{: (y) | yUU, (x,y) O IND(A)}

An a-level set of a rough-fuzzy set is defined by (4.@3terms of thex-level sets of a

fuzzy setr.
(AF, AF), = (AF,, AF,) = ((AF),,(AF),) 28)

Rough-fuzzy sets have the following propertiesdir24) for two fuzzy sets; andF..

i) A(-F) = _"_A\(F1)’ '_A\(_' F)=-AF) (4.24)
i)  AU)=U, A@=¢

A(F,nF,)=AF nAF,, A(F,OF,)=AF 0OAF,

AF,OF)0AFOAF, AF nF)0AR AR,

iv) AR, 0OF, F OAF

v) R OAARF)), AAF)OF

viy AR OAAR)), AAF)) O AF,

Rough-fuzzy sets are monotonic with respect toyisat inclusion as shown by (4.25).

(4.25)

They are also monotonic with respect to refinemdnéquivalence relations for two

equivalence relationsgi, ;\2 and a fuzzy sk, as shown by (4.26).

AF OAF

- C (4.26)
AF O AF

> >
O O
S P

=
=
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4.4.2 Fuzzy-Rough Sets

The concept of approximation spaces can be gepedaby using fuzzy relations [67],
[58]. Suppose a fuzzy approximation spatk R), where Ris a fuzzy similarity

relation. Each oR’s [S-level sets is an equivalence relation [68]. THatienR can be

represented by a family of equivalence relationdedmed by (4.27).

R=(R,),; AO[0] (4.27)

This family defines a family of approximation spacéJ, F~2ﬁ) p-

Given a subseX of U, suppose its approximation in each of the apprakion spaces.
ForS 0 [0,1], a rough set is defined by (4.28).

referenceset: X OU
lower approximaion: Eﬁx ={x0OU |[X] , 0 X} (4.28)

upperapproximaton : pr ={xOU |[x]§ﬂ nNX£@g

With respect to a fuzzy approximation space, weaiobs family of rough sets as
defined by (4.29).

(R, X, RsX),, BO[01] (4.29)

The pair of fuzzy setQEX,F%X) Is called a fuzzy-rough set with reference XetA

fuzzy-rough set is characterized by a crisp settaoduzzy sets as defined by (4.30).

referenceset: X 0OU
lower approximaion: My (x) =inf{1- 4=z (x,y)| yO X} (4.30)

upperapproximaton: /i (x) =sup{uz(x, y)|yd X}

A S -level set of a fuzzy-rough set is defined by {4.i8 terms of thé -level sets of the

fuzzy similarity relation, which is a rough set lita reference seK in the

approximation spaceéJ( ﬁﬁ).
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(RX,RX); = (RyX,RsX) = ((RX)up (RX),) (4.31)

Based on the properties of rough sets, propertiesizzy-rough sets are shown by
(4.32) forXy, Xz in U.

) R(X)=-R(X) R(X)==R(X,) (4.32)
i) RU)=U R@=¢ -

R(X, n X,) =RX, n RX,, R(X,0X,)=RX, 0RX,

R(X,0X,) ORX, ORX,, R(X,n X,)ORX, nRX,

iv)  RX,0X, X,ORX,

Fuzzy-rough sets are monotonic with respect tansiision as shown by (4.33).

X,O0X, = RX,ORX, 439
X,0X, = RX,ORX, '

They are monotonic with respect to the refinemériizzy similarity relations. A fuzzy

similarity relation ﬁlis a refinement of another fuzzy similarity relzr;\ti(’n:{2 if R

belongs or equal tﬁz, which is a straightforward generalization of tieéinement of

crisp relations. The monotonicity of fuzzy-rougtisseith respect to the refinement of

the fuzzy similarity relation can be expressed$4).

Pl

(4.34)

l

= RXOR,X
— RiX OR:2X

T A
O O

4.4.3 Approximation of Fuzzy Sets in Fuzzy ApproximationSpaces

This section examines the approximation of a fusstyin a fuzzy approximation space.

In this framework, there is a family ef-level sets(F,),,a U [0,1] representing a
fuzzy setF; whereas there is another family gflevel sets,(ﬁﬁ)/,,[z’D [0,1],

representing a fuzzy similarity relatidR. Eacha-level setF, is a crisp set, and eagh
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level relation ﬁﬁ is an equivalence relation. Therefore, rough seisgh-fuzzy sets,

and fuzzy-rough sets can be viewed as special chsegeneralized model.

For a fixed pair of numbéa, 8) (1[0,1] x[0,1], a sub-model is obtained, in which a

crisp setF, is approximated in a crisp approximation spdde I@;). The result is a
rough set(Eﬁ FG,E/; F,) with the reference sét,. For a fixeds, a sub-model is found
in which a fuzzy setF,),,a [0,1is approximated in a crisp approximation space

(U, ﬁﬂ). The result is a rough-fuzzy s@BF,EgF) with the reference fuzzy sét
On the other hand, for a fixed a sub-model is also identified in which a crigpFs, is

approximated in a fuzzy approximation spéte, ﬁﬁ))ﬁ,ﬁD [0,TIhe result is s

fuzzy-rough se(EFa,EFa)with the reference séi,. In a generalization model, bath

andg are not fixed. The result may be interpreted meardifferent views.

A family of rough sets:

(R,F, RsF,) aO[01], BO[01] (4.35)
This represents the rough set approximation of eadbvel set of a fuzzy sdt in an

approximation space induced bypalevel relation of a fuzzy similarity relatidR.

Under this interpretation, the relationships betwd#ferenta -level sets of, and the

relationships between differefitlevel relations oR, are not taken into consideration.

A family of rough-fuzzy sets:

(R,F,RsF),  BO[01] (4.36)

The second category takes into consideration tlatiorships between differentlevel

sets of a fuzzy sef. The relationships betwegh -level sets of a fuzzy similarity

relation R are not considered.

A family of fuzzy-rough sets:

(RF,,RF,) aO[01] (4.37)
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By employing the relationship between differgrevel relations of a fuzzy relatidR,
a family of fuzzy rough sets is obtained. It doed take account the relationships

between different-level sets of a fuzzy sét

The above interpretations depend on the ways irclwliihe family of rough sets,
(E/,,FG,E;;FG), a [1]0,1], f0][0,1], are grouped. An interesting problem is how teetak

into consideration both relationships between diffiéa-level sets of fuzzy sets, and the
relationships between differefitlevel relations of fuzzy similarity relations. dan be
concluded that membership functions of rough getsgh-fuzzy sets, and fuzzy-rough

sets can be computed uniformly using the same sellefned by (4.38).

Hray(¥) = inf{ max[u, (y), 1- 4 (X, y)] [ yOU}

.38
Hz () = sup{min[ &, (y), & (x,y)]| yOU} (4.38)

where
I': a variable which takes either an equivalenceticglaor a fuzzy similarity
relation as its value

A: a variable that takes either a crisp set or ayfget as its value

The same scheme is used by Dubois and Prade [5ifitee a pair of fuzzy sets as the
result of approximating a fuzzy set in a fuzzy apmation space. This involves the
combination of degrees of memberships of a fuztyasd a fuzzy similarity relation.
The physical meaning is not entirely clear. It iesfionable that an element with
degree membership belonging to a fuzzy set woulde hthe same physical
interpretation as a pair witlh degree membership belonging to a fuzzy relatisrtha
universes of the former and latter are quite défifier For this reason, in this study here it
is not mixed between the membership functions @fzay set and a fuzzy similarity
relation. As seen from equations, timé and sup operations are performed on one

membership function.
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Chapter 5

5. A framework of Adaptive T-S type Rough-
Fuzzy Inference Systems (ARFIS)

In past decades, fuzzy systems have been combopmdaply with neural networks for
performing pattern classification tasks. Many apgtes [69], [70], [71] have been
proposed to address the issue of automatic geoerafi membership functions and
fuzzy rules from input-output data sets and aldmssguent adjustment of them towards
more satisfactory performance. Most of these sckethat incorporate the learning
property of neural networks within a fuzzy systemaniework have provided
encouraging results. However, most of these teclasitpave drawbacks associated with
the maximum number of resulting fuzzy rules, whidlcrease exponentially when
higher numbers of input variables are employed.aA®sult, the computational load

required to search for a corresponding fuzzy releomes very heavy.

Rough set theory has recently been deployed withyfunference systems to obtain
more compact information from the given data ancefi@ctively reduce the given
knowledge [72]. This is an attributes-reduced infation system resulting in the
absolute minimal set of decision rules. Rough lsebtty provides a methodology to do
this in data analysis based on empirical data arhs been applied to a variety of
practical applications. The effective knowledgetreitbn using feature reduction
approaches can be applied to the existing fuzzyesys to resolve the difficulties
mentioned above. The Takagi-Sugeno (T-S) type fumpgel [7] has an ability to
exactly approximate non-linear systems using a @oation of linear systems. It is a
very powerful tool as a universal approximator [2930] in non-linear system

modeling.

Consequently, if a minimal set of rules generatgdhie rough set approach is suitable
to carry out the T-S type fuzzy inference, not otilg number of fuzzy antecedent
variables involved but also the number of fuzzyeiehce rules can be effectively
reduced. The advantages of both the rough set agiprand the T-S fuzzy model are
combined in order to introduce a new framework ofaptive T-S type Rough-Fuzzy
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Inference Systems (ARFIS). Without a loss of gelitgraa Multi-Input-Single-Output

(MISO) type fuzzy inference system is assumed sihdége known that Multi-Input-

Multi-Output (MIMO) fuzzy systems can be decompos#d a number of MISO fuzzy
systems [73].

A functional block diagram of the proposed framekvof ARFIS is shown in Figure
5.1. As a brief overview, a pre-processing is aupbn the given input and output data
to generate two major components of the proposstésy 1) adaptive fuzzy clusters
for the input using the Fuzzy C-Means (FCM) clusigrand 2) decision rules of the
given information using the decision rule generatialgorithm in the rough set
approach. The obtained fuzzy clusters and decisil®s are used to model membership
functions and T-S type fuzzy rules in the knowletigse. Once the T-S type rough-
fuzzy inference system is constructed with trairdaga, a system evaluation process is
carried out as a post-processing. If the systenfopeance is not satisfactory, an

advanced adjustment is applied to the knowledge-tmagards better accuracy.

Pre-Processing Fuzzy Inference System Post-Processing

Current
/ \ Output
FCM -
Clustering FUZZY INFERENCE ENGINE
-T-5type HIS
- Fuzafer Evaluation ef
RoughiSet -De-Fuzzifier System
Appreach Perfarmance
- Knawledgs
Reduction
-Rulz
Generation KNOWLEDGE-BASE
- Fuzzy Membership Function .
Statistical - Fuzzy Rules Desired
Analysls - Fuzzy Logic Operators Output
-FCA g +
\ Advanced Adjustment

Figure 5.1 A functional block diagram of the propdgramework of ARFIS

5.1 Automatic Generation of Membership Functions

In order to build a T-S type rough-fuzzy inferensgstem, firstly an automatic

generation of membership functions is required. Fhezy C-Means (FCM) clustering

algorithm [22] is employed to find each cluster fynimizing the FCM objective

function which measures distances between datatspaimd cluster prototypes. The

FCM clustering algorithm is an unsupervised clustermethod whose aim is to
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establish a fuzzy partition of a set of patternteexcin C number of clusters and the
corresponding set of cluster prototypes towardslaloal minimum of their objective
function. An objective functiord defined by (5.1) measures the fitting between the

clusters and their cluster prototypes.

.M Y=Y (u,)"(,)’ (5.1)

k=1 i=1
where

u, 0[01] : a membership degree of tkeh pattern vector to theth cluster

represented by its cluster prototype

v : a cluster prototype af
di : Euclidean distance,d, =[x -V on R if a pattern vector is in @-

dimensional space
m : a weighting exponent so-called fuzzifiem[[1, o), which makes the

resulting partitions more or less fuzzy

After the FCM clustering, each membership funcdrihe j-th featurex;, is obtained
by plotting the elements of each row of the mentliprmatrixM versusx values. Two
procedures are applied for each membership fundtoform their shapes and to fit

their membership values.

1) Finding outer shapesAmongst all data points of each membership faomcti
after plotting the entries as above, select ongyrttaximum membership degree
for each value of thgth featurex. These maximum membership degrees will
be used in the fitting process to generate proastypf their corresponding
membership functions as follows.

2) Removing false representation:

C

D, =10 (5.2)
i=1

Since the FCM clustering algorithm applies nornalan as defined by (5.2),
this condition causes a pattern vector to have g wnall amount of
representation within a membership function wheteshould have no
membership values in the ideal case. In other wah#sFCM algorithm assigns

a small noise as a same membership valGad ach cluster. To overcome this
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handicap due to the false representation, a mddiiecut method [91] is

utilized to remove the noise.

Then to fit those processed membership values &mh efuzzy set, a modified
asymmetric Gaussian membership function definebt8) is chosen for the Adaptive
Membership Function Scheme (AMFS) that providesanilexibility.

Hy = Hijr X Hyo (5.3)

Jij1

e(] xIndex  +(1-Index, )

Hij1

:uijz e [ Tij2 J X |r'](]|e)sij2 + (1— Inde>gij2)

if X; SV Index,ijl =1, otherwise 0

Xy 2V, Index, =1, otherwise 0

The membership valug; is determined by theth feature value of th&th pattern
vector, X, the cluster prototype value for thth feature of the-th cluster,y;, and two
different standard deviations; ands,. The Levenberg-Marquardt type non-linear least
square fit is utilized to estimate the parametgvg, Vi gij1 g2} for each membership
function for each fuzzy cluster. The initial valuefscluster prototypes; are obtained
from the final cluster prototypes using the FCMd @eviationssji, ojz are initialized to
the average deviation of pattern vectors in eadstef. The height of this modified
asymmetric Gaussian membership function initialized 1.0, but it is able to be
controlled to be less than 1.0 during the fittingpgess whenvj, > Vvj. This
characteristic regarding the height of the membpréimction provides the proposed
rough-fuzzy inference system with more flexibility model the best shapes of the

training data using Gaussian basis functions.

For example, the automatic generation of member&hption is carried out for one
feature, petal length of the Iris data set in pattelassification scheme. Figure 5.2
shows the membership values of features in thnestents after the FCM clustering for
petal length. Based on these membership valuesietheval of false information is
done as shown in Figure 5.3. The final fitting fbe processed membership values to

model membership functions is shown in Figure 5.4.
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Membership values of feature values in C clusters (C=3)
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Figure 5.2 Membership values after the FCM clustefor petal length

Membership values after removal of false representation
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Figure 5.3 Membership values after removal of faégresentation
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Figure 5.4 Finatifig to model membership functions for petal l[dngt
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5.2 Encoding Decision Tables

Once pattern vectors of a training data set araioéd, these vectors can be considered
as features that compose a conditional attributeCsef an information system. The
associated feature used to determine its outpufpoees a decision attribute det
These feature vectors and their target vectorstitotes an information system as a
decision tableDT = < U, C D > according to the rough set theory. The original
decision table from the training data may be endageng the adaptive fuzzy partitions
obtained. In the proposed system, an adaptive fyaatition method is applied by
utilizing the Fuzzy C-Means (FCM) clustering algbm. If the partitioned regions are
described as intervals of each dimension for eaeakufe, which replaced the numeric
values of pattern vectors by the label of the fuelnsters, the original decision table
may be converted into an encoded decision tablestas Table 5.1. For example, the
encoded decision table for training data set from Itis data is shown in Figure 5.5.
The x#'s in Figure 5.5 stand for arbitrarily assigned inpectors extracted from lIris

data set.
Table 5.1 Encoded Decision Table using adaptiveyfgartitions

Attributes
) a a am DECISION
Objects
1 3 1 2 1
2 2 4 3 2
n 1 3 4 3

[ Encoded Decision Table for training data ]

x0: o 0 0 0 0
x1: 0 0 0 0 0
x2: 0 0 0 0 0
x3: 0 0 0 0 0
x4: 0 0 0 0 0
x5: 4 0 0 0 0
x6: 0 0 0 0 0
x25: 2 0 3 3 1
x26: 2 0 3 3 1
x27: 2 0 3 3 1
x28: 4 4 4 3 1
x50: 3 0 2 2 2
x51: 4 4 2 2 2
x52: 1 0 2 1 2
x53: 3 0 2 2 2
x74: 2 0 2 1 2

Figure 5.5 Encoded decision table for training datiafrom the Iris data
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5.3 Dimensionality Reduction by Rough Set Approach

The encoded decision table constructed may comtaich superfluous and conflicting
data. As stated earlier, one of the main advantafjgee rough set methodology is that
it reduces the given knowledge using the degreeleplendency of attributes. This
process requires finding reducts of condition ladiiés with respect to the decision
attribute in order to obtain the smallest possitlenber of attributes and decision rules
for higher compactness. Thus the problem associaitdthe number of fuzzy rules
can be resolved by finding a minimal set of atti@suand decision rules.

An algorithm based on the decision-relative disidelity matrix [74] with Boolean
calculation is selected for the reduction of atités. The algorithm for the reduction of

attributes is as follows. Firstly, obtain the disgbility matrix, m; defined by (5.4) with

respect to the decision attributk,

s f(x . d(x) #d(x,
j:{{aDC f(x,a)# f(x;,a)} " (%) #d(x;) G4

0 " d(x) =d(x;)

Then, calculateT;, the disjunctive Boolean expressions with the iestrof the
discernibility matrix as defined by (5.5).

T :{aD a:m z0m #¢ (5.5)

Omy;
Compute the Boolean expression in conjunctive nbfanen as defined by (5.6).

T= 0O T (5.6)

m; 20.m; #¢
Calculate the Boolean expression in disjunctivenmadiform as defined by (5.7).

T =0T, (5.7)

Finally, find a minimal set of attributes, orraduct, which has the least number of
attributes from the normal form @f.
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In addition, in order to select theest’ reduct amongst those candidate reducts, a fuzzy
similarity measure [75] is applied. The degree wértaps of membership functions for
each feature for each reduct is measured usingzy fsimilarity measure defined by
(5.8). Areduct which has the smallest overlap degree on averagbpsen as the final

best reduct towards better accuracy in the patiessification scheme.

(Z(Fi (X) OF, (X))j
s(F, Fj) ==

: (5.8)
(Z (F(x) UF, (X))j

A fuzzy similaritys in (5.8) is defined as the ratio of the squaren &d the degree of
the intersection over the squared sum of the ub&tween two fuzzy sets, F;. This
ratio emphasizes the degree of overlaps, whicteryg gensitive for small changes of
overlaps. As the operators of the intersection thedunion calculations, the arithmetic

minimum and maximum functions are used respectively

For instance, the described attributes-reductiothatkis applied on the Iris data set
after the FCM clustering and encoding processe® wene. As a result, the obtained
candidate reducts for Iris data sets ar&epal LengthPetal Length Petal Width},

{ Sepal WidthPetal LengthPetal Width}. The best reduct among these candidates is
{ Sepal LengthPetal LengthPetal Width}.

5.4 Generation of Decision Rules

To generate decision rules of the given informatismg the obtained best reduct, all
training data are partitioned into correspondirgjaint equivalence classes with respect
to the decision attribute. Based on these obtaggeiivalence classes, the decision rules
are generated by applying the equation (3.36) irap@dr 3. This decision rule
generation process is shown as a simple diagrafhigare 5.6. For example, the
partitioned training data from the Iris data set ahown in Figure 5.7. The generated

decision rules for the Iris data set are showniguife 5.8.
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A Whole Universe of the
given informaticn system

Given
Information

ndi bl
Tt Partition algorithm

Relation by the .
final reduct in the rough set approach

X1 x2 | . Unique Disjoint
Equivalence Classes

Xn

Decisicn Rule
Generation algorithm

A minimal set of
Decision Rules

Figure 5.6 Decision Rule Generation using the fieduct, disjoint equivalence classes

[ Partitioned Equivalence Classes ]

X1 :x0x1 x2 x3 x4 x6 x7 x8 x9 x11 x12 x13x17 x19x21 x22 x23 x24
X2 : x5 x10x14 x15 x16 x18 x20

X3 : %25 x26 x27 x40 x49

X4 :x28 x36 x39

X5 :x29 x31 x33 x38 x43 x47 x48
X6 :x30x41
X7 :x32x35
X8 :x34

X9 :x37

X10: x42 x44
X11:x45

X12 : x46

13 : x50 x53 x60 x66
X14 : x51 x64
X15:x52

X16:x54

X17 - x55 x67

X18 : x56

X19 : x57 x59 x68 x72
X20 : x58 x61 x65 x70
X21:x62 x74
¥22:x63 x71
X23:x69

X24 :x73

Figure 5.7 The patrtitioned equivalence classetr&iming data using the obtained best reduct
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[ The generated Decision Rules 1

R[O]: IF SL=0.00 AND PL=0.00 AND PW=0.00 THEN DECISION=0.00 : [D]
R[1]: IF S1=4.00 AND P1=0.00 AND PW=0.00 THEN DECISION=0.00 : [D]
R[2]: IF SL=2.00 AND PL=3.00 AND PW=3.00 THEN DECISION=1.00: [D]
R[3]: IF S1=4.00 AND P1=4.00 AND PW=3.00 THEN DECISION=1.00 : [D]
R[4]:IF SL=3.00 AND PL=3.00 AND PW=3.00 THEN DECISION=1.00 : [ND]
R[5]: IF SL=4.00 AND PL=3.00 AND PW=3.00 THEN DECISION=1.00 : [D]
R[6]: IF SL=0.00 AND PL=4.00 AND PW=4.00 THEN DECISION=1.00: [D]
R[7]: IF SL=0.00 AND PL=4.00 AND PW=3.00 THEN DECISION=1.00 : [D]
R[8]: IF SL=3.00 AND PL=4.00 AND PW=4.00 THEN DECISION=1.00: [D]
R[9]: IF SL=4.00 AND PL=4.00 AND PW=4.00 THEN DECISION=1.00 : [D]
R[10]: IF 51=4.00 AND P1=3.00 AND PW=2.00 THEN DECISKON=1.00: [ND]
R[11]: IF 5L=3.00 AND PL-4.00 AND PW=3.00 THEN DECISION=1.00: [D]
R[12]: IF 51=3.00 AND P1=3.00 AND PW=3_00 THEN DECISKON=2_00 : [ND]
R[13]: IF 5L=4.00 AND PL=3.00 AND PW=2 .00 THEN DECISION=2.00: [ND]
R[14]: IF SL=3.00 AND PL=2.00 AND PW=2.00 THEN DECISION=2.00 : [D]
R[15]: IF 5L=4.00 AND PL=2_00 AND PW=2.00 THEN DECISION=2.00: [D]
R[16]: IF SL=1.00 AND PL=2_00 AND PW=1.00 THEN DECISION=2.00: [D]
R[17]: IF 5L=3.00 AND PL=2_00 AND PW=1.00 THEN DECISION=2.00: [D]
R[18]: IF 5L=1.00 AND PL=1_00 AND PW=1.00 THEN DECISION=2.00: [D]
R[19]: IF SL=0.00 AND PL=3.00 AND PW=3.00 THEN DECISION=2.00: [D]
R[20]: IF 5L=1.00 AND PL=1_00 AND PW=2.00 THEN DECISION=2.00: [D]
R[21]: IF SL=2 00 AND PL=2.00 AND PW=2.00 THEN DECISION=2.00: [D]
R[22]: IF 5L=2.00 AND PL=2_00 AND PW=1.00 THEN DECISION=2.00 : [D]
R[23]: IF SL=3.00 AND P1L=3.00 AND PW=2 .00 THEN DECISION=2_00: [D]

Figure 5.8 The generated decision rules for tleedaita set

Regarding the generated decision rules, there eoeiale of things to point out. Firstly,
the reduct which is a minimal set of attributesu@=s the number of decision rules.
Accordingly, the computational complexity is le$gan the case when the system is
using all input features to generate fuzzy rulecdfdly, it can be seen that there are
Non-Deterministic (ND) rules among the generatedisien rules in Figure 5.8. This
means the generated rules have some conflict whesh have the same inputs for the
different outputs. Obviously, these rules need ¢otilmed or enhanced later towards
better system performance. Finally, an investigat definitely required to examine
that these rules are suitable to process the Tp& fiyzzy inference. This examination
will be carried out in the next section to ensurat tthe generated rules have a full

coverage of input and output relations of the giveéarmation.

5.5 Validity Checking of Generated Decision Rules

After the generation of a minimal set of decisianes, their validity must be

ascertained for use as the T-S type fuzzy inferegntes. The number of antecedent
fuzzy variables in the generated minimal set ofigiec rules may be less than the total
amount of input variables of the whole fuzzy infezre system. However, according to
the definition of the T-S type fuzzy model [7], theS type fuzzy rules have a form of a
combination of linear systems with all input vatezbas defined by Takagi and Sugeno.
Hence, there is a need to investigate the valafithe generated rules in order to model

the suitable T-S type fuzzy inference rules ofghgposed system.
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The question is whether the decision rules pro@dell coverage of the information

inherent within the training data. The decisioresuare obtained using the final reduct,
the partition algorithm, resulting equivalence sks and decision rule generation
algorithm according to the rough set approach. &the partition algorithm divides a

whole universe of the given information system itite disjoint equivalence classes via
the corresponding indiscernibility relation detemed by the reduct, all equivalence
classes are unique in terms of their input andwutglations. Using these equivalence
classes, the decision rule generation algorithmdymes the minimal set of decision
rules. Also the partitions using the final reduob\pde the same partition in the case
when all attributes are deployed. In other wordi® minimal set of decision rules
obtained offers a full coverage of the given infatiron and a unique set of partitions of

the training data with respect to the decisionkaite.

However, the antecedent variables in the decisitasmay not show all input variables
since some of them have been eliminated in thecteguprocess. In order to form a
complete numeric mapping using all input and outipfbrmation according to the

definition of the T-S type fuzzy model, the reducautecedent variables should be
complemented in their rules. Therefore, the T-Rtiyzzy rules with input information

complemented may be represented as defined by. (Bd®)estimating the values of
coefficients of the complemented T-S type fuzzyesula weighted least-squares
algorithm can be deployed to minimize the additiogr@ors from the complemented

information.

Yi=VYi TV =Co Gy Xy TG Xy ¥ CugyXegany T FCim Xim (5.9)
where
yi : a decision rule with reduced attributes

*

yi : a complementing rule

It is crucial that this investigation regarding Wedidity of the generated decision rules
should be carried out in the process of an aut@nfiazzy rule generation to provide a
full input and output relation of the given knowdgdfor the proposed rough-fuzzy

inference systems.
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5.6 Construction of ARFIS

Once parameters of antecedent membership fundai@enund via the FCM clustering
and the T-S type fuzzy rules are obtained throhghrough sets approach, the proposed
framework of Adaptive Rough-Fuzzy Inference SystdmRFIS) can be constructed.
The proposed framework is built as a MISO T-S tigrzy model as mentioned earlier.
All attributes are assigned as antecedent varialwids the corresponding adaptive
cluster information after the FCM clustering. Thgbuthe validity checking for the
generated decision rules, the T-S type fuzzy imfegerules are modeled using the
complemented decision rules. A type d&eneralized Modus Ponen$GMP)
compositional rules is used to form fuzzy ruleghe knowledge base. The algebraic
minimum operator is utilized to calculate the fuzzpormoperation (AND’) between
the antecedent variables. The coefficients of thresequent variables are fitted by the
least squares fitting towards the correspondingetavalues. The Figure 5.9 shows the

construction stage of the proposed system.

Pre-Processing Fuzzy Inference System

. S\

Clustering FUZZY INFERENCE ENGINE

- MISO T-5 type FIS

- Fuzzifer, De-Fuzzifier
ReoUghSet - Other components
Approach

- Knowlsdgs

Reduction

- Ruls

Generation KNOWLEDGE-BASE

- Fuzzy Membership Function
- Fuzzy Rules (GMP type)

validity Checking - Fuzzy Logic Operators

& Complemented Rules \ /

Figure 5.9 Construction stage of the proposed rdugty inference system

5.7 Adaptive Mechanism of Tuning the Knowledge-base

The performance of the proposed system needs &vdldaeated and enhanced towards
better achievement. After coefficients of the cajusmt variables of the T-S type fuzzy
rules are fitted with the training data, the parfance evaluation is done first with the
training data to compare the RMSE measure defigg®.i0) with a user-defined error

criterion. If the RMSE is not satisfactory, the wtment of antecedent membership
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functions is carried out on the training data sgt dmploying thePolak-Ribiere

conjugate gradient algorithm to minimize the systemor.

(5.10)

err; : the error between the desired output and theahotuput

n : the number of pattern vectors
y?: the desired output
y°: the actual output from the fuzzy inference sysé&tmne epoch

Moreover, the modeled T-S type fuzzy rules from gleeerated decision rules need to

be tuned to get rid of some conflicts as mentioeadier. For those rules which have

same inputs but different outputs, the average fitilegs can be calculated during the

first system evaluation stage. The rules have theeld average rule firings can be
deleted in the rule base towards higher accuradhefproposed system. The system

evaluation and the associated adjustment mechamisniioned are shown in Figure

5.10.

Fuzzy Inference System

/

Data
Set

FUZZY INFERENCE ENGINE

- MISG TS type FIS
- Fuzzifer, De-Fuzzifier
- Other components

8

KNOWLEDGE-BASE

- Fuzzy Membership Function
- Fuzzy Rules
- Fuzzy Logic Operators

Post-Processing

Evaluation of

System
Rerformance

P —

Current
Output

Advanced Adjustment

Figure 5.10 The system evaluation and the adjustmenhanism of the proposed system

5.8 Performance Metrics

Measuring how well a system performs its tasksadel dependent on the objectives of

the system. In most cases, however, it is oftenitiohally straightforward. Most
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common approaches are; 1) a calculation of theepégsige of correct answers in testing
environment and the subsequent comparison of h wiher results under the same
conditions, and 2) a measurement of the systenoqmeaince regarding on robustness
when the additional noise are applied. In thisisactthree performance metrics are
described and used to measure the performanceeopritposed system within the

scheme of computational intelligence systems.

5.8.1 Cross Validation

Cross validation is a method that enables the systeestimate how well a system
performs on the testing data which are unseen entridining phase. It is actually a
prediction of generalization ability of a systenhelprocedure of cross validation is as
follows. The whole data sets are partitioned intdbsets for training and testing
according to the partition strategy. The partitetrategy could be simple, such as a
selection of training or testing data sets in ofdam the first pattern vector. Or it could
be a random selection in, for instance, Jackkraferate [115].

The N-fold cross validation using random selection ipldged for measuring the
system performance of the proposed framework of ISREJsing this technique, the
whole data set is partitioned intd different subsets, anN-1 subsets are used for
training and one subset is used for testing intarative procedure. This process is
continued repeatedIil times until allN subsets are used for testing purposes. The
testing results afteX iterations can be calculated to produce an esbmate and the
variance of the results decreasedNamcreases. The choice bfis dependent on the

characteristics of data sets and the problem doasawell..

5.8.2 Root-Mean-Square-Error (RMSE)

The RMSE error measure is a widely-used one for differences between target
outputs from a supervised model and actual cuoetguts from an estimated model. In
statistics, the MSE of an estimator is one of mapgroaches to quantify the amount
that an estimator differs from the true value oé thuantity being predicted. The
difference occurs due to the no-account of an estimon some information which

could produce a more accurate estimation. The REr8@ measure defined by (5.10)

is employed for the proposed system to obtain ystem error rates.
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5.8.3 Confusion Matrices

For those systems that have multiple output claseesconfusion matrix is very useful
to calculate the percent correct as an analogodsrpence metric. If there are m
classes, am x m matrix is constructed and its rows and columnsdasignated as
target classes and estimated classes, respectivedyalue in each entry in the matrix
represents the total number of pattern vectorsigextiin the testing environment. The
diagonal entries are the instances classified ctyreAfter the classification by a
system, the resulting confusion matrix can be ugeghroduce an average percent
correct for the system by adding all the entriestloam diagonal of the matrix and
dividing the result by the number of classes. Far proposed system, the confusion
matrix has been applied to applications to obtdwe taccuracy of the system

performance.

5.9 Summary

As the main contribution of this thesis, this cleagiresented a development of a new
framework of Adaptive T-S type Rough-Fuzzy Inferer®ystems (ARFIS) to generate
membership functions and rules automatically andetolve the existing difficulties
regarding the number of fuzzy rules within the Rod#aizzy hybridization scheme. The
subsequent adaptive mechanism is proposed in gtersyevaluation and enhancement
stage towards higher system performance. In additihe investigation on the
generated decision rules is carried out regardieg tvalidity for use in the T-S type
fuzzy inference process to ensure that the rulee bdull coverage of input and output
relations of the given information. It is seen thia¢ generated rules have the same
capacity to represent the given knowledge by tdeoathe rough set approach. Also it
is noted that the rules are complemented with timireated input features to model
them as the T-S type fuzzy rules. This is a crymiatess to generate the T-S type fuzzy
rules automatically in the construction stage efphoposed system. Some performance

metrics have been applied to show how well the gsed system performs.

For the further analysis of the proposed systemhiwithe context of a framework of
fuzzy inference systems, there must be some materagtic measures to show that the
proposed system is a suitable tool to achieve ystes objectives. More issues and

systematic metrics are described and suggesteddat@hance the proposed system.
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Chapter 6
6. Applications

The proposed framework of ARFIS has been appliesbtoe applications to show its
viability as a framework for rough-fuzzy inferensgstems. The application domains
are; pattern classification, face recognition, amubile robot navigation. As the nature
of problems in each application is different, thregosed framework has been tailored

for each application according to its system oljest

The rest of this chapter is organized as follows.

In section 6.1, the proposed system has been dpilipattern classification on three
data sets; the Fisher’s Iris, the Wisconsin Breaanhcer, and the new Wisconsin
Diagnostic Breast Cancer data sets retrieved f@h [The objective of the application
is to classify those data sets towards higher acguusing less number of input
variables and fuzzy rules via the proposed approHoh results from each data set have
been compared with other existing pattern clagsifie has been shown that the results
are very satisfactory and competitive.

The face recognition is carried out as the nextiegon in section 6.2 on the face
image database from the MIT Media Lab [100]. Then as to reduce the high
dimensionality of face images using the rough ppt@ach and to recognize them using
the proposed fuzzy inference system. The resulthisftask have been compared with
other approaches to show that the results arear@guraging with much more research
potential in this field of research.

The final application for the proposed system is thobile robot navigation and is
described in section 6.3. The wall-following roleobiehavior has been performed for a
variety of environments; straight walls, circulamlis, arbitrary-shaped walls, and
sharp-corner (90 degrees) walls. The methods eragléyr a comparison of the system
performance are the following; a Bang-Bang congrolh PID controller, a conventional
(standard) fuzzy controller, a GA-fuzzy controlland a rough-fuzzy controller. The
system objective is to get a better control witteduced number of input features and
fuzzy control rules by applying the rough set appto The results have shown that the
quality of the control using the proposed roughzfumference system is relatively

better than other controllers with satisfactoryfgenance.
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6.1 Pattern Classification

In the past, many different approaches have beggested to achieve a higher
accuracy on a variety of data sets in the pattiEssification scheme. For instance, as
reported in [91], a conventional method [85] andziitbased classifiers; the Adaptive
Fuzzy Leader Clustering (AFLC) [86], Wu and Chemlgorithm [87], the Fuzzy
Entropy-Based Fuzzy Classifier (FEBFC) [90], and thfluential Rule Search Scheme
(IRSS) [91] have been applied on the Fisher'sdas [92] and the Wisconsin Breast
Cancer data set [92] to achieve better performaioaever, some of these approaches
still have difficulties especially with the numbef fuzzy rules when a higher
dimensional data set is applied, because the dizbexr knowledge-base in fuzzy
inference systems is directly associated with tbemutational complexity and the

system performance.

The Fisher’s Iris, the Wisconsin Breast Cancer, #re new Wisconsin Diagnostic
Breast Cancer data sets were obtained from theruichine learning repository [92]
for the experiment. For each data set, the expatimeas carried out under the
following same conditions in the training and thsting environment. The details of the

experiment for each data set are described ingkesections.

» TheN-fold cross validation using random selection vtk 10

* The FCM clustering witlC = 5

* The modifieda-cut method withw = 0.02 for the removal of false representation
during the FCM clustering

* The initialized values of deviations of membershinctions as the average
deviation within the clusters obtained the FCM tdusg

» The reduction of the given information with resptecthe decision attribute

» The assigned user-error criterion for the RMSE memas 0.2 in the adjustment
process of antecedent membership functions

* The fine tuning of modeled fuzzy rules for the realaof conflict rules

* The different 10 independent runs for the averdgesults

* The statistical test ANOVA (analysis of varianc@pked to demonstrate the

statistical differences in results produced byedé#ht approaches
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6.1.1 The Fisher’s Iris Data

The Fisher’s Iris data set [92] contains 150 pattegctors with four features (Sepal
Length, Sepal Width, Petal Length, and Petal Widihyl one output of three classes
(Iris Setosa, Iris Versicolor, and lIris Virginicalhe scatter plots for the Fisher’s Iris

data are shown in Figure 6.1.
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The antecedent membership functions were autonigitgzenerated for Iris data set and
one example for an attribute, ‘Sepal Length’ isvehan Figure 6.2. It can be seen each

Figure 6.1 The scatter plots for the Fisher's ia Set

membership function was fitted to different shapasymmetric Gaussian function.
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Antecedent Membership Functions for Sepal Length
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Figure 6.2 The generated antecedent membershipidaador Sepal Length

Utilizing 10-fold cross validation, the proposed AR randomly selected 9 subsets for
training and 1 subset for testing in each fold. Vhkdation process was repeated 10
times, with each of the data vectors used exactty @s the validation data.

The best final reduct calculated for the Iris degh was {Sepal Length, Petal Length,
Petal Width} (3 features). The number of reducezzfurules was 23 on average after
the 10 independent runs. One set of the generalesl is already shown in Fig 5.8 as an
example. In contrast to the number of the generatedy rules in the IRSS [91] which
increased exponentially as 5 x 5 x 5 x 5, our psedosystem achieved a massive
amount of reduction, 96 % for this data set, onrtheaber of fuzzy rules. Accordingly,
the computational complexity was reduced effecyivbly the proposed rough set
approach. The result of the classification accurasythe average percent correct is
shown in Table 6.1 with results from other classtifor a comparison of system
performance. It can be seen that the classificaimuracy produced by the proposed
framework of ARFIS is very competitive comparedrésults of other classification

approaches.
Table 6.1 Classification accuracy on the FisheisData
Algorithms Setosa| Versicolor | Virginica ol :s\giafzggt?on
(%) (%) (%) | ratio (%) (40)
GVS [85] 100 94.00 94.00 96.00
AFLC [86] 100 86.00 100 95.33
Wu and Chen [87]| 100 93.38 95.24 96.21
FEBFC [90] 97.12
IRSS [91] 100 92.00 96.00 96.00
ARFIS [93], [113] | 100 92.05 96.67 96.242(18)
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6.1.2 The Wisconsin Breast Cancer Data

The Wisconsin Breast Cancer data set [92] is use@dt our proposed system on a
higher dimensional data. It has 699 medical inganavith nine attributes
(ClumpThickness, UniformityOfCellSize, UniformityO€glIShape, MarginalAdhesion,
SingleEpithelialCellSize, BareNuclei, BlandChromatNormalNucleoli, Mitoses) and
one output of two classes (Benign and Malignantprder to create subsets for training
and testing, a couple of steps were applied asvisll Amongst all 699 pattern vectors
from the original data set, samples that includesing attributes (*?’) were firstly
removed. Then, the 10-fold cross validation techaigvas employed to estimate the

classification results. Scatter plots for this Gardata set are shown in Figure 6.3.
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Figure 6.3 The scatter plots for the Wisconsin Br&ancer Data Set
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The experiment was performed in the same manneredtifor the Fisher’s Iris data set.
The generated antecedent membership functionsnfattebute, Clump Thickness are
shown in Figure 6.4. The best final reduct found tlis Cancer data set was {CT,
UCSize, UCShape, MA, SECS, NN} (6 features). Thenber of reduced fuzzy rules
was 128 on average after the 10 simulations. As/shabove, the effective knowledge-
reduction is achieved on the number of attributed decision rules on this high
dimensional data set. Regarding the results ofttassification accuracy, it is shown
with its statistics in Table 6.2 to compare witsuks from other approaches. Note that
our proposed ARFIS produced very competitive andhrhigher accuracy on a higher
dimensional data set in the pattern classificasicileme. This can be seen in Figure 6.5
as a difference in distributions of classificat@ecuracy for approaches applied on this
data set. Based on results in Table 6.2, the stalisest ANOVA was applied to show
the statistical difference of outcomes producedShyiono’s Neuro Classifier [88] and
ARFIS, and it is shown in Table 6.3.
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Figure 6.4 The generated antecedent membershipidaador Clump Thickness

Table 6.2 Classification accuracy on Wisconsin Br&ancer Data

Algorithms Accuracy (%) (4)
Setiono’s Neurg 93.99 (#4.81)
Classifier [88]

MSC [89] 94.90
FEBFC [90] 95.14
IRSS [91] 95.89
ARFIS [93], [113] | 2847 (2.09)
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Distribution of Classification Accuracy
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Figure 6.5 The distribution of classification acaey for approaches on Wisconsin Breast Cancer Data

Table 6.3 The ANOVA test on classification reswits WBC data

Source Sum of Degree of Mean of F p
Squares (SS) freedom (df) | Squares (MS
Between-Groups (Col)| 6.085 1 6.085 76.404 0.0001
Within-Groups (Row) 14.698 110 0.133613 1.678
Error 8.761 110 0.079
Total 29.543 221

In brief, the ANOVA test compares means by exangrhme F ratio, which is the ratio
of between-groups variance divided by within-groupsance. The F ratio effectively
provides an estimate of the extent to which th&itigtions from two (or more) groups
or conditions overlap. The more the distributionertap the less likely it is that the
means differ and vice versa. The larger differendbe means causes F to be greater so
increasing the likelihood of a significant diffecenbetween the means.

From Table 6.3, it can be seen from a simple visugpection on test result that the
between-groups MS (variance) is far greater thanwithin-groups MS. This means
that the variability across the different approacbéclassification is much higher than
the other which is from one subject to anotherpimints in distribution of classification
accuracy. In addition, the ARFIS has achieved higloeuracy with smaller deviation
than result from Setiono’s. Therefore, it can batest that the ANOVA test on
classification results indicated that the proposgstem achieved statistical significance
of differences in means of classification accuranythe Wisconsin Breast Cancer data
set. This statistical test showed another quamngbroof that the proposed system
produced better results than other approaches @ dhta set in the pattern

classification scheme.
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6.1.3 The Wisconsin Diagnostic Breast Cancer (WDBC) Data

The Wisconsin Diagnostic Breast Cancer (WDBC) o=t [92] is one of the later
versions of Wisconsin Breast Cancer data with difie medical features computed
from a digitized image of a fine needle aspirateaobreast mass. These attributes
represent characteristics of the cell nuclei presethe image. It has 569 instances in
total with 30 real-valued input features and th@eautput of two classes (Benign and
Malignant). Ten real-valued features are compubeeéch cell nucleus; radius, texture,
perimeter, area, smoothness, compactness, concawuitgave points, symmetry, and
fractal dimension. The mean, standard error, andtw largest of these features were
computed for each image, resulting in 30 featufé® scatter plots for the Diagnostic
Cancer data are shown in Figure 6.6.
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Figure 6.6 The scatter plots of the Wisconsin Daagic Breast Cancer Data Set
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As the Wisconsin Diagnostic Breast Cancer datahastbeen popularly used in the
literature [94], [95] for one of the benchmark ogler dimensional data, the proposed
system was applied to this data set under the gaooedure. The generated antecedent
membership functions for the first attribute arewsh in Figure 6.7. The best final
reduct found for this data set was {F1, F3, F4,&,F8, F9, F12, F15, F18, F19, F21,
F23, F24, F25, F26, F29} (17 features). The redungdber of fuzzy rules was 278 on
average after the 10 simulations. As shown, theigioh is achieved much more
effectively on the number of attributes and fuzales on such a high dimensional data
set. The results of the classification accuracysamvn with statistics in Table 6.4 for a
comparison with results produced by other appraachiee distribution of classification
accuracy for approaches is shown in Figure 6.8e Nt our proposed framework of
ARFIS produced much higher accuracy compared ta wiosther approaches on this
higher dimensional data. The statistical ANOVA tess also applied to results
produced by other approaches and ARFIS, and tag/s in Table 6.5.
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Figure 6.7 The generated antecedent membershifidoador the first feature, F1

Table 6.4 Classification Accuracy on Wisconsin Diastic Breast Cancer Data

Algorithms Accuracy (%) ()
PLV [94] 93.15
RB [95] 93.69 (13.38 max)
KD [95] 94.93 (2.12 max)
SS1 [95] 96.11 (#0.51 max)
ARFEIS 95.59 (4.41)
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Figure 6.8 The distribution of classification acaey for approaches on Wisconsin Diagnostic Breast
Cancer Data

Table 6.5 The ANOVA test on classification reswitsWDBC data

Source Sum of Degree of Mean of F p
Squares (SS) freedom (df) | Squares (MS
Between-Groups (Col)| 10.827 3 3.609 75.532 0.0001
Within-Groups (Row) 28.975 110 0.263 5.513
Error 15.767 330 0.048
Total 55.568 443

The ANOVA test results in Table 6.5 showed thatlieveen-groups variance which is
across the different approaches is greater thanothdS for within-groups case. Also
the F ratio shown is quantitatively large than aeotwhich is driven by within-groups
source. This means that the proposed ARFIS prodwstatistical significance in
differences of means on the Wisconsin DiagnosteaBr Cancer data set. As seen, even
though the best result was not produced by ARFIghmndata set, the proposed ARFIS
achieved a comparatively higher classification Iteand a statistical significance on

difference in means of accuracy in pattern clasaiion.

6.1.4 Conclusion

This chapter described the application of the psepoframework of ARFIS in the

pattern classification scheme. In order to asdessviability of the proposed system,
three data sets were utilized to show the perfoomaof ARFIS using different

dimensionality and complexity of the example dah $he pattern classification task
for these data sets is carried out under the samditions as stated earlier. In each
section for the experiment for each data set, ttle@racteristics were mentioned with
brief overview and the results were shown with tb@uced size of the input features
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and fuzzy rules. Regarding the classification aacyr results on each data set were
compared with other approaches in the contexteptttern classification.

By the comparison of the classification resultscain be stated that the proposed
framework of ARFIS has a very efficient knowled@ehuction process to reduce the
high complexity of the given information, and exest generalization ability with the
proposed adaptive mechanism to adjust its knowkbdge towards better achievement
in the pattern classification scheme. Based orsyiseem performance of ARFIS in this
application, it can be seen that there is much rpiaiefor this research in pattern

recognition on high dimensional data within thetea of fuzzy inference systems.

6.2 Face Recognition

Recently, the face recognition has been appliedlariety of practical systems such as
identification systems in airports, security sultegice systems and so on. The most
well known approach is Eigenface model [96], [98]ng the Principal Component
Analysis (PCA). The PCA is an unsupervised statstmethod that finds the most
relevant information to represent the given datdnas been used widely for the past
decades in the face recognition area. Howeverdithensionality of features from face
images is obviously too high to process them. Thecgssed data using the PCA
approach have still too much computational compyeta calculate. In order to resolve
this problem, further analysis of face recognitissing the ICA [98] along with the
comparisons with the PCA, and the rough set apprd@®] have recently been
considered for the effective feature-reduction hrs tresearch area to achieve better
results. The advantages of both the rough set apprand the T-S type fuzzy model are
combined to develop a T-S type PCA-Rough-Fuzzy rarfee System for face
recognition. Also, a theoretical similarity in thepresentation of the given information
as a combination of linear systems in between tHe fpe fuzzy model and the
Eigenface model has led the authors to proposevafacee recognition approach using
the proposed system framework.

6.2.1 Eigenface Model

An information theory approach for coding and decgdace images has led M. Turk

and A. Pentland to develop a face recognition sys{@6], [97] using principal
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components of face images. In order to extractntiest relevant information of face
images from a database, the PCA (Principal CompgoAealysis) method has been
applied. The eigenvalues of the covariance matrithe set of face images have been
used to rank the corresponding eigenvectors. Aangigctor associated with the largest
eigenvalue holds the most relevant information thantributes to describe the
distribution of face images in th&cte spacé Using these most relevant eigenvectors
considered as a set of features, to charactere@dhation of face images, each face
image in a training set can be represented asm &dra linear combination of the
eigenvectors. Each eigenvector can be displayed2aB vector image that is called an

‘eigenfacédue to its face-like appearance.

The algorithm of the face recognition process usiegeigenface model [96] takes the
following steps.

1. Calculate the eigenfaces of the training set of fatages.

2. If a face image is fed to the system as an in@lcutate a set of weights based
upon theM’ eigenfaces and the input vector by projectingitipait face image
onto each of eigenfaces.

3. When theEuclideandistance between the projection vector and the fpace
is sufficiently small, determine the input face geaas a face.

4. If the input is a face image, classify its projentivector as a known or

unknown individual.

In the training set of face imagEg I',, ... ,I'v, the average face is defined by (6.1).

W :_Zri i=1, 2, ... M (6.1)

¢ =Mh-¥v i=12 ..M (6.2)

The difference images above are then used to fiset @fM orthonormal vectors, or
eigenvectorsl,, and the associated eigenvalug®f the covariance matrix defined by
(6.3),
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1 M
C :MZQCDI =AA i=1,2, ..M (6.3)

where
A= [(1)1 D, ... q)M]

If the dimension of each face imageN§ the size of this covariance matrixNg x N,
which means its computational complexity is extrgnigh. However, it is possible to
determine the eigenvectors by solving Mex M matrix [97]. This calculation reduces
the dimension fronN? (the order of the number of pixels in the imagedyl (the order

of the number of images in the training set) todmee computationally feasible.
After the eigenfaces are obtained as above, the rfacognition becomes a pattern
classification task. TheI’ eigenfaces which are selected based on the laagsstiated

eigenvalues spanM’ -dimensional subspace of the origih&limage space. Now a new

face imagd’ is projected onto the face space by each eigeafadefined by (6.4).
w=u -¥) k=1,2, ..M (6.4)

TheM’ number of projection vectots, form a vector, or aface class®, as defined by
(6.5). Aface clasglescribes the contribution of each eigenface ¢oréipresentation of
the input face image, treating eigenfaces as & Isasiof face images.

Q" =[ww - w,] P

The Euclideandistancegy is used in (6.6) to find the nearest face claizat provides

the best representation of an input face image.
a=(Q-9Q,)| « k-th face class vector (6.6)

Finally, a face image is classified to cl&ksshen a minimuney is below a threshold,,

otherwise the face is classified as unknown.
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6.2.2 Design of a PCA-Rough-Fuzzy Inference System

The proposed PCA Rough-Fuzzy Inference System [ELBjilt as a MISO T-S type
fuzzy system. All attributes (projection weights) from the training face images are
set as the antecedent fuzzy variables with equi@lyibuted fuzzy clusters. Using these
fuzzy partitions, the given information is convertas an encoded decision table. The
best final reduct is found via the proposed knog&deduction process. The decision
rules were generated using the best reduct anduteegeneration algorithm in the
rough set approach. Through the validity invesiagafor the generated decision rules,
the minimal set of decision rules are used as afsE{S type fuzzy inference rules. The
coefficients of the T-S type fuzzy rules are estadawith target values which are
distances from the origin point to the projection the input vector in anM’-
dimensional subspace. During the estimation pro@sgstem performance evaluation
is carried out using the RMSE measure towards higheuracy. The functional block
diagram of the construction of the proposed sysseshown in Figure 6.9.
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Figure 6.9 The functional block diagram of the pregd PCA-Rough-Fuzzy Inference System

In the recognition stage of the proposed systeset af testing face images is projected
onto the pre-determined eigenvectors through th& P€&thod. If a projection vector of
an input face image is near the face space, treemput is classified asface If not, it

is anon-face The corresponding projection vectors are norredliior each feature and

they are used to build a decision table. This datitable is then filtered and reduced
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by the best reduct found in the construction pleddbe proposed system. The feature
values from the reduced decision table are fed theo constructed T-S type fuzzy
inference system to identify their personal IDs. &hitrary threshold is applied on the
difference errors between the desired value and {8eype fuzzy output to classify an

input face image into one of the person IDs.

6.2.3 Results

Since the previous successful work [93] on thegpaticlassification task, the face
recognition scheme is applied as another applicatiio the proposed framework of
Adaptive Rough-Fuzzy Inference Systems (ARFIS)1&3]. In order to assess the
viability of the proposed system, the MIT Media kalace image database [100] was
employed. In the MIT face image database, each ¢&ck6 people was digitized 27
times, varying the head orientation, the lightingd the scale in three types for each.
The images were then filtered and sub-sampled ¢dyme six levels of a Gaussian
pyramid. Example raw face images from the MIT Meldids face image database are

shown in Figure 6.10.

Figure 6.10 Example face images from the MIT Mddibs face image data base

In our experiment, only full-scale and frontal fageages for 16 people were considered
for assessing the performance of the proposed mydt®r each individual, 5 face

images were used in the training set and 4 facgesavere used in the testing set.
Once the system was implemented and tested wigettata sets, the training and the

testing data were swapped using fatold cross validation technique.
In the construction stage, the pre-designed anéetadembership functions were used

for fuzzy partitions. Regarding the knowledge-reduc process, the number of input

features was reduced from 15 to 8 and the numbiireofenerated rules was reduced to
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16 on average after the 10 independent runs. Basethe reduced knowledge, the
proposed system was built as a MISO T-S type fuzieyence system.

In the recognition phase, the face images in #ieitrg set were classified as one of the
sixteen individuals and no faces were rejectedrdmawn. The recognition accuracy
was 93.75% on average after 10 independent runs. During émopnance evaluation
stage after the estimation of the coefficientshaf T-S type fuzzy system, the RMSE
measure between the actual and the target outpatssatisfactory. Towards better
performance, an adjustment process on the antecewsnbership functions and fuzzy
rules can be applied using the conjugate gradiégdgrithm based on the RMSE
measure. If this adaptive process were to be emagloy is expected that the system
performance on this task would be much better whth flexibility of the knowledge-

base of the proposed system.

Given this potential of the proposed system, tiselte in the experiment can be seen as
encouraging and satisfactory when it is compardti Wie results of the conventional
Eigenface model reported in [96], [98]. Note thhe tproposed system effectively
reduced the high computational complexity of theegi problem by deploying the
rough set approach. Also the employed T-S typeyfuaterence system achieved the

classification task using its good generalizatibitity.

There are a couple of key points identified in #eriment. These are as the
followings.
1. The recognition accuracy using reduced feature setseducts, is higher than
the results using the full feature set.
2. The most relevant features associated with thesargigenvalues are in reduced

feature sets at all times.

The first point is ensured by the rough set thebuy,no literature to date has clarified
the characteristic for the second one in termé@tleoretical linkage between the PCA
and the rough set theory. This fact may indicatsitpm@ potential for the rough set

approach on the knowledge-reduction scheme indttenn recognition area.
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6.2.4 Conclusion

This section described the face recognition tas&resher application of the proposed
framework of ARFIS. In order to test the proposgstam, the face images from the
MIT Media Labs face database were employed to parfthe given task. The
experiment is carried out to construct the propoB¥tiA-Rough-Fuzzy Inference
System from the training set and to test the syst@mthe testing set under the system
configurations as mentioned. In the experiment, pheperties of the chosen face
images were described and the results were shottnthé reduced number of the input
features and the fuzzy rules. The recognition aauon the face images was compared
with the result of the conventional Eigenface model

Based on the comparison of the system performah@an be said that the system
performance of the proposed PCA-Rough-Fuzzy Infexei®ystem on the face

recognition scheme produced encouraging and satsfaresults with a reduced

number of input features and fuzzy rules. This eafinent was done by deploying the
effective knowledge-reduction process of the rosghapproach and by employing the
excellent generalization work of the T-S type fuzmpdel. It is expected that the
recognition accuracy would be much better if theasmded tuning process was applied
to the knowledge-base of the proposed system t@Nzetier system performance. Note
that the proposed system has future potential isfteld of research in terms of the
theoretical development or clarification of theat&ns in the knowledge-reduction
process in between the PCA and the rough set theory
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6.3 Mobile Robot Navigation

In the field of mobile robotics, most of the rolmbiehaviors have been hampered by a
large number of uncertainties in real world envinemts. The uncertainty factors
mainly come from the sensory inputs, which are roft@ry noisy and sometimes
unreliable. Fuzzy logic has been applied to hartlle problem, which is widely
deployed to achieve goals in robotic control [8], [101]. However, due to the lack of
a learning property of conventional fuzzy systethere has been a need to tune their
system parameters of the knowledge-base. Fordkefpw years, many researchers
have suggested various methods of learning for yfuggstems towards better
adaptability to the external environment [12], [13K], [15], [80], [102].

In this chapter, we propose a new system for a Réwgzy Controller (RFC) for
robotic behavior, a wall-following navigation. Tlentroller uses rough-membership
functions to improve its uncertainty reasoning. sThiough-fuzziness’ [103], [104]
allows the whole system to analyze its environmants more robust and reliable
manner. A database from the conventional fuzzyesysin the input and output feature
domain has been generatedagsriori knowledge for the proposed system. Using this
set of sample data, the partition process on threngdata has been carried out to
produce their equivalence classes according tadbgh set theory. While the robot
follows the given wall, the rough-fuzzy memberstggree of an input vector has been
calculated to create the ‘rough-fuzziness’ of tmgut to perform better analysis on the

uncertainty of the environment.

The proposed system has been tested in a numbamvabnments with thé&yeSim
simulator [105], [106] and a real robaabBot[106]. Experimental results have shown
that the best system performance has been camiedsong the proposed rough-fuzzy
system for the wall-following behavior as compavath other controllers including a
Bang-Bang controller, a PID controller, a convendilb(standard) fuzzy controller, and
an adaptive fuzzy controller using GA (Genetic Algons).

6.3.1 Rough-Fuzzy Membership Functions

The rough-fuzzy membership function [103], [104]aof inputxOU for a given fuzzy
setF can be defined by (6.7).
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cardinality([x]; n F)

o) () = o rdinality([4].) ©.7)
where
cardinality(F). the cardinality of the given fuzzy set
cardinalig(F) = 14 (x) (6.8)
XU

ur(X): a conventional fuzzy membership function of aruinpfor a fuzzy sef

In the literature [104], the input pattern vecttrat have the same input representation
of a patternx; form a parallelepiped space on the space of imaiterns. This
parallelepiped contains all the patterns from theiealence classx]. The ‘roughness’

is created in the parallelepiped when the pargliptel contains more than one pattern
and when these patterns have different fuzzy meshiggrvalues. Also, the ‘fuzziness’
appears in the parallelepiped when the fuzzy meshiggwvalues lie in (0, 1). Therefore,
the presence of both the roughness and the fuzzorestes the ‘rough—fuzziness’. In
terms of the spatial structure, the rough—fuzzy imenship of the patterw; is the
volume occupied by the overlapped space dividedthay volume of the complete
parallelepiped. In other words, the volume of thertapped space is approximated by
the weighted number of patterns in the space, whwgeweight of each pattern is
guantified by its fuzzy membership value. The cahad the rough-fuzzy membership

function mentioned above is shown in Figure 6.11.

B ) =1 e
Parallelepiped »
T 3
Overlapped space
.um‘ (x) Fn 4
Fuzzy membership
surface Hy (X)
Hy (x)=0 -

Space of input patterns

Figure 6.11 The concept of the rough-fuzzy membprmctions. Adapted from the literature [104]
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6.3.2 Design of a Rough-Fuzzy Controller

The proposed Rough-Fuzzy Controller (RFC) is baiitthe basis of a conventional
fuzzy system and the rough set approach is utilipednalyze the uncertainty of the
fuzziness of the input data. The rough-fuzzy mesitierfunctions were designed on
top of the pre-designed fuzzy system to enhanceutivertainty reasoning. The wall
following robotic behavior is applied to test ouoposed system. It is a popular robotic
task for exploring in structured or unknown envirents. The quality of a good wall
following behavior can be characterized by thediwlhg three conditions as discussed
in [107]; to maintain a desired distance from thelywto move at a constant velocity as
high as possible, and to avoid sharp changes ettitin and speed. It is assumed in our
experiment that the robot follows the given wallitmleft side. Following another side

of the given wall can be easily implemented by gjirag the sensory inputs.

The design of the conventional fuzzy controllerviall following task is described first

as follows. The knowledge-base is designed by timeam expert in mobile robotics or a
fuzzy expert with sufficient experience for the specific design of a fuzzy system. In
order to design the system, the choice of fuzzyclagerators is determined for use
based on the characteristics of the given taskpamdose. The goal in our case is to
make the robot follow a given wall at the desiréstahce from the wall maintaining a

constant maximum velocity. The fuzzy operatorssaiected as shown in Table 6.6 for

the control scheme in mobile robot navigation.

Table 6.6 The choice of fuzzy logic operators

Operator Method
T-norm Algebraic min
T-conorm Algebraic max
Implication Mamdani
Aggregation Algebraic max
Defuzzification Center Of Area

The type of membership functions also has to beerdehed based on the
characteristics of the goal. Towards better outofethe fuzzy system in the control
scheme of mobile robot navigation, the standards&an membership function is
selected for sensory inputs as an antecedent \ar@id for heading angle as a
consequent variable. The membership functionsHersensory input and the heading

angle are shown in Figure 6.12 and 6.13, respdgtiV@e sensory input is designed as
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a single left side sensor to measure the distam¢ket wall and a front one is used to

detect the obstacles in front of the robot.

Antecedent Membership Functions

1.0

0.5 |

0 2‘“0 4‘"“ 6‘00 8‘"0 1000
Sensor range (mm)

Figure 6.12 Antecedent membership functions fagresery input

Consequent Membership Functions
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Figure 6.13 Consequent membership functions foh#seling angle

The antecedent membership functions have five fuzinguistic variables;
{VERY_NEAR (VN), NEAR (N), MODERATE (M), FAR (F), \ERY_FAR (VF)}.
The value of the desired distance from a given ¥wa®00mm and is set to the mean of
the fuzzy membership function of ‘MODERATE’. Thehet membership functions are
equally partitioned within the value of two timefstioe desired distance, while the total
universe of the discourse of the antecedent iISQO0Q] mm.

The consequent membership functions are designedy e standard Gaussian
functions in the range of [-45, 45] degrees in lawordinates of the robot. They have
the following fuzzy linguistic variables; {FAR_LEFTFL), LEFT (L), ZERO (2),
RIGHT (R), FAR_RIGHT (FR)}. The mean value of ‘ZERMS set to 0.0 as the desired
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heading angle is perpendicular to the given walilevthe robot follows it. The other

membership functions are spread by equal intenfal® degrees.

The simple rule base of the conventional fuzzyesysis constructed as Mamdani-type
fuzzy inference rules and they are composed as rshioviFigure 6.14. Note that the

given wall is located at the left side of the rabot

R1:IF sensor_input is VERY NEAR, THEN heading angle is FAR_RIGHT.
R2: IF sensor_input is NEAR, THEN heading angle is RIGHT.
R3:IF sensor_input is MODERATE, THEN heading angle is ZERO.

R4: IF sensor_input is FAR, THEN heading _angle is LEFT.

R5:IF sensor_input is VERY FAR, THEN hcading angle is FAR_LEFT.

Figure 6.14 The designed rule base for wall folloyvbehavior

The proposed Rough-Fuzzy Controller is implemerdadthe basis of the designed
conventional fuzzy system. The rough-fuzzy systems the ability of approximation of
an input value for a given fuzzy set accordingtsodefinition. The degree of ‘rough-
fuzziness’ of an input leads to a better represemeof uncertainties linked to the
environment. Using the definition of a rough-fuzmgmbership function in references
[103] and [104], the rough-fuzzy membership valdeaopatternx; is the volume
overlapped space by an intersection between themelof a parallelepiped for the
equivalence class¢]r and the conventional fuzzy membership function dogiven
fuzzy setF as in Figure 6.15. In other words, the volumeha overlapped region is
approximated by the fuzzy-weighted number of dasdiepns in the space of the
equivalence clasx]r.

Rough-Fuzzy Membership Function

on feature domain

Rough-Fuzzy
Membership Function

10 overlapped space
08
06 paralielepiped
04
02

0.0

'MODERATE' S e 'ZERO'
Sensor range (mm) Heading angle (deg)

Figure 6.15 The rough-fuzzy membership functiorttafeature domain
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In order to implement the proposed rough-fuzzy iler, a set of 1,205 input-output
examples is gathered via the conventional fuzzytrotlar to enhance uncertainty
reasoning about unknown inputs in real-time. Eaata dector in the database consists
of three features; a distance measured to the giadina linear velocity measured of a
robot, and a heading angle measured while followtimg wall. These features are
considered to calculate the rough-fuzzy memberdegree of the input vector. After
the partitioning process applied to the set of edas) an input vector can be
categorized into one of the equivalence classlgshky calculating the nearest distance
to the nearest equivalence class in the input spdeen the rough-fuzzy membership
value of the input vector can be obtained by thelinality of the corresponding
equivalence class and the standard fuzzy membekstiyes of features; a distance
measured and a heading angle measured. When ¢aigutze rough-fuzziness of each
feature for each input vector, two given memberdhipctions are considered. The
‘MODERATE’ antecedent fuzzy membership function tbe sensory input and the
‘ZERQO’ consequent membership function for the hegdingle are used to produce the
rough-fuzzy membership degree of the input vect®ased on the rough-fuzzy
membership values of the input vector, the corredpg fuzzy inference rule is fired
only when those rough-fuzzy membership values ajkehn than the threshold values.
The threshold values are determined in a heungtig as 0.8 for both ‘MODERATE’
and ‘ZERO’ membership degrees. The algorithm desdriabove is summarized in
Figure 6.16.

1) Generate a set of examples for a priori knowledge.
2} Partitionthe set of examples gathered into equivalence classes.
3) Whilethe robot follows a given wall,
a) Cateporize the input vector intoone of the partitioned
equivalence classes.
b) Calculate the rough-fuzzy membership degree of an input vector for
each feature by the corresponding given fuzzy sets.
c) Apply a threshaold value ta the rough-fuzzy membership to fire the

corresponding fuzzy rule.

Figure 6.16 The algorithm to construct the propasedih-fuzzy controller

104



6.3.3 Experiments

The mobile robot navigation scheme is applied ®ptoposed framework of Adaptive
Rough-Fuzzy Inference Systems (ARFIS) as anothplicapion. In order to test the
proposed system, the 3D mobile robot simuld&yeSin{105] and a real roboL,abBot
[106] are utilized. The experiments are carried ioufive different environments to
enable the robot to face different situations imigation. TheEyeSim3D mobile robot

simulator and théabBotare shown in Figure 6.17.
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Figure 6.17 The LabBot and the EyeSim mobile rcoulator

In experiments, the desired distance from the Weftl was set to 200 mm and the
desired linear velocity was set to 200 mm/sec. Iiimear velocity of the robot was

initialized as a constant value, but while the todrmcounters obstacles in front 450 mm
in front of the robot the velocity is designed &mluce by 10 mm/sec in each control
stept; to avoid obstacles. At the same time, the robotstat the pre-defined angle of
30 degrees to avoid obstacles in front. As soorthasrobot avoids the obstacles
successfully, the linear velocity is designed tarmeased to reset it up to the desired
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speed. This velocity control procedure and theaslbstavoidance routine are applied to

all the following controllers.

For the comparison of the system performance d¢miht methods, the following five
controllers are implemented and applied for the-fadlowing behavior; a Bang-Bang
controller, a PID controller, a conventional stamidfuzzy controller, an adaptive fuzzy
controller using GA, and the proposed rough-fuzaytoller.

1) The Bang-Bang control

This is the simplest control approach for the Jalllewing task. The Bang-Bang
controller implemented here is designed to moverdih®t between the minimum and
the maximum distances from the given wall. The mmaxn and the minimum distance
from the wall are designed to DEISRED(MARGIN/2) mm, respectively. In here, the
value for MARGIN is set to 90 mm. If the robot meeess the minimum distance to the
given wall, the robot turns away from the wall apre-defined heading angle of 15
degrees. In a similar way, if the robot goes tadofaexceeding the maximum distance
from the wall, the robot moves back toward the walis simplest case produces a
Bang-Bang motion between the minimum and the mawindistance offsets from the

wall.

2) The PID control

The conventional PID (Proportional-Integral-Deriva) controller has been widely
used for control functions in the industrial prazeBor the past couple of decades, a
number of approaches have been proposed in orden¢oPID gains. For instance, the
classical techniques such as Ziegler-Nichols [18&]man [109], and trial and error
methods have been employed to adjust gains of Ribiralers. Recently, more
complex approaches have been utilized to re-adfuist parameters, which are the
hybrid self-organizing fuzzy PID controller [6] areh adaptive hierarchical tuning
scheme for fuzzy PID controllers [4]. The classiedD controller is designed here to
determine the heading angle of the robot for wallbiving behavior. The mathematical

formula of PID control is defined by (6.9).

. . . aet)
K, *et) + K, '([e(t)dt+KD " (6.9)

where
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e(t): the difference between the desired and the abteading angle

Kp, K|, Kp: the PID gain parameters

The error functiore(t) is designed as the difference between the debgading angle
and the actual heading angle measured. The tribeaor method is applied in order to
adjust PID parameterK{, K, Kp) for the PID controller. The three gain parameters
(Kp, Kj, Kp) are tuned as (0.2, 0.05, 0.3) respectively usimg tuning approach to

obtain a smooth motion for the robot to follow tiieen wall.

3) The conventional fuzzy control

The design of the conventional fuzzy system is idiesd in the previous section.

4) The adaptive fuzzy control using GA

The classical GA approach was applied to adjustatitecedent and the consequent
membership functions of the conventional fuzzy eyst In this experiment, the
chromosome encodes the values of the mean and dlmtidn of each fuzzy
membership function. The heights of the Gaussiamipeeship functions are fixed to
1.0 for simplicity. The initial seeding is givenndomly with equal probability within
the universe of the discourse of each parameteg. fitihhess function to minimize at

each control step, is defined by (6.10).

1) =168 100) ~che)’ + G A0) ~ el + &40 Vo) (6.10)
where
Wg, W,, W, : the weights for the distance from the wall, tleading angle of a
robot, and the linear velocity, respectively
daes @des Vdes - the constants for the desired distance, theetbsieading angle,
and the desired constant linear velocity , respelsti

dm, m, Vin : the variables measured at each control step,

The weightswg, w,, W, are set to 0.8, 0.1, and 0.9, respectively. Tdired learning
was chosen for the tuning scheme. The parametastetedent membership functions
were adjusted when the consequent was fixed. im#das way, the parameters of the
consequent variable were tuned while the antecederst fixed. The final tuned
antecedent and consequent membership functionsharen in Figure 6.18 and 6.19,
and their final parameters are listed in Tableathd@ 6.8.
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Adjusted Antecedent Membership Functions
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Figure 6.18 The adjusted antecedent membershipidmsc
Table 6.7 The adjusted parameters of antecedenbersirip functions using GA

Tuning Before After
m o m o
VN 0.0 60.0 9.62 16.06
N 100.0 60.0 115.18 88.22
200.0 60.0 200.0 91.22
F 300.0 60.0 338.24 89.93
VF 400.0 60.0 532.18 41.46

Adjusted Consequent Membership Functions
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Figure 6.19 The adjusted consequent membershipidmsc

Table 6.8 The adjusted parameters of consequenberstrip functions using GA

Tuning Before After

m o m o
FL -30.0 9.0 -31.56 3.21
L -15.0 9.0 -29.18 3.64
Z 0.0 9.0 0.0 12.96
R 15.0 9.0 22.68 3.02
FR 30.0 9.0 34.83 8.29
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5) The Rough-Fuzzy control

As stated earlier, the proposed rough-fuzzy coletrad implemented based on the pre-
designed conventional fuzzy controller. The systisign of the rough-fuzzy controller
and its algorithm to calculate the rough-fuzzine$ésan input is described in the

previous section.

6.3.4 Results

The application of the proposed system on a wélviong behavior was carried out in
different types of environments; straight, circularbitrary-shaped, and 90-degree
walls. The desired distance from the left wall wasto 200 mm and the constant linear
velocity was initialized to 100 mm/sec. The indegemt ten runs were carried out for
each environment and for each control methods usiagro-error model okyeSim
Also, five runs of the actual experiments were dwaitt a real mobile robot,.abBot
Some of the experimental results have been puldligh¢l10], [113] and extended in
[111].

In order to measure the system performance, thermence Index (PI) is defined by
(611). The formula used for calculating the Pladapted from the fitness function
defined by (6.10) excluding the component for tleading angle. Since the heading
angle changes all the time, the PI value will beuatulating in response to the shape of
the environments. Note that the Pl values closzeto represent a better performance of
the system.

PI(t ) ={c [0 (t) ~ ued® + g, [V (t) ~Veed ] (6.11)

Regarding the test results for each control methoglach environment, there are five
performance metrics for wall following behaviorgthverage distance (mm) measured
by the sensor to the left wall, the average totaét(s) spent by the robot along the path,
the average total length (m) of the path in enviment, the average performance index
(P1), and the average linear velocity (m/s) of thieot. The measurements in each table
for each result are done usiktyeSimand they are the average after 10 independent

runs for each control scheme.
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1) Straight wall environment

The proposed system was applied to the straightfaldwing task. The five control

methods showed their movements for following theegiwall. This experiment in
straight walls was carried out usiityeSimfirst, and then done with the real robot,
LabBot The trajectory of each controller dfyeSimfor a part of the straight wall
following is shown in Figure 6.20 and their resats shown in Table 6.9. Based on the
results shown in the figure and the table, the psed rough-fuzzy controller performed

relatively better in the straight wall environmentterms of the uncertainty reasoning

and the Pl measure.

The trajectory of the straight wall following hevaior on EyeSim

Rob-y {m)

Rob-x {m)

—+—Rob-y-BB{m]
—a&—Rob-y-PID(m)

s Roh-y-StdFuz({m)
== Rob-y-GaFuz(m)
—+—Rob-y-RoughFuz(m)

——WALL_y{m)

Figure 6.20 The trajectory of the straight walldeling behavior orEyeSim

Table 6.9 The results of the straight wall follogrin

Dist (mm) | Times (s)| Path (mb Pl Vel (m/s)
BB 519.77 225 56.1 129.02 0.2
PID 512.65 211 45.9 11485 0.2
StdFuz 493.57 185 41.4 97.00/ 0.2
GAFuz 498.23 183 40.1 76.35| 0.2
RoughFuz| 503.37 185 40.5 17.92| 0.2
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Figure 6.21 The column chart for results of thaigtit wall following

2) Circular wall environment

The wall following behavior was tested in a cireulall environment. The trajectories
of the robot for the circular wall following for el control method are shown in Figure
6.22. The trajectories in Figure 6.22 and the tesl Table 6.10 also indicated that
fuzzy-based systems performed better than a Bang-Bantroller, a PID controller

and also the Rough-Fuzzy controller had compairgtibetter outcomes over the
standard fuzzy system and the GA-applied fuzzyesystNote that in this circular

environment there are some oscillations of the geion due to the corners from the

line segments used to approximate the circularssur

(a) Bang-Bang (b) PID (c) Standard Fuzzy

(d) GA-Fuzzy (e) Rough-Fuzzy
Figure 6.22 The trajectory of the circular wallléeling behavior orEyeSim
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Table 6.10 The results of the circular wall followi

Dist (mm) | Times (s)| Path (mb Pl Vel (m/s)
BB 221.32 148.7 12.80 34.50 0.198
PID 214.53 134.0 12.78 29.17 0.194
StdFuz 212.38 128.5 12.66 23.92 0.2
GAFuz 210.34 131.0 12.59 26.25 0.2
RoughFuz| 210.41 129.3 12.55 24.27 0.2
250
200
) M Dist (mm)
150
B Times (s)
- Path (m)
100 7 mR
m Vel (mys)
50+
1] "/—l—l—l—l—r
BB PID StdFuz GAFuz RoughFuz

Figure 6.23 The column chart for results of theuar wall following

3) Arbitrary-shaped wall environment

All different control methods were applied to thebiwary-shaped environment as
shown in Figure 6.24. This type of environmentssprgs local unknown arbitrary
corner models for the robot to face more complataiuations during the navigation.
The arbitrary-shaped environments are suitablddsting the quality of the proposed
approach for wall-following task. The results ofstlexperiment are shown in Table
6.11. The proposed Rough-Fuzzy method showed dgnkedter results than any other
method.

IS

(a) Bang-Bang (b) PID (c) Standard Buz

112



(d) GA-Fuzzy (e) Rough-Fuzzy
Figure 6.24 The trajectory of the arbitrary-shapedi following behavior orEyeSim

Table 6.11 The results of the arbitrary-shaped fedtbwing

Dist (mm) | Times (s)| Path (mb PI Vel (m/s)
BB 230.35 172.75 13.83 51.77 0.189
PID 213.67 162.67 13.61 19.57| 0.192
StdFuz 209.91 141.25 13.44 18.40 0.197
GAFuz 210.52 141.33 13.45 18.42 0.197
RoughFuz| 209.83 142.33 13.43 18.38 0.197

200 1

M Dist {mm)

150
W Times (s)

Path {m)

100 mPI

m Vel (my/s)
50

BB PID StdFuz GAFuz RoughFuz

Figure 6.25 The column chart for results of thateaty-shaped wall following

4) Sharp-corner 90-degrees wall environment

The more complex environment including sharp 90releg) corners shown in Figure
6.26 was used in order to compare the quality & five controllers in sharp

movements. This 90-degree wall environment has fourcave and eight convex
corners with a length of 39 meters. Convex coreesobviously difficult situations,

because the robot sensors may not be able to déeawall correctly at a certain
control stept; when driving at a corner. The results in Table2Gridicated that the
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proposed rough-fuzzy controller approach producetteb outcomes when compared

with other methods in spite of the difficultiesragntioned above.

(a) Bang-Bang (bPPI (c) Standard Fuzzy

(d) GA-Fuzzy (e) Rough-Eyz
Figure 6.26 The trajectory of the sharp-cornerd feilbwing behavior orEyeSim

Table 6.12 The results of the sharp corners wédviong

Dist (mm) | Times (s)| Path (mb Pl Vel (m/s)
BB 246.08 575.5 54.57 70.91] 0.188
PID 241.38 546.0 46.86 40.01) 0.191
StdFuz 224.04 520.75 44.70 35.73] 0.194
GAFuz 222.70 523.33 44.33 33.70| 0.194
RoughFuz| 223.49 518.0 43.11 34.35] 0.194
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M Dist {mm)

W Times (s)

Path {m)
HPl

m Vel (my/s)

BB PID StdFuz GAFuz RoughFuz

Figure 6.27 The column chart for results of thergltarners wall following

The results in figures and tables showed that thegEBang controller had the worst

performance and fuzzy logic controllers outperfothe Bang-Bang and the PID

controllers. The adaptive fuzzy controller using @duces better results compared
with the conventional standard fuzzy controller.r@uoposed rough-fuzzy controller

produced better results than the standard fuzztesysBased on the results of wall

following behavior in a variety of environments,can be stated that the proposed
Rough-Fuzzy controller produced comparatively betiesstem performance compared
with other control approaches. It is expected thidte proposed system had some more
multiple inputs and adaptive mechanism to tundfjtsleen much better uncertainty

reasoning process would be done via the proposeghrtuzzy approach.

It is crucial to remark that the improvement of tirecertainty reasoning process of the
standard fuzzy system was achieved by the anabfsihe “rough-fuzziness.” The
rough-fuzzy approximation of an input vector led letter uncertainty reasoning

process related to the environment in control séhEmmobile robot navigation.

6.3.5 Conclusion

This section mentioned the mobile robot naviga@snone of the applications of the
proposed framework of ARFIS. In order to apply freposed system to the robot
navigation, the input and output data samples vesléected via the pre-designed
conventional fuzzy system to perform the given tadke experiment is carried out to
design the proposed Rough-Fuzzy Controller (RF@nfthe database and to compare
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its performance with other control approaches.doheexperiment, the wall following

behavior is carried out using different five cohtreethods in each environment.

Based on the comparison of the system performancan be stated that the system
performance of the proposed rough-fuzzy controllerrobot navigation scheme
produced satisfactory and competitive results wittall values of the PI (Performance
Index). It was achieved by utilizing the uncertgianalysis of the rough-fuzziness of
the given input. It is expected that the controlpoti would be much enhanced if the
advanced adaptive process was applied to the pedp®gstem towards better system
performance. A further study is continuing on tlevelopment of the MISO T-S type
RFC on point-to-point navigation towards more rdpdaster, and efficient mobile

robot navigation.
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Chapter 7

7. Conclusion and Discussion

In conclusion, the proposed framework of Adaptiws Type Rough-Fuzzy Inference
Systems (ARFIS) has been developed to resolve iffieutties of the existing fuzzy
systems;
1) the curse of the high dimensionality of the klexlge base when more inputs
are involved,
2) the automatic generation of membership functeoms rules with the absolute
minimal information of the given knowledge, and
3) the adaptive mechanism for systematic tuningatde better system
performance.
In order to assess the capability of the propogstes, it has been applied to a variety
of applications; pattern classification on the Eish Iris and Wisconsin Breast Cancer
data sets, face recognition on the MIT Media Labefalatabase, and mobile robot
navigation on wall-following and point-to-point rotic behaviors. Results from the
experiments have shown that the performance optbposed ARFIS is satisfactory,
and competitive. It can be said that the proposstiéwork is a suitable tool to achieve

the given task within the context of the rough-fuhybridization scheme.

In this research, there are some important issuesrtsider for further investigation and
development of the proposed system.

Firstly, as the objective of knowledge-reductioridobtain the absolute minimal form
of the given knowledge, a comparison with otherumtidn methods should be
investigated and carried out. For instance, the P®Aa ICA, and other reduction
approaches in rough set theory should be compardideosame data set under the same
constraints of the variables in their test condsioThis, of course, does not always
provide the best one as a fixed case, because &dgedreduction really depends on the
data set applied, the properties of the reductiethods, and the goal of the application.
However, a comparison with other knowledge-reductapproaches with statistical
analysis of their results would help to provide eeger insight to help choose the

appropriate knowledge-reduction method for a paldicapplication.
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Secondly, within the T-S type fuzzy system frameéwat has not yet been clarified
how to exactly assign the appropriate meaningfoguistic terms to the associated
membership functions at the system design and tadgue stages. This is one of the
general problems of fuzzy system design for fuzzyeets. Even though, a T-S type
fuzzy system incorporates very reliable systemgiesi a particular field with a huge
amount of data, this system might not work as etquetor unknown inputs. After the
initial construction of ARFIS, the proposed systemmuld have a system performance
evaluation stage towards better achievement inotudihe tuning process. After the
tuning stage, the initially assigned physical megraf the membership functions would
be quite different from the first ones. Then instbhase the system needs a verification
and/or validation for the unknown input and the entpd output. Therefore, an update
process of system modeling would be required tonahtiee initial system design of T-S
type fuzzy models.

Moreover, when the proposed system handles extyefrigh dimensional data the
proposed system needs a faster process to redecgivitn knowledge, because the
rough set approach calculates for all the giventirfigatures by comparing all the pairs
of them. Thus, a fast knowledge-reduction methodild/de in great demand in an
adaptive speed-up manner for higher dimensionad dats. For instance, a feature
transformation into a lower dimensional data setildhelp to analyze and reduce the
given heavy data sets. This issue will lead to maewy hybrid techniques to enhance
the system performance towards fast speed calonlati

Finally, as the Rough-Fuzzy hybridization has bemployed as a new trend in
decision-making over the past decades, a more gemathematical model is required
for the theoretical combination of fuzzy sets aadgh sets. This generic model would
then contribute to this field of study for reseanshto model a variety of application

systems with ease.

7.1 Future Work

Even though fuzzy inference systems have been wsgdsuccessfully in real world

applications for the past decades, they also neddve system improvement towards
better performance. Due to the lack of an adaptgiimcess within themselves, some
techniques from soft computing and computation&ligence have been applied to
contribute to the adaptive mechanism of the fuzdgrence systems. In general, the

adjustment of fuzzy systems means the tuning of Ineeship functions and fuzzy rules.
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There are some issues to examine and problemgny &ystems to resolve for system
enhancement. In this section, six systematic measane described for future work to
improve the proposed framework of ARFIS by invesiigg problems and suggesting

fuzzy system metrics towards better system behavior

Regarding the adaptation of fuzzy systems, the commroblem of the tuning of
membership functions is that the shape of membeisinictions is changed drastically
so that some of fuzzy subsets lose their origindéigigned physical meanings. Also by
the effect of the adjustment process, the fuzzysetsbcan no longer cover the whole
range of the input domain. In this case, the fyzamtitioning of the input is incomplete.
In other words, the fuzzy system produces no outghén the value of the input is in
the uncovered range. Thus, the examination on dngpleteness of fuzzy systems is
crucial especially for the automatically generdtexky systems from data.
Prior to further discussion, it is required to defithe term, completeness As Jin
suggested in [76], a fuzzy system is said to bepteta if

1) the fuzzy partitioning for each input is completela

2) the rule structure of fuzzy rules is complete.
The fuzzy system is incomplete if one of these t@ is violated.
In this section, the first condition is describeudittier. For the second condition, it is
explained in the later section for compactnessuazy systems from the rough set

perspective.

After the adjustment of the membership functiorsg fuzzy partitions of input
variables are no longer complete, because the adaptproduces re-distribution of
membership functions to minimize or maximize thesigeed objective function to
optimize the fuzzy system. However, there is aruds®f ‘over-fitting’ in the
optimization process. The over-fitting of membepshinctions causes the problems of
incompleteness of fuzzy partitions, the loss of phgsical meanings of them, and the
resulting lack of distinguishability (or interpréihty) of fuzzy subsets.

In order to avoid the over-fitting of membershimétions, some systematic procedures
or measures must be considered in the optimizapoocess. For the system
enhancement of ARFIS, a fuzzy similarity measunesisd to check the completeness of
fuzzy partitions of input variables and to presetive distinguishability of them. The

fuzzy similarity measure defined by the equatior8Y5n chapter 5 is employed. The
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Figure 7.1 shows the concept of the similarityvad neighboring fuzzy sets, F; using

the fuzzy similarity measure.

The fuzzy similarity s(Fi, Fj) isin [0, 1]

Fifx} Fifx)

X

Figure 7.1 The similarity of two fuzzy sets usihg fuzzy similarity measure

If the similarity of any two fuzzy subsets for irtpuariables can be suitably controlled,
the completeness of fuzzy partitions can be acliewel also the distinguishability can
be improved. However, the whole fuzzy system cdgdncomplete even if the fuzzy
partitions of the input are complete. That is tg, $he completeness of fuzzy rules also
has to be investigated to guarantee the completeridbe fuzzy systems. This issue
will be discussed with the compactness of fuzzyesys.

There is another adjustment for fuzzy systems am&l for fuzzy rules, especially for
rules generated from data. Here we have to dedl @onflicting rules that have the
same antecedents but difference consequents. $hisllied inconsistency of fuzzy
rules. If the rules are generated from data mixeith woise, the problem is more
serious. In most of the suggestions so far, a @egidelief or strength of rule firing is
assigned to each rule and the one with the maxiuahegnee will be accepted to resolve
the inconsistency of the generated fuzzy rules.
It is desirable to provide the definition obnsistencyfirst. As Jin mentioned in [76],
[77], fuzzy rules are considered to be inconsisifent

1) fuzzy rules have very similar antecedent variableg rather different

consequent variables and

2) they are in conflict with the expert knowledge.
It is possible that two fuzzy rules may be incotesis when their antecedents are very
similar, not necessarily the same. For exampleretteme two cases of possible

inconsistency between two fuzzy rules as showngnrg 7.2 and 7.3. These examples
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are extracted from the generated rules on the Fsshes data set using the rough set

approach.

R[4]: IFSL=3 AND PL=3 AND PW=3 THEN DECISICN=1[ND]
R[12]: IF SL=3 AND PL=3 AND PW=3 THEN DECISION=2 [ND]

Figure 7.2 The two fuzzy rules with the same ardents but different consequents

R[2]: IFSL=2 AND PL=3 AND PW=3 THEN DECISION=1[D]
R[19]: IF SL=0 AND PL=3 AND PW=3 THEN DECISION=2 [D]

Figure 7.3 The two fuzzy rules with similar antegets but different consequents

It is essential to provide a certain measure ofilanty between two rules, since the
concept of the consistency is quite abstract. Waptdl the definition of the
consistency of fuzzy rules using a fuzzy similafitgm Jin’s proposal in [76], [77],
because it is a very good model to consider thalasity of fuzzy rules for the
closeness between two rules even when the antdsegtemot the same.

The definition of the consistency in [76] is gerlgrauitable for the Mamdani type
fuzzy model. But, the proposed system is the T4% tjuzzy system in which the
consequent part of fuzzy rules is a function dhadr combination of input variables. If
the T-S type consequent part is simplified as aston, it is possible to use the
mathematical equation in [76] to calculate the siracy because a normal fuzzy set
can be reduced to a form of a fuzzy singleton.h# tonsequent is retained as a
function, it is difficult to calculate the consietyy between rules because of the
difficulty to understand the physical meaning o tieal functions. This point should be

examined further with more theoretical supports.

In general, the generated fuzzy rules from datajaite redundant which means it is not
optimal. This leads to a need for tt@mpactnesdor fuzzy systems. In the case of full
combination of all input variables to build a fuzgystem, the total number of fuzzy
rules is an exponential number which is a computali burden for the system. As
mentioned earlier, the compactness of a fuzzy sysdestrongly required to reduce the
system complexity when the number of input featiseacreased, especially for the T-
S type fuzzy model.

As suggested in chapter 5, the rough set appreaapglied to the proposed framework
of ARFIS to make the generated fuzzy system compgaleploying the knowledge-

reduction process without losing its original clésation power. Also the theoretical
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investigation on the generated rules to ensurdulheoverage of the input and output
relationship of the given information is carriedt@as proposed earlier. This is to
guarantee the completeness of the rule structulet@roptimize the T-S type fuzzy

rules towards the compactness of the proposedmnsyste

The interpretation of thdéexibility of a certain system is dependent on the system
design or objective. In general, the flexibilityrfa system is used as a term for a
capability of a system to achieve its aim underdifierent conditions of operations in
the environment. Here, the flexibility of fuzzy $sms is defined as applicability of a
system onto different problems or application daoreai

In order to show the viability of the proposed syst we applied our system to different
application domains to resolve the different praide Firstly, the pattern classification
scheme is chosen to prove that the proposed systamexcellent tool as a framework
of ARFIS by achieving better classification accyraeven on complex higher
dimensional data sets. Next, the face recognitamk is selected to reduce the huge
number of features generated which are from 2D fawges and to recognize each
person as an identified object using the compaztyfuule system. As a result, by
deploying the PCA-Rough-Fuzzy system, the numbeinpfit features is reduced
effectively and the recognition rate is very conitpet. For the final application, the
mobile robot navigation is chosen to demonstrateebeobot navigation behavior in a
number of different environments. It is shown ttie navigation using the proposed

rough-fuzzy system is generally better than otloatrol schemes.

For betteradaptability of fuzzy systems, a number of approaches have sagyested
so far as mentioned earlier. This topic has beenddrihe popular issues of research in
the fuzzy community. A number of different learniagproaches have been applied to
fuzzy systems, for instance, supervised and unsigeer learning [78], [79],
reinforcement learning [80], neural networks-bakdning [12], and so forth. In this
thesis, the definition of the adaptability is thegpability of learning within the context
of fuzzy systems.

Regarding the proposed system, we selected thiesgaare estimate and the conjugate
gradient descent method for the adaptive mechambnthe ARFIS. To find the
coefficients of the consequents of the T-S typezyuzules during the system
construction with the training sample data, thestiesguare method is utilized. Once the

system is established with the training data $ef, Rolak-Ribiere conjugate gradient
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function is employed to adjust the parameters déadent membership functions

towards a smaller RMSE error value.

In a data-driven fuzzy model, one of the biggesties is thénterpretability of a fuzzy
system. According to the original concept of fuseys theory in Zadeh'’s paper [1], it is
well known that one of the motivations to use fugggtems in system modeling is that
with a fuzzy system designed using human lingwssticis easy to understand the
characteristics of the system behavior. Howeveg, itfitial system design with good
interpretability could be lost after the adaptatpmocess of fuzzy systems. In order to
resolve this problem, many approaches have beegestayl. For example, the
interpretability is controlled by limiting the pdsin of membership functions in [81].
As an alternative, the overlapped and similar mestbp functions are merged to
adjust the fuzzy system to be more interpretablB®). For the T-S type fuzzy rules,
the interpretability of their consequents is coasgd in [83] during the local learning
process.

The interpretability of fuzzy systems heavily degenon the distribution of the
membership functions. The generated fuzzy partitglrould be complete and
distinguishable towards better fuzzy rule generatind more precise meaning of fuzzy
subsets. The distinguishability of the fuzzy sudsstthe first priority to improve the
interpretability of fuzzy systems. There are nacléiscussions or definitions so far for
the interpretability of a fuzzy system. Also thare no well-established criteria for the
distinguishability of fuzzy subsets. The fuzzy damty-based approach has been
discussed in [77] with the regularized learningmetto improve the interpretability of
a fuzzy system.

For the proposed system, the improvement of therpnetability is being developed to
extend this work towards better distinguishabitifyffuzzy partition of the input domain.

There will be more theoretical development for &etlefinition of the interpretability.
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