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Abstract(
In response to increasing petrol prices, researchers are constantly finding new ways of 

increasing the quality and efficiency of electric vehicles. The REV Project at the 

University of Western Australia is a team of undergraduate engineers and academics 

working together with the shared objective of building electric vehicles that are viable 

for the commercial market. Their most recent project is an Electric SAE race!car 

being built as an alternative to the traditional petrol engine Formula SAE race-cars. 

The focus of this dissertation is the electrical instrumentation, which is an essential 

component of the overall vehicle design. It involves the design and implementation of 

a system used to gather real-time information about the vehicle used for two main 

purposes: traction control and performance analysis. This dissertation is split into 

three major sections: Electrical design, hardware design and software design. 

The electrical design section focuses on the electronics used to interconnect the 

system with an external power source, sensors and I/O devices. This includes noise 

filtering and circuit protection.  A major component of the electrical system was the 

design and implementation of a Printed Circuit Board (PCB). Taking background 

research into consideration, the PCB and enclosure were designed to be Electro 

Magnetic Compatibility (EMC) compliant. 

The hardware design component of this report focuses on the design and 

implementation of external sensors used in this vehicle. Three main sensors were 

developed as part of the instrumentation system: Pedal position sensors are used to 

determine the position of the accelerator and brake pedals. A rotary sensor is used to 

detect the angle of the steering wheel. An accelerometer/ gyroscope IMU is used to 

characterize the motion of the vehicle. The sensors are connected to a microcontroller 

(central computer) used to process raw data into useful information. 

The software design section details the software framework used to interface these 

sensors with the system’s microcontroller. This framework includes software for 

communicating with analog and digital sensors as well as communication protocols 

for communicating data to other I/O devices such as the traction control AVR (used 

for motor control) and an X-Bee transmitter, which is capable of transmitting data 

wirelessly to an on-site computer (for performance analysis)  
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Nomenclature(
Table 1 lists selected acronyms and abbreviations used in this document. 

Table 1  Acronyms and Abbreviations 

Term Definition 

ADC Analog to Digital Convertor 
ACK Acknowledgment 
API Application Programming Interface 
ASCII American Standard Code for Information Interchange 
AVR Atmel Corporation 8-bit micro controller 
BMS Battery Management System 
BPS Bits Per Second 
CAN Controller Area Network bus 
CE Conformité Européene 
COM Communication device 
CPU Central Processing Unit 
CRC Cyclic Redundancy Code 
DIL Dial In Line 
EF Electric Formula 
EMC Electro Magnetic Compatibility 
EMI Electro Magnetic Emissions 
EMS Electro Magnetic Susceptance 
ESD Electro Static Discharge 
FCC Federal Communications Commission (USA) 
GHz Giga Hertz 
GND Ground 
IMU Inertial Measurement Unit 
I2C Inter IC bus 
IC Integrated Circuit 
I/O Input / Output 
kB Kilo Byte 
kHz Kilo Hertz 
kW Kilo Watt 
LED Light Emitting Diode 
LSB Least Significant Bit 
MHz Mega Hertz 
MSB Most Significant Bit 
NACK Negative Acknowledgment 
PCB Printed Circuit Board 
PWM Pulse Width Modulation 
REV Renewable Energy Vehicle 
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Table 1  Acronyms and Abbreviations 

Term Definition 

RF Radio Frequency 
ROHs Removal Of Hazardous substances 
Rx Receive 
SAE Society of Automotive Engineering 
SCL Synchronization Line 
SPI Serial Peripheral Interface bus 
TTL Transistor-Transistor Logic 
TWBR Two Wire Bit Rate 
Tx Transmit 
USART Universal Serial Asynchronous Receiver Transmitter 
USB Universal Serial Bus 
UWA University of Western Australia 
V Volts 
Vcc Power supply voltage 
WiFi Wireless Fidelity wireless local area network 
X-Bee Wireless communication protocol 
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1. Introduction 

1.1 The REV Project 

The Renewable Energy Vehicle (REV) Project group is a research group run by the 

University of Western Australia’s Electrical Engineering department. The team 

comprises of Electrical and Mechanical Engineering students and academics 

collaborating together with the shared objective of building electric vehicles that are 

viable for the commercial market, thus demonstrating the viability of sustainable 

energy sources.  The project was started in 2008 as a response to rising fuel prices and 

the prospect of high efficiency electric motors eventually replacing petrol engines. 

Since its establishment in 2008 the REV Project has converted three petrol engine 

vehicles into electric vehicles. The first of these was a 2008 Hyundai Getz, a 5-seater 

economy car fit for everyday use. The petrol engine on this vehicle has been replaced 

a 39kW electric motor as well as being fitted with 45 3.2V Lithium Ion Phosphate 

batteries and an on-board instrumentation system. The next car to be converted was a 

2002 Lotus Elise, a 2-seater performance car, which was, fitted with a 54kW Electric 

motor and 83 3.2V Lithium Ion Phosphate batteries. 

In 2010 the REV team developed an Electric Formula SAE race car is based on the 

2001 UWA Motorsport (UWA Mechanical Engineering) SAE race car, which has 

been converted to run off a dual electric rear motor drive instead of its original petrol 

motor and has also been fitted with 15 Lithium Ion Phosphate batteries. The 2011 

Electric Formula SAE Race car has been designed as a major improvement on its 

predecessor, it sports a modified chassis that is more compact and aerodynamic and 

uses 40 Lithium Ion Phosphate batteries. Another major improvement is that the 2011 

version uses 4 hub motors (installed inside the wheel hubs) instead of using a dual 

motor drive to control the rear wheels.  Each motor has a peak power rating of 15kW 

and a voltage of 48V. 

1.2 The SAE-A Competition 

UWA’s 2011 Electric SAE car has been designed with the initial intent of entering it 

in the electric vehicle division of the Formula SAE-A competition in Melbourne, 
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during December 2011, competing with other universities throughout Australia. The 

competition imposes strict design guidelines for both the mechanical and electrical 

components of the vehicle. These restrictions are dictated by the US Formula SAE 

rules [1], the German Formula SAE Student Electric Rules [2], as well as the 

Australian Addendum to the US Formula SAE rules [3]. One of the main design 

restrictions that the SAE rules impose on the electrical instrumentation as described in 

section 4.1 of the German Formula SAE Student Electric Rules is that “The entire 

high voltage and low voltage systems must be galvanically isolated”[2]. The major 

implication behind this is the microcontroller reading data from low voltage sensors 

cannot be the same microcontroller that controls the high voltage motors. The 

approach that was taken to satisfy this constraint was to use separate microcontrollers 

for the instrumentation and motor control system and communicate data between 

these two microcontrollers by using opto-couplers to achieve galvanic isolation. 

1.3 Objectives 
The purpose of electrical instrumentation is to collect real-time information about a 

particular system and then use that information to control a certain variable of the 

system or process that raw information into something that can be used to measure the 

performance or current state of that system. The main objectives of this project were:  

• To select an appropriate microcontroller to collect data from sensors,  

• To integrate sensors into the vehicle to gather as much real-time information 

as possible about the current state of the vehicle,  

• To develop a protocol to interface the microcontroller with the sensors to store 

useful information,  

• To develop a protocol to transmit data to the traction control microcontroller 

(being developed independently by final year student Zac Brandstater)  

• To develop a protocol to send all relevant data wirelessly to an onsite 

computer for performance analysis. 

• To design and build a Printed Circuit Board (PCB) for the system 

It was determined that the microcontroller would have to interface with the following 

sensors and communication lines 

• Pedal position hall sensors:  
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o Measure the position of the position of the accelerator and brake pedals. 

• Linear shaft encoder:  

o Measure the position of the steering wheel 

• 6 degree of freedom Accelerometer/Gyroscope:  

o Measure the acceleration in the x, y and z directions. 

o Measure the yaw rate in the pitch, roll and yaw axis. 

• Reverse switch:  

o Set the direction of the motors (forward or reverse) 

• Battery Management System Control lines:  

o Turn the battery management system on/off. 

o Read the current state of the batteries. 

• Serial communication lines connected to a galvanically isolated Traction-

Control Microcontroller:  

o Communicate relevant feedback data from sensors  

• Serial communication lines connected to a X-Bee wireless transmitter:  

o Send information to the onsite computer for performance analysis 

Figure 1 illustrates the Instrumentation System vehicle installation location. 

 

Figure 1  UWA REV Electric SAE Chassis 

  

Instrumentation 
System 
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2. Literature(Review(
The author was unable to find relevant automotive instrumentation research papers 

with similar objectives to this project. This is mainly due to the electric car division of 

the SAE Australasian competition being fairly new. Little research has been done in 

this specific area except by other universities participating in the competition. 

Previous student theses relating to Electric SAE car projects from different 

universities have not been published due to these teams not wanting to lose their 

competitive edge by revealing design specifications. Paul Homes, who worked on the 

2010 UWA REV SAE car instrumentation, pulled out of the REV project midyear 

therefore his unpublished work was unsuitable for use in this background review.  

2.1 Hardware Design Considerations 
Technical documentation on how to design printed circuit boards was thoroughly 

reviewed by the author. These documents described certain issues that must be taken 

account of when designing PCB boards and how to avoid/minimize their effects. The 

two main issues effecting PCB designs are electromagnetic interference (EMI) and 

electromagnetic susceptibility (EMS). The Electromagnetic Compatibility (EMC) 

design guide for ST Microcontrollers [4] defines EMI as the level of conducted or 

radiated noise sourced by a device and EMS as a devices level of resistance to 

electrical disturbances and conducted electrical noise. Therefore EMI is 

electromagnetic radiation generated from the system itself, which may interfere with 

other devices, and EMS is the system’s resistance to EMI generated by other devices 

which may include power transients (sudden spike in current) or electro static 

discharges (ESD) which are a particularly large threat because ESD can be created by 

the human body coming in direct contact with electronics and can lead to permanent 

damage. The vehicle electric motors will be drawing large currents which will 

generate electromagnetic radiation that may interfere with the Instrumentation System. 

2.2 Electromagnetic Interference 
A major cause of EMI is high frequency digital switching circuits. This includes 

microcontrollers as they consist of tens of thousands of transistors switching in the 

MHz range [5]. EMI is radiation is measured between 30MHz to 6GHz but the AVR 

microcontroller internal RC oscillator operates at 8MHz with expected harmonics less 

than 30MHz and is unlikely to generate significant EMI. Although microcontrollers 
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are shielded from emitting EMI, the tracks leading from the I/O pins on the PCB act 

as antennas, which may transmit EMI from the microcontroller. This is because each 

loop and track includes parasitic inductances and capacitances, which absorb and 

radiate EMI signals [5]. Making the track length smaller and placing track loops on 

the same PCB layer and closer to each other (thus reducing the surface area of the 

tracks) can reduce inductance. As a rule of thumb interconnections should be no 

longer than 1/20 of the wavelength to minimize EMI. If required ferrites can be 

placed at the ends of cables that exit the electronics housing, to absorb emissions [6]. 

Ferrites convert electrical cables into lossy inductors where high frequency electrical 

noise is dissipated as heat. 

2.3 Power Supply Filtering 

Power Supply filtering is another method used to decrease the amount of EMI 

generated by the circuit. Because the main power loop is used by all parts of the 

circuit, it must be considered with special attention. Supply loops should be 

decoupled to ensure that signal levels and power currents do not cause interference [4]. 

Decoupling capacitors are used to reduce the EMI generated by the power supply; 

they are connected from the supply to ground and also across the voltage input pins of 

devices such as AVR’s to shunt any input noise. Electrolytic capacitors of high 

impedance are used to filter low frequency noise, however they do not filter high 

frequency noise because electrolytic capacitors become inductive at high frequencies 

[4]. Therefore to filter high frequencies ceramic capacitors should be used. Capacitors 

should be placed as close as possible to the supply pins to minimize the surface area 

of the resultant loop [4], the larger the resultant loop, the more EMI that is emitted. At 

the power supply, using both types of capacitors is recommended but at the input pins 

of connecting device only the ceramic capacitors are required. High impedance low 

pass filters placed across sensor input pins on the AVR can also decrease the EMS of 

a system by making it less susceptible to transients. 

2.4 Multilayer Printed Circuit Board Design 

An effective way of decreasing the EMI of a PCB is by using a multilayer board, 

which is more beneficial than using a single layer board even if the components are 

only being mounted on one side. Firstly the power and signal ‘‘loop areas’’ are 

minimized, reducing emissions and decreasing the EMS of the board [6]. Secondly, 
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the power and ground impedance levels are lowered which reduces power and ground 

perturbations [6]. Third the presence of power and ground planes greatly minimize 

crosstalk between traces [6]. The characteristics of a multilayer board are caused to 

the “image plane effect”: By placing a current carrying wire close to a metal surface, 

most of the high frequency current returns directly under the wire. A transmission line 

is formed by the wire’s ‘‘mirror image’’ located over the metal surface. With equal 

and opposite currents, these transmission lines do not radiate well, nor do they pick up 

external energy [6]. As in the case of this project, a double layer board can still utilize 

the image plane effect by having a dedicated ground plane layer. Having this ground 

plane reduces EMI and EMS of the board. A double layer board is almost as effective 

as a multilayer board and therefore is sufficient for the purpose of this project. 

2.5 Electrical Shielding 

Another way in which EMI and EMS can be reduced is by encasing the PCB in a 

material with high permeability and low resistivity, this is known as “shielding”. Due 

to the characteristics of the material, only a very small amount electromagnetic 

radiation can enter the shield increasing the electromagnetic susceptibility and only a 

small amount can exit the shield minimizing the amount of electromagnetic radiation 

affecting other electronic devices. Shielding also protects the electronics from 

electrostatic discharge, as the electronics is no longer directly exposed to potential 

ESD from direct contact and the PCB is essentially isolated from all directions. 

Shielding the external electrical cables and bonding the shield to the case also 

improves the EMI and EMS performance. 

2.6 ESD Precautions 
When assembling the board, certain precautions need to be made to protect the 

electronics from ESD. Some of the recommended precautions that can be taken to 

prevent ESD related destruction are: use of a conductive mat to place the components 

on and a static control wrist strap should be used as well as conductive shoes to 

ground the human body. Conductive floor mats and a work suit with anti-static 

measure are other alternatives [1]. It is also recommended that components be kept in 

their anti-static bags until required to prevent any unnecessary exposure to ESD. 
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2.7 FCC and CE Certification 
For an electronic device to be certified for consumer use it needs to pass certain 

electromagnetic compatibility (EMC) regulations. If a product does not pass tests 

conducted by authorities such as the FCC (U.S) or CE (Europe) then it cannot be sold 

on the market [7]. A device must pass certain tests including a test on the frequency 

and quantity of emitted EMI and a test ensuring that the device is immune to 

frequencies that are commonly used for wireless transmissions in particular countries. 

Australia follows the European Standards of EMC regulations [7]. 
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3. Electrical Design 

3.1(System(Voltage(

The System can accept an input voltage of 8-28V DC, however will only be running 

off a voltage of 12V DC through a step-down switch mode power supply connected to 

the vehicle’s internal battery packs. This input voltage is then passed through 5V DC 

and 3.3V DC voltage regulators. Two regulators are used because components in the 

system run on different voltages. A secondary function of the regulators is they 

protect the system from accidental over-voltage. The linear regulators operate by 

dissipating any residual voltage when the input voltage is above the desired voltage 

level. Both voltage regulators are connected in series as illustrated by Figure 2. The 

output of the 5V regulator is connected to the input of the 3.3V so that less energy is 

wasted because a smaller voltage needs to be dissipated regulating a 5V supply to a 

3.3V output than the alternative of connecting it directly to the 12V input which is a 

much larger voltage difference. With the two regulators connected in series less heat 

is generated by the system. Load testing indicates that the linear regulators run cool 

enough not to require a heat sink. 

 

Figure 2  Power Supply 

 

3.2(Power(Supply(Protection(

The system is protected from reverse voltages (accidental reversal of the polarity of 

the power source) by use of a diode. This is based on the characteristic that diodes 

only allow the flow of current in one direction. When the power polarity is connected 

correctly the diode is operating in forward bias and allowing current to flow. When 

the power source is connected in reverse, the diode is operating in reverse bias 

preventing current to flow in the wrong direction, resulting in an open circuit. Thus 

the circuit is protected from any reverse voltages, which would normally damage the 

electronics. 
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The system is also protected from excessive amounts of current flowing in, by a fuse 

connected in series with the diode as illustrated by Figure 3. Fuses are designed to 

break the circuit if too much current is being drawn; in this system the fuse is rated at 

1A (i.e. 12V = 12W maximum input power or 5W at the linear regulators). This offers 

external power source protection from overloading if the circuit fails or an electrical 

cable short circuit occurs. 

 

Figure 3  Input Power Protection Circuit 

3.2(I/O(Protection(

All external sensors that are either not opto isolated or pass through a 5V to 3.3V 

attenuator are connected directly to the micro controller with no additional protection. 

The micro controller provided diode protection for all I/O lines as illustrated by 

Figure 4[8]. The diodes clamp the I/O lines to ground and 3.3V. The instrumentation 

system must be wired to the intended device otherwise an external voltage of 

sufficient magnitude will damage the micro controller.  

 

Figure 4  AVR Micro Controller I/O Diode Protection [8] 

3.3(Digital(Logic(Levels(

Although the microprocessor itself supports an input voltage between 2.7-5.5V[8] it 

was decided to run the system at 3.3V so that it is compatible with certain sensors 

such as the accelerometer/gyroscope board and the X-Bee wireless transmitter, both 

with a maximum input voltage of 3.3V. It would not be enough to run these sensors 
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themselves at 3.3V because the microprocessor must be run at the same voltage so 

that the logic levels are compatible for communicating between devices. For example, 

if a sensor is running at 3.3V and the microcontroller is running at 5V, when 

communicating, a logical high (1) corresponds to 3.3V for the sensor and 5V for the 

microcontroller, so since 3.3V is significantly less than 5V it could be interpreted as a 

logical low (0) by the microcontroller depending on the microcontroller’s threshold 

voltage for a logical high. An alternative method of solving the logic level problem 

would be to connect the communication lines to CMOS logic level converters to 

convert the input to the sensor to 3.3V logic and the input to the AVR to 5V logic, 

however this would make the circuit board design unnecessarily more complex, so the 

former design was chosen for simplicity. 

A consequence of the chosen design is that sensors such as the hall sensors and the 

linear shaft encoder do not operate at voltages as low as 3.3V therefore in order to 

maintain correct logic levels these sensors are run at a supply voltage of 5V and use a 

simple voltage divider to attenuate the voltage to a 3.3V logic level as illustrated by 

Figure 5. 

 

 

Figure 5  5V to 3.3V Attenuator 

As shown by the simple voltage divider above, the resister values must be chosen 

such that: 

 

Equation 1  5V to 3.3V Attenuation 

5V

3.3V

R1

R2

R2
R1 + R2

×5V = 3.3V
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R1 was chosen as 10kΩ and R2 was chosen as 22kΩ. These resister values were 

chosen because they are common components and readily available at local 

electronics suppliers such as JAYCAR and ALTRONICS. These resister values were 

also chosen to provide high 32kΩ load impedance, to ensure that the voltage drop 

across the sensor output is minimal. 

3.4(Noise(Filtering(

The output of each sensor has been connected to a low pass filter; the purpose of this 

is to produce a more stable output signal by filtering out any high frequency noise. As 

a consequence of this the bandwidth of the signal is limited to the bandwidth of the 

low pass filter thus limiting the sample rate. This is a fair trade off, as the sensors 

don’t necessarily need to be sampled at the maximum sample rate of the sensor. A 

16Hz low pass RC Filter was designed, this consists of a 100kΩ resister and 100nF 

capacitor as illustrated by Figure 6. Nyqueist’s theory requires the maximum sample 

rate of a sensor is equal to twice the bandwidth. In this case the maximum sample rate 

of a sensor connected to a 16Hz low pass filter is 32Hz, that’s 32 samples per second 

which is more than enough for both the pedal sensors and rotary sensor. 

 

Figure 6  16Hz Low Pass Filter 

3.5(Power(Supply(Filtering(

Capacitors are placed across the power supply output pins as well as on either side of 

voltage regulators. 10μF electrolytic and 100nF ceramic capacitors are used to filter 

out low and high frequency noise as described in the background review. At the 

voltage input pins of the AVR’s 100nF ceramic capacitors have also been used to 

filter out high frequency noise. 
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Figure 7  Linear Regulator Power Supply Filtering 

 

3.7(PCB(Design(

A conceptual diagram was drawn up as an early design of the system. This was used 

to show how the microcontroller would interact with the sensors and external IO 

devices (other AVR’s, X-Bee module). It was a simplified model of the system but 

was used as a basis for the final design.  

A final circuit diagram and PCB for the system was designed in Altium Designer 10 

(this can be found in Appendix A). The decision to use this software as opposed to 

simpler software such as Eagle, was based on the author’s familiarity with this 

software suite, through vacation work at an Electronics/Software Engineering 

company. The program itself is quite complex and difficult to use however it is the 

industry standard for PCB design. All connectors, capacitors resisters and diodes 

mounted directly onto the PCB via through holes. No surface mount components are 

used. The microcontroller and opto-couplers are not directly soldered to the board, 

they are connected via 6 and 40 pin dual inline (DIL) turned pin sockets, enabling 

these components to be easily removed and replaced. All external sensors, power 

lines and communication lines are connected to the board via screw terminals making 

it easy to connect/disconnect external connections when required. The external wiring 

diagram is attached to the lid of the housing as illustrated by Figure 8.  

 

Figure 8  External Wiring Diagram (Attached to lit) 
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The fuse is connected to the circuit using an externally accusable M205 fuse holder, 

which allows for fuses to be replaced as illustrated by Figure 9. 

 

Figure 9  Externally Accessible M205 Fuse Holder 

A double layer board is used for the PCB; components are mounted to the top layer, 

while interconnections between components are on the bottom layer. Minimum Track 

width is ½mm (IPC standards minimum track width is ¼mm). Minimum clearance 

between tracks is ¼mm (IPC standards minimum clearance is.15mm). Minimum 

Track widths and clearances where calculated by Altium Designer based on IPC 

standards, for a maximum current is 1A. For the purpose of this PCB track widths and 

clearances were increased slightly to accommodate for the board being fabricated by a 

hobbyist rather than professionally manufactured. As described in the literature 

review the top layer (Figure 10) acts as a ground plane to reduce the amount of EMI 

and reduce the PCB’s EMS.  

 

Figure 10  PCB Top Layer (Ground Plane) 
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The handmade PCB does not contain electrically plated through holes and require the 

components to be soldered on the top and bottom layer if a components connection is 

connected to ground as illustrated by Figure 11. 

 

Figure 11  Double Sided PCB (No through Hole Plating) Ground Plane Link 

The instrumentation system was not tested for EMI and EMS as testing facilities were 

not easily available. If subsequent EMI and EMS identify a problem it will most 

likely be due to external wiring electromagnetic radiation. Clip on ferrites or ferrite 

bead can be added to the wiring harness or individual wires as illustrated by Figure 12. 

 

Figure 12  EMI/EMC Filtering 

The housing chosen for the PCB is an aluminum diecast box, which is fire proof and 

watertight as illustrated in Figure 13. This makes the system more robust and suitable 

for harsh weather conditions such as rain, which is quite likely to be a problem when 

the Formula SAE vehicle is out on the track.  

Components soldered 
On both sides of the 

PCB 

Domestic appliance 
clip on Ferrite (Loom) 

Ferrite Bead (Wire) 
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Figure 13  Diecast Box Hermetic Rubber Seal 

It is also a rule for the SAE-A competition that the electrical systems of the vehicle 

are not affected by rain. External wiring enters the diecast box via two sealable rubber 

glands as illustrated by Figure 13. The wiring loom must be fitted with a plastic 

sleeve, like heat sing tube, to complete the water tight seal. If an overall electrical 

shield is added to the wiring loom then the shield must be electrical connected to the 

diecast box through the rubber gland. 

 

Figure 14  Water Tight Rubber Gland 

The metal casing shields the external sensors I/O devices from any EMI generated by 

the PCB as well as protecting the device from EMS. The PCB was designed to fit the 

Aluminum case perfectly and line up with the screw mounting points. In order to 

allow for connections from external components such as power source, sensors and 

I/O devices holes were drilled into each side of the case and fitted with watertight 

cable glands. This allows for cables to be fed into the box, while still remaining 

watertight. A hole was also drilled for the M205 fuse holder as well as a hole for a 

blue status LED. 
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4. Hardware Design 

4.1 AVR Microprocessor 
An AVR ATMega644P was selected as the most suitable microcontroller for the 

system. AVR was chosen as the preferred brand of microcontroller because they have 

an extensive development knowledge base, they can be programmed in C and are 

cheap to replace.  

Another option that the author looked into was to use an Auduino Evaluation Board, 

as this is what was used in the 2010 UWA Electric SAE car. Ultimately the author 

decided against this option. A major reason against using Auduino’s is that they are 

too expensive to replace, a new Auduino retails at $60 while an AVR only costs $10-

$15, this makes the Auduino less financially viable. This is particularly important 

because part of the criteria’s for judging the SAE-A competition is cost efficiency of a 

team’s vehicle. Finally the Audruino is seen as a hobbyist’s board as it comes in an 

evaluation kit, AVR’s are a more professional solution and are more robust in terms 

of functionality. There is a large range of AVR’s that have different features and are 

available to suit different requirements there is only a limited range of different 

Auduino evaluation kits. 

A third alternative was to use the Eyebot M6 developed in-house by the UWA EE 

robotics department and Professor Thomas Bräunl. This integrated system contains an 

ARM9 processor running Linux and a built in touch screen display, which could be 

potentially useful as a driver side display [9]. Other features include dual color 

camera sensors, ADC inputs and built in motor controllers (PWM outputs)[9]. Most 

of these features would be wasted, as this project does not involve any motor control 

or image processing. Use of a system with a full-scale operating system was also 

deemed unnecessary. It was decided that the touch screen itself was not required and 

would pose as too much of a distraction to the driver of a race car, It wouldn’t even be 

essential for the driver to know their current speed as there are no real speed 

restrictions on a race track. 

Thus an AVR powered onboard instrumentation system was chosen. The next 

decision was to find the most suitable AVR. This was a rigorous process, the AVR 

was chosen from a list of potential microcontrollers which was downloaded from the 
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AVR website along with a list of features that was compared against the selection 

criteria.  

Initially the author researched Automotive AVR microcontrollers with a “Control 

Area Network (CAN) Bus”, the industry standard communication protocol for 

automotive instrumentation. CAN is a protocol that operates by using a single 

communication line to transmit sensor data simultaneously between multiple 

microcontrollers i.e. anything that is transmitted by any sensor can be read by any 

microcontroller connected to the bus. After further research it was decided that this 

feature was not required because there are only two microcontrollers that need to 

communicate detailed information between each other. Implementation of this feature 

would be very difficult and time consuming, a simple serial communication protocol 

using the AVR’s USART communication lines was chosen as an alternative to CAN 

because the system only required point to point communication. 

Another important design choice was to choose a microcontroller with two or more 

USART interfaces. One is required for communication with the traction control 

microcontroller and the other is required for communication with the X-Bee wireless 

transmitter, to transmit data to an on-site computer. This narrowed down the list of 

potential microcontrollers considerably, as it is not very common for AVR’s to have 

more than one USART connection. 

The number of Analog to Digital converter inputs was also taken into consideration. 

AVR microprocessors generally only have 8 analog inputs; the initial design of the 

system required 12 ADC inputs. Therefore there were two potential options, 1) select 

a microcontroller with more analog inputs 2) extend the number of ADC inputs using 

an external ADC 8-input module connected via SPI/ I2C (Digital IO Device). The 

latter option was selected due to the lack of availability of devices with > 8 ADC 

inputs that also met other aspects of the selection criteria. The final design only 

needed 5 inputs (with 3 spare) but the option is always available to extend the number 

of ADC inputs if required for future revisions. 

To make development easier/faster it was preferred that a microcontroller that 

supports PDIP type packaging was chosen. Compared to chips with TQFP/QFN 

packaging. PDIP does not require any soldering or a breakout board to access all pins. 

This is a packaging with external pins, which will directly plug into a breadboard/ 
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prototyping board, therefore it can be swapped very easily in the case of the chip 

failing or needing to upgrade to a different type of microcontroller (with compatible 

packaging).  

A final design consideration that was not as essential but still needed to be taken 

account for was the amount of flash memory the AVR contained. It was found that a 

16kB chip would not have enough memory to hold the instrumentation processing 

software, so a 64kB chip was chosen instead as a precaution to ensure that the AVR 

doesn’t run out of storage. 

Atmega644P should not be confused with Atmega644; they are both very similar 

devices however the Atmega644 lacks the additional USART ports. Atmega644A is 

another alternative and essentially identical to Atmega644P without certain unused 

features, however it is not unavailable at local suppliers such as Element14. 

4.2 Pedal Box 
Sensors needed to be designed to track the position of the Accelerator and Brake 

pedals. The outputs of these sensors are an essential input to the traction control 

system. The position of the accelerator pedal is used to determine how much power 

should be supplied to the motor based on the driver’s desired speed. For safety 

reasons the vehicle is required to have mechanical brakes i.e. the system cannot rely 

on entirely electric braking, however it is still very useful to measure the position of 

the brake pedal for purposes such as regenerative braking.  

The main idea behind a pedal sensor is that the further down the pedal is pushed the 

higher the sensor output voltage is. The output of this sensor must be approximately 

0V when the pedal is not being pressed and 3.3V when it has been pressed all the way 

down. It is required that this relationship is as linear as possible in order to correlate 

absolute position with voltage. Linear hall sensors are utilized to measure pedal 

position. They operate by outputting a voltage, which is proportional to an applied 

magnetic field [10]. Hence they are sensitive to magnetic field strength and in theory 

should be able to detect the presence of a nearby magnet, and output a voltage 

proportional to absolute distance. 



 30 

 

Figure 15  Linear Hall Sensor [10] 

The diagram illustrated in Figure 15 shows the pin out of the linear hall sensors used 

by the pedal position sensors. It is an analogue sensor with a supply voltage of 5V and 

3 pins corresponding to 1:Vcc, 2:GND and 3:Vout. As the output voltage is higher than 

the 3.3V operating voltage of the ATMega644P, a voltage divider is used to attenuate 

the voltage to a compatible voltage of 3.3V as described in Section 2 of this report. 

Two different tests were conducted to determine the linearity of the hall sensor. In the 

first test, the hall sensor was connected to a 5V power source and a magnet, which 

was initially positioned 2cm away and is slowly moved directly towards the sensor 

until they are touching. This is the way that the pedal position hall sensors operated in 

the 2010 REV SAE vehicle’s pedal box and the results are illustrated in Figure 16, 

evaluating the performance of this design.  

 

 

Figure 16  Hall Sensor Linearity Test – Case 1 
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This is clearly not a very linear relationship between voltage and distance from the 

sensor. At distances > 0.6cm away the signal does not vary significantly enough to 

give an adequate reading as voltage only varies by 0.72V over the entire 1.5cm range 

and increases at a very slow rate which isn’t quite linear. Thus in this region the 

resolution is not high enough. At distances between 0.5cm and 0.2cm from the sensor 

the relationship is more linear, however this is only for a very short distance of 0.3cm 

as the sensor saturates at a maximum value of 5V even before the magnet has made 

contact. 

In the second case that was tested, the sensor was again connected to a 5V supply but 

this time, sliding the magnet past the sensor. The test started with the centre of the 

magnet 1cm to the left of the centre of the sensor and ended with the centre of the 

magnet 1cm to the right of centre of the sensor. The total distance travelled by the 

magnet was 2cm.The results of this test are illustrated in Figure 17. 

 

 

Figure 17  Hall Sensor Linearity Test – Case 2 

This appears to be a much more linear relationship than that of case 1. There is a 

linear relationship mapping a voltage of 0 – 5V to a variation in distance between 

0.5cm to 1.5cm covering a range of approximately 1cm. This corresponds to the 

region where the magnet is moving directly past the sensor. There is a small dead-
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band on either side of this 1cm region but this is so small that its effect on the sensor 

would be negligible. The final design of the pedal position sensors is based on this 

configuration rather than the configuration used in the 2010 REV SAE vehicle, as it 

provides a more linear signal, which is accurate over a larger range. 

A requirement of the Electric Formula SAE-A competition is that each pedal must 

have a backup measurement sensor as a fail-safe [2]. This redundant sensor must 

measure exactly the same quantity as the primary sensor so it can be used to 

determine if the pedal position sensor is working properly. If one of the two sensors 

on either pedal stops working then the instrumentation system should shut down the 

entire system to prevent any unpredictable behavior, such as motors running at 

incorrect speeds or becoming unstable due to corrupted measurements from the 

sensors. 

The final implementation of the pedal position sensors is shown in Figure 18 and 

Figure 19. Hall sensors are mounted to part of the frame of the vehicle on either side 

of each pedal. Permanent magnets are bolted to each side of the pedal, in such a way 

that pushing the pedal will cause the magnets on either side of the pedal to slide past 

their corresponding hall sensors. These sensors were installed in a modified version of 

the 2010 REV SAE vehicle’s pedal box for testing purposes. The 2011-12 vehicle 

will use a completely redesigned pedal box, which will better align the magnets and 

their hall sensors. 
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Figure 18  Hall Sensor Pedal Mounting 

 

Figure 19  Magnet and Dual Hall Sensor Mounting 
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Pedal position sensors were tested by connecting both sensors of each pedal to an 

oscilloscope, it was shown that the output signals of each sensor did vary significantly 

as there was an offset between the voltages of the two sensors at the same mechanical 

pedal positions. The reason for this was that the hall sensors were not aligned properly, 

which also resulted in hall sensors not always operating within their linear region. The 

maximum voltage output occurred before the pedal had been completely pressed 

down therefore pushing the pedal further would cause the output voltage saturate and 

then start to decrease.  

These negative characteristics can be fixed by properly aligning the hall sensors. This 

requires a redesigned pedal box, as the hall sensors need to be installed lower down 

on the pedal in order to better utilize the hall sensor’s linear range.  

4.3  Digital Accelerometer/Gyroscope Board 
An accelerometer is used to measure the vehicle’s acceleration in the x, y and z 

directions and a gyroscope is used to measure pitch roll and yaw rates, i.e. changes in 

angular position around the x, y and z rotational planes. Acceleration in the x, y and z 

direction is measured in g’s ( 1g = 9.8m/s2) and pitch, roll and yaw is measured in 

degrees/second. An external device known as a 6-axis inertial measurement unit 

(IMU), containing both an accelerometer and a gyroscope in an integrated circuit, can 

be connected to a microcontroller to measure these quantities. This device comes in 

both digital and analog variants and part of the design process was to choose a 

specific device that would be suitable for the instrumentation system. 

 

The author’s initial choice was to use an analog IMU, as this would be easier to 

interface with the microcontroller than a digital device. An analog sensor left over 

from the incomplete instrumentation system of the 2010 REV SAE vehicle was the 

first device tested as the vehicle’s IMU. This device was a 6 Degree of Freedom 

(6DOF) Analog Combo Board Razor (SEN-10010), manufactured by SparkFun 

Electronics [11]. The device ran on a 3.3V input and featured an accelerometer with 

300mV/g sensitivity over a range of ± 3g!and!a!gyroscope!with!a!0.83mV/°/s!or!
3.33mV/°/s!(4x!amplified)!sensitivity!over!a!range!of!± 300°[11].!
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Figure 20  Analog Gyro/Accelerometer IMU(

This IMU was tested by connecting its outputs to an oscilloscope and moving the 

device in different directions and rotational angles. It was concluded that this device 

was working as expected, however plugging it into an AVR and printing the output to 

a terminal via USART resulted in values, which did not correspond to the expected 

analog voltages, it was apparent that there was a DC offset. This was attributed to the 

output impedance of the IMU being much higher than that of the AVR 

microcontroller. This problem could be easily solved, by using a voltage follower 

(buffer) to lower the output impedance of the IMU.  

For several reasons the author decided against using this IMU in the final system 

design. A major reason why this device was unsuitable is because it required 6 ADC 

inputs. Considering the ATMega664P only has 8 ADC inputs and 5 are reserved by 

other analog sensors, an additional external 8-input ADC device would be required 

for there to be a sufficient amount of ADC inputs for the system. Use of this external 

ADC device and voltage followers would result in a much more complex design 

while using a digital IMU would require a much simpler design. The particular analog 

IMU being used for testing had also been discontinued, meaning that SparkFun 

Electronics no longer supports or manufactures it. Therefore if this device was to be 

used in the final design, and it malfunctioned, the author would not be able to replace 

it and would need to find another alternative either way. 

The IMU chosen for the final design of the system was a 6DOF Digital Combo Board 

(SEN-10121), which is also developed by SparkFun Electronics [12]. The main 

difference between the two boards is that the SEN-10121 is a digital sensor. This IMU 
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also has a 3.3V input voltage. The accelerometer used on this IMU is an ADXL345, 

manufactured by Analog Devices. It has a 10-bit output resolution with a sensitivity 

of 256 LSB/g over a range of ± 2g [13]. It can be set to operate over higher ranges 

but ± 2g was chosen, as the electric Formula SAE vehicle is not expected to exceed 

these maximum accelerations at any time. The Gyroscope used by this IMU is an 

ITG-320, manufactured by InvenSense. It has a 16-bit output resolution with a 

sensitivity of 14.375 LSB/°/s [14]. It is clear that the digital IMU has a much better 

sensitivity than the analog IMU, especially the gyroscope output, which has a 16-bit 

output resolution. This is much larger than the ATMega644P’s 10-bit ADC resolution. 

Sending a command to the corresponding device can set its sample rate, by default the 

sample rate is set to 100Hz. 

Rather than requiring 6 analog inputs, the digital IMU only connects to 2 pins on the 

AVR, the SDA (data line) and SCL (clock line), These pins are used by the I2C digital 

communication protocol. Both the SDA and SCL lines require pull up resisters to 

operate, maximum clock frequency of the bus depends on the value of the pull up 

resisters (connected between the SDA or SCL pin and Vcc). For a standard SCL 

frequency of 100kHz, the minimum recommended resister value is 10kohms. 

!

 

Figure 21  IMU(6DOF(Digital(Combo([12](

4.4  Steering(Wheel(Angle(Sensor 

The purpose of a steering wheel angle sensor is to measure the angular position of the 

vehicle’s steering wheel, i.e. how far to the left or right it has been turned. For 

automotive applications, a linear shaft encoder is normally used to measure the 

steering wheel position. There are two different types of shaft encoders, incremental 
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and absolute: incremental encoders set a zero point based on the initial position of the 

shaft when the device first turned on. This means that output values for different 

mechanical positions can vary between uses. Absolute encoders have a unique (fixed) 

output value for each mechanical position, independent of initial shaft position. 

Therefore it is clear that for this system an absolute shaft encoder is more suitable, as 

an incremental sensor would need to be calibrated every time the vehicle is switched 

on.  

Unfortunately, commercial heavy-duty shaft encoders cost $500+, which exceeds this 

project’s budget. A cheaper alternative was to use an MA3 miniature absolute 

magnetic shaft encoder, manufactured by US Digital [15] illustrated in Figure 22. Its 

only shortcoming is it has a much smaller diameter than commercial shaft encoders. 

Its size and diameter may have an impact on performance, however this is a comprise 

that needed to be made to find a more economic option. This device runs off a 5V 

supply, so like the pedal position hall sensors, needs a voltage divider to attenuate the 

output voltage down to a range of 0-3.3V. The MA3 is an analog sensor with a 

maximum sampling frequency of 2.6kHz[15] (However due to the bandwidth 

limitation caused by the low pass filter, sampling will be at a much lower rate, see 

Section 2). The maximum analog output resolution is 10-bits, which is the same 

AVR’s ADC resolution. The specification sheet recommends that the output 

impedance is greater than or equal to 4.7kOhms for a more linear operation [15]. 

 

Figure 22  US Digital MA3 Linear Shaft Encoder[15] 

A test was conducted to determine the linearity of the sensor. The sensor was 

connected to a 5V supply and the output voltage was measured using a multimeter. To 

zero the sensor, the shaft was turned until the output voltage dropped to 0V. The shaft 
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was then rotated 10 degrees at a time (measured using a protractor), over a range of 0 

to 400 degrees. The results are shown in Figure 23. 

 

Figure 23  Shaft Encoder Angular Position vs Voltage 

The results show that this sensor is extremely linear, therefore suitable for measuring 

the angular position of a steering shaft. There are however non-linearity’s at the 

boundary points of 0 degrees and 360 degrees. As shown in the Figure 23 the voltage 

will jump between 0V and 5V when it’s on either side of a boundary point because 

the shaft encoder only has a 360-degree range. If the shaft is turned beyond 360 

degrees, it will reset to 0 degrees (0V). Therefore the system will become unstable, if 

the steering wheel is turned more than 180 degrees in either direction. 

The sensor should be connected to the steering shaft in a way that when the steering 

wheel is straight the shaft encoder should be at 180 degrees, outputting a voltage of 

2.5V (1.67V after the voltage divider). One method that could be used to prevent the 

sensor from crossing the boundary points is to limit its range of 0-360 degrees 

rotation to 10-350 degree, by physically restricting the steering shaft from turning 

more than 170 degrees in either direction. This is assuming that the steering wheel 

will not need to turn more than 170 degrees in a particular direction. This is a 

reasonable assumption for a race car which will be travelling at high speeds and not 

taking sharp turns. If 170 degrees each direction is not sufficient then a different gear 

ratio may be required with a larger gear connected to the shaft encoder so that larger 

turns of the steering wheel will result in a smaller change in shaft encoder position. 

The effectiveness of this method may be limited by the sensitivity of the shaft encoder. 
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The author initially planned on installing the sensor inside the steering column, as the 

2010 SAE car had a hollow steering column; unfortunately the 2011 model has a solid 

steering column, so a different approach was required. The diameter of the steering 

column is much larger than that of the shaft encoder; therefore two gears of equal size 

would be needed to connect the steering column and shaft encoder and achieve a 1:1 

gear ratio. As described above a different gear ratio could also be used to increase the 

range of the shaft encoder. 

4.5   Opto-Isolated USART link 

The design of this system is bound by the rules of the Formula SAE-A competition, 

which states, “The entire high voltage and low voltage systems must be galvanically 

isolated”[2]. This means the cabin electronics such as the microcontroller and sensors 

need to be isolated from high voltage components such as the batteries and motors. 

This is a safety precaution to prevent the driver from coming in direct contact with 

high voltages. 

In order to satisfy this requirement, instrumentation and motor control functionality 

was separated into two separate sub-systems. This project focused on the 

instrumentation component of the vehicle while another concurrent student project 

focused on the traction control components. Both subsystems run on separate 

microcontrollers and communicate critical information over an optically isolated 

USART connection. 

Opto-couplers are used on both Transmit (Tx0) and Receive (Rx0) communication 

lines as a method of galvanic isolation. The configuration used by the author to design 

the opto-coupler circuitry was based on the recommended configuration detailed in an 

opto-coupler Application Note [16] written by the manufactures. An opto-coupler 

consists of an LED and a phototransistor; these two components are not actually 

connected electrically. The transistor is configured with the collector connected to the 

voltage supply of the receiving device and the emitter is connected to the input Rx0 

pin of the receiving device. The diode is connected between Tx0 and GND of the 

sending device. When Tx0 on the sending end is high, the diode will switch on, this 

will pull the phototransistor emitter voltage to high (in respect to the receiving end 

voltage). When the sending voltage is low, then the diode will be off, resulting in the 

transistor’s emitter voltage being 0V. 
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Opto-couplers U3 on the receive line (Rx0) and U4 on the transmit line (Tx0) are 

installed in the instrumentation system as illustrated by Figure 24. This configuration 

is not entirely functional for several reasons; firstly Pin 2 of U3 should be connected 

to the GND of the traction control system rather than to the GND of the 

instrumentation system and Pin 5 of U4 should be also connected to the voltage 

supply of the traction control system rather than the instrumentation system’s 3.3V 

supply. These changes were not made mainly due to space constraints on the PCB for 

additional headers. It is also a common practice for the opto-coupler to be installed on 

the receiving end of a communication line so technically U4 should be part of the 

traction control system, but was left in this circuit for completeness. W1 and W2 

represent bypasses on the communication lines, in the case that an opto-coupler is not 

required 

.  

Figure 24  Traction Serial Link Opto Isolators 

 

Figure 25  Opto-Couplers Bypass 
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Figure 26  Opto Couplers Installed 

The system also provides the facility to observe data being across the USART link 

using a terminal program (such as HyperTerminal) or send debug messages from the 

AVR to the terminal using the sendDebug(char* msg) command. This can be done by 

connecting a USB to TTL cable to the debug header pins 1-4 shown in Figure 27. If 

the USB to TTL cable has a 3.3V supply pin, then this can be used to power the 

circuit. 

 

Figure 27  Debug Port 

4.6 Battery Monitoring System (BMS) Interface 
Although the BMS interface is largely un-implemented the author had extensive 

discussions with the student in charge of designing this system, regarding how the 

instrumentation system should communicate with the BMS. Due to time constraints 

this system has not been completed, however three potential communication protocols 

were devised and three electrical BMS terminal block has been provided. The BMS 

system itself consists two AVR microcontrollers, which measure the individual 

voltage of each battery cell using ADC inputs. REV team member Valentin 

Falkenhahn was in charge of developing this system for the duration of Semester 2 of 
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2011. The three options for communication between the instrumentation system and 

the BMS that were discussed are: 

1) Use two digital pins as input and output pins between the two systems. One 

representing an “ignition” signal as an input to the BMS and the other 

representing a status signal (batteries flat/faulty) as an input to the 

instrumentation system. 

2) Use of a USART serial communication protocol to transmit detailed battery 

data and status information to the instrumentation AVR and start and stop 

commands to the BMS 

3) Use of a digital I/O protocol such as I2C or SPI to transmit information 

between the two devices 

Due to the limited amount of USART connections on the instrumentation AVR, 

option 2) was be ruled out. At this stage in the development process it was too late to 

select a different microcontroller for this system, which had an extra USART. This 

may still be a suitable option for future work, as the author has already implemented 

an extensive serial communication protocol that could be easily utilised. It is desirable 

for detailed battery voltage information to be sent from the BMS to the 

instrumentation system, this could potentially be done as suggested in option 3). That 

being said, the BMS system was not completely built until near the end of semester 

therefore not enough time was left to develop and test a full-scale digital 

communication protocol between the two systems by the end of the semester. For this 

reason option 1) was chosen as such a protocol is the bare minimum requirement for 

the SAE vehicle to be functional. 

The ignition signal is connected as an output pin to PD6 and the status signal 

connected as an input pin to PD5 on the instrumentation microcontroller. The basic 

operation principles of this protocol are that when the vehicle is switched on, a 12V 

supply is connected to the instrumentation system. Once the instrumentation system is 

fully initialised, the AVR will set the ignition pin to ‘high’, which will be read by the 

BMS instructing it to initialise. The BMS system will reply by setting the status pin to 

‘high’. If at any stage the BMS fails or the batteries are critically low, the status pin 

will change to a ‘low’ signal and the instrumentation AVR will shut off the system. 
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The BMS input/output pins can be accessed through the BMS header pins on the PCB 

board. Although not actually implemented as part of the PCB design, opto-couplers 

will be required on both pins, in compliance to SAE rules because the BMS AVR is 

connected directly to the batteries which are a high voltage system which need to be 

gavanically isolated from the cabin electronics [2]. 

4.7 X-Bee Pro Wireless Transmitter 
One of the main ideas of the instrumentation system was for it to be able to send 

information about the on-board sensors to an on-site computer. This is useful for 

performance analysis, especially during test drives of the vehicle. To add this 

functionality to the system, a wireless transmitter is required. There are several 

different wireless transmission standards that are commonly; these include WiFi, 

Bluetooth and Infrared. The main issues with these types of wireless transmitters are 

they have a short transmission range, which would not be suitable for use at an 

outdoor racetrack and in some cases very power demanding. Wi-Fi has the better 

range out of the three alternatives, but uses the largest amount of power and is quite 

expensive, therefore unsuitable for this project. 

A X-Bee transmitter/receiver is a low cost, low power device capable of wirelessly 

transmitting data over long distances [17]. It is commonly used for telemetry in 

industries, including the resources and automotive (racing) industries. The 

instrumentation system uses two X-Bee Pro “series 2” transmitter/receiver devices, 

one is connected to the instrumentation system on the vehicle and the other connected 

to a PC via a USB adaptor. The device itself has a power output of 10mW, a 

maximum RF data rate of 250Kbps and a maximum wireless transmission range of 

1.6km (line of sight) [17]. The potential range of RF transmissions decrease with 

obstacles such as walls between the two devices. On a racetrack this is not a major 

problem as there are very few obstructions and the vehicle will never be more than a 

kilometer away from the on-site computer. Its operating frequency is 2.4 GHz [17], 

which is a certified operating frequency in Australia, however there is the possibility 

of interference with other devices such as wireless routers as Wi-Fi uses the same 

frequency. The device supports both point-to-point and point-to-multipoint 

communication [17], however in this system it is only used for point-to-point.  
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Figure 28  X-Bee Pro [17] 

The X-Bee Pro Series 2 runs on 3.3V, it is a 20-pin device, which is illustrated in 

Figure 28. The only pins used by the instrumentation processor are Vcc (Pin 1), GND 

(Pin 10), DOUT (Pin 2) and DIN (Pin 3) as specified in the product documentation 

[17], the remaining pins are analog inputs and left disconnected. DIN and DOUT are 

USART communication lines, which are connected to the AVR microcontroller. DIN 

is connected to Tx0 and DOUT is connected to Rx0 on the instrumentation 

microcontroller. Message packets of a specific form, described in the product 

documentation must be sent from the microcontroller to the X-Bee transmitter via a 

USART link, the X-Bee then transmits this message as an RF packet which is 

received by the X-Bee receiver. If the receiver is connected to a computer via the 

USB adaptor, the received message can be viewed through HyperTerminal. 

4.8 Reverse Switch 

The reverse switch is a control accessible to the driver that puts the motors into 

reverse operation. The switch has 4 pins, Vcc, GND, output 1 and output 2. When the 

switch is in the off position Vcc is connected to output 1, which is not connected to 

the circuit. Switching from output 1 to output 2 will connect Vcc to output 2, which is 

connected to PD4 on the AVR. Since PD4 is an input then it can either receive a ‘1’ 

(5V signal) meaning that motors are operating in reverse or a ‘0’ (no input) meaning 

that the motors are operating in forward mode (normal operation). The position of the 

reverse switch can be read by the microcontroller using the command: 

reverse =  PIND >> PD4; 
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5 Software Design  

5.1 Overall Program Flow 
Figure 34 illustrates the flow of the instrumentation AVR program, operating under 

normal conditions. Once the AVR has been switched on, AVR parameters are 

initialized this includes setting pin directions, enabling the ADC converter, enabling 

the communication protocols and enabling global interrupts. Following initialized an 

output signal is sent to the battery management system as an ignition signal for the 

vehicle. After preset delay, the main system loop is entered and the status of the BMS 

is checked through the digital input line. If the BMS system is not working then 

something has gone wrong and the system generate a error LED code and shut itself 

off. Otherwise if the BMS is running correctly, the system should continue its 

executing process and sample the sensors (at their correct sample rate). Data from the 

sensors is then processed and packaged into the form of a message. The message is 

then transmitted to the traction control AVR through the first USART link and to the 

X-Bee Transmitter through the second USART link; if everything is successful the 

program returns to the start of the loop and repeats the above process. 

The software framework developed for this system consists of the following source 

files (See Appendix B): 

REV_SAE.c – The main program, bridging all the system’s components together. 

This initializes the system, sets up the main polling loop and controls the overall flow 

of the program shown in Figure 29. 

REV_SAE2.c – The Receiving end program used to receive and decode messages 

sent from the instrumentation AVR to the Traction Control AVR 

USART.c – A library used to communicate over USART0 connection to the traction 

control AVR. Contains both sending and receiving functions as well as debug 

functions 

TWI.c – A third party open source library used to communicate with devices over I2C. 

Full credit goes to Ryan Owens for developing this library [18]. 
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digSensor.c – A library used for reading/writing to the Accelerometer or Gyroscope. 

Encapsulates lower level functions from TWI.c into a more user friendly API for 

communicating with the IMU. 

xBee.c – A library used to transmit RF packets using the X-Bee transmitter. 

 

 

Figure 29  Software Program Flow Chart 
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5.2(Initialization((

I/O(Direction(

The first step of the initialization process is a call to the function SetupPorts() 

which sets the input/output direction of each pin on the AVR. The AVR is split into 

four ports A-D each consisting of 8 pins. The direction of each of these pins can be 

set to a 1 for output or 0 for input. By default all pins are set as inputs. To set the 

direction of a pin to 1 the following command is used:  

DDRn |=  (1<<PnX); 

To clear the output direction of a pin, the command: 

DDRn &= ~(1<<PnX);  

is used, where PnX is the port number (A-D) and X is the pin number (0-7). In this 

system, the only pins that need to be set as outputs are the BMS output pin “PD6” and 

the LED status pin “PD7” Note that “Tx0” and “Tx1” are set as outputs by default. 

ADC(Initialization(

The analog to digital converter is initialized by setting the enable bit ADEN, in the 

Analog to Digital Control and Status Register A (ADCSRA) to a value of 1 and also 

the clock prescaler to divide 32 by setting the pins ADPS 2:0 in ADCSRA to a value 

of 101. Since the clock is running at 8MHz, the ADC clock speed will be 250kHz. A 

higher prescaler value was chosen because Analog to Digital converters operate with 

a higher accuracy at lower clock speeds, furthermore 250kHz is much higher than the 

sample rate of the analog sensors used in this system, so a lower ADC clock speed 

will not be the bottleneck in reading from the sensors. 

Interrupt(Initialization(

A call to sei() is made to enable all global interrupts, this is essential to all timer 

interrupts and RX0 receive interrupts . Interrupts are important because they 

essentially allow the microcontroller to run certain tasks in the background. For 

example, instead of having to constantly poll the receive buffer to check if a byte has 

been received, an interrupt will automatically be triggered every time the receive 

buffer is full. This temporarily alters the normal flow of the program by jumping to a 

sub routine to handle the interrupt. Once this interrupt has been handled the program 

will resume normal execution. Specific interrupts still need to be enabled separately, 
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the global interrupt enable function sei() only turns on the AVR’s interrupt 

handling functions. 

UART(Initialization(

The USART transmitter and receiver modules of the AVR also need to be turned on 

for both interface 0: connected to the traction control AVR and interface 1: connected 

to the X-Bee transmitter. Serial interfaces USART0 and USART1 are enabled by 

calling the functions:  

void USART_Init(unsigned int ubrr); 

void xBee_Init(unsigned int ubrr); 

The variable, UBRR is dependent on the clock speed of the source microcontroller 

and desired baud rate. On this microcontroller the clock speed is 8MHz and the baud 

rate is set to 11920bps. It can be calculated using the following equation: 

UBBR = (Freq Clock/(Baud rate * 16)) – 1; 

This value then stored in the USART registers UBRRnH and UBRRnL splitting the 16-

bit UBBR value into 2 8-bit values. Setting RXENn and TXENn to 1 in the UCSRnB 

register turns on the transmitter and receiver. The frame format is set to 8 data bits 

and 1 stop bit by setting the UCSZn2, UCSZn1 and UCSZn0 to 011 (using command:  

UCSRnC |= (3<<UCSZn0));  

Finally the receive interrupt needs to be enabled by setting RXCIEn to 1 in the 

UCSR0B register. ‘n’ represents the two different interfaces where ‘0’ is the traction 

control USART connection and ‘1’ is the X-Bee USART connection. 

I2C(Initialization(

The I2C bus, used for communication with digital sensors is initialized using the 

function twiInit(unsigned long scl_freq),where scl_freq is the 

frequency of the scl clock line used to synchronize the digital IO device with the 

AVR. For this system scl_freq is set to 100kHz and this is used to set the Two 

Wire Bit Rate (TWBR) register. 

LED(Flash(Error(Codes(

A panel mounted LED provides visual feedback that the software is operating 

correctly. During normal operation the main polling loop drives the blue LED at 1Hz. 
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If an initialization error occurs the LED is latched on. If a run time error occurs a 

flash code provides diagnostic feed back as described by Table 2. 

 

Figure 30  Blue LED Error Flash Codes 

Error Code Flashing Rate 

No Power Off 

Normal (Heart Beat) 1 Second 

X-Bee error 2 Second 

Accelerometer/Gyro error 4 Second 

Fatal Error On 
Table 2  Blue LED Error Flash Codes 

 

5.2(Battery(Management(System(I/O(

The BMS can be turned on by setting the ignition pin to 1 (high) this outputs a 5V 

signal to the BMS connecting the batteries to the motors using a relay: 

PORTD |= 1 << PD5; 

The system should then wait an appropriate amount of time to allow for the BMS to 

initialize. The status line should be checked at the start of the main loop to ensure the 

BMS hasn’t failed. The status pin can be checked using the following command: 

status =  PIND >> PD6; 

If status is equal to ‘1’ then the status of the batteries and BMS system is ok, if status 

is equal to ‘0’ then either the BMS system has failed or the batteries contain 
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insufficient charge and the BMS has requested to turn off the system. A message 

should then be sent to the traction control system using the command: 

sendMessage(SHUTDOWN, SYSTEM);  

and after allowing sufficient time for the traction control AVR to shutdown, the 

ignition pin should be set to 0 (low) using the command: 

PORTD &= ~(1<<PD5); 

The final stage is to put the instrumentation AVR into an endless loop. This endless 

loop will not exit until the system has been restarted. 

5.3(Sampling(Analog(Sensors(

Analog to Digital inputs can be read by calling the function:  

unsigned int read_adc(unsigned char adc_input); 

The function requires an input parameter of adc_input to select the correct analog 

device connected to Ports PA0-PA7. Shown in Table 3 is a list of analog devices and 

their corresponding values of adc_input: 

ADC(Input( Analog(Device(
0x00) Accelerator)Pedal)Hall)Sensor)1)
0x01) Accelerator)Pedal)Hall)Sensor)2)
0x02) Brake)Pedal)Hall)Sensor)1)
0x03) Brake)Pedal)Hall)Sensor)2)
0x04) Steering)Wheel)Rotary)Encoder)
0x05) (Unused))
0x06) (Unused))
0x07) (Unused))

Table 3  ADC Input Devices 

The function outputs an unsigned integer between 0 – 1024. This is a digital 

equivalent of the analog input signal generated by the sensors. The AVR’s built-in 

analog to digital converter has a resolution of 10-bits and a ±2!LSB!accuracy. 

The!process! to! read! an! analog! input! using! the!ADC! is! as! follows:! The! selected!

adc_input!is!placed!into!the!ADMUX!register!using!the!command:!!

ADMUX=adc_input | (ADC_VREF_TYPE & 0xff); 

Calling the function _delay_us(10) puts the processor to sleep for 10us, leaving 

sufficient time for the ADC input voltage to stabilize. Setting the ADSC bit to “1” in 
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the ADCSRA status register starts the analog to digital conversion. The function then 

uses a while loop to wait for the conversion to complete terminating only when the 

ADIF (AD interrupt flag) is set to 1, indicating that the conversion is complete. The 

resulting digital output is stored in the ADCW register and returned by the function. 

It was observed that the output of the ADC was slightly affected by noise, as the 

output signal’s LSB oscillated between ±2.!Several methods were used to reduce the 

effect of noise on the signal. The first attempt was to oversample the signal by taking 

the average of 4 or 8 readings. This method had very little effect on reducing noise 

because the noise was random and averaging random noise still results in random 

noise in the output signal. Another noise reduction method was to use the AVR’s 

built-in ADC noise isolation function [8]. Theoretically, the noise isolation function 

should put the AVR CPU to sleep before taking an ADC reading, reducing the 

amount of internal noise generated by the AVR. This unfortunately did not have any 

effect on decreasing the output signal noise. Therefore this noise was attributed to the 

limitations in resolution of the analog to digital converter and it was decided that it 

would have very little effect on the final system and its effects should be fully tested 

when the vehicle is running. 

5.4(Sampling(Digital(Sensors(

Digital sensors used by this system communicate over the I2C protocol. This is a two-

wire system with a data line (SDA) and a clock synchronization line (SCL).  The 

primary device that communicates over I2C is the Accelerometer/Gyroscope IMU. 

Each device on this board has a different identifier, the accelerometer is addressed by 

sending a message to device_id 0xA6 (0xA7 for read-only) and the gyroscope is 

addressed by sending a message to device_id 0xD0 (0xD1 for read-only). The process 

for reading/writing to a device is shown in the Figure 31. 
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Figure 31  I2C Communication 

The functions used for reading and writing to a particular register on the selected 

device can be found in the Twi.c external library [18]: 

char Read(char device_addr char, register_addr char *value); 

char Write(char device_addr char, register_addr char value);!

Following the flow chart above, when a read or write command is initiated, a start 

condition is sent opening the I2C lines for communication. The device address is sent 

and if the device receives the message it sends back an acknowledgement (ACK) if 

there is no response a negative acknowledgment (NACK) is received. Following this 

the register address is sent, if the register on the specified device exists then another 

ACK is sent otherwise a negative NACK is returned. A request is made to either read 

or write to this register, if this operation is successful an ACK is sent otherwise a 

NACK is returned. Upon completion a stop condition is sent down the I2C bus to 

terminate communication. If at any stage a NACK has been received, the function 

terminates returning an error message, is outputted by the program, otherwise a “0” is 

outputted if the operation was successful. 

Table 4 describes the different registers, which are used to store data by the 

Accelerometer/Gyroscope board. Each quantity being measured is stored in a High 

and Low bytes because each register can only store 8-bits while data! from! the!

accelerometer is 10-bits and gyroscope is 16-bits. Precompiler definitions for these 

registers can be found in the header file!digSensor.h.!
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Register( Value(
Accelerometer(

ACCEL_XOUT_L) 0x32)
ACCEL_XOUT_H) 0x33)
ACCEL_YOUT_L) 0x34)
ACCEL_YOUT_H) 0x35)
ACCEL_ZOUT_L) 0x36)
ACCEL_ZOUT_H) 0x37)

Gyroscope(
GYRO_XOUT_L) 0x1D)
GYRO_XOUT_H) 0x1E)
GYRO_YOUT_L) 0x1F)
GYRO_YOUT_H) 0x20)
GYRO_ZOUT_L) 0x21)
GYRO_ZOUT_H) 0x22)
Table 4  Gyroscope/Accelerometer Device ID 

High and low bytes can be joined in the following way: 

unsigned int value =  (int) high << 8 + (int) low; 

Functions to read and write to a specific device are encapsulated by higher-level 

functions in the digSensor.c library (see Appendix B). These functions make calls 

to lower level functions from the external third party library twi.c. These four 

primary I/O functions are shown below: 

char read_Accel(char register_addr, char * value); 

char write_Accel(char register_addr, char value); 

char read_Gyro(char register_addr, char * value); 

char write_Gyro(char register_addr, char value); 

5.4(Processing(of(Data(

Any processing of raw sensor data is done on the sending side (instrumentation AVR) 

before it is transmitted over the USART link to the traction control system. The only 

real processing that is required is by the system is for the pedal box hall sensors. This 

is because each pedal has two sensors, one being a redundant sensor; only one value 

for each pedal position needs to be sent across the USART link and checks need to be 

performed to ensure that the pedal position sensors are operating properly to avoid 

sending corrupted sensor data. If one of the hall sensors has failed, then the 

instrumentation microcontroller is responsible for shutting down the vehicle.  
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Given that there are two sensors on each pedal, let A1 be sensor 1 and A2 be sensor 2. 

For correct operation of the pedal position sensors, it is required that the difference 

between these two sensor readings is as small as possible. Considering that there is a 

±2 LSB inaccuracy when reading from the ADC due to noise, the two sensor values 

on each pedal will not always match exactly. Therefore a tolerance needs to be 

defined for the minimum and maximum difference between sensor values. In theory 

this only needs to be a tolerance of about! ±3,! however in practice a much larger 

tolerance needs to be set to compensate for DC offsets between sensor readings. The 

following function can be used to compare the two different sensor values A1 and A2, 

such a function is used in place of the math.h fabs!(absolute value) function as this 

is a more efficient method of comparison on an AVR. 

 
If the function returns a ‘1’ then the pedal position sensor is working correctly and an 

average of the two hall sensor values should be stored, as the final result. A logical 

shift right by two bits should be used instead of a divide because dividing is not a 

natural operation for an AVR and consumes larger amounts of CPU time: 

hallValue = (A1 + A2) >> 2; 

Example(of(an(algorithm(used(to(compare(sensor(values(

int checkHallSensors(unsigned int A1, unsigned int A2){ 

 if( A1 > A2){ 

  if( A1-A2 <= THRESHOLD) 

   return 1; 

  } 

 else{ 

  if( A2-A1 <= THRESHOLD) 

   return 1; 

 } 

 return 0; 

} 
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If the function returns a ‘0’ then one or both of the hall sensors on the pedal have 

failed and could be outputting random values, therefore to prevent unexpected 

behavior by the vehicle, the instrumentation microcontroller must shutdown the entire 

system including turning off the ignition signal to the BMS and sending a system 

shutdown message over USART to the traction control microcontroller using the 

command: 

sendMessage(SHUTDOWN, SYSTEM); 

 

5.6 Transmitting data to the traction control AVR 

For transmitting and receiving data through USART interface 0 to the traction control 

AVR, a serial protocol was developed. Instead of using external libraries to 

implement the serial protocol, a simple protocol was written by the author. The 

reasoning behind this is that the complexity of pre-existing protocols was not required 

for the purpose of this system and it would be better to implement a simple protocol 

tailored to the requirements of this particular project. Commonly used protocols such 

as a “sliding window protocol” or “selective repeat protocol” were not necessary due 

to the fact that messages are sent so frequently that it doesn’t matter if a particular 

message is corrupted, it will be discarded and the receiver will wait for the next 

message to arrive. 

The USART interface can only send a single 8-bit frame at a time; therefore the 

protocol needs to package frames into a message. The message structure went through 

several iterations until the most efficient format was determined. To be understood by 

the serial protocol messages must be encoded in the following format: 

<Start><Msg Type><PAYLOAD><CRC><End1><End2> 

Start – The start delimiter, used to indicate the start of a new message. The value 

assigned to start during testing is ‘$’.  

Msg Type – The type of message being sent, this is used to describe the type sensor 

that the message relates to. Each type of message has a certain expected payload 

length, which can be found in the USART.h header file. This relation is shown in 

Table 5 
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Msg(Type( Value(char)) Expected(Payload(Length( Value(int)(
HALL) ‘H’) HALL_LEN) 5)
ROTARY) ‘R’) ROTARY_LEN) 2)
ACCEL_GYRO) ‘M’) ACCEL_GYRO_LEN) 4)
SYSTEM) ‘S’) SYSTEM_LEN) 1)

Table 5  Message Type Protocol 

The lengths above will be constant for any message of a particular type, and can be 

used for error checking at the receiving end. Note that these lengths are measured as 

the number of bytes of the payload. 

Payload – The payload is the actual data being transmitted for a given sensor. The 

payload has a different structure for each message type shown in the table above; 

hence different types of messages have different lengths. Shown below is the required 

payload structure for each message type. 

o HALL: )
 <Direction (1 byte)> <Accelerator Position (2 

bytes)> <Brake Position (2 bytes)> 

• Where Direction is either FORWARD (‘F’) or 

REVERSE (‘R’) signifying the direction that the 

motors should rotate. 

o ROTARY: )
 <Steering Wheel Position (2 bytes)> 

o ACCEL_GYRO:  
 <Accel x (2bytes)> <Accel y (2 bytes)> <Accel 

z (2 bytes)> <Gyro Pitch  (2 bytes)> <Gyro 

Roll (2 bytes)> <Gyro Yaw (2 bytes)> 

o SYSTEM:  
 <System Message Type (1 byte)> 

• Where the System Message Type can either be ACK 

(0x01) or SHUTDOWN (0xFF). Even though system 

messages aren’t used by the current protocol they were 

included for completeness and future development. 

CRC – The Cyclic redundancy check, is used for error detection. A CRC is generated 

at the sending end, which summarises the message excluding delimiter symbols. 
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End1, End2 – The end delimiter, consisting of two unique bytes of data used to 

indicate the end of the message. During testing End1 was set to)‘\r’)and End2 was 

set to)‘\n’.)This is equivalent to a new line when the message is read as an ASCII 

string. 

The)message)can)be)sent)across)the)serial)link)using)the)function:)

void sendMessage(char *message, char type); 

Where)message)is the payload being sent and)type)is the message type. Note that 

each message type has a corresponding expected length, this relation is shown in 

Table 5.  

Data read from the ADC is in unsigned integer form, in order to send this over the 

USART link, the following function must be called to convert the 16-bit number into 

to 8-bit symbols: 

char* intToChars(unsigned int num); 

The formation of the complete message is handled by the sendMessage function; this 

includes the generation of the CRC for the string)<msg type>  <Payload>.)

 

Example of transmitting Hall Sensor Data to the traction control AVR across 

USART0: NOTE: Assume accelData and brakeData are integer values that have 

been read from the analog to digital converter at an earlier stage in the program: 

 char * accelMsg = intToChars(accelData); //2 bytes 

 char * brakeMsg = intToChars(brakeData); //2 bytes 

 char * msg = calloc(5,sizeof(char)); 

 strcat(msg,accelMsg); // append accel to message 

 strcat(msg,brakeMsg); // append brake to message  

     free(accelMsg); 

 free(brakeMsg); 

 sendMessage(msg,HALL);// format and send message 

 free(msg); 
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Sending the message in this format does have its downsides, as the message uses a 

direct conversion of integers into two char values, this does not directly correspond to 

an ASCII string that represents that integer number e.g. the integer 12 is not 

converted to ASCII characters ‘1’ ‘2’, therefore it is not human readable in the case 

that the user wants to connect the USART to a computer terminal to read the output 

using HyperTerminal (or equivalent serial communication programs). This particular 

method has been chosen because it is a more efficient way of transmitting data than 

using the ASCII representation of integer numbers as a 16-bit number represented in 

ASCII corresponds to four 8-bit ASCII characters. If the actual values need to be 

outputted in a readable form, the helper function  

sendDebug(char *msg); 

which sends a normal unencoded string can be used along with the function : 

char* intToHex(int num int len);  

to convert an integer into a readable hex ASCII string. The value of len should be set 

to 3 for a 10-bit number (from the ADC) or 4 for a 16 bit number 

5.7 Receiving sensor data at the traction control microcontroller 

The receiving end is responsible for decoding the received message and performs 

error detection to ensure that the received message is valid and has not been corrupted 

during transmission. The message is read into a receive buffer using a state machine 

to detect the start and end of a message and detect any errors due to incorrect length. 

A simplified flow chart of the process used by the receiver to detect the current state 

is shown below:  



 59 

 

Figure 32  Receive Sensor Data Flow Chard 

The state machine takes an input of two variables, current frame and previous frame 

and outputs the current state, which can take a value of STARTED, ENDED, and ERROR. 

The STARTED state is entered when the current frame is equal to Start (Start delimiter 

byte) and the previous frame is equal to End2 (end delimiter byte 2). A global 

variable idx keeps track of the current length of the message. To prevent buffer 

overflow, idx is checked against BUFLEN, the maximum buffer length (a precompiler 

#define in USART.h that can be set by the user. If at any time idx exceeds BUFLEN 

then an error state is entered. The ENDED state is entered when the current frame is 

equal to End2 and the previous frame is equal to End1 (end delimiters) and the 
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message is the expected length. If an end sequence is detected and the message is of 

incorrect length (too short or too long) an ERROR state will be entered instead. 

Expected length can be calculated using the following expression: 

Expected Length(bytes) = len(payload) + len(delimiters) + 

len(type) + len(crc); 

Where len(payload) can be determined from the table above, len(delimiters) 

= 3 bytes (1 start two end bytes), type = 1 byte and CRC = 2 bytes. 

Receiving messages should be interrupt based, with an interrupt sub routine triggered 

whenever a byte is received. This can be handled by the function: 

char recieveChar(char* buf); 

Where buf is the receive buffer which should be created with a length of BUFLEN, 

as defined in USART.h. The receiveChar function will handle the buffer ensuring 

that when an ENDED state is detected, the string is terminated with a ‘\0’ or when an 

ERROR state is detected the buffer will be zeroed. One byte is stored into the buffer 

every time the function is called and the current state is outputted. 

 

 

Example of Receiving Hall Sensor Data across USART0:  

char * receiveBuf = calloc(BUFLEN,sizeof(char)); 

ISR(USART0_RX_vect){ //interrupt service routine 

char state = recieveChar(receiveBuf); 

if (state == ENDED){ 

if(receiveBuf[1] == HALL){ 

decodeHall(); 

} 

} 

} 
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Example of Decoding Hall Sensor Data: assuming variables: char direction, 

unsigned int accel and unsigned int brake have been previously defined.  

void decodeHall(){ 

 char *msg = calloc(7,sizeof(char)); 

 char *crc = calloc(3,sizeof(char)); 

 for(int i = 1; i < 7; i++){ 

msg[i-1] = receiveBuf[i]; 

} 

for(int i = 7; i < 9; i++){ 

crc[i - 7] = receiveBuf[i]; 

} 

unsigned int check = charsToInt(crc); 

free(crc); 

unsigned int actual = calculateCRC(msg); 

if(check != actual)sendDebug("CRC ERROR"); 

else{ 

direction = msg[1]; // motor direction 

char *c = calloc(3,sizeof(char)); 

c[0] = msg[2]; 

c[1] = msg[3]; 

accel = charsToInt(msg); //Accel Position 

c[0] = msg[4]; 

c[1] = msg[5]; 

brake = charsToInt(msg); //Brake Position 

free(c); 

} 

free(msg);    

} 
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One of the ideas behind this instrumentation system is it should act as a central 

computer for the vehicle. Therefore it should be able to detect if the traction control 

AVR stops responding. If communication with this microcontroller is lost then the 

vehicle may start acting unpredictably. As this microcontroller is connected directly 

to the motors this could become a serious hazards to the driver. Ideally if contact is 

lost with the traction control system, the instrumentation system should shut off the 

entire system to prevent any hazards. In its current state, the serial communication 

protocol does not take account of this, it is currently only used as a one way 

transmission line to send data to the traction control system and does not use its 

receive communication line to receive confirmation messages. It would be useful if 

the traction control end replied to each message with an acknowledgement, that way 

the instrumentation AVR would always know if the traction control is running. A 

timer could be used to measure the time since the last ACK was received and if that 

timer passes a certain threshold, the system would be shut off. A similar feature 

should be implemented on the receiving end; by using a timer to measure the amount 

of time elapsed since sensor data was received. Due to time constraints this feature 

was never implemented but most of the infrastructure has been put in place to make 

this a simple task.   

5.8 X-Bee Transmitter 
Before using the two X-Bee devices, they must be configured using “X-CTU” 

configuration and test utility [19], which is the software supplied with the X-Bee 

devices. Each X-Bee must be configured individually by plugging them into a 

computer using the supplied USB adaptor. Once connected to a computer the X-Bee 

will be recognized as a COM device and running X-CTU will allow the user to 

change certain parameters. The most important parameters, which need to be taken 

into consideration, are baud rate and source address. By default, the baud rate of each 

device is set to 9600bps; this must be set to 11920bps by altering the “BD-Baud Rate” 

parameter[19]. For each device the “MY- Source Address” parameter [19] must be set 

to a unique 16-bit identifier. As this is only a point-to-point system it should be 

sufficient to set the transmitter’s address to 0x0001 and the receiver’s address to 

0x0002. 
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As specified in the X-Bee Pro “Series 2” product documentation [17], the following 

packet structure is required when sending a message to the X-Bee via the USART 

interface: 

<Start Delimiter><Length><API Specific Structure><Checksum> 

Start Delimiter – Start delimiter is always 0x7E, which signifies the start of a new 

message (1 byte) 

Length – a 16-bit number (consisting of two 8-bit chars: MSB|LSB) representing the 

number of bytes of the “API Specific Structure” (2 bytes) 

API Specific Structure consists of: 

<API Identifier><Frame Id><Destination Address><Options><RF Data> 

API Identifier – Command ID, set to 0x01 for a Tx request using 16-bit addresses (1 

byte) 

Frame Id – A randomly generated sequence number for the packet, used for 

acknowledgements sent back by the receiver, setting this byte to 0x00 disables 

acknowledgments. (1 byte) 

Destination Address – The 16-bit (MSB|LSB) address of the receiving X-Bee device. 

In this case set to 0x00 0x02. Alternatively set to 0xFF 0xFF to broadcast to any X-

Bee device within range (2 bytes). 

Options – Can be set to 0x01 to disable Acknowledgements from the receiver, 

otherwise set to 0x00 (1 byte) 

RF Data – The actual message being sent (Maximum 100 bytes per packet) 

Checksum – An alternative to the CRC-16 algorithm. All message bits are added 

together and subtracted and the last 8-bits of the resulting number are subtracted from 

0xFF (1 byte) 

The function sendXbee(char * message) can be used to transmit an RF packet 

to receiver device 0x0002. The full implementation of this function can be found in 

Appendix B under xbee.c. Below is an example of sending hall sensor data as an RF 

packet: 
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Example of transmitting Hall Sensor Data as an RF packet using interface 

USART1: NOTE: Assume accel1, accel2, brake1 and brake2 are integer values 

that have been read from the analog to digital converter at an earlier stage in the 

program: 

/* Desired msg in the form “Hall Sensor Data: A1=xxx, 

A2=xxx, B1=xxx, B2=xxx\r\n” */ 

char * msg = calloc(51,sizeof(char)); 

strcat(msg,”Hall Sensor Data: A1=”); 

char* A1 = intToHex(accel1,3); 

strcat(msg,A1);  

free(A1); 

strcat(msg,”, A2=”); 

char* A2 = intToHex(accel2,3); 

strcat(msg,A2);  

free(A2); 

strcat(msg,”, B1=”); 

char* B1 = intToHex(brake2,3); 

strcat(msg,B1);  

free(B1); 

strcat(msg,”, B2=”); 

char* B2 = intToHex(brake2,3); 

strcat(msg,B2);  

free(B2); 

strcat(msg,”\r\n”); 

sendXbee(msg); // TRANSMIT THE MESSAGE 

free(msg); 
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5. Conclusion 

6.1(Outcomes(

The primary requirements for this project were to provide serial telemetry for the 

following sensors: 

• Dual redundant pedal position. 

• Steering wheel angular position. 

• 6 degree of freedom Accelerometer Gyroscope. 

If time permitted the following optional functions were to be implemented: 

• X-Bee wireless telemetry. 

Late requirement were added to provide an interface for the following future system: 

• Battery Management System interface. 

• Reverse switch. 

All the above requirements have been met. 

The final outcome of this project is a fully programmable instrumentation system, 

which can be configured to interface with pedal position sensors, a steering wheel 

angle sensor and a digital accelerometer/gyroscope board. The system is also able to 

interface with other AVR’s and an X-Bee  wireless transmitter over USART links as 

well as having two I/O pins dedicated to digital communication with a BMS, which is 

to be implemented in the 2012 vehicle. 

A PCB prototype board has been built for future testing of the system and is designed 

to be EMC compliant for use within Australia (although not yet certified by an 

approved measurement laboratory). 

The serial protocol for communicating between two microcontrollers over a USART 

connection was fully tested by connecting two ATMega644P’s together using their 

Tx0 and Rx0 pins. The author was successfully able to use this protocol to transmit 

test data over the USART0 interface. The CRC check very rarely failed, this is 

because the cable used to connect the AVR’s was relatively!short.!In practice a!longer 



 66 

cable will be used, which may result in a higher error rate due to increased cable 

capacitance. 

The X-Bee Pro device was tested by connecting one device to the AVR and the other 

to a PC outputting serial data to HyperTerminal. Test messages were transmitted from 

the AVR using the function!XbeeSend(msg)!implemented in xbee.c!(see Appendix 

B). Messages were received by the PC and outputted to HyperTerminal with a very 

high success rate. This was only tested over a 1 meter distance.  Maximum 

communication range tests should be run when the vehicle is fully built to determine 

the efficiency of the X-Bee  Pro transmitter. 

Below is a list of the Author’s biggest achievements: 

• Software 

o AVR8 polling loop and interrupt service loop framework. 

o AVR8 I/O initialization. 

o USART Serial Protocol. 

o Hall and shaft encoder sensor ADC. 

o I2C IMU communication protocol. 

o X-Bee communication protocol. 

• Hardware 

o Electronic component selection. 

o Sensor selection/design. 

o Circuit design. 

o Bread board Prototype 

o Double Sided PCB Prototype 

o Double Sided Through hold PCB design. 

6.2(Limitations(

Due to time constraints, the 2011 REV Formula SAE vehicle was not completed in 

time for the 2011 SAE-A competition. The REV SAE team created a Gantt chart to 

determine if the vehicle could be finished by the end of the year and based on this 

chart it was concluded that the amount of work required was too much given the 

amount of time available. All production was halted at the beginning of October. 

Therefore in its final state only the chassis of the vehicle was built, making it very 
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difficult to test the instrumentation system in the vehicle. Essential components such 

as the pedal box and steering shaft were not built and relevant sensors could not be 

installed. The vehicle will be entered in the 2012 SAE-A competition instead, giving 

an additional year for all sub-systems to be completely implemented. 

The entire system was never tested as a whole however individual sensors were tested 

extensively. For this reason the program REV_SAE.c does not reflect a fully 

functional system, as it was very difficult to implement certain features while the 

vehicle had not yet been entirely built. Critical electrical systems such as the traction 

control system and BMS (developed by other students) were also not completely 

implemented in time to be integrated and connected to the instrumentation system. 

The author had particular problems with the Accelerometer/Gyroscope IMU. The 

AVR failed to communicate with this external device. When trying to send a message 

to the IMU device over I2C, the AVR would receive a negative acknowledgement, 

which indicated that the destination device was not responding/not found on the I2C 

bus. The author spent several weeks trying to debug this problem with no progress. It 

was concluded that either the IMU device was faulty (most likely due to accidental 

exposure to ESD) or the external I2C library being used was not suitable for 

ATMega644P and may need to be modified (unlikely).!

The PCB built is only a prototype; it is not of professional quality as it is prone to 

short circuits or open circuits caused by over etching or under etching as illustrate in 

Figure 33. For that reason it is not suitable for use in a vehicle while on the track as 

vibrations may induce a fault. It is recommended when the final system is 

implemented in the vehicle, the PCB should be manufactured professionally as 

illustrated by the Figure 39 and Figure 40 3D models. Note: that the track width, track 

clearance be decreased when manufacturing the PCB professionally, as the equipment 

used is much more precise than manufacturing the board by hand. 
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Figure 33  Home Made PCB Prone to Short/Open Circuit, Under/Over Etching 
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6. Future Work 
Although this system satisfied the main requirements of vehicle instrumentation, 

certain features were left unimplemented due to time constraints. There are many 

ways that this instrumentation system can be improved or extended to in future. This 

would make an excellent final year project for a student keen to work on vehicle 

instrumentation. Some of these changes are essential for the instrumentation to be 

fully functional and integrated into the 2012 Formula SAE Vehicle: 

• Properly install and integrate existing sensors into the vehicle including: Pedal 

position sensors, the steering wheel angle sensor and accelerometer/gyroscope 

IMU  

• Debug and determine the cause of digital communication with the IMU device 

failing 

• Improve the Serial protocol to account for System Messages and 

Acknowledgements from the receiver. 

• Develop a new sensor to measure the wheel rotation speed, it is suggested that 

the PWM output of a motor can be used in conjunction with the 

ATMega644P’s 16-bit timer to determine a wheels revolutions per second. 

• Modify the PCB design to properly utilize opto-couplers for proper galvanic 

isolation (see Section 4.6). 

• Professionally manufacture the PCB. (This will also require alterations to the 

PCB design). 

• Integrate the system’s X-Bee  telemetry with “Crystal Ball” Telemetry 

software developed by UWA student Frank Tan. 
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Appendix A Electrical Design Data 

A.1 Instrumentation System Data Sheet 

Parameter Condition Min Typ Max Unit

Hall Sensors

Input Impedance 30 kΩ
Voltage 0 5 V

Low Pass Filter 16 Hz

ADC

Sample rate 32 Hz

Resolution 10 Bits

Accuracy +/-2 LSB

Inputs

A1 Accelerator # 1

A2

B1

B2

Rotary Sensors

Input Impedance 30 kΩ
Voltage 0 5 V

Low Pass Filter 16 Hz

Sample rate 32 Hz

ADC

Sample rate 32 Hz

Resolution 10 Bits

Accuracy +/-2 LSB

BMS

Inglition TTL Logic Input 0 3.3 V

On 3.3 V

Off 0 V

Status TTL Logic Output 0 3.3 V

Ok 3.3 V

Error 0 V

Reverse

Reversing 3.3 V

Forward 0 V

I2C
SDA Serial Data (I/O) 0 3.3 V

SCL Serial Clock 0 3.3 V

Baud Rate Baud rate function of R3 and R22 100,000 400,000 Hz

Sampling rate 100 Hz

Accelerometer

Resolution 10 Bits

Sensitivity 256 LSB/g

Gyroscope

Resolution 16 Bits

Sensitivity 14.375 LSB/° /S

Traction TTL RS232

Rx0 Receiver 0 3.3 V

Opto-Isolator Optional (Link selectable) 0 3.3 5 V

Tx0 Transmit 0 3.3 V

Opto-Isolator Optional (Link selectable) 0 3.3 5 V

Baud Rate Max baud rate limited by external cable capacitance 240 19200 250000 Baud

Debug

Rx0 Receiver 0 3.3 V

Tx0 Transmit 0 3.3 V

Baud Rate Max baud rate limited by external cable capacitance 240 19200 250000 Baud

X-Bee

Rx1 Receiver 0 3.3 V

Tx1 Transmit 0 3.3 V

Baud Rate Max baud rate limited by external cable capacitance 240 19200 250000 Baud

Status Indicator

Flashing Codes

OK 1 Hz

Error On 100 % 0 Hz

No Power

Model AVR ATMega644P 2.7 3.3 6 V

ALU Integer 8 Bits

I/O 32 Pins

RAM 4.0 K Bytes

Flash 64.0 K Bytes

Internal Oscilator 1.0 8.0 8.0 MHz

Power Supply 2.7 3.3 5.5 V

Power Supply

Voltage 8 12 24 V

Current 25 100 500 mA

Power 0.2 1.2 12.0 W

Protection

Reverse voltage

Over current External M205 fuse 1.00 A

EMI/EMC

Wedth 65 mm

Length 115 154 mm

Depth 32 mm

Operating Temperature Range 0 50 °C

Mechanical Shock 30 G

Vibration 5 G

Weight 0.23 0.25 kg

RoHS

REV SAE Instrumentation System
Data Sheet

External Interface

Electrical

Environmental and Mechanical

Model Number: ALLEGRO A1301

Accelerator # 2

Brake # 1

Brake # 2

Model Number: US Digital MA3

Battery Managment System

Accelerometer and Gyroscope Interface

TTL Logic Input

Model Number: SEN-10121

Model Number: SEN-10121

ROH and Lead-free components and assembly processes except for the Rev 1 and 2 prototypes.

TTL RS232

Model Number: X-Bee Pro Series 2

Processor

External Blue LED

Diode protected

Metal box sheilding

No Light

 

Table 6  Instrumentation System Data Sheet 
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A.2 Circuit Diagram 

 

Figure 34  PCB Design (Schematic) 

A.3 Bill of Materials 

Designator Description Quantity Value

AVR-ISP, PB4-7 Header, 5-Pin 2 0.1" Pitch 5 pin Header

BMS Header, 3-Pin 1 0.1" Pitch 3 pin Header

C1, C5, C6, C7 Polarized Capacitor (Radial) 4 10uF 35V Tanatlum 0.2" Capacitor

C2, C3, C4, C8, C9, C11, C12, C13, C14 Capacitor 9 100nF _.0" Through hole ceramic capacitor

D1 1 Amp General Purpose Rectifier 1 IN4001 Diode

D2 LED 1 Blue pannel mount LED

Debug, PA4-7 Header, 4-Pin 2 0.1" Pitch 4 pin Header

F1 Fuse 1 M205 Pannel mount fue holder

Hall Sensors, Serial I/ O Header, 12-Pin 2 0.15" pitch 12 way PCB screw terminal block

PC2-7 Header, 6-Pin 1 0.1" Pitch 6 pin Header

Power In Header, 2-Pin 1 0.2" pitch 2 way PCB screw terminal block

R1, R2, R23 1/ 4W radial lead resister 2 1K

R3, R6, R12, R15, R18,  R21, R22 1/ 4W radial lead resister 7 10K

R4, R10, R13, R16, R19 1/ 4W radial lead resister 5 20K

R5, R11, R14, R17, R20 1/ 4W radial lead resister 5 100K

R7, R8 1/ 4W radial lead resister 2 200R

U1 5V 1A Voltage Regulator 1 LM7805 TO220 

U2 3.3V !A Voltage Regulator 1 LM3940 TO220

U3, U4 Opto coupler 2 4N35

U5 AVR 8-bit 64K flash 1 ATMega644P

W1, W2 Header, 2-Pin 2 0.1" Pitch 2 pin Header

Gromets 2 Pannel mount gromets

Diecast box 1 120mm x 65mm x30mm dicast box

Printed circuit board 1 REV SAE IP Rev 2

Bill$of$Materials
REV$SAE$Instrumentation$System

 

Table 7  PCB Bill of Materials 
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A.4 External Wiring 
Figure 35 and Table 8 illustrate the colour coding of the external wiring. There are 

several 5V and 3.3V lines providing power to external sensors. These power lines are 

not short circuit protected and will either blow the fuse of shut down the linear 

regulators if overloaded. The 5V and 3.3V wire bare ends have been cut off and taped 

over to prevent short circuits. 

 

Figure 35  External Wiring (Colour Coding) 

Port Group Signal Connector Pin W ire Colour Code

Power 2 Red

Ground 1 Black

Rx 1 Yellow

Tx 2 Gray

Ground 3 Green

Ground 3 Green

Rx 4 Brown

Tx 5 Blue

3V3 6 Pink

SDA 7 Gray

SCL 8 Purple

GND 9 Green

5V 10 Orange

Ground 11 Green

Shaft Encoder 12 Blue

Output 1 Orange

Input 2 Green

Reverse 3 Blue

5V 1 Orrage

Ground 2 Black

A1 3 Brown

5V 4 Orrage

Ground 5 Black

A1 6 Blue

5V 7 Orrage

Ground 8 Black

A1 9 Pink

5V 10 Orrage

Ground 11 Black

A1 12 Purple

REV$SAE$Instrumentation$System
External$Wiring

External Power Power In

Traction

Left

X8Bee

I
2

C

Serial I/ O

Shaft Encoder

BMS BMS

Hall SensorRight

A1

A2

B1

B2

 

Table 8  External Wiring 

HALL 
Sensor 
Wiring 
Loom 

Serial I/O 
and Power 

Wiring 
Loom 
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A.5 Internal Wiring 
Figure 36 and Table 9 illustrate two cable adaptors that convert the PCB AVR-ISP 

and Debug header plugs to sockets which are required for the ISP programmer and 

the USB TTL USART. 

 

Figure 36  Internal Wiring (Program and Debug Adaptors) 

Connector Signal Pin Wire Colour Code

Ground 1 Grey

MOSI 2 Blue

MISO 3 Yellow

SCK 4 Brown

Reset 5 Black

Rx 1 Grey

Tx 2 Blue

Ground 3 Yellow

3V3 4 Brown

AVR-ISP

Debug

Internal(Wiring
Instrumention(System

 

Table 9  Internal Wiring 

  

Debug 

AVR-ISP 
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A.6 PCB Top Layer 
 

 

Figure 37  PCB Design (Top Overlay and Top Layer) 

A.7 PCB Bottom Layer 

 

Figure 38  PCB Design (Bottom Layer) 
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A.8 PCB 3D Model (Top Layer) 
Note: Figure 39 and Figure 40 illustrate the 3D model of what a professionally 

manufactured PCB will look like except the holes were deliberately made small to aid 

hand drilling. The final PCB requires that all the holes sizes be set to the correct 

component diameters. 

 

Figure 39  PCB 3D Model (Top Layer) 

A.9 PCB 3D Model (Bottom Layer) 

 

Figure 40  PCB 3D Model (Bottom Layer) 
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A.10 PCB Cardboard Prototyping 
Figure 41 illustrates the PCB cardboard prototyping which was used to determine the 

housing size and the PCB geometry. The cardboard prototype was also useful in 

identifying electronic component mechanical clearance issues. 

 

Figure 41  PCB Cardboard Prototyping 

A.11 PCB Double Sided Manufacture 
Due to the lack of time and resources a homemade PCB was constructed. Figure 42 

illustrates the manufacturing steps require for a hobbyist double sided PCB with no 

through hole plating. The double sided PCB was used to validate the circuit design. 

Although the double sided PCB provided a functional Instrumentation system the 

PCB manufacturing and soldering is not of sufficient quality to provide reliable 

operation on a vibrating vehicle. It is highly recommended that the final PCB be 

professional manufactured and assembled by a technician with good soldering skills. 

Several attempts were required before a PCB of usable quality was obtained. The 

double sided PCB was assembled using leaded components and solder which makes 

assemble easy for the unskilled but it is not ROHs compliant. When the professionally 

manufactured PCB is assembled it is highly recommended that lead free solder be 

used with the appropriate lead free equipment. 

 

Figure 42  PCB Double Sided Manufacture 
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Appendix B Software 

B.1 Rev_SAE.c - Main Program Source file 
 

// Clear CLKDIV/8 Fuse for 8MHz Clock 
// Need to disable JTAGEN fuse for normal Port C functionality 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include <avr/eeprom.h> 
#include <avr/pgmspace.h> 
#include <util/delay.h> 
#include <avr/wdt.h> 
#include <util/crc16.h> 
#include "USART.h" 
#include "digSensor.h" 
#include "xbee.h" 
 
 
#define ADC_VREF_TYPE 0x40 
#define FOSC 8000000// Clock Speed 
#define BAUD 19200 // Baudrate 
#define MYUBRR (((FOSC / (BAUD * 16UL))) - 1)  
#define THRESHOLD 10 // Needs to be set properly once final 
pedal box is tested 
 
 
/* reads analog input PA0-PA7 (0x00-0x07) and  
returns the result as a value between 0-1024 */  
unsigned int read_adc(unsigned char adc_input) 
{ 
 
 ADMUX=adc_input | (ADC_VREF_TYPE & 0xff); 
 _delay_us(10); // Delay needed for the stabilization of 
//the ADC input voltage 
 ADCSRA|=0x40; // Start the AD conversion 
 while ((ADCSRA & 0x10)==0); //Wait for the AD conversion       

//to complete 
 ADCSRA|=0x10; 
 return ADCW; 
} 
 
/* Initialises the Pin directions on the AVR as well as  
enabling the ADC and global interrupts */ 
void SetupPorts() 
{ 
 DDRA = 0x00; 
 DDRB |= 1<<PD6| 1<<PD7; // LED and BMS OUT 
 DDRC = 0x00; 
 DDRD = 0x00; 
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 ADCSRA = 0b10000101; // ADC clock prescaler is /32 with  
    // 101 as final bits 

 
 sei(); // Enables global interrupts 
} 
 
/* Checks if the diff between two sensor values  
are within a user defined THRESHOLD region */ 
int checkHallSensors(unsigned int A1,unsigned int A2){ 
 if( A1 > A2){ 
  if( A1-A2 <= THRESHOLD) 
   return 1; 
  } 
 else{ 
  if( A2-A1 <= THRESHOLD) 
   return 1; 
 } 
 return 0; 
} 
 
 
 
/* NOTE: ACCEL/GYRO communication has been removed because it 
causes the program to crash. Problem must be investigated in 
the future */ 
int main(void) 
{ 
 
 SetupPorts(); 
 unsigned int accel1,accel2,brake1,brake2,rotary,reverse; 
  
 // Initialise USART interfaces 
 USART_Init(MYUBRR); 
 xBee_Init(MYUBRR); 
  
 /* ACCEL/GYRO communication functions cause program to  

crash 
 initAccel(); 
 initGyro(); 
 */ 
 
 // Main Loop 
 while (1)  
 { 
 
 //TODO: 
 //  LED CODES 
 //  BMS communication 
 //  Fix Accel/Gyro communication 
 
  //Read analog inputs 
   accel1 = read_adc(0x00); 
   accel2 = read_adc(0x01); 
   brake1 = read_adc(0x02); 
   brake2 = read_adc(0x03); 
   rotary = read_adc(0x04); 
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   reverse =  PIND >> PD4; 
 
 /* Example of reading Digital Inputs (NOT WORKING) 
  char* Xhigh = 0; 
  char* Xlow = 0; 
  readAccel(ACCEL_XOUT_H,&Xhigh); 
  readAccel(ACCEL_XOUT_L,&Xlow); 
  int x = (int) (Xhigh << 8) + Xlow; 
 */ 
 
   
  // 
  // Proccess and Transmit Hall Sensor Data 
  // 
  unsigned int accel,brake; 
  if(checkHallSensors(accel1,accel2)){ 
    accel = (accel1 + accel2) >> 2; 
  } 
  else{ 
   //TODO handle sensor error 
   break; 
  } 
 
  if(checkHallSensors(brake1,brake2)){ 
    brake = (brake1 + brake2) >> 2; 
  } 
  else{ 
   //TODO handle sensor error 
   break; 
  } 
 
  char *hallMsg = calloc(6,sizeof(char)); 
  if(reverse){ 
   hallMsg[0] = 'R'; 
  } 
  else{ 
   hallMsg[0] = 'F'; 
  } 
 
  char * A = intToChars(accel); 
  char * B = intToChars(brake); 
  strcat(hallMsg,A); 
  strcat(hallMsg,B); 
  sendMessage(hallMsg,HALL); 
  free(A); 
  free(B); 
  free(hallMsg); 
 
    
  // 
  // Transmit Rotory Sensor Data 
  // 
   
  char * R = intToChars(rotary); 
  sendMessage(R,ROTARY); 
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  free(R); 
 
 
 //INSERT X-BEE TRANSMISSION CODE 
 // sendXbee(HallMessage); 
 // sendXbee(RotaryMessage); 
 // sendXbee(IMU_Message);   
 
 _delay_ms(32); // Analog Sensor sample rate 32Hz = 1  

   //sample every 32ms 
//In future this should be replaced by a timer system 
//because Accelerometer/Gyroscope IMU is sampled at a 
//different rate 

 
 } 
 
// HANDLE FATAL ERROR 
 
} 
 

B.2 Rev_SAE2.c – Receiving End Program Source File 
// Clear CLKDIV/8 Fuse for 8MHz Clock 
// Need to disable JTAGEN fuse for normal Port C functionality 
 
#include <stdlib.h> 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include <avr/eeprom.h> 
#include <avr/pgmspace.h> 
#include <util/delay.h> 
#include <avr/wdt.h> 
#include <string.h> 
#include "USART.h" 
 
#define ADC_VREF_TYPE 0x40 
#define FOSC 8000000// Clock Speed 
#define BAUD 19200 
#define MYUBRR FOSC/16/BAUD-1 
 
char receiveBuf[BUFLEN]; 
unsigned int hall; 
 
 
 
/* Sample algorithm developed to decode hall 
sensor data at the receiving end */ 
void decodeHall(){ 
   
   char *msg = calloc(HALL_LEN+1,sizeof(char)); 
   char *crc = calloc(3,sizeof(char)); 
   for(int i = 1; i < HALL_LEN+1; i++){ 
    msg[i-1] = receiveBuf[i]; 
   } 
   for(int i = HALL_LEN+1; i < HALL_LEN+3; i++){ 
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    crc[i - HALL_LEN-1] = receiveBuf[i]; 
   } 
    unsigned int check = charsToInt(crc); 
    free(crc); 
    unsigned int actual = calculateCRC(msg); 
 
    if(check != actual) 
     sendDebug("CRC ERROR"); 
   else{ 
    char *c = calloc(3,sizeof(char)); 
    c[0] = receiveBuf[0]; 
    c[1] = receiveBuf[1]; 
    hall = charsToInt(c); 
    free(c); 
   } 
   free(msg);    
} 
 
/* Interrupt for whenever a byte is received on RX0 */ 
ISR(USART0_RX_vect){ 
  
 char state = recieveChar(receiveBuf); 
 
 if (state == ENDED){ 
  if(receiveBuf[1] == HALL) 
   decodeHall();  
  if(receiveBuf[1] == ROTARY){ 
  // Handle Rotary Message 
  } 
  if(receiveBuf[1] == ACCEL_GYRO){ 
  // Handle IMU Message 
  } 
  if(receiveBuf[1] == SYSTEM){ 
  // Handle SYSTEM Message 
  } 
 } 
 
} 
 
 
  
 
int main(void) 
{ 
  
  
 sei(); // Enable Global Interrupts 
 
 USART_Init(MYUBRR); 
 while (1) // Main loop 
 { 
 //Wait for receive interrupt 
 } 
} 
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B.3 USART.h – Serial Communication Header File 
 

#include <stdlib.h> 
#include <avr/io.h> 
#include <util/crc16.h> 
#include <string.h> 
 
// Receive State Codes 
 
#define STARTED 0x01 
#define ENDED 0x02 
#define ERROR 0x03 
 
#define BUFLEN 30 
 
// Delimiters 
 
#define START  '$' 
#define END1    '\r' 
#define END2 '\n' 
 
// Message Types 
 
#define HALL  'H' 
#define ACCEL_GYRO 'M' 
#define ROTARY  'R' 
#define SYSTEM  'S' 
 
// Message Lengths 
 
#define HALL_LEN   5 
#define ACCEL_GYRO_LEN 4 
#define ROTARY_LEN  2 
#define SYSTEM_LEN  1 
 
 
void USART_Transmit(char data ); 
unsigned int calculateCRC(char *str); 
char currentState(char frame); 
 
 
void USART_Init(unsigned int ubrr); 
 
 
char* intToHex(unsigned int num,int len); 
 
char* intToChars(unsigned int num); 
unsigned int charsToInt(char* c); 
 
void sendDebug(char *msg); 
 
void sendMessage(char *buf, char type); 
char recieveChar(char *buf); 
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B.4 USART.c– Serial Communication Source File 
#include "USART.h" 
 
int idx = 0; 
int MsgLen = 3; 
char state = ENDED; 
char prev = '\n'; 
 
/* Initializes the USART 0 interface 
for the Instrumentation -> Traction Control Link*/ 
void USART_Init(unsigned int ubrr){ 
 
 /* Set baud rate */ 
 UBRR0H = (unsigned char)(ubrr>>8); 
 UBRR0L = (unsigned char)ubrr; 
 /* Enable receiver and transmitter */ 
 UCSR0B = (1<<RXEN0)|(1<<TXEN0); 
 /* Set frame format: 8data, 1stop bit */ 
 UCSR0C |= (3<<UCSZ00); 
 /* Enable receive interrupt */ 
 UCSR0B |= (1 << RXCIE0); 
 
} 
 
/* Transmits a single byte */ 
void USART_Transmit(char data ){ 
 
 /* Wait for empty transmit buffer */ 
 while ( ( UCSR0A & (1<<UDRE0)) == 0 ){}; 
  UDR0 = data; 
} 
 
/* Transmits a Debug Message (uncoded) that 
can be read in HyperTerminal */ 
void sendDebug(char *msg){ 
 int i = 0; 
 while( msg[i] != '\0'){ 
  USART_Transmit(msg[i]); 
  i++; 
 }  
 USART_Transmit('\r'); 
 USART_Transmit('\n'); 
} 
 
 
/* Sends A formatted message acrross the USART Link 
accepts raw message data and the type of message */ 
void sendMessage(char *message, char type){ 
  
 char *msg = calloc(strlen(message) + 4,sizeof(char)); 
 msg[0] = type; 
 strcat(msg,message); 
 char *crc16; 
 unsigned int crc = 0; 
 crc = calculateCRC(msg); 
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 crc16 = intToChars(crc); 
  
 strcat(msg,crc16); 
 free(crc16); 
  
 USART_Transmit(START); 
 
 int i = 0; 
 
 while( msg[i] != '\0'){ 
  USART_Transmit(msg[i]); 
  i++; 
 }  
 free(msg); 
 
 USART_Transmit(END1); 
 USART_Transmit(END2); 
} 
 
/* Helper function to turn an integer into its ASCII 
representation accepts parameter num - the number being 
converted and len - length of the ASCII string = 3 for a 10bit 
number or 4 for a 16bit number */ 
char * intToHex(unsigned int num,int len){ 
  
 char * str = calloc(len+1,sizeof(char)); 
 
 for(int i = 0; i<len; i++){ 
  str[i] = (num >> (len-i-1)*4)& 0x0f; 
  
  if(str[i] <= 0x09) 
   str[i] += 0x30; 
  else if( str[i] > 0x09) 
   str[i] += 0x37; 
 } 
 return str; 
} 
 
/* Helper function to turn an integer into 2 chars (non 
readable)*/ 
char* intToChars(unsigned int num){ 
 char *c = calloc(3,sizeof(char)); 
 c[0] = (char) (num >> 8); 
 c[1] = (char) num; 
 return c; 
} 
 
/* Helper function to turn an 2 chars into a 16-bit integer*/ 
unsigned int charsToInt(char* c){ 
 unsigned int i = 0; 
 i += (int) (c[0]<< 8); 
 i += (int) c[1]; 
 return i; 
} 
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/* Function to calculate the CRC of a given string 
Outputs a 16 bit integer */ 
unsigned int calculateCRC(char *str){ 
 
 int i = 0; 
 unsigned int crc = 0; 
 while (str[i] != '\0'){ 
   crc = _crc16_update(crc,(uint8_t) str[i]); 
   i++; 
 } 
 return crc; 
} 
 
 
/* Function to receive a single char from Rx0 
Outputs the current state of the buffer, accepts the receive 
buffer being used as an input received chars are appended to 
the end of this buffer*/ 
char recieveChar(char* buf){ 
 
 
 char byte = UDR0; 
 
 state = currentState(byte); 
 if(state == STARTED){ 
   
  if(idx == 1){ 
   MsgLen = 5; // 5 = 1 Start bit 2 CRC Bits + 2  

 // End bits 
   char c = buf[idx]; 
   switch (c) { 
    case HALL: 
     MsgLen += HALL_LEN; 
    case ACCEL_GYRO: 
     MsgLen += ACCEL_GYRO_LEN; 
    case ROTARY: 
     MsgLen += ROTARY_LEN; 
    case SYSTEM: 
     MsgLen += SYSTEM_LEN; 
    default: 
     state = ERROR; 
   } 
  } 
 
  buf[idx] = byte; 
  idx++; 
 
 } 
 else if (state == ERROR){ 
 
  idx = 0; 
  buf[0] = '\0'; 
 } 
 
 else if( state == ENDED){ 
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  buf[idx] = '\0';   
  idx = 0; 
  
 } 
 
 prev = byte; 
 
 return state; 
} 
 
  
/* Function used by ReceiveChar to determine the current 
buffer state. Takes the current frame as an input and outputs 
the current state */ 
char currentState(char frame){ 
 
 
 if (frame == START && prev == END2){ 
  state = STARTED; 
  } 
 else if(frame == '\n' && prev == '\r' && idx != (MsgLen-
1)){ 
  state = ERROR; 
 } 
 else if (idx >= BUFLEN-1){ 
  state = ERROR; 
 } 
 else if( idx > MsgLen){ 
  state = ERROR; 
 } 
  
 else if(frame == END2 && prev == END1) 
  state = ENDED; 
 
  
  
 return state; 
} 
 

B.5 digSensor.h– IMU communication header file 
 
#include "twi.h" 
 
#define ADXL_ADDR_READ 0xA7 
#define ADXL_ADDR_WRITE 0xA6 
 
#define ITG_ADDR_READ 0xD1 
#define ITG_ADDR_WRITE 0xD0 
 
// Accel Registers 
#define ACCEL_XOUT_L 0x32  
#define ACCEL_XOUT_H 0x33  
#define ACCEL_YOUT_L 0x34  
#define ACCEL_YOUT_H 0x35  
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#define ACCEL_ZOUT_L 0x36  
#define ACCEL_ZOUT_H 0x37 
 
// Init Accel 
#define POWER_CTL 0x2D 
#define DATA_FORMAT 0x31 
#define MEASURE  (1<<3) 
#define RANGE_0  (1<<0) 
  
// Gyro Registers 
#define GYRO_XOUT_H  0x1D 
#define GYRO_XOUT_L  0x1E 
#define GYRO_YOUT_H  0x1F 
#define GYRO_YOUT_L  0x20 
#define GYRO_ZOUT_H  0x21 
#define GYRO_ZOUT_L  0x22 
 
 
// Init Gyro 
#define SMPLRT_DIV 0x15 
#define DLPF_FS  0x16 
#define DLPF_CFG_0 (1<<0) 
#define DLPF_CFG_1 (1<<1) 
#define DLPF_CFG_2 (1<<2) 
#define DLPF_FS_SEL_0 (1<<3) 
#define DLPF_FS_SEL_1 (1<<4) 
#define PWR_MGM  0x3E 
#define PWR_MGM_CLK_SEL_0 (1<<0) 
 
void initAccel(); 
void initGyro(); 
 
char read_Accel(char register_addr, char * value); 
char write_Accel(char register_addr, char value); 
char read_Gyro(char register_addr, char * value); 
char write_Gyro(char register_addr, char value); 
 
 

B.6 digSensor.h– IMU communication source file 
#include "digSensor.h" 
#include "USART.h" 
 
/* initialises the Accelerometer Device */ 
void initAccel(){ 
 twiInit(100000); // Init SCL at 100kHz 
 write_Accel(POWER_CTL, MEASURE); // Set Accel to  

// measurement mode 
 write_Accel(DATA_FORMAT, RANGE_0); // set range to +/- 2g 
} 
 
/* initialises the Gyroscope Device */ 
void initGyro(){ 
 twiInit(100000); // Init SCL at 100kHz 
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 write_Gyro(DLPF_FS, 
DLPF_FS_SEL_0|DLPF_FS_SEL_1|DLPF_CFG_0); 
 write_Gyro(SMPLRT_DIV, 9); 
 write(PWR_MGM, PWR_MGM_CLK_SEL_0); 
  
}  
 
/* Reads the contents of register_adddr on the accelerometer 
and stores it into value.Outputs 0 if successful or an error  
code otherwise */ 
char read_Accel(char register_addr, char * value){ 
  twiReset(); 
 return twiReceive(ADXL_ADDR_READ, register_addr, value); 
} 
 
/* Writes they byte "value" to register_adddr on the 
accelerometer 
Outputs 0 if successful or an error code otherwise */ 
char write_Accel(char register_addr, char value){ 
 twiReset(); 
 return twiTransmit(ADXL_ADDR_WRITE, register_addr, 
value); 
} 
 
/* Reads the contents of register_adddr on the gyroscope 
and stores it into value.Outputs 0 if successful or an error  
code otherwise */ 
char read_Gyro(char register_addr, char * value){ 
 twiReset(); 
 return twiReceive(ITG_ADDR_READ, register_addr, value); 
} 
 
/* Writes they byte "value" to register_adddr on the gyroscope 
Outputs 0 if successful or an error code otherwise */ 
char write_Gyro(char register_addr, char value){ 
 twiReset(); 
 return twiTransmit(ITG_ADDR_WRITE, register_addr, value); 
} 
 
 

B.7 xbee.h– X-Bee communication header file 
#include <stdlib.h> 
#include <avr/io.h> 
#include <string.h> 
 
void xBee_Init(unsigned int ubrr); 
void sendXbee(char *message); 
void Xbee_Transmit(char data); 
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B.8 xbee.c– X-Bee communication source file 
 

#include "xbee.h" 
 
/*Initializes xbee transmitter device */ 
void xBee_Init(unsigned int ubrr){ 
 
 /* Set baud rate */ 
 UBRR1H = (unsigned char)(ubrr>>8); 
 UBRR1L = (unsigned char) ubrr; 
 /* Enable receiver and transmitter */ 
 UCSR1B = (1<<RXEN1)|(1<<TXEN1); 
 /* Set frame format: 8data, 1stop bit */ 
 UCSR1C |= (3<<UCSZ01); 
} 
/* Transmit a single byte to the X-bee transmitter */ 
void Xbee_Transmit(char data ){ 
 
 /* Wait for empty transmit buffer */ 
 while ( ( UCSR1A & (1<<UDRE1)) == 0 ){}; 
  UDR1 = data; 
} 
 
 
/* Convert an ASCII message to an RF Packet 
to be transmitted wirelessly */ 
void sendXbee(char *message){ 
 Xbee_Transmit(0x7E); 
 int len = strlen(message); 
 char c = (char) (len >> 8); 
 Xbee_Transmit(c);    // Length MSB 
 c = (char) len; 
 Xbee_Transmit(len);  // Length LSB 
 Xbee_Transmit(0x01); // API Identifier 
 Xbee_Transmit(0x00); // Frame Id (no ACKs) 
 Xbee_Transmit(0x00); // Destination Address MSB 
 Xbee_Transmit(0x02); // Destination Address LSB 
 Xbee_Transmit(0x01); // Options: Disable ACKs 
 
 int sum = 0; 
 for(int i = 0; i< len; i++){ 
  Xbee_Transmit(message[i]); // RF Data 
  sum += message[i]; 
 } 
 char checksum = 0xFF - ((char)(sum >> 8)); 
 Xbee_Transmit(checksum); // Checksum 
 
} 
 


