Design, Manufacture and Testing of a Robot System for

the UWA EyeBot Program

Andrew Adamson
20276755
School of Mechanical and Chemical Engineering

University of Western Australia

Supervisor: Prof. Thomas Braunl
School of Electrical, Electronic and Computer Engineering

University of Western Australia

Final Year Project Thesis
School of Mechanical and Chemical Engineering

University of Western Australia

Submitted: November 12, 2012

Abstract

The EyeCon is a controller for mobile robots (EyeBots) which are designed as a small, low
powered, embedded device with good image processing capabilities. EyeCons are a
valuable tool for student learning in the laboratory component of several robotics units, as
well as providing control and monitoring functionality on other research robots, where they
have been attached to wheeled, walking and swimming devices. The EyeCons in general
use were created prior to 2006 and as such, all of them are becoming impractical to

maintain and the hardware is outdated.

This project investigated a completely new EyeCon architecture based on a BeagleBoard
xM single board computer. A custom USB expansion board was then designed to add
EyeBot specific functionality to the BeagleBoard. The redesigned architecture was required
to satisfy the needs of a large number of stakeholders while achieving modularity and

standardisation along with reduced construction and development time.

After manufacturing and assembly, testing was conducted on the expansion board to
confirm the functionality of individual features and ensure that the expansion board was
suitable for use by undergraduates. Testing showed that the architectural principle was
sound, however a number of technical issues were found that require a second iteration of
the board to resolve. Suggestions are provided on how each technical issue may be
resolved, and recommendations are presented as a framework for future EyeCon

development.

Acknowledgements

First and foremost I would like to thank The University Computer Club (UCC), without
which I would not have had the practical skills and knowledge to do this project. The UCC
was also a huge help in providing tools, advice and resources that I was unable to access
through the Engineering Faculty. The members of UCC were also a huge help in keeping
me sane throughout what was a very challenging project, and had to put up with me
practically living in one corner of the room to work on this project. One such member, John
Hodge, wrote the code for testing the SPI chip when I discovered it was well outside my
field of knowledge. At short notice, he quickly and expertly wrote a test program, for which

I am extremely grateful.

I would also like to thank Ivan Neubronner for his help and advice with the PCB; it is
largely thanks to his input that the PCB had so few manufacturing issues. He also stopped
me from making some questionable design decisions, like making the components half the

size they ended up being.

Thanks go to my family, who listened and supported me when I needed somebody to talk

at, and were very understanding of the time I was spending on the project.

Finally, thanks go to Prof. Dr. Thomas Braunl, who let me throw myself in the deep end
with this project even after I asked what a decoupling capacitor was - I have learned a

tremendous amount because of it!

1

2

Contents

INOMENCIATUTE ...ttt ettt e sb et bt et e e et e eabe e e ens 6

INEOAUCTION ...ttt et e e ne e 7
2.1 Design SPeCifiCatiON.......cueeiiiiriiiiriiieeiiieiit ettt ettt e e s 9
2.2 PIOJECE SCOPE . uvttiiitieiiie ettt ettt ettt ettt et ettt et e sabe e sataeesbeesabeesbaeesanean 9
2.3 Major CONLITDULIONSeeiuiiieiiiiiieeeiiie ettt ettt st e etae s et e e site e sabeesbaeenaeeas 9

Architectural DESIZNcoouviiriiiiiieiiie e 10
3.1 Product Lifetime OptimizZation...........ccceevueeenierniieniieeniie ettt 10
3.2 REQUITEIMENLS ..eeeuvvieiiiieeiteeite ettt et te et eit e esite e sttt e st e et e eabbesebteeabeesabeesabaeesbeeeaees 11
3.3 CONSIIAINLS ..eeeuueeeiiee ettt ettt ettt ettt et e bt e et e st e s bt e e abeesbeesaneeesbeeeaees 13
R T S o T D TTN) 14 PSP 14
3.5 ATChiteCture OPLIONS ...cccueieriieeiieeiieeetiete et e etee st e e ieeetae e e e e e aeaseseeenseeesaseennees 16
300 DIBSIZN . uiiiiiiieieeeite ettt ettt st e et et e e abee st a e e aeeeaaes 18
3.7 EyeCon M8 Block Diagramcc.coceieiuieiiiiieiiieiieeeie et 20

(O3 30 B S T4 o BTSRRI 21
o T B TR Feq o I 070 SRR RRRRPSNt 22
4.2 Expansion Board FEatures............ccoceevuieiiiiiiiiieniiiniie ittt 22

Manufacturing and ASSEMDIYcoocuiiiiiiiiiiiiiierie e 31
5.1 ManUFACTUIING ...covuviiiiieiiiie ettt ettt ettt e s abe st e e s beesaaeeeaee 31
5.2 ASSEIMDLY 1ot ettt et e e s s beeeneeeans 31

TESEITIZ ettt ettt ettt ettt st e e bt e et st b e e it e s e eabee st be e aeeeanes 32
6.1 In System Programming..........ccccccoovieiriiiiiiiniieiieeriee et 32
0.2 SPI .ottt e 33
0.3 TPttt sttt ettt 35
0.4 IMIOTOTS ..ottt ettt ettt et eb e sttt e bt e b e bt et e a e e be et eae 36

6.5 POWET SUPPLY ..ottt et e 37

0.0 PSDS ..t 39
0.7 SEIVOS .ttt ettt st et e n e 40
7 Recommendations for Future Work..........cccccooiiniiiiniiiniiiiiiicccc e 41
Tl PCB LAYOUL ..ottt ettt ettt sttt e st e st e s beesaaeenes 41
7.2 DEDUZEZING ..ottt ettt e ettt e ettt e e tte e sat e e be e sateeeneesnbeeeneeenns 41
7.3 USB CONMNECIOL .ccuiiiiiiieiiieiiieeeiteete ettt sttt ettt e et s see et e st snaessreesmeeeane 42
7.4 Through hole headers vs. surface mount headers.............ccoceevvieiniernieenieenieennns 42
7.5 POWET CONLIOLoouiiiiiiiiiiiiitciicte ettt e 43
7.6 ASSEMDIY tECANIQUEeeeeeiieeiieeiieee et ettt et 44
TT SOREWATR.....eeiieiiieeeee ettt ettt et et e e e b 44
Appendix A: Expansion Board Detail............ccccooviirriiiiniiiiiieeieeeee e 45
Appendix A.1: SCREMALICSeovuviiriiiiiiieiieeete ettt et 45
Appendix A.2: PCB LaYETS....ccceiiiiiiiiiiiieieeeite ettt st 51
AppendixX B: Test SOftWaATE..........coevuiiiiieiiieeieee et e eane e 55
Appendix B.1: XMega test PrOZIAIMcccueieuieeriiierieenieeeieeeieeeseeeeseeesereesneessseesneeenns 55
Appendix B.2: Two Wire Interface (I°C) header..............cccooeurviieeeeeeereeereeeeeeeeen, 62
Appendix B.3: PCA968S5 headercoouiiriiiiiiiiiiieiieeeiee ettt 64
Appendix B.4: FT232H Test Programccocueevieeiiiiniieiiieeneceiecrieceeeesie e 66
AppendixX C: SPI CONfIUIALIONeiiiuiiiiiieiieeie ettt ee s eeae e 72
Appendix C.1: SPIMOAEScooiiiiiiiiiiiieeiee ettt et 72
Appendix C.2: SPI Settings to Communicate with FT232H...........cccccccevviiniininnnnne. 73
8 REIEIENCES ..cuviiiiiiiiciiiiec e e 74

1 Nomenclature

ADC
BIOS
CAD
CpPU
COM
DSP
FPGA
GPIO
HID
I'C
I/0
JTAG

LCD
LED
PCB
PDI
PID
PSD
PWM
RAM
REV
RoHS
ROS
SBC
SDK
SPI
TVS
USB
USB OTG
uvC

Analogue to Digital Converter
Basic Input Output System
Computer Aided Design
Central Processing Unit
Computer On Module

Digital Signal Processor

Field Programmable Gate Array
General Purpose Input/Output
Human Interface Device
Inter-Integrated Circuit

Input/Output

Standard Test Access Port and Boundary-Scan

Architecture

Liquid Crystal Display

Light Emitting Diode

Printed Circuit Board

Programming and Debugging Interface
Proportional-Integral-Derivative
Position Sensing Device

Pulse Width Modulation

Random Access Memory

UWA Renewable Energy Vehicle
Restriction of Hazardous Substances Directive
Robot Operating System

Single Board Computer

Software Development Kit

Serial Peripheral Interface Bus
Transient Voltage Suppression
Universal Serial Bus

USB On The Go

USB Video Device Class

2 Introduction

EyeBots are a class of small autonomous robots which also have real-time image
processing capabilities. The controller at the heart of all EyeBots is called an EyeCon,
however the terms “EyeBot” and “EyeCon” are frequently interchanged. The UWA EyeBot
program has been running for a number of years and EyeCons have been attached to a wide
range of wheeled, walking, swimming and flying robots. The program started as a way to
teach robotics principles; students program EyeBots in assembly and the C programming
languages for tasks such as line following, wall following, sensor calibration, motor
Proportional-Integral-Derivative (PID) control and object tracking. In addition to their use
in robotics lab programs, EyeCons are also used as control and monitoring tools in projects
such as UWA’s Renewable Energy Vehicle, stereo vision research using Field

Programmable Gate Arrays (FPGAs), and swarm robotics research.

EyeCons have undergone several upgrades during the life of the program. The original
EyeCons, versions M1 to M5 (hereafter series 1), were based on a Motorola 68k processor
and ran a fully custom operating system. Series 1 EyeCons ran at 25MHz, and had a
128x64 pixel black and white screen. In 2006, the M6 EyeCon was developed to try and
replace the ageing series 1 fleet of EyeBots. The M6 is based on an ARM-9 processor
running at 400MHz and runs a customised version of the Linux operating system. The M6
also had an FPGA connected to the main processor which allowed it to offload the image
processing and free up the Central Processing Unit (CPU) for other tasks such as
controlling the robot. Alas, this approach had hardware and useability issues which made it
inappropriate for larger scale deployment, and consequently only a few EyeCon M6s were
ever made. At the time of writing, students completing robotics labs at UWA are still using

series 1 EyeCons.

Figure 1: A selection of devices that the EyeCon has been attached to

When the EyeCon was first designed, it was the pioneering robot controller of its size
which could do onboard image processing. Today, devices with high CPU speeds, hundreds
of megabytes of Random Access Memory (RAM), and onboard image processing
capabilities are ubiquitous in the form of mobile phones and tablet devices. The series 1
EyeCons, whilst still effective at analogue tasks such as driving motors and reading
distance sensors, have failed to keep up with today’s expectations in terms of image
processing capabilities. It is now nearly impossible to update the series 1 EyeCons with
new components; in particular the camera modules, for which camera sensors of a low

enough resolution are difficult to source.

2.1 Design Specification

The design of the new system aims to be a general robotics platform that is able to take

over the tasks of existing EyeBots whilst giving the system sufficient features and

expandability that it can be adapted to other uses in the Engineering Faculty.

2.2 Project Scope

The main tasks in this project were:

Research and definition of hardware, taking into consideration present and future
needs for the EyeCon with respect to product usage and life,

Acquisition of off-the-shelf hardware, then design and manufacture of any
additional custom hardware that is required,

Testing and documentation to allow others to continue working with the project.

Notable exclusions from the scope are the writing of software (beyond test code to ensure

the hardware works), the definition of the communication protocol between the host board

and the expansion board, and large scale deployment systems.

2.3 Major Contributions

The major contributions of this project are:

The architectural design of the EyeCon M8,

Sourcing of a host device to provide image processing capabilities,

The schematic and Printed Circuit Board (PCB) layout of the EyeCon MS8
expansion board,

A bill of materials and sourcing of Restriction of Hazardous Substances Directive
(RoHS) compliant components for the expansion board (supplied to supervisor),
Outsourcing the manufacture of the expansion board PCB,

Population of two expansion board PCBs,

Testing results of the expansion board,

Documentation and sample code to facilitate future programming and use of the

expansion board.

3 Architectural Design

The architectural design of the EyeCon M8 had to take into account the needs of all
stakeholders, whilst creating a product with sufficient life and cost effectiveness. The
primary use scenario focused on was that of student labs, since that is where the largest
number of EyeBots is currently deployed. Some consideration was also given to other uses,

based on an assortment of past research projects which used the EyeBot.

The focus of the EyeCon M6 design was on “the ability to accelerate image processing
through the use of an FPGA™” (Blackham, 2006). The M8 does almost the opposite — it
keeps the high speed tasks such as image processing on the main CPU, and delegates the
slower robot control tasks to the microcontroller on the expansion board. This has the
benefit of abstracting EyeBot specific tasks away from what is otherwise off-the-shelf

hardware.

3.1 Product Lifetime Optimization

van Nes and Cramer (2005) outlined five design strategies which influence product
lifecycle through design: design for reliability and robustness; design for repair and
maintenance; design for upgradability; design for product attachment and design for

variability.

Previous EyeCons have had a service life of approximately five years, and it is envisaged
that the new design will match or exceed this. Making the EyeCon modular is consistent
with all the strategies set out by van Nes and will help to maximize the EyeCon’s lifecycle.
Hardware modularity can be achieved by separating hardware roles where they cannot
easily be replaced as a whole, for example, it is ideal to put most of the robot control
hardware (motor drivers, servo drivers, distance sensors) onto an expansion module with a
standard interface such as Universal Serial Bus (USB) so that, when it comes to upgrading
the image processing capabilities, the expansion board can simply be plugged into the new
host, have suitable drivers compiled and then used without further redevelopment.
Modularising the robot controlling role potentially saves on having to build a fully custom

EyeCon board every time a CPU upgrade is required, thus allowing the EyeCon to be

10

incrementally upgraded. Furthermore, abstracting the robot driving component out of the

main board will make it easier to design for electrical protection.

3.2 Requirements

3.2.1 Undergraduate Lab User Requirements

A student completing labs with an EyeBot requires a tool that is reliable, consistent and
easy to program. At present, the most complex of undergraduate lab tasks undertaken using
EyeBots involves locating red cans using a camera, driving towards them, picking them up,
and moving them to some location (Braunl, 2012). For the EyeBot M8 to take over the task
of existing labs it does not need stereo cameras or the ability to process high quality video
from high resolution/high frame-rate cameras. As a result it must be asked why an FPGA is
needed for these tasks at all. Indeed, all that is needed for student labs is a way to apply
simple image processing to a stream from a single camera (e.g. find the lightest point), and
the ability to control all peripherals on existing EyeBot bases (motors, servos and distance

Sensors).

Features implemented in previous EyeCons that should be re-implemented:
e Liquid Crystal Display (LCD),
e 4 DC motor drivers,
e 16 General Purpose I/O (GPIO),
e (6 analogue inputs,
e 6 position sensitive device (PSD) inputs
e Rotary encoder inputs to read the motors rotation,
e 14 servo motor drivers,
e RS-232 serial,

e Colour camera.

Prominent features upgraded from series 1 EyeBots:
e Move from a black and white LCD screen to a full colour screen,
e Remove mechanical buttons from below LCD screen in favour of touch screen

buttons,
11

e Move to USB interface to allow for a greater range of peripheral hardware,

e Add options of programming via USB, Ethernet or SD card.

3.2.2 Requirements of Research Users
The needs of a research user are more difficult to predict than any other due to their ad-hoc
nature. The previous research uses of the EyeCon to date can be split into three categories:
e A small vehicle/robot controller (e.g. soccerbots and other cooperative robotics (Du,
2003))
e Monitoring and recording (e.g. a blackbox for the REV project (Ewan MacLeod,
2008))

e Computer vision and stereo vision research (Chin, 2006)

Using the EyeCon as a vehicle/robot controller is something that requires it to be robust and
tolerant of vibration. It also needs to have suitable I/O to be able to read sensors, control
motors and servos, and have sufficiently long battery life. Ideally, the M8 should be
compatible with any existing mounting constraints by matching mounting-hole locations

and the physical dimensions as closely as possible.

Monitoring and recording using the EyeCon dictates that it has some sort of storage space
available for data, in addition to having enough Input/Ouput (I/O) for sensors to monitor
the object in question. For the EyeCon to be used in vehicles such as the Renewable Energy
Vehicle (REV), it is required to be compatible with typical automotive voltages (5 to 15V

depending on conditions).

The computer vision and stereo vision research requirements are the most difficult to
quantify, since the standard of cameras, their interfaces, and the specifications of the FPGA
required for some tasks are difficult to predict. It was decided that trying to satisfy the
desire for an FPGA in every single EyeCon is both unnecessary and expensive; it increases
development times, hardware maintenance time costs, forces the system to be unnecessarily
complex, and is a resource that is not required to be on the EyeBot for the majority of its

use. As such, the FPGA component of an EyeCon was excluded from the scope of this

12

project. Where there is a need for high powered image processing, it can be implemented in
future as a USB expansion module (Bailey, 2011, pp. 380-383), which leaves the option
open for a multitude of different camera interfaces; FireWire, CameraLink, SubMiniature,
Ethernet, etc. It is essential that the interface between the EyeCon and such an expansion
module be considered when the EyeBot M8 is being built. Due to bottlenecks in the 1/0O of
the EyeCon M6, (Dietrich, 2009) calculated in his final year thesis that 25MB/s could be
passed between the FPGA and the CPU, and this was judged to be sufficient. Considering
Dietrich’s finding and the speed of the newer USB 2.0 standard (which operates at a
maximum rate of S0MB/s), a USB interface would be sufficient for communication

between an FPGA and the CPU if it is ever implemented.

3.2.3 Faculty/University Requirements

The ultimate goal of the EyeCon M8 is for it to replace the collection of EyeBot M5’s that
are utilised at the university. Aside from the cost price of the hardware, deploying a large
number of EyeBots at once requires personnel time to do any necessary assembly,
modifications and programming. There is a high potential for this process to become
expensive very quickly, therefore it is imperative that the hardware is not only cost

effective, but easy to assemble, with fast programming and maintenance processes.

3.3 Constraints

e Power consumption:

o EyeBots are generally battery operated, power consumption needs to be
minimal for them to be able to function throughout a three-hour lab without
having a battery replacement.

e EyeCon size:

o To minimize the amount of existing hardware necessary to be changed,
making the board the same size or smaller will enable the M8 to be used in
almost every place the M5 is used,

o The new EyeCon must have the same mounting hole locations as previous

versions.

13

e Cost:
o The design must be as cost effective as is practicable,
o Be sufficiently robust to be minimal maintenance and hence lower cost.
e Usability:
o The EyeCon M8 must be at least as simple to program as the EyeCon M5
(from a user perspective),
o Bulk programming methods must be available.
e Easy to source and manufacture:
o All parts should be replaceable with functionally similar parts,
o Minimise complexity to allow for manufacturing by a range of board
houses.

e The design must be fully RoOHS compliant

3.4 Past Designs

In addition to showing us the requirements for a new design, examining previous EyeBot
designs can help to better new designs by improving on past flaws and incorporating
desirable characteristics from past designs. Previous EyeCon designs can be broken into
series 1 EyeCons and series 2 EyeCons. This split of series represents a radical architectural
change. Series 1 ran a custom Basic Input Output System (BIOS) on the Motorola 68332
processor and can be considered a ‘traditional’ embedded system in that it had very
dedicated and fixed functions. Series 2 moved towards a more generic system running

Linux on a much more powerful ARM-9 PXA255 processor (Blackham, 2006).

3.4.1 Series1

Series 1, despite being relatively simple and having low processing power, was a device
that was easy for beginners to learn to program; this made it ideal for student use (based on
first-hand experience). This is partly due to its hardware design, which uses simple
interfaces, and partly due to good documentation with plenty of examples. This high

useability level is considered essential for the M8 to be successful for student use.

14

What is noteworthy of Series 1 is that the more modern modules (such as the Bluetooth
module) have been implemented using RS-232 serial via a DE-9 connector (Braunl, 2008).
The standard serial interface on the EyeCon would have made these add-on modules simple
to implement, and could be substituted with any off-the-shelf serial module, which in turn
contributed to the longevity of the Series 1. While RS-232 is a reliable standard that is easy
to work with, it is also extremely slow. USB has become a de facto standard in the
embedded electronics industry, has very mature Linux support, and is what the M8 will use
(Yaghmour, 2009). A further benefit of USB is that a USB-serial adapter can be used for

backward compatibility with any old serial modules.

Despite having some standard interfaces, the most important interface of the series 1
EyeCons — the camera — was non-standard, making it difficult to replace old hardware as it
reached end of life. Every new camera required a new board, had to be of a very specific
type, and required the hardware description table to be updated in software. Given that
available hardware is now sufficiently fast, an off the shelf camera using USB can be used
instead of interfacing to a custom camera using parallel I/O. This permits the use of
existing, standard software drivers such as Linux’s USB Video Device Class (UVC) video

drivers, which require no reconfiguration if the camera is changed.

3.4.2 Series 2

Series 2 made a radical change towards a Computer on Module (COM) mounted on an 1/O
expansion board, which also contained an FPGA. Running Linux on the M6 meant that
there was already an existing software base to build on which was both free and open
source. As a result, programming work wasn’t being repeated unnecessarily, and costs were
drastically reduced compared to a proprietary operating system. Running Linux meant that
there was already a multitude of programming tools available, and the system could be

emulated easily.

The major downside to the M6 was that, though powerful, it was not suitable to replace the

Series 1 EyeBots. At the time, attempting to satisfy the stereo vision goal meant using an

FPGA.

15

The FPGA took on too many functions of the old EyeBot by trying to do both the
image processing and low speed I/O (e.g. servo) control. This meant that it could
only do one of these tasks at a time,

Changing any of the hardware attached to the FPGA meant reprogramming it,
which represented an inordinate amount of programming for what should be a
simple change,

The FPGA used so many data lines on CPU that there was little room for anything
else to be attached to the CPU,

A timing issue between the CPU and the FPGA meant that the FPGA could not be
used to its full potential (Geier, 2009),

There were so many peripherals connected to the FPGA that the system was

unusable when the FPGA was put into low power mode (Singh, 2011).

3.5 Architecture Options

There were a number of possible design approaches that could be undertaken to arrive at a

finished product, however it was important to consider how much of the EyeCon should be

off-the-shelf and how much of it should be custom designed. At first glance, one might

choose the approach that involves the least work and the shortest development time.

However, each approach has trade-offs that had to be considered to ensure the product

lifecycle is optimized and all the requirements of the EyeCon are satisfied. The following

three subsections detail some of the benefits and disadvantages of each approach, from

which option 3 was selected for the EyeCon M8.

3.5.1

Option 1: Design a complete EyeCon from scratch

The product can suit the requirements exactly, with higher efficiency and without
any unnecessary components,

Takes significantly longer to develop and needs to include longer testing time,

High likelihood of having to go through several iterations of hardware to arrive at
the final product, which then has to go for manufacturing — all of which needs

someone to be managing the process,

16

3.5.2
Note

3.5.3

Potential to spend significant amounts of time and money reproducing parts that are
available off-the-shelf,

Some technologies difficult to work with given available resources (ball-grid array
parts, package-on-package designs),

Have to adapt all software drivers to suit the board,

High dependence on individual parts availability (high externalities).

Option 2: Design a board which expands the 1/0 of a COM

: This was the EyeCon M6 approach, which expanded on a Gumstix board.

Shorter development time than a fully custom build,

More software already available for the COM and some documentation already
written, though most external chip drivers still need to be implemented,

Unless there is a standard interface between the COM and the I/O board, if the
COM changes (as happened with Gumstix board connected to the M6), the I/O
board requires a complete redesign,

Can eliminate unnecessary ports and have more direct access to the CPU,

The functionality offered by each COM is highly variable. For example, one
Gumstix model may have USB onboard, while the next may expect it to be
implemented externally,

Guaranteed to have the right size board to suit mounting on existing EyeBots,

Have to adapt all software drivers to suit the board,

Has a high dependence on individual parts availability (high externalities).

Option 3: Buy a Single Board Computer (SBC) off the shelf and add any required
Junctionality using add-on modules

Much faster development time; can make most full-sized SBCs run Linux out of the
box and all drivers are already installed or available,

Once any custom modules and drivers have been developed, they can easily be
moved to other platforms as long as they use a standard interface such as USB,

High likelihood of having unnecessary components and features,
17

e Difficult to find SBCs and screens of the correct size for EyeBot mounting (will
have to make adaptor brackets or modify existing EyeBots to suit),

e Positions of ports are out of our control which could cause mounting
incompatibilities if positions change in future releases,

e Very few SBCs have built-in FPGAs, so that would have to be created as an add-on

module.

3.6 Design

For the EyeCon M8 it was decided to take an off-the-shelf SBC approach and use a
BeagleBoard-xM as a host device, with an expansion board custom made to suit EyeBot
specific functionality. Vision capabilities can then be provided by any Linux-compatible
USB camera, however preference should be given to cameras that support the Linux UVC
video drivers. In addition to having an ARM Cortex A8 core running at 1GHz, which was
suggested by Singh (2011) for future EyeCon designs, the BeagleBoard xM has the
following desirable features (Coley, 2010):

e Low power Organic Light Emitting Diode (OLED) touch screens available,

e Provides 4 USB 2.0 host ports and 1 USB on-the-go port, as well as a DE-9 serial
connector for backwards compatibility,

e The hardware design files are all fully open source and can be customised if the
need arises (BeagleBoard.org, 2011),

e Slightly smaller dimensions than the Series 1 EyeCons (when no screen attached),
and only 2cm wider when screen attached. This will help maximise compatibility
with existing EyeBots,

e Powerful enough to implement Robot Operating System (ROS) if desired in the
future,

e The TI DM3730 processor includes a TI C64x+ Digital Signal Processing (DSP)
core, which can be taken advantage of for offloading fixed-point image processing
tasks from the ARM Cortex A8 core,

e Ample documentation is available for porting OpenCV to this platform ,

e Good battery life (6.5 hours with a 4500 mAh battery),

18

e Free libraries and a complete video Software Development Kit (SDK) are available

for the TT DM3730 processor (Texas Instruments Incorporated, 2012b).

A range of other SBCs were considered and found to be unsuitable:

Candidate

Reasons for exclusion

Pandaboard

Insufficient USB ports, too big for EyeBot

mounts

Blizzard Interface Baseboard for TDM-3730

Too big for EyeBot mounts

BeagleBone All non-standard ports, no off-the-shelf screens,
underpowered

Raspberry Pi Immature hardware, supply issues, no off-the-
shelf screens, underpowered

CMUcam Not modular, no screen capability,
underpowered, would require a complete rework
to make it suitable

OMAP Zoom Too big for EyeBot mounts

IGEPv2 Insufficient USB ports, otherwise could be a

suitable replacement if that can be overcome

19

3.7 EyeCon M8 Block Diagram

1od jujw gsn XT spod

(910) e nasupl ———

SEIEIVhE| _
31D gsn 1SOH 4sn

SJoeqpaay
Japoou3

INX pieoga|3eag

S9|NPON UO-ppYy

Figure 2: Block diagram of the EyeCon M8
20

4 PCB Design

Once the architecture of the EyeCon M8 had been agreed upon, the focus of the project
moved to the design and manufacture of the expansion board. This entailed drawing up the
schematics in an electrical Computer Aided Design (CAD) program, and then converting
those schematics to a PCB layout. The schematic design and board layout took several
months, as it had to be checked that every component could operate at the supplied voltages
and could communicate with all the other components. Once the schematic was drafted,
each component had to be sourced, and the schematic modified where necessary.
Components were purchased as soon as the schematic was finalised as physical parts had to
be checked against their PCB footprint before the board was sent for manufacturing. While
the components were on order, the board was laid out and routed. This presented a whole
new set of challenges as a number of extra constraints came into play; namely the PCB
manufacturer’s capabilities, the availability of tools to populate the board, mounting points,
testing points, and size constraints. Figure 3 and Figure 4 show a 3D model of the

expansion board.

Figure 3: 3D model of the expansion board, top perspective view

21

Figure 4: 3D model of the expansion board, bottom perspective view
4.1 Design Tools
4.1.1 Eagle PCB

The entire schematic and board design was done in Eagle PCB. This software was chosen
for its large existing parts libraries, as well as third party libraries provided by large online

electronics companies such as Sparkfun and Adafruit Industries.

4.1.2 Viewplot

Viewplot is a free gerber file viewing program, and was used to check the final PCB files
before they were sent to the manufacturer. It was particularly useful for ensuring the PCB
layers were in the right order, aligned correctly and weren’t mirrored. It is also standard
practice to tell anybody who has to work with your drill files what the number format of the
files is. Since Eagle CAD does not allow you to set the number format, or even display the

number format, Viewplot was essential for working out the number format of the generated

Excellon drill file.

4.2 Expansion Board Features

4.2.1 Microcontroller

The microcontroller chosen for the expansion board is an Atmel ATxMegal28A1. Atmel
was the preferred brand of microcontroller because the author has worked with it before,
and students are more likely to have worked with Atmel after working with hobbyist boards
such as the Arduino. The ATxMegal28A1 was chosen as it was the smallest and cheapest

microcontroller which had the required functionality; that being:

22

e 16 interrupt enabled pins for GPIO,
e 14 interrupt enabled I/O pins for motor encoder feedback, stall flags and chip enable
lines,
e 13 Analogue to Digital Converter (ADC) pins for battery level monitoring, PSD
reading and general purpose ADC,
e 8 timer output enabled pins to provide the Pulse Width Modulation (PWM) for the
motor controllers,
e A Serial Peripheral Interface (SPI) to be able to interface with the USB to SPI chip,
e An Inter-Integrated Circuit (I°C, also known as Two Wire Interface, or TWI)
interface to communicate with the PWM controller which drives the servos.
Initially the requirement was for 22 timer output compare pins, with the microcontroller
also providing the PWM for the servos. This proved nearly impossible to satisfy, so the 14
servo PWM lines were offloaded to a PCA9685 chip. Unfortunately it was not possible to

use a 5V microcontroller as no chip in the 5V range had the required features.

4.2.2 USB

USB is the common interface to most of the peripherals of the EyeCon, so it is important
that it be used on the expansion board. This means that if ever the host device needs to be
replaced - assuming it has USB - it will have hardware level compatibility with the
expansion board. The chip selected for use on the expansion board is an FT232H chip made
by FTDI. This is one of the few existing chips that supports Hi-Speed USB (up to
480Mbps), which ensures that the USB interface does not become a communications
bottleneck. Many USB-SPI chips and USB-enabled microcontrollers present on the host as
Human Interface Devices (HIDs) in order to function without further driver installations.
They, however, have a maximum speed of 600Kbaud, and are unsuitable for controlling all
the features of the expansion board in real time. The FT232H does not present as an HID
device, which allows it to go much faster, however this requires additional drivers. Royalty

free drivers for Windows, Mac and Linux are available from the FTDI website.

It was a deliberate decision not to select a microcontroller with an inbuilt USB port, as this
would mean a complete change of host device drivers if ever the microcontroller is

changed. On the other hand, converting from USB to SPI means that a new microcontroller

23

only has to have an SPI port, allowing a consistent software interface to be available on the

host.

4.2.3 ISP

In System Programming is a feature of many programmable chips which allows them to be
programmed after installation into the complete system. This eliminates the need for
expensive, chip specific programming equipment which needs to be used before the chip is
installed. The ATxMegal28A1 supports in system programming via the Programming and
Debug Interfaces (PDI) and Joint Test and Action Group (JTAG) interfaces.

4.2.4 Servos

The expansion board allows 14 servos to be connected and driven concurrently via a
dedicated PWM chip. The chip selected is a PCA9685, which is also used on a 16-channel
servo controller produced by Adafruit Industries. The PCA9685 is controlled via I’C from
the microcontroller and provides up to 16 PWM channels with 12-bit resolution. 12 bits of
resolution allows for servo positioning in 0.8 degree increments (assuming a 50Hz
frequency, 1-2ms duty-cycle, and a servo with 180 degree range). According to (Pololu
Robotics and Electronics, 2011), “the frequency of the pulse train does not affect the servo
position if the pulse width stays the same”. Taking this into account, the frequency could be
increased to 180Hz (most hobby grade servos permit this) and the positional increments can

be reduced to approximately 0.25 degrees.

The PCA9685 runs at 3.3V to maintain compatibility with the ATxMega, however
“standard” hobby grade servos are rated at 5V. To ensure the 3.3V signal would not cause
issues with the servos, tests were conducted on a range of servos beforehand using a 3.3V
Texas Instruments “mbed” board to ensure the behaviour was correct with the lower

voltage.

4.2.5 Motors

Four motors are able to be driven by the expansion board using two A3906 motor drivers.
These chips have a number of advantages over the L293 driver used in the EyeCon M6;
they have configurable internal current limiting for each motor, and provide a stall flag for
each motor which is convenient to check if the robot gets stuck or if the motor is pulling

too much current.
24

Each A3906 chip is capable of supplying two motors with 1A each, and is controlled using
4 1/0 lines from the microcontroller. For a regular DC motor, any state out of
disabled/forward/reverse/braking can be selected, and the speed of the motor can be
adjusted by varying the duty cycle of the I/O lines using PWM. Headers are provided which
allow for connecting standard 6-pin Faulhaber motors with encoders. Each driver chip can
also drive a stepper motor in half or full step mode by connecting a stepper motor to two

pairs of the DC motor outputs and setting the 4 1/O lines appropriately.

The power source of each motor driver is jumper selectable; battery voltage or regulated
5V. The latter voltage should be selected if the supply battery voltage is over 9V, as the
maximum motor voltage allowed by the A3906 is 9V. To this end, the battery input
terminal on the board has been labeled with a smaller range than what is available; “5 —
9VDC IN”, which is to try and prevent people unknowingly blowing up the motor
controller. The idea behind this is that once the instructions for the board have been
properly read, a user will find out that the allowable range is actually “5 — 16VDC” as long
as the correct jumper is set for the motor controller chips. To conserve battery power, each
A3906 chip can be put into a sleep mode when not in use, putting its power usage down to

around 750nW.

4.2.6 Motor Encoders

Each Faulhaber motor used in the EyeBot program has a rotary encoder with up to 1024
pulses per revolution. These pulses are counted using two /O lines for each encoder on the
microcontroller, saving the host BeagleBoard from a continuous stream of interrupts which
would otherwise completely occupy its time. On the EyeCon M6, considerable time was
spent dealing with potentially noisy encoder signals to mechanical jitter on encoder switch
contacts. This should no longer be necessary, as all existing Faulhaber motors use either
magnetic or optical encoding, which provide a much cleaner signal. It will be necessary to
make a small electrical adapter for UWA’s existing Faulhaber motors, as they use either an
older 6 pin connector with a different pin order, or in some cases an even older 10 pin

connector.

25

4.2.7 PSDs

Position Sensitive Devices are used on the front and sides of some EyeBots to detect the
distance and angle of some wall or object. The EyeCon provides 6 PSD ports, which have
historically been connected to Sharp GP2DO02 infrared distance sensors. These sensors
required a specific waveform to be input before they could be read, which made
programming for them quite complex. Sharp no longer manufactures the GP2D02 and they
have been replaced with the Sharp GP2Y0A21YK, which has nearly identical distance
sensing capabilities but uses an analogue signal to reflect the distance sensed. Determining
a distance value is now as simple as reading an ADC value and converting this value to a
distance based on a lookup table. The move to an ADC based reading has the added benefit
of eliminating the previous timing constraint of 70ms between successive PSD reads; the
distance is now calculated approximately every 38.3ms, and can be read as frequently as
the user wishes. Additionally, the standard ADC interface allows not just the Sharp
GP2Y0A21YK, but a range of ultrasonic range finders.

4.2.8 ADC and GPIO

The expansion board provides 16 GPIO ports on a 20 pin header. The 20 pin header adds a
5V pin, a 3.3V pin, and two ground pins to assist with powering add-on peripherals. Six
ADC inputs are also provided on a 6 pin header for general use. All the GPIO pins and
ADC pins are connected directly to the microcontroller and subsequently are only 3.3V
tolerant. It was decided to leave circuit protections off the ADC and GPIO pins because it
added a significant number of parts, increased the cost, and the use of these pins is
relatively infrequent. This means that the ADC and GPIO pins are unprotected from
overvoltage conditions, shorting to ground, and shorting to other I/O pins (Rugged Circuits
LLC, 2011). If this proves to be a problem, it may be necessary to protect each pin by
adding resettable fuses (with built-in current limiting resistors), and zener diodes to each

pin, as per Figure 5.

26

PTC fuse

5 MWW—EZT—0
Microcontroller pin 2209 Connector terminal

3.6V

Figure 5: Possible pin protection means. Adapted from (Rugged Circuits LLC, 2011)

4.2.9 Power Supply
In addition to supplying power to all the expansion board components, the expansion board
provides power to the BeagleBoard. The expansion board power is split into three

switchmode supplies:

o A 2A/3.3V supply for chips such as the microcontroller,
e A 2A/5V supply for the low-noise peripherals such as the PSD sensors and
BeagleBoard,
e A 3A/5V supply for the high-noise-high-current peripherals such as the motors and
Servo motors.
By default, only the 2A supplies are enabled, and the 3A supply is enabled only when the
motors or servos are required. This allows the user to take advantage of the fact that the

motors and servos are off for the majority of the time, and conserve power.

Step-down DC-DC supplies typically require an input voltage several volts above their
output voltage. The TPS62142, TPS62143 and TPS62133 chips that were chosen do not
have this requirement, and will actually allow voltages identical to (and even below) their
specified output voltages thanks to a “100% duty cycle” mode which passes the input
directly to the output. In contrast, the maximum duty cycle of the LM2678 supply on the
EyeCon M6 was 91%, which implies a minimum input voltage of 5.49V (Texas
Instruments Incorporated, 2012a). The benefit of a 100% duty cycle is that batteries can be
drained to a lower voltage before the EyeBot shuts off, leading to a longer use time. The
downside to this feature is that there is practically no voltage regulation once the battery
drops below 5V, and additional parts are required to prevent the SV power plane dropping

below 4.9V and damaging the BeagleBoard.

27

An assortment of supply protections have been implemented to account for incorrect power
supplies and misconnected power supplies, as these are errors which are most likely to be
made by new users. If left unchecked, power supply problems have the potential to damage
multiple components on the expansion board and BeagleBoard concurrently. Table 1

presents a list of potential power issues and how they have been mitigated.

Problem Solution

Over voltage — over 16V Transient Voltage Suppressing (TVS) diode and
4A resettable fuse

Undervoltage — under 4.9V 49V undervoltage lockout chip and
microcontroller monitoring of battery voltage

AC voltage input Schottky diode and 4A resettable fuse

Reverse voltage (up to 45V) input Schottky diode and 4A resettable fuse

Motor or servo stall 3.5A resettable fuse, isolated power supply

Short circuit on the board 4A resettable fuse

Table 1: Power input protections

4.2.10 Power Switch

The EyeCon M8 uses a similar power switch setup to the M6, where the enable pin of the
3.3V supply can be enabled by either an IO line or a momentary switch. A single-pole-
single-throw (SPST) momentary switch temporarily enables the switchmode supplies for
long enough for the ATxMega to boot and permanently enable the supply with a dedicated
I/O line. This allows the host device to power itself down by sending a command to the
microcontroller to set that pin low. The implication of this method is that until the
microcontroller has been programmed to set the I/O line high, the expansion board can’t
power itself without the power button being held down. To assist with initial programming
and to account for situations where the board should boot as soon as it is supplied with
power, an initially-closed solder jumper is used to short the power switch which can simply

be cut after initial programming if required.

The power switch will not work if the battery does not supply at least 4.9V. A BD4949G
under-voltage lockout chip with a cutoff of 4.9V is used in series with the power button, so

that the power button only works when the supply voltage is at least 4.9V. This ensures that

28

an under-voltage condition cannot occur before the microcontroller is enabled and

monitoring the battery voltage.

4.2.11 Power Control

Nearly every component of the expansion board can be individually enabled and disabled
as it is needed. Where it isn’t possible to completely disable a component (such as the
microcontroller), it is possible to put it in a low power sleep mode to reduce power

consumption. Idle power consumption of the board was measured at 59mW.

To prevent damage to the batteries from over-discharge, the battery level is monitored with
an ADC line on the microcontroller, and the system can be shut down at a programmed
voltage. Monitoring the battery voltage with an ADC line required mapping the 5 — 16V
input range to a range with a maximum of 3.6V to avoid applying too high a voltage to the
ADC. A 15KQ/3.3KQ resistive voltage divider was used, which maps 5 -16V to 1.1 -
3.52V.

4.2.12 Battery

The battery that the EyeCon M8 is designed for is a 7.2V nickel-metal hydride (NiMH) or
7.4V lithium-ion polymer (LiPo) battery. These two types of battery are the most suitable
because they have a package size that suits most existing EyeBots, and they approach 5V
when nearly 100% discharged. Both battery types have a relatively flat discharge curve
which allows the battery to be completely drained before reaching under-voltage cutout.
The only difficulty presented by a flat discharge curve is that it becomes difficult to predict
what charge the battery has remaining if only the voltage is known. Figure 6 shows a
typical 7.2V NiMH battery discharge curve. Note the equal voltage values at 0.5 and 2.0
AmpHrs on the 30A curve which make it difficult to calculate remaining charge. Despite
this, it is still possible to know when the battery is close to discharged because the voltage

drops sharply towards the right end of the discharge curve.

29

8.0 Discharge curve of 7.2V 4580mAh pack measured 5
at 38a and 48A Discharge rate =
&
70
6.0
]
=
]
(=]
= &0
4.0 Legend
— MHSC450074
B NiMH cells, 4.5 Ah @ 40,004
= MhSc45007v43041
10 B NiMH cells, 4.5 Ah @ 30,004
20
3 o 8 2 8 [3 3 8 2 3
= o - - o ~ w0 b o+ El o

AmpHrs

Figure 6: The discharge curve of a typical 7.2V NiMH battery. Source (AA Portable Power
Corp, 2012)

30

S Manufacturing and Assembly

5.1 Manufacturing

The expansion board PCBs were manufactured in China by PCB Cart. After a one-off $210
tooling fee, the boards cost approximately $30 each (depending on the USD-AUD
exchange rate). Relevant manufacturing options are detailed in Table 2, and have been

included because they directly affect the board layout and design.

Option Value

Minimum spacing 6 mil

Minimum annular ring 4 mil

Smallest holes 12 mil

Maximum number of holes 300

Blind vias No

Number of layers 4

Dimensions 4.094 inch x 3.346 inch

Table 2: PCB Cart manufacturing options

A minimum 6 mil spacing had to be specified because the pins on the ATxMega chip are
closer than the typical 8 mil spacing. Furthermore, the copper thickness had to be reduced
from 20z to 1.50z because the manufacturer could not do 6mil spacing at 2oz. Though this
reduces the current carrying capacity of the traces, it is still well within the range of
currents to be carried, as all trace widths were selected assuming a 1oz minimum copper
thickness. The time taken from file submission to receiving the PCBs was 19 days, so at
least three weeks should be allowed for PCB manufacturing when the next iteration of the

board is made.

5.2 Assembly

Once the PCBs were delivered, assembly was done by hand using a hot-air rework station
with solder paste applied by hand using a syringe. This process was particularly slow, but
allowed any mistakes to be quickly found and dealt with. Despite following a place-and-test
approach, a design issue with the power supplies destroyed several important components
during assembly through over-voltage, which made programming and debugging a

challenge until all the affected chips could be isolated.

31

6 Testing

With the PCBs only arriving two weeks before the project end date, testing was not as
comprehensive as it otherwise would have been. Due to time constraints, testing had to be

limited to:

e Ensuring the board could be programmed,
e Checking integrity of inter-chip communications such as the I’C bus, SPI bus and
motor control lines,

e Checking the power supply regulation and control signals worked,

e Testing the power supply protections,

e Testing GPIO lines,

e Testing the PSD inputs with a real sensor,

e Testing the servo outputs with real servos,
Testing was performed using a Link Instruments MSO-19 logic analyser to check
communication lines and a digital oscilloscope to analyse signal integrity. Simple test code

was written for the ATxMega to allow testing of relevant signals (see Appendix B:).

6.1 In System Programming

Programming the expansion board was somewhat difficult; due to a misunderstanding
when reading the documentation, the programming header was incorrectly connected to the
SPI pins in the prototype boards (which most ATmega chips use) instead of the PDI pins.
The first attempted solution to this was to cut two traces and rewire the ISP header to the
PDI pins. This was successful, however it was subsequently discovered that the AVR
Dragon programmer that was being used could not program the ATxMegal28A1 over PDI
— a fact that is both poorly documented and contradicted in several places in the Atmel
documentation (Atmel Corporation, n.d.; Atmel Corporation, 2009a). The ultimate solution
was to break out the JTAG pins from the ATxMega and program the board using JTAG.
Two of the pins were already connected to the ADC header, and the other changes required

Wwere:

e An additional two wires had to be soldered from ATxMega pins 12 to 7, and 11 to
6,

32

e Removing resistors R16 and R18 to prevent the battery voltage monitoring from
interfering with the JTAG signals.
Using extra pins for JTAG meant sacrificing most of the ADC lines as well as the battery
voltage monitoring, however all of these pins can be recovered in the next iteration of the
board by adding a dedicated JTAG header and moving the battery voltage monitoring to a
spare ADC pin.

6.2 SPI

The SPI bus is used for communication between the FT232H and ATxMega
microcontroller to control the expansion board via USB. There are five settings which must
be correctly set on both devices before communication can occur; endianness, clock
polarity, clock phase, chip select polarity, and transmission direction. Furthermore, the
clock frequency must be set such that the high and low times of the signal are longer than 2
clock cycles of the ATxMega (Atmel Corporation, 2009b, p. 230). The relevant settings are
detailed in Appendix C.2:.

There are four different combinations of clock phase and clock polarity which define the
basic SPI modes (see Appendix C.1:). The FT232H was initially configured for Mode 1,
however this caused a short voltage spike to appear before the clock pulse and corrupted
the clock pulses of the second byte, making it impossible to read the data (Figure 7).
Further reading of the FT232H MPSEE command reference revealed that the design of the
FT232H clock pin precludes it from being set in either Mode 1 or 3 (Future Technology
Devices International Ltd., 2011, p. 6). Changing to Mode O eliminated the issue and the

signal was as expected (Figure 8).

33

Tek N Trig'd P Pos: 6,504 us MEASURE
: A B H - : H H :
. Source

R R R

LT oood
O O Y o T Pk —Pk

:t 4108%

14 *ﬁlilJJJ;aJ..ulz . CH1

prr : Hiane

[EEEE SR NN

£

CHz2
Pk—Pk
LT

i

CH2
Mone

2¥ b
CHY 2004 CHZ 200% M 2508 CHT 7 2404

Figure 7: The MOSI (top) and CLK (bottom) lines with two bytes being send in SPI Mode 1

Tek S [F] Ready M Pos: 43.000s MEASURE
T T T T T T T

Source
CH1

a4y
CH2

: : : : - : : : : S50.00kHz?
CH1 200 CH2 2.00% M 2505 CH1 .~ 2329

24

Figure 8: The SPI MOSI (top) and CLK (bottom) lines with 0x37 being sent in Mode 0

A small Linux test program for the FT232H chip was written by John Hodge, which served
to verify that communications were possible between a host device and the expansion board
(see Appendix B.4:). This test program does two things; it turns on a Light Emitting Diode
(LED) connected to an I/O line on the FT232H, and it sends the byte 0x37 over SPI at a
regular interval, as shown in Figure 8. The 0x37 value is somewhat arbitrary however it is
convenient for testing because it does not read as the same value if reversed in binary. The
test program was successfully compiled and run on both an x86-64 architecture PC and the

BeagleBoard.

34

To avoid compound errors, the test program was first run against an FT232H development
board (an FTDI UM232H) and the signal output was matched with the output from the chip
on the expansion board. The signals matched, and code was subsequently written for the
ATxMega chip to read the SPI input register and switch on an LED when the 0x37 byte is
received (see Appendix B.1:).

There was one other minor mistake regarding the FT232H chip; the VREGIN line was not
connected to the 3.3V plane. This was easily fixed by creating a solder bridge between pins

39 and 40.

6.3 I’C

The I°C bus is used for communication between the PCA9685 PWM chip and the
ATxMega. Initial verification of the I’C bus involved sending out a call on the “all-call”
address for the PCA9685 and waiting for an acknowledgement. The PCA9685
acknowledges the call by holding the SDA line low during the 9" clock pulse on the SCL
line (NXP, 2010), as shown in Figure 9.

Tek J Trig'd i Pos 62,0008 MEASURE
: : : : : : : : Source
CH1
Pk—-Pk
3EEY

CH1
Mone

CH2
Pk-Pk
S R I
o R CH2
: : MNone

FEEEEEEE S

CHY 2004 CHZ 2.00M M 250 CHT 7 2400

Figure 9: The I’C SCL (clock, top) and SDA (data, bottom) lines with the master address
being sent and the SDA line being held low for the 9" clock pulse

35

The rise time of the I°C lines is shown in Figure 10. The 30% to 70% rise time of the I°C

lines were measured as 50ns, which is well within the 80ns specification for High Speed

I’C devices (NXP, 2012).

Tek .IL B Trig'd b Pos: —20,00ns CH
S Coupling
S
s oo T B Lim
S e et OFF
R T T T . U S BMHz
E ‘ ‘ E itiiéiiitéiiiiéititiiiif IIIIIDItSIIIIDil"II
T R

Praobe

CHY 2.00% CH2 2004 F1 100ns CHT .7 360mY

Figure 10: The rise time of the I’°C SCL line was measured at 50ns
6.4 Motors

The motors were tested with a single Faulhaber motor attached to the board, identical to
those used on existing EyeBots. Unfortunately it was not possible to test with four motors
connected because the available motors had older 10-pin connectors and insufficient
adapters were available for the new 6-pin header. Comprehensively testing the motor
controllers would require attaching four motors at once and checking performance is as

expected under a range of loads and speeds.

The single motor with encoder was attached to each motor header, and then set to full speed
in both directions. No problems with motor speed or power were found when applying a
load to the motor by pinching the axle by hand and bringing it close to stopping, which is a
reasonable approximation of the loads such a motor would be under when used in the
student lab EyeBots. A single motor drew approximately 0.45A at 5V, so the operation of

four motors concurrently is well within the capabilities of the power supply.

6.4.1 Motor Encoders
All Faulhaber motors have either magnetic or optical encoders running at SV. A resistive
voltage divider was used to step the voltage down to 3.3V to permit reading by the

ATxMega. Testing revealed that the values of resistor chosen had the unintended side-

36

effect of pulling the encoder line to ground. This was quickly remedied by increasing the

resistor values by an order of magnitude and the encoder signal could then be detected.

6.4.2 Motor Stall Flags

A total motor stall condition was emulated by connecting a high wattage 10 resistor
across the motor pins, which is sufficiently close to the 11Q winding resistance of the
Faulhaber motor. This revealed two problems; the logic type of the stall-flag connection

was wrong, and the over-current trip value had been set too high.

The board was designed expecting a push-pull output from the A3906 chip on the FLx pins,
when the output is actually open-collector and required pulling up to 3.3V. To fix this,
resistors R21, R22, R23 and R24 were removed, while R19, R20, R25 and R26 were
replaced with 0Q resistors. The line was then pulled up to 3.3V by configuring the relevant

pins on the ATxMega as pull-ups in software.

The over-current value is set per-motor with a resistor, Rs, connected between ground and a

sense pin on the A3906. The value is calculated as follows:

0.2

ST TRIP (max)

The trip current was initially set to 1A with a 0.2Q resistor to prevent damage to the
A3906. While this worked, it would not work to prevent damage to the Faulhaber motors
used in labs. A more appropriate value would be 0.5€2, which limits the current to 0.4A —

just under the stall current of the motors.

6.5 Power Supply

During assembly, it was discovered that the output voltage sense pin of all three
switchmode supplies had been connected to the wrong side of the inductor, which meant
that the switchmode chips were not regulating the voltage at all. The fix for this was to cut
the offending trace and solder a wire to the correct side of the inductor. The power supplies
subsequently regulated correctly to within 0.03V of the expected voltage with a maximum

ripple of 300mV.

37

6.5.1 Over-voltage protection

The over-voltage protection on the board is provided by a TVS diode with a 16V peak
reverse voltage in conjunction with a resettable 4A poly fuse. This protection was tested by
applying 17V to the board. It was subsequently discovered that the resettable fuse could not
cut the circuit fast enough, forcing the TVS diode to dissipate more energy than it was rated
for. The TVS diode promptly burned out, but failed to a closed position, allowing the poly
fuse to cut the circuit. While it is good that the TVS diode failed in order to save the rest of
the board, it is less than ideal to have to replace it every time too high a voltage is
connected to the EyeCon. A better alternative to the TVS diode would be to use a crowbar
circuit, such as a Linear Technologies LTC1696 overvoltage protection controller, which
can cut out at a specified voltage and is specifically designed to handle the high current

generated by shorting a power supply.

6.5.2 Under-voltage protection

Testing the under-voltage protection was done with a variable power supply and an
oscilloscope to measure the cut-off voltage. The under-voltage protection relies on a
BD4949G under-voltage lockout chip, with a simple zener regulator used to ensure the
battery voltage did not exceed the permitted 10V input voltage of the chip. The target cut-
off voltage was 4.9V, as this is the lowest voltage permitted by the BeagleBoard. The
measured cut-off voltage was 5.67V, which was much higher than expected. This was
because the design did not account for the voltage drop across resistor R58 (see Figure 11).
Since the current at the cut-off voltage can be measured and is constant, a solution is to
replace the BD4949G with a chip from the same line that has lower cut-off voltage
(approximately 4.2V).

Figure 11: The under-voltage lockout portion of the circuit showing the resistor-zener
voltage regulator and BD4949G lockout chip

38

6.6 PSDs

The PSDs were tested by connecting a Sharp GP2D12 infra-red distance sensor to a PSD
input. The GP2D12 very similar to the GP2Y0OA21Y, however is older and has a lower
output voltage (2.6V versus 3.1V respectively). Code was written that reads a value from
the ADC pin and outputs a byte value on 8 GPIO pins. It was subsequently discovered that
the ADC can only read a voltage that is smaller than the 1V reference voltage. This
limitation is not indicated anywhere in the xMega A Manual (Atmel Corporation, 2009b),
and could only be confirmed by looking at the ADC specific manual (Atmel Corporation,
2010). To read the IR sensors, their output voltage needs to be reduced to a measurable
range using a voltage divider, or the ADC reference voltage needs to be increased. Given
the reference voltage cannot exceed 2.7V, the output voltage from the IR sensors has to be
dropped regardless. Provision for this was not built into the board, so external adapters will
have to be used to divide the voltage. In the next iteration of the board, an external
precision voltage reference should be added to allow for a greater detection range, as well
as provisioning for voltage dividers on the input. A suitable voltage reference chip would
be the Texas Instruments 1L.M4040-N Precision Micropower 2.048V Shunt Voltage

Reference.

39

6.7 Servos

The servo testing was relatively straight forward, since the I°C bus had already been
confirmed working, and testing during the design stage had ensured that servos would work
with 3.3V. The only remaining task was a load test, and to ensure the servos would work at
the predicted 180Hz. Headers for initialising the PCA9685 and writing to the I’C bus were
written for the test program, which were sufficient to configure and enable all of the servos.
Only three servos were available for testing, so it cannot be concluded that 14 servos will
work at once, however the three that were tested were smoothly moving through their entire
180 degree range. Figure 12 confirms that the servos could function with a shortened

period, as long as the on-time was within the normal 1-2ms limits.

Tek I Trig'd M Pos: 430005 MEASURE
HRA S I S L R

. . : - - : : : 1 Source

SR B s '3

™~ Y ™ Pk-Fk
B N Y L N I 1: J.6ay
I R

:133.5H2?
: ‘ : . CH1

: : : S : : 5 Period
. : : : MNoneg

CH1 2,UﬁV ‘ CH2‘2.UU'-.-" rm-r12.5|;ns ‘ ‘ CH1 /7 232

Figure 12: The servo PWM signal operating at 183.5Hz with a duty cycle of approximately
1.5ms

40

7 Recommendations for Future Work

In addition to fixing the design issues that were raised in the in the Testing section, the

following items are recommended for future EyeCons and expansion board designs.

7.1 PCB layout

It was found during hand population of the board that the 0603 components did not align
themselves with solder surface tension because the pads were wider than the components. It
is recommended that all 0603 pads be made the minimum width for the next board revision,

whilst maintaining the existing length. Furthermore:

e The font size should be made larger, particularly on the numbered pins, to allow the
pin descriptions to be read at a greater distance.

e The GPIO header should be renumbered so that “1” starts on the first GPIO pin, not
the 3.3V pin.

e Two additional mounting holes should be put on the expansion board in line with
the BeagleBoard xM mounting holes. This will assist in supporting the middle

board of the EyeCon and stop it touching the expansion board underneath.

7.2 Debugging

Debugging the expansion board was incredibly difficult because insufficient headers were
put on the board to allow easy probing of signal lines. More feedback mechanisms such as
LEDs were also needed. It is recommended that future iterations of the expansion board

have at least:

e A full SPI header to allow easy SPI probing (this can replace the existing ISP
header)

e An I’C header between the ATxMega and PCA9685 to allow for easy data probing

e A JTAG header to allow for complete in-system debugging of the ATxMega

e More diagnostic LEDs, particularly on motor output lines and chip enable lines.

41

7.3 USB connector

A custom USB cable of the correct length was made to connect the expansion board to the
BeagleBoard. When the expansion board was mounted underneath the BeagleBoard it was
discovered that the USB connector sticks out in an unattractive way, and is quite exposed to
physical knocks. The cable was also under considerable stress due to the tight curvature. A
way this may be improved is to rotate the socket 90 degrees clockwise/ccw and cut a slot
out of the edge of the board for the plug and cable. Another solution may be to add a board-
to-wire connector such as a JST SSR connector to the USB lines, and do away with the

mini USB plug altogether.

7.4 Through hole headers vs. surface mount headers

During the design phase, the author was strongly encouraged to use surface-mount headers
instead of through-hole headers on the expansion board. The reasoning behind this was
fourfold; it saves PCB space, mounting-angle is guaranteed with surface-mount headers, it
is impossible to mount the headers at differing heights, and it “looks better”. For future
board revisions, it is strongly recommended that surface-mount headers be abandoned in

favour of through-hole headers for the following reasons:

e Through-hole headers are much easier to source; finding the correct sized surface-
mount headers necessitated buying from multiple suppliers and cost more than the
same sized through-hole parts,

e Round pads are easier to route traces around than the long rectangular pads of
surface mount components, which put lines of copper across the PCB - essentially
forming a barrier through which no traces can be routed,

e The height of the expansion board can be reduced by approximately 2mm because
the pins are sitting in the board, not on it,

e There is enough room on the PCB to allow through hole headers, and traces can be
routed to pads on both sides of the PCB instead of just one side, potentially
reducing the number of vias and making the board neater,

e Having the plastic of the header on the opposite side of the board to where the

solder is being placed reduces the risk of melting the plastic during hand assembly.

42

The issue of mounting-angle variances and consistent mounting-height can be addressed by
using the “slightly offset holes” approach, where the holes are arranged in a slight zigzag

pattern to hold the header in place during soldering (Figure 13).

Figure 13: The offset holes approach to through-hole headers. Source (Lewis, 2008)
7.5 Power control

As designed, the expansion board has an initially-closed solder jumper across the power
switch to keep it powered on until initial programming is performed, which is then cut after
programming. This should be replaced in favour of a permanent two pin header, which will
allow for both initial programming and situations where the EyeCon has to power on as
soon as power is supplied (e.g. in the REV vehicles) or in situations where mounting
prevents easy access to the power button. Removing the solder jumper also eliminates the

risk of damage to the board and surrounding components when cutting the trace.

In the initial design, the power button is only used to switch the board on — it cannot act as
a system shutdown or reset button. This is a problem because there is no way to hard reset
the EyeCon without disconnecting the battery. The best way to solve this problem is to
place an SPST on-off selectable switch inline with the battery leads, with the switch
mounted in a convenient location on the relevant EyeBot. This ensures that the switch is in

an accessible location, and eliminates slow discharge of the battery through the EyeCon.

It would save a small amount of power to move the power switch to the input side of the
under-voltage lockout chip so the chip is only powered on when the switch is pressed. The
tradeoff here is that the “battery good” LED display will only work when the power button
is pressed, however it would reduce the power usage where the device is “off” but the

battery has been left connected.

43

7.6 Assembly technique

Assembling the expansion boards by hand is an arduous task — solder paste has to be
applied to individual pads, and then a hot air gun is used on individual components. Aside
from being slow, this assembly technique has the potential to thermally damage some
components through incorrect temperatures and the creation of hot-spots by the assembler.
It is highly recommended that a solder stencil is ordered with the next iteration of the
expansion board, and that the electrical engineering workshop sources a reflow oven to

allow bulk soldering.

7.7 Software

A minimal boot loader should be written and programmed onto the expansion board which
will allow it to be programmed over USB. This will eliminate the slow task of connecting
the JTAG multiple times, and allow the expansion board to be programmed by the
BeagleBoard xM. The boot loader should have the battery level monitoring and power-

enable functions built in so that the functionality is independent of general programming.

44

Board Detail

Expansion

Appendix A
Appendix A.1

Schematics

9 _

9/7 n183ys

WY ZT:6+:81 <10l/T1/TT

gl r0gsh3

uoswepy maupuy

9JEUBIU| IS - SN

lis

(Bunsa} 4o Ajuo) pani4 JIoN = 4'N

s|qissod se diyo HZez 14 eul 0} 8sojo se siopoedes Ja)y pue Buiidnooap ||e aoe|d

fa)
|

aND AND AND aND
= i EAEF
ny hH T n oH 5 ne . ny-g | 7S 0/H008
mmolj 80 S0 ¥o mO,I_I molj mDJI €10 SLO pd%e] 2 £
VOO EAET JHOON EAET KHdR NTOIFIR
123ysejep uo OIDOA 198USEJEDP U0 EAEODA
anNe
aND i
Wzl dez 20 B
2]
vy OND dND
5%, . T -
oLzl | g o 3
§ I 0 M co
e N uum
ed & 3
)
5 2

VYOINXLY 0 saull |dS

AHdA

Snan

OHJ33 INoyym ucieInbiuoo Ag'E pasemod-jas Ul Buluuni Hzez.14

45

1 2 3 4
R40
£0 1 RESET/PDI_CLK PA7 —f
0K PAG
89 1 ppi_paTA pAs (100
PA4 Zg
PA3 =
s |81 PSD[0..5]
= R
4 1 avee pao -5
Pe7 &
oy |11 VBATTSENSE
PB5 ;0
PB4
pea (£ GPADC[0..5]
PB2
pe1 |-£
vee PBO |2
pe7 |22 M M4 SLEEP
| 21 M1 _M2 SLEEP
Egg 20 nuTFLT ISPHEADER
PC4 %MB-FL = 3 GND RsT |2—BST
pcs |2 L o—4{ mos sck (-3
pc2 |17 MI1_FL vee Miso [
pc1 812G CLK
poo |15 12G DATA s
o 32 SPI_CLK
GND PD7 i
" el I SPI_MISO
ore |Cao SPI_MOSI
il I SPI_CS
pp3 |28 M2 02
o2 |22_M2_O1
PO [28 MiZ02
NE. NE D0 |25 MI_O1
Cc22 g 22p Y2 a2 L L2
PR1(XT1) pE7 |42
l h ‘% o1 PEG | iT BN
PRO(XT2 PES
L ool oon 16 MH2 il pE4 |28 SERVOEN
GND N.F. % PQ3 PE3 %MMZ
1 Pz pE2 |2 M4 O1
88 1 pa pE1 |38 M3 02
85 1 pao PE0 85 M3 O1
B2 1 ey PF7 |22 M4 _ENG2
B] pks prs |2l M4 ENC1
T [Pre |50 M3 ENC2
291 pra pra |49 M3 ENC1
81 prs pr3 (48 M2 _ENC2
I pr2 pr2 |4L M2 ENC1
78 | o £r2 [Tas M1 ENG2
5 fh o 45 MiTENCT
;? PJ7 PH? ﬁf
PJG PHe |-&
gg PJ5 PH5 gg
DIO[B.. 155 | Ejg ';:g 55— DIC[0.7]
81 a2 pH2 |27
5| P PH1 ;sf
PJO PHO |22
XMEGA128A1
+3V3
ca8 c29 C30 c32 C33 C34 C35
) A) R (v T) (N R
T 7T 7T ow I T T T
0.1u 0.1u 0.1u 0.1u 0.1u 0.1u 0.1u
GND
+3V3 One decoupling capacitor per VCC and AVCC pin
C36 C37
0.1u 0.1u
GND Andrew Adamson
ATXMEGA Fuebot M8
Microcontroller 11/11/2012 10:49:17 AM
Sheet; 2/6
1 2 | 3 [4

46

9 i S | 14 € Z !
9/€ H93Ys
WG ZT:6+:8T ZTIBZ/TT/TT mL®>_LO _O”_.O_\/__
8l r0gah3 ’ VOINXLY 0} Saul T4 XN
YOINXLY O} S8ull XONT XIN
ComEmU(3@LUC¢ YOIWX LY Wodj MUCFXOIX_Z
VOINXLY Woly saull 43375 XN XN
ano
+
= 2
B =H2 5 ano
LONI VI = o] T _loa Dlz._lo
ano [N 9, z0ley — e
AQ-901-WSL rHOLOW = 23SN3S ~|g 22 Mz
1) = o azino _ls 28
o 23 < veino ok T
2ok 64 2y cpoed jasnas Nl L 7 20
an g M oauno e G 1 LA
ans a1 YiLLNO LNI T - P TO EN
" dagisvnen R o anNo
a #d0 d3318 F——— Biae
1| [= Z = 0¢] & T
Shita 2 noten - aon M —_
— —
LONI e " HAS S S
ane N e 88A et
i - n
3 AQ-901-WSL Vi £HOLOW 1'0020 A ROLOwN RETVHIXT
B uVu an NG T.Hﬁ — e |no [=
2ONT €W = >m‘mo_‘s_wk_] _
ane ane 73S A ZHOLOW
ano S86£Y
I{ dx3a anNe D|ZH|@
N @ ¢06ad ——t5=atg
1ON3 > | easnas e =z 2|B2re
ang = 7] G0 KA I3 == 2B T
T [N o welno G 02H 2
3 p oy | [2H0LoW o Zos8ed NI 7 1] 20 oW
o 12 g NTH u__ln_ [EENEN ENI @ 01 TO ¢
B FH2 o sH..l = 7l 8HN0 eNl [z] <0 I
cON3 W .|m.m 57] v+LNO NI m TO TN
o S =
ONe rdo s [OER1° NN R o nﬁ@
_ 0¢] . €
—| £d0 =
ane noglo o aon | _:ﬁ% I
+ 2dd
& T 910
o[z . & ‘ = 890 |
= a1 — Q&9 TH3NIHO0H0 L0
LONI ™I L=k Talaks e
anD i AGFVHIXT
AQ-90L-WSL Ly HOLOW jﬂﬂmﬁ
arR MG L az.L
2ONT~ 7].E. ja >m‘wo¢s_wk_ _
anD 73S A LHOLON
s1aduwinf yym 10ajas abeyjoa induy Jojop
9 S 4 € 4 I

47

9 7 S | 4 [[1
9/ 1934S
WG ZT:6+:8T ZTIBZ/TT/TT ._m__o._U_.COO
8l 1r0gah3
OoAIRS INMC X004 0001 S! SB96VOC JO SSBIPPE 02
uoswepy na4puy WYOINKLY W0l S8ull NIWMd PUE D2
4Z-€91L02rL
— 022
P s
N NGTVHIX3
AS-201-WSL | =JT——aNoD ano
=17 Jovas
bl 3 OND i
=t . 5896Y0d
feLIe 10181881 8 = £91021L i R i
vd 3L-e91.020L aam 2 ane
o
viaan Sy Mbl»
TIS €amn 124 < erd e
De-£91DerL DZ-€9} 027, ETS el Al e
— Oce Sra 1an a7 |5 MOF
-] z 01a31 v Q
L Bl vl TS [p=d
TlenSFVEIXa UTS il % e
I aNo BS I Q
AS-L0L-WSL | = W101%3<] z
“F—=FEvas [prils] P % 15
[£— o~ BS @I
- 3 T e | 2931
. ! I3 T mm% 30/
Id g1-e910erL €d 41-€8102rL s
S] €aI 108
S 7 1aan Yas
TS 5 0031 5
az-€9102rL HeZ-€9102Y. g
— ozz — 0ge
=z —% ©Is 7 GI—91 65 s
= | SNEFTHIRS B iR ane |7
AS:ZOLINSL) TET TN As-cobwsL | o N9
!lo; J8vds !lazum JHYES =slin
il @mu Iz ﬁ@mm =n=
T S5339 b elgez v o
9d D1-€910zpL 2d ©I-€9L0zpL S8
S =
32-29102v/ } 2
— 02z vi-8810ar. <
[g—uers =1 5|
9ASFYHIX3 - P
As2oi-wsL| =g ano “[ereTvEIxa
ERELLCE] As-cor-wsL | =] ANI
=I5 -l AELECER]
-] e Gu = aNg
-] = = Z 3
53 ai-esi0an S
g -g o)
o b HIELOBRL [e
9] 4 & 4 L

48

9 i S [3 [4 i I
$/§ #9945 3ISNISLLYEA
R ans
WY ZT:64:0T Z2T0Z/TT/1T uoI08)0.d pue T e ovy
81 1099N3 | ggyddng Jemod R
uoswepy mMmaJpuy . aNe ano
n 5[5 6 o Joo [e a
oo o m
o ane
W.M n ane SOA H1SS mu_—W_ iy
% x meLin ijH L1 N3 Lm_ W ot [not —
5 S ASHYHLX3 e Wm NS NIV 5 TBvo Joro
9:0 >mv _NEE._Uu gmuum IN-LOHASL 118021 = MS NIAd 21
o NIAd |7 TIVEn
» 9sn TEr295dL
$10}08Uu0D aueld Jemod ASYHLIX3
ano
o
u_m_m_s_els)
RiadRas
SzZzzzME
SGG m M ane
aNo _—
- soA HISS ii M_.J
nzz 2 NS -
eASH = ms NIAY |57 B
o nzz — Mms NIAd [y
| M8 NiAd =TT TIvg
ssn
m 5 S10103UL0o auB|d JamOd N
= 5
|
ano 4
an-10avo9trvins A tuL
i
o
an-dgdgvzauan $—Ef— €0 =
il
g 7]
12
AG+ R . T]
_ nz'z z
ECN P T
e 3N TPTeoadl
o E3 $10]03UU0D mcm_a JamM0o4 NS
(ur A9L-G) [BUILLIB) MBIOS
@]
ard = uiwesboud [eyiur Jeye | Mg 1edwnl Jepjos ND . 2 aNo aNo
2 5 6 Boud duwn(
5 = @ 0009 Ad3LIvS v
4 L
s & = OLLIABZEWW
2 = va
1a 00g
g ; o
T Bt M_\.\q — 1nor Z aon e S
NOHMd ~ O4IAVE i 85H
ME04ZO0AT MS™HMd H1-D6v6vaa
9 S _ € | 4 I

9 7

g 7

5/9 123yg

Wo ZT:64:8T ZTBZ/TT/TT

se|oy Bununow

9'€aANNOY-aVd-LNNCW

9'EANNOYH-Avd-LINNOW

8W 0g9sh3 pue siapesH . s
UOSWepY MaJpuy 9'8ONNOY-AYd-LINNOW 9'8ANNOH-0Yd-INNOW
IH EH
9°6aNNOY-Qvd-LNNOW 9'EANNCH-Avd-LINNOW
IH% ZH
® ® &
9'6aNNOY-A¥d-LNNOW 9'EANNCH-Avd-INNOW,
@ @ ® SH HH
sfeonply (pare|os! Aleouios)a |1e) sped Bununoly
AS+ AND
£
AS-E0L-WSL 2z
1 Sa%d
Sasd
AN-AQ-L-+0-0LL-INSL —
aND €
T AS-E0}-NSL H
L T Tasd
STOId 8l aSd
5 500vdD EIOd __ oi
T voavdD [31e](] ! =
e v E00vdD BOId 2l
ASSOLNSL | =1e—rivaD 0o P i
z__roavdo SO g & - -
T 000vdD EOIT g -
TO v €asd
1NdNI Oav SIS Rl
[oloavdo [s+-oloia O/ vLioId Is+ oloia B
AS-E0}-INSL H
T asd
2asd
[
AS-E0L-NSL 2
T Tasd
Lasd
[
AS-E04-NSL Z
T 0asd
0asd [solasd
9 S 4 € 4

50

Appendix A.2:

i Top layer

PCB Layers

O °

O

[+]

NI 3dn6 - §

+

9

MAJ16CABCT-ND

D

03
MBRB24SPBF -ND

16&1&@06
!S

ﬁ)
.\l i ii“

ﬁ‘fll]llhlll]

MOTORDRIVER2

%
94y a
¥

a4 clii
2]
AT 8¥ T
»xa o 3
(A=

2 CraZyl:]

MOTORDRIVERL

o
[(BOB]

05/10/2012

GND

ouT o 0 ouT

+5UDC

ii. Power plane layer

52

iii. Ground layer

53

Bottom layer

Note: (mirrored for readability)

iv.

Y V= 1Lno 1no
8H 108344 o oang+ 'y g ON9
(]

O z m.Hn GogrognosroSTogn 0z NATZYBAZAE dieys yd9uucg
‘ - aNo
ng+ .e %\- ns+
anNg
ane 918
€ €7 |qtv 6t
INV.L14ig

€ne+ ‘
T
3

oor
)

a1l

[] o
ol
|
[

° e

(w

als o
ong+ —

aNg °oZ

T3ISTATZYO0LOW T3ISTATTYOLOU
N6 43A0 fJaneq 4T NG 103738

54

Appendix B: Test Software

Appendix B.1: xMega test program

EyebotM8test.c

* ok X

* Created: 31/10/2012
* Author: Andrew Adamson

*/

#include <avr/io.h>
#include <util/delay.h>
#include <stdio.h>

//ADC calibration library
#include <stddef.h>
#include <avr/pgmspace.h>

//PCA9685 libraries
#include "pca9685.h"

//Bit positions
//Port A

#define PSDO bp
#define PSD1 bp
#define PSD2 bp
#define PSD3 bp
#define PSD4 bp
#define PSD5 bp

g w NP O

//Port B
#define ADCO bp
#define ADC1l bp
#define ADC2 bp
#define ADC3 bp
#define ADC4 bp
#define ADC5 bp 5

#define VBATTSENSE bp //Disconnected for JTAG at the moment

//Last four ADC's currently used for JTAG

S w N RO

//Port C

//First two pins allocated to TWIC

#define M1 FL bp 2 //Motor stall flags

#define M2 FL bp 3

#define M3 FL bp 4

#define M4 FL bp 5

#define M12SLEEP bp 6 //Sleep lines for each motor driver chip
#define M34SLEEP bp 7

//Port D

#define M10l1 bp O //Motor 1 and 2 control lines
#define M102 bp 1

#define M201 bp 2

#define M202 bp 3

#define SPI CS bp 4 //SPI serial lines

55

#define
#define
#define

//Port E
#define
#define
#define
#define
#define
#define
#define
cut)

//Port F
#define
#define
#define
#define
#define
#define
#define
#define

//Port H
//Cautio
#define
#define
#define
#define
#define
#define
#define
#define

//Port J
#define
#define
#define
#define
#define
#define
#define
#define

//Turns
void ext
//
PO
//
//
PO
}

//Sets u

SPI_MOSI bp 5
SPI_MISO bp 6
SPI_CLK bp 7

M301 bp 0 //Motor 3 and 4 control lines

M302 bp 1

M401 bp 2

M402 bp 3

SERVOEN bp 4 //Extra power supply enable line

PWMEN bp 5 //PCA9685 PWM chip output enable line
PWRON bp 6 //Power on line (not needed until solder Jjumper is

M1 ENC1 bp 0 //Two encoders per motor
M1 _ENC2 bp 1
M2 ENC1 bp 2
M2 _ENC2 bp 3
M3 ENC1 bp 4
M3 _ENC2 bp 5
M4 ENC1 bp 6
M4 ENC2 bp 7

n: "GPIO" already has a #define
I00 bp 0 //16 GPIO lines

101 bp 1

I02 bp
I03 bp
I04 bp
I0O5 bp
106 _bp
I07 bp

~ oy O W N

I08 bp O
I09 bp 1
I010 bp
I011 bp
I012 bp
I013 bp
I014 bp
I015 bp

~N oy Uk W N

on the high current 5V supply that drives the servos and motors
ra enable(void) {

Set PE4 as output

RTE.DIR |= (1<<SERVOEN bp) ;

Turn on the servotmotor power supply.

There is an LED on the board to confirm the supply is on.
RTE.OUT |= (1<<SERVOEN bp) ;

p the SPI ports and registers in slave mode

void spi init(void) {

/*

56

* Configure MISO pin on Port D as output. Chip select is ignored
* for now because we're only writing and there is only one slave
*/
PORTD.DIR |= 0b00100000;
/*
* Most significant bit transmitted first by omitting DORD flag,
* enable spi, SPI mode 0, leave in slave mode by omitting master
* enable flag
*/
SPID.CTRL = SPI ENABLE bm;

}

//Reads a byte out of the SPI data register
char spi read(void) {
//Wait for a write to the data register to complete
while(!(SPID.STATUS&SPI_IF_bm));
//Read the byte out of the register
return SPID.DATA;

}

//Receives a byte from the test program by John Hodge, reads it,
//and turns on an LED if it matches some value
void spi test(void) {

spi _init();

while (1) {
uint8 t val = spi read();
/*
* 0x37 is the value sent by John Hodge's spi test program
*/
if (val == 0x37) {

//Use the LED for the extra power supply
//as a diagnostic light
extra enable();

}
_delay us(100);

}

//Turns on motors 1 and 2. Reads one encoder line of motor 1 and
// makes IO0 match the input level
void motor test(void) {

//Port F is all motor encoder inputs

PORTF.DIR = 0x00;

//Enable the motor driver chips

PORTC.DIR |= 0b11000000;
PORTC.OUT |= (1<<M12SLEEP bp) ;
PORTC.OUT |= (1<<M34SLEEP bp);

//initialise output ports for the 4 motors
PORTE.DIR |= 0x0F;
PORTD.DIR |= 0x0F;

//Enable the extra 5V power supply (assumes the motors are
//selected to run off 5V with the jumper)
extra enable();

/*
57

Can verify motor signals either with a faulhaber motor (be
sure to check the pinout, the old motors are different!)

or by connecting a CRO to the motor output pins. The lines
below will make the motors spin at full speed in one direction.
Speed control can be done using the timers on the xMega

to generate a PWM signal. Change or add to these lines to

* control motors 3 and 4

* ok ok % ok ok

*/

PORTD.OUT &= ~(1<<M101 bp) ;
PORTD.OUT |= (1<<M102 bp) ;
PORTD.OUT &= ~(1<<M201 bp) ;
PORTD.OUT |= (1<<M202 bp) ;

//Polling based code to check the encoder inputs are
//working properly
//Reads encoder from motor 1 and sets a GPIO pin high if
//the encoder is outputting high
//Can be verified with oscilloscope
PORTH.DIR = 0OxFF;
while (1) {
if (PORTF.IN > 0) {
PORTH.OUT = 0x01;
}
else {
PORTH.OUT = 0x00;
}

}

//Turns on motor 1. Reads the stall flag for motor 1 and
//makes IO0 match the input level
void motor stall test() {

//Enable the motor driver chips

PORTC.DIR |= (I1<<M12SLEEP bp) | (1<<M34SLEEP bp) ;
PORTC.OUT |= (1<<M12SLEEP bp) ;
PORTC.OUT |= (1<<M34SLEEP bp) ;

//initialise output ports for the 4 motors (two outputs per motor)
PORTE.DIR |= 0x0F;
PORTD.DIR |= 0x0F;

//set the motor flag pins as pull-up (the A3908 chip pulls the
//line low when the motor is stalled)

PORTC.PIN2CTRL |= PORT_ OPC_PULLUP_ gc;
PORTC.PIN3CTRL |= PORT_OPC_ PULLUP_ gc;
PORTC.PIN4CTRL |= PORT_ OPC_ PULLUP_ gc;
PORTC.PINSCTRL |= PORT OPC_ PULLUP_gc;

//Enable the extra 5V power supply (we assume the motors
//are selected to run off 5V with the jumper during testing)
extra enable();

//turn on motor 1
PORTD.OUT &= ~(1<<MlOl_bp);
PORTD.OUT |= (1<<M102 bp) ;

/*
* polling based code to check the motor-stall flags do get set

58

* when the motor is pulling more than 1A
* Test by putting a high wattage 5ohm resistor across
*

the motor contacts

(for a SHORT time)

* first eight GPIO pins goes high with an oscilloscope

*/

//set all outputs
PORTH.DIR = 0OxFE;

if (! (PORTC.
PORTH.

}

else {

PORTH.

}
}

on port H so we can use the GPIO pins
while (1) {

IN & (I<<M1l FL bp))) {

OUT = 0x01;

OUT = 0x00;

//Switches all GPIO pins on and off at 1Hz

void gpio test(void) {

//Initialise ports
//Make all the GPIO ports outputs

PORTH.DIR=0xFF;
PORTJ.DIR=0xFL;

//Set all the pins high then low.
//For more comprehensive testing,
//and also check with CRO to make sure there are no shorts
//For super—-comprehensive testing,

Verify signals with CRO.

and checking any of the

set every alternate pin high

change all the pin

//states as fast as possible and check signal integrity

while (1) {

PORTH.OUT = OxFE;
PORTJ.OUT = OxFE;
_delay ms(500);

PORTH.OUT = 0x00;
PORTJ.OUT = 0x00;

_delay ms(500);

}

//Enables the eyebot specific

void servo enable(void) {
//Enable outputs on the PCA9685
//Set port direction
PORTE.DIR |= (I1<<PWMEN bp) ;

//Active low output enable.

features required to drive servos

This only controls the output,

//not disable I2C communication with the PCA9685
PORTE.OQOUT &= ~ (1<<PWMEN bp) ;
//Turn on the servo power

extra enable();

}

void servo test (void)

{

//Set up eyebot specific things like enabling power

servo_enable() ;

//Initialise the PCA9685 on address O0xEO
pcaf9685 init (0xE0);
//Loop to make servos 1 to 3 swing backwards and forwards

//to their extremes

(Ilms to 2ms duty cycle)

//Pass a value between 0 and 4095 to set duty cycle
//Signal frequency is set in pca9685.h (currently 184Hz)

59

and does

uintlé t i;
while (1) {
//Count up
for(i = 800; 1 <= 1550; i+=20) {
pca9685 send(0xE0, i, 0);
pca9685 send(0xE0, i, 1);
pca9685 send(0xEO0, i, 2);
_delay ms(4);
}
//Count down
for(i = 1550; 1 >= 800; i-=20) {
pca9685 send(0xE0, i, 0);
pca9685 send(0xEO0, i, 1);
pca9685 send(0xEO0, i, 2);
_delay ms(4);

}

//Helper function to calibrate the ADC according to factory-set
//calibration value

uint8 t ReadCalibrationByte(uint8 t index)

{

uint8 t result;

//Load the NVM Command register to read the calibration row
NVM CMD = NVM CMD READ CALIB ROW gc;
result = pgm read byte(index);

//Clean up NVM Command register
NVM CMD = NVM CMD NO OPERATION gc;

return(result);

}

//Reads value from IR distance sensor and outputs it as 8 bits on the

// first 8 IO pins

void adc test(void) {
//Most of this function is based on an example from
//http://www.bostonandroid.com/manuals/xmega-precision-adc-—
//howto.html

//Calibrate the ADC from the production signature row

ADCA.CALL = ReadCalibrationByte(offsetof(NVM PROD SIGNATURES t,
ADCACALO)) ;
ADCA.CALH = ReadCalibrationByte(offsetof(NVM PROD SIGNATURES t,

ADCACALL));

//Set all of Port A as input

PORTA.DIR = 0x00;

//Set Port H as output to display the result

PORTH.DIR = 0OxFF;

//12 bit conversion

ADCA.CTRLB = ADC_RESOLUTION 12BIT gc;

/*

* Use internal 1V bandgap reference

* This means that only voltages between ground and 1V can be

* measured, so the voltage must be dropped to a suitable level in

60

* hardware

*/

ADCA.REFCTRL = ADC REFSEL INT1V gc | 0x02;
//Measure at 250kHz (divide system clock by 8)
ADCA.PRESCALER = ADC PRESCALER DIV8 gc;
//Select single ended measurement
ADCA.CHO.CTRL = ADC CH INPUTMODE SINGLEENDED gc;
//Choose which pin to use

ADCA.CHO.MUXCTRL = ADC CH MUXPOS_ PINO gc;
//Set the enable bit to enable the ADC module
ADCA.CTRLA |= 0x01;

//Delay a little

_delay ms(3);

//Go into a measurement loop

while (1) {
//Set the start-conversion bit to start a single conversion
ADCA.CHO.CTRL |= ADC_CH START bm;

//Wait for the conversion complete flag to be set
while ('ADCA.CHO.INTFLAGS) ;

//Read the value from the results register to

// a local variable

int result = ADCA.CHORES;

//Divide down to a range that can be represented with 8 bits
char psd = result/16;

//Set the pins on port H so the value can be read

// with logic analyzer

PORTH.OUT = psd;

//Delay a little bit to make reading the byte easier
// with logic analyzer

_delay ms(10);

}

int main (void)
{
/*
* Uncomment the test you want to perform. Do these tests
* individually since they were not written to work together (most
* of the functions rely on polling rather than interrupts)
*/
//spi test();
//motor test();
//motor stall test();
servo_test() ;
//gpio test();
//extra enable () ;
//adc_test();

61

Appendix B.2: Two Wire Interface (I*C) header

/*
* xmegatwi.h
* Author: Andrew Adamson
Provides polling based write routines to control a Two Wire Interface
(I2C) port on the xMega
*/

#ifndef XMEGATWI H
#define XMEGATWI H

#define CPU SPEED 2000000

#define BAUDRATE 400000

#define TWI BAUD(F SYS, F TWI) ((F_SYS / (2 * F TWI)) - 5)
#define TWI BAUDSETTING TWI BAUD(CPU SPEED, BAUDRATE)

/*
* Configures and initialises the given TWIx controller
* Input: pointer to a TWI struct
*/
void twi init(TWI_t * twiname) {
//enable smartmode to send the ack immediately after the data
twiname->MASTER.CTRLB = TWI MASTER SMEN bm;
//Set the Baud
twiname->MASTER.BAUD = TWI_ BAUDSETTING;
//Enable the TWI master
twiname->MASTER.CTRLA = TWI MASTER ENABLE bm;
//Force the bus into idle mode
twiname->MASTER.STATUS = TWI MASTER BUSSTATE IDLE gc;

return;

}
/*

* Sets the given TWI controller to write mode for given slave address
* Input: pointer to a TWI struct, 8-bit slave address
*/
//Can probably refactor this to make a generic "start" function
void i2c startWrite(TWI_t * twiname, uint8 t address) {
//Write the address (which should end in a
// zero for a write address)
twiname->MASTER.ADDR = address & 0Obl1111110;
//Poll for the write interrupt flag to be set
while(!(twiname—>MASTER.STATUS&TWI_MASTER_WIF_bm));
}

/*
* Puts a byte into the data register of the given TWI controller
* and waits for it to be sent to the slave
* Input: pointer to a TWI struct, 8-bit data value
*/
void i2c write(TWI_t * twiname, uint8 t writeData) {
//Write the data
twiname->MASTER.DATA = writeData;
//Poll for the write interrupt flag to be set
while (! (twiname->MASTER.STATUS&TWI MASTER WIF bm)) ;

62

return;

}
/*

* Puts a stop condition on the TWI bus to indicate

* communication has finished

* Input: pointer to a TWI struct

*/

void i2c stop(TWI_t * twiname) {
twiname->MASTER.CTRLC = TWI_ MASTER CMD_ STOP_gc;

}
#endif /* XMEGATWI_H */

63

Appendix B.3: PCA9685 header

/*
* pca9685.h

* Author: Andrew Adamson

* Based on PIC code from:

* http://www.ccsinfo.com/forum/viewtopic.php?p=166816

* Provides routines to initialise a PCA9685 and set servo PWM values
*

/

#include "xmegatwi.h"
#include <util/delay.h>

#ifndef PCA9685 H
#define PCA9685 H

// Useful PCA9685 registers

#define MODE1l 0x00 // 0x00 location of Model register address
#define MODE2 0x01 // 0x01 location of Mode2 register address
#define SERVOO 0x06 // location for start of LED registers

/*

* Init code for the PCA9685
* Input: 8 bit write address of the PCA9685 to init
*/
void pca9685 init(uint8 t address) {
/*
* How to communicate with the PCA9685: send slave address,
* a pointer to a register, and then the value of the register

*/
twi init (&TWIC) ;
// Start

i2c_startWrite (&TWIC, address);

// Mode 1 address

i2c_write (&TWIC, MODEL);

// Setting mode to sleep so we can change the default PWM frequency
i2c_write (&TWIC, 0b00110001);

// Stop

i2c_stop(&TWIC) ;

// Required 50 us delay

_delay us(50);

// Start

i2c_startWrite (&TWIC, address);

// PWM frequency PRE SCALE address

i2c_write (&TWIC, Oxfe);

//The PWM frequency is set here. Set to 0x79 for 20ms period,
//or 0x23 for 5.4ms period

i2c write (&TWIC, 0x23); // Value = 25000000/ (4096*frequency) -1
// Stop

i2c_stop (&TWIC) ;

// Delay at least 500 us

_delay us(500);

// Start

i2c_startWrite (&TWIC, address);

// Mode 1 register address

i2c_write (&TWIC, MODEL);

// Set to our preferred mode[Reset, INT CLK, Auto-Increment,

64

// Normal Mode]
i2c_write (&TWIC, Oxal);
// Stop
i2c_stop(&TWIC) ;
// Delay at least 500 us
_delay us(500);
// Start
i2c_startWrite (&TWIC, address);
// Mode?2 register address
i2c_write (&TWIC, MODE2);
// Set to our preferred mode: output logic state not
// inverted, outputs change on STOP,
// totem pole structure, when OE = 1 (output drivers not
// enabled), SERVOn = 0
i2c_write (&TWIC, 0b00000100);
// Stop
i2c_stop(&TWIC) ;
}

/*
* Sends the 12 bit PWM data to the register
* Input: write address of the PCA9685, 0 to 4095 pwm value, 0 to 15 for
* servo channel
*/
void pca%9685 send(uint8 t address, uintlé_t value, uint8 t servo)
{

// temp variable for PWM

uint8 t pwm;

// fully on if larger than 4095

if(value > 4095) {

value = 4095;

}

// Start

i2c_startWrite (&TWIC, address);

// Select the correct servo address

i2c_write (&TWIC, SERVOO + 4 * servo);

// Servo on-time low byte

i2c_write (&TWIC, 0x00);

// Servo on-time high byte

i2c_write (&TWIC, 0x00);

// Take a copy of value

pwm = value;

// Servo off-time low byte

i2c_write (&TWIC, pwm);

// pwm is 16 bits long; shifts upper 8 to lower 8

pwm = value>>&;

// Servo off-time high byte

i2c_write (&TWIC, pwm);

// Stop

i2c_stop(&TWIC) ;
}
#endif /* PCA9685 H */

65

Appendix B.4: FT232H Test Program

FT232H SPI Test Program
- Created for the Eyebot M8 Board

Author: John Hodge (20518201)
- Eyebot M8 by Andrew Adamson
/

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <unistd.h>

#include <string.h>

#include <stdbool.h>

#include <ftd2xx.h>

P T R

// Buffer sizes, might want to tweak for production
#define OUTBUF SIZE 512
#define INBUF SIZE 512

// Some helpful macros
#define MIN(a,b) ((a) < (b)y 2 (a) = (b))
#define Sleep(ms) usleep (ms*1000)

// === GLOBALS ===

FT HANDLE gDeviceHandle;

size t giOutBytes = 0;

uint8 t gsOutBuffer[OUTBUF SIZE];
size t giInBytes = 0;

uint8 t gsInBuffer [INBUF SIZE];
// === CODE ===

//

// RAppend data to the outbound queue
//

void AppendBuf (const void *Data, size t Length)
{

if(Length > OUTBUF SIZE - giOutBytes) {
fprintf(stderr, "Out of space in output buffer\n");
exit (EXIT_ FAILURE) ;

}

Length = MIN(OUTBUF SIZE - giOutBytes, Length);

memcpy (gsOutBuffer + giOutBytes, Data, Length);

giOutBytes += Length;

}

void AppendByte (uint8 t Byte)

{
AppendBuf (&Byte, 1);
}
//
// Send the outbound queue to the device
//
FT STATUS SendBuf(FT_HANDLE Handle)
{

66

FT STATUS fts;
DWORD bytes sent;
fts = FT Write(Handle, gsOutBuffer, giOutBytes, &bytes sent);
if(fts !'= FT OK) {
fprintf(stderr, "FT Write failed (%i)\n", fts);
giOutBytes = 0;
return fts;

}

if(giOutBytes != bytes sent) {

fprintf(stderr, "%i bytes queued, but only %i were sent."

(int)giOutBytes, (int)bytes sent);
}

//printf ("Send %i bytes\n", giOutBytes);
giOutBytes = 0;
return FT OKj;

}

//
// Wait for input and then read
//
FT STATUS ReadInput(FT_HANDLE Handle)
{
FT STATUS fts;
int timeout = 1000;
DWORD queue bytes, bytes read;
giInBytes = 0;
// Wait for data
do {
fts = FT_GetQueueStatus(Handle, &queue bytes);
if('queue bytes)
usleep (1000) ;
} while(fts == FT_OK && queue bytes == 0 && --timeout);
// - error (timeout included)
if(fts != FT OK)
return fts;

// Read as much as possible
giInBytes = MIN(queue bytes, INBUF SIZE);
fts = FT_Read(Handle, gsInBuffer, giInBytes, &bytes read);
if(fts !'= FT OK)
return fts;
if(giInBytes !'= bytes read) {
fprintf(stderr, "%i bytes in read queue, but only %i
read\n",
(int)giInBytes, (int)bytes read);
}
giInBytes = bytes read;
return FT OKj;
}

//
// (Internal)
// Sends a byte to the MPSSE and checks for an error response.

//
FT _STATUS InitSPI BadCmd(FT HANDLE Handle, uint8 t cmdbyte)

{
67

were

FT STATUS fts;

// Ensure MPSSE is synchronized (send a bad command)
AppendByte (cmdbyte) ;
fts = SendBuf (Handle) ;

if(fts !'= FT OK) return fts;
fts = ReadInput (Handle) ;
if(fts '= FT OK) return fts;

// Make sure the "Bad Command" response was recieved
bool bad command found = false;
if(giInBytes > 0)
printf ("%02X ", gsInBuffer[0]);
for(size t i = 0; 1 < giInBytes - 1; 1 ++)
{
printf ("%02X ", gsInBuffer[i+1]);
if(gsInBuffer[i] == OxFA && gsInBuffer[i+]l] == cmdbyte) {
bad command found = true;
break ;
}
}
printf ("\n");
if('bad command found) {
fprintf(stderr, "MPSSE sync (0x%02X) failed. No 'Bad Command'
resp in %i bytes.\n",
cmdbyte, (int)giInBytes);
return FT_OTHER_ERROR; // Mind if I use this?
}

return FT OK;
}

//

// Initialise the FT232H for MPSSE mode and configure for SPI
// - Also turns on an LED, just for debugging

//

FT STATUS InitSPI(FTiHANDLE Handle)

{
FT STATUS fts;

fts = FT ResetDevice(Handle);
if(fts !'= FT OK) return fts;

// Clean out stale data in the buffer
DWORD stale buf size;
fts = FT_GetQueueStatus(Handle, &stale buf size);
if(fts '= FT OK) return fts;
if(stale buf size > 0) {
char tmpbuf[stale buf size];
fts = FT Read(Handle, tmpbuf, stale buf size,
&stale buf size);
if(fts !'= FT OK) return fts;
}

// Set some useful values

fts = FT SetUSBParameters(Handle, OxFFEF, OxFEEE); // set USB
Reqg Transfer Size to 64k

if(fts '= FT OK) return fts;

68

fts = FT SetChars(Handle, false, 0, false, 0); // Disable
event/error chars

if(fts !'= FT OK) return fts;

fts = FT SetTimeouts(Handle, 3000, 3000); // set read/write
timeouts to 3s

if(fts !'= FT OK) return fts;

fts = FT_SetLatencyTimer (Handle, 1); // Set latency timer to
Ims (default is 1l6ms)

if(fts !'= FT OK) return fts;

fts = FT_SetFlowControl (Handle, FT FLOW RTS CTS, 0x00, 0x00) ;

//Turn on flow control to synchronize IN requests (added by Andrew)

if(fts '= FT OK) return fts;

fts = FT_SetBitMode (Handle, 0, 0x00); // Reset.

if(fts '= FT OK) return fts;

Sleep(50); // quick nap

fts = FT_SetBitMode (Handle, 0, 0x02); // Enable MPSSE mode

if(fts !'= FT OK) return fts;

// Sleep for a bit for USB to catch up
Sleep(50);

// Sync (send 0xAA - bad command)
fts = InitSPI BadCmd(Handle, 0xAA);
if(fts !'= FT OK) return fts;
// Second sync (0xAB)

fts = InitSPI BadCmd(Handle, 0xAR);
if(fts '= FT OK) return fts;

// Base clock is 60MHz

// Caution: high and low periods must be longer than 2 CPU clock
cycles

uintl6 t divisor 1200; // 50KHz

//uintl6_t divisor = 60; // 1MHz (cannot run at this speed
with a 2MHz system clock)

AppendByte (0x82); // Disable clock front stage divisor (/5)

AppendByte (0x97); // Disable adaptive clocking

AppendByte (0x8D); // Disable 3-phase data clock

SendBuf (Handle) ;

AppendByte (0x80); // "Set Data Bits Low Byte"

AppendByte (0x00) ;

AppendByte (0x0B) ;

// NOTE: The below is for the debug LED

AppendByte (0x82); // "Set Data Bits High Byte (AC Bus)"

AppendByte (0x01); // (ACBUSO High - Status LED)

AppendByte (0x01) ;

// Clock divisor

AppendByte (0:x86) ;

AppendByte ((divisor/2-1) & 0xFF); // Low

AppendByte ((divisor/2=-1) >> 8); // High

SendBuf (Handle) ;

// Wait a bit to ensure the chip is ready

Sleep(30);

// Turn off loopback on TDI/TDO connection
AppendByte (0x85) ;
SendBuf (Handle) ;

// All done!
69

return FT OK;
}

//

// Raise the CS line

//

FT_STATUS SPI_CSRaise(FT_HANDLE Handle)

{
// 5 repeats for lus

// - each command takes 0.2us to perform, so ensures that the
// line is high for at least lus before data is sent

for(int 1 = 0; 1 < 5; 1 ++)

{

AppendByte (0x80); // GPIO ADBUS

AppendByte (0x08); // CS line High

AppendByte (0x0B) ; // (output mode, shouldn't change)
}
return FT OK;

}

// Lower the CS line
FT_STATUS SPI_CSLower(FT_HANDLE Handle)

{
// - 5 repeats for lus (each command aparently raises for 0.2us)?
for(int 1 = 0; 1 < 5; 1 ++)
{
AppendByte (0x80); // GPIO ADBUS
AppendByte (0x00); // CS line low
AppendByte (0x0B); // (output mode, shoudn't change)
}
return FT_OK;
}
//
// Write a sequence of bytes to the SPI bus
//

FT STATUS SPIWriteBytes(FT HANDLE Handle, size t Len, const void *Data)
{

const uint8 t *bdata = Data;

if(Len == 0)
return FT OK;

// 0 = 1 byte, OxFFFF = 2716 bytes
// - So, subtract one
Len -= 1;

// NOTE: CS is active-low

SPI_CSLower (Handle) ;

AppendByte (0x11); // MSB Falling Edge Change Clock - out on -ve
clock edge

AppendByte (Len & 0xFF); // LSB

AppendByte (Len >> 8); // MSB

// Bppend data from input buffer

for(size t i = 0; i < Len+l; i ++)

AppendByte (bdatali]l) ;
SPI_CSRaise(Handle) ;

70

return SendBuf (Handle) ;
}

int main(int argc, char *argv[])

{
FT STATUS fts;

// Check for correct usage
if(argc '= 2)
{
fprintf (stderr, "Usage: %s ID\n", argv[0]);

DWORD ndev;
fts = FT _CreateDeviceInfolist (&ndev) ;
if(fts '= FT OK) {
fprintf(stderr, "Enum failed, FT CreateDevicelInfolist,
fts = %i\n", fts);
return 1;

}
printf("%i devices\n", ndev);

return -1;

}

// Open the device

int port = atoi(argv[l]):;

fts = FT Open(port, &gDeviceHandle) ;

if(fts '= FT OK) {
fprintf (stderr, "FT Open(%i) failed, fts = %i\n", port, fts);
return 1;

}

// Initialise SPI

fts = InitSPI(gDeviceHandle) ;

if(fts !'= FT OK) {
fprintf(stderr, "InitSPI failed, fts = %i\n", fts);
return 1;

}
// Continuously send test data to the device
while(1)
{
uint8 t datal[] = {0x37};

fts = SPIWriteBytes(gDeviceHandle, sizeof(data), data);
sleep(10);
}

// Clean up, like a good program
FT Close(gDeviceHandle);

return 0O;

71

Appendix C: SPI configuration

Appendix C.1: SPI Modes

For the following table,

e (CPOL=0 means the base value of the clock is zero
e (CPOL=1 means the base value of the clock in one
e CPHA=0 means sample on the leading (first) clock edge

e CPHA=1 means sample on the trailing (second) clock edge

Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

72

Appendix C.2: SPI Settings to Communicate with FT232H

Setting Value

Clock frequency 50kHz. This can be increased as long as the high
and low times are longer than two of the
microcontroller clock periods.

Endianness Most significant bit first

Clock polarity (CPOL) 0

Clock phase (CPHA) 0

Chip select polarity Low enable

FT232H transmission direction

Currently set to write only with opcode Ox11.

Can be set to bidirection with opcode 0x34.

73

8 References

AA Portable Power Corp, 2012, NiMH Battery Pack: 7.2V 4500mAh for RC-10 Cars and
Sumo Robots. Available from:
<http://www.batteryspace.com/nimhbatterypack72v4500mahforrc-
10carsandsumorobots.aspx>. [accessed 5 July 2012].

Atmel Corporation, 2009, AVRI1005: Getting started with XMEGA. Available from:
<www.atmel.com/Images/doc8169.pdf>. [accessed 24 October 2012].

Atmel Corporation, 2009, xMega A Manual. Available from:
<www.atmel.com/Images/doc8077.pdf>. [accessed 18 July 2012].

Atmel Corporation, 2012, AVR1300: Using the Atmel AVR XMEGA ADC. Available from:
<http://www.atmel.com/Images/doc8032.pdf>. [accessed 2 November 2012].

Atmel Corporation, n.d., AVR Dragon PDI Programming. Available from:
<http://www.atmel.no/webdoc/avrdragon/avrdragon.pdi_description.html>. [accessed 30
October 2012].

Bailey, DG 2011, Design for Embedded Image Processing on FPGAs, John Wiley & Sons.

BeagleBoard.org, BeagleBoard Hardware Design. Available from:
<http://beagleboard.org/hardware/design/>. [accessed 20 March 2012].

Blackham, B 2006, The Development of a Hardware Platform for Real-time Image
Processing, Honours thesis, University of Western Australia.

Braunl, T, EyeBot - Online Documentation, The University of Western Australia. Available
from: <http://robotics.ee.uwa.edu.au/eyebot/>. [accessed 30 March 2012].

Braunl, T 2012, ELEC2303 Lab Manual, The University of Western Australia.

Chin, L 2006, FPGA Based Embedded Vision Systems, Honours thesis, University of
Western Australia.

Coley, G 2010, BeagleBoard-xM Rev C System Reference Manual, C.1.0 vols,
BeagleBoard.org.

74

Dietrich, B 2009, Design and Implementation of an FPGA-based Stereo Vision System for
the EyeBot M6, Masters thesis, Technische Universitait Muinchen and The University of
Western Australia.

Du, JL 2003, Swarm Clustering System with Local Image Processing and Communication,
Masters thesis, University of Western Australia and University of Stuttgart.

Ewan MacLeod 2008, Eyebot M6 Controlled Sensor Package in a Renewable Energy
Vehicle - Hyundai Getz, The University of Western Australia.

Future Technology Devices International Ltd., 2011, Application Note AN_108: Command
Processor for MPSSE and MCU Host Bus Emulation Modes. Available from:
<http://www.ftdichip.com/Documents/AppNotes/AN 108 Command Processor for MPS
SE and MCU_ Host_Bus Emulation Modes.pdf>. [accessed 8 November 2012].

Geier, M 2009, Design and Implementation of an FPGA-based Image Processing
Framework for the EyeBot M6, Masters thesis, Technische Universitat Muinchen and The
University of Western Australia.

Lewis, P, 2008, Sneaky Footprints: The Quest for a Right-Angle:, Sparkfun Electronics.
Available from: <http://www.sparkfun.com/tutorials/114>. [accessed 12 August 2012].

NXP, 2010, PCA9685 Datasheet. Available from:
<www.nxp.com/documents/data_sheet/PCA9685.pdf>. [accessed 11 July 2012].

NXP, 2012, I2C-bus specification and user manual. Available from:
<http://www.nxp.com/documents/user manual/UM10204.pdf>. [accessed 1 August 2012].

Pololu Robotics and Electronics, 2011, Servo control interface in detail. Available from:
<http://www.pololu.com/blog/17/servo-control-interface-in-detail>. [accessed 13 August
2012].

Rugged Circuits LLC, 2011, 10 Ways to Destroy an Arduino. Available from:
<http://ruggedcircuits.com/html/ancp01.html>. [accessed 4 October 2012].

Singh, J 2011, Hardware Redesign of an Experimental Embedded Platform, Honours thesis,
University of Western Australia.

75

Texas Instruments Incorporated, 2012, LM2678 SIMPLE SWITCHER High Efficiency 5A
Step-Down Voltage Regulator (Rev. H). Available from:
<http://www.ti.com/product/Im2678#technicaldocuments>. [accessed 10 October 2012].

Texas Instruments Incorporated, 2012, TMS320C6000 DSP Library. Available from:
<http://www.ti.com/tool/sprc265>. [accessed 27 May 2012].

van Nes, N & Cramer, J 2005, 'Influencing product lifetime through product design',
Business Strategy and the Environment, vol. 14, no. 5, pp. 286-299.

Yaghmour, K 2009, Building Embedded Linux Systems, Sebastopol, p. 232.

76

