Model-Based Software Component Testing

Weiqun Zheng
B.Sc., M.Eng.

This thesis is presented for the degree of
Doctor of Philosophy
of

The University of Western Australia

B LI (AN P NON Do) I8
il |erae(10R | e fraisi vinic | 1
HUM]| ES PAR [ITLIR
- - . -

School of Electrical, Electronic and Computer Engirering
Faculty of Engineering, Computing and Mathematics
The University of Western Australia
March 2012

Copyright © 2012 Weiqun Zheng

All Rights Reserved

To My Parents

To Rongrong and Feifei

Statement of Originality

The work presented in this thesis was undertakérenby the author’s sole PhD research and
is, to the best of the author's knowledge, originakcept where due references or

acknowledgments have been made in the text ofhlibis.

The material contained in this thesis has not prely been submitted, in part or in full, for a

degree at this or any other university.

Weiqun Zheng

School of Electrical, Electronic and Computer Eegiring (EECE)
Faculty of Engineering, Computing and MathemateS 1)

The University of Western Australia (UWA)

March 2012

Abstract

Software component testing (SCT) is a proven soBwengineering approach to evaluating,
improving and demonstrating component reliabilibd ajuality for producing trusted software
components, which is critical to support the susa#scomponent-based software engineering.
Model-based testing (MBT) of software componentabées the utilisation of a consistent
model-based approach and specification (e.g. UMLdet®) for effective component
development and testing. However, advancing frondehbased development to MBT poses
certain crucial challenging problems that remaimesalved and hamper the utilisation of
SCT/MBT, and further research is thus requireddidress those problems to achieve the goal of
desirable SCT/MBT effectiveness.

This thesis has comprehensively reviewed the imapbrtconcepts, principles,
characteristics and techniques of SCT/MBT in therditure to provide a solid foundation for
this research and introduced a set of useful neweagats and definitions to form the first major

part of the thesis’s original contributions as dalb:

1. In the research areas of software components dtvdase component testing:
(&) A new comprehensive taxonomy of software componkatacteristics
(b) A new software component definition
(c) A new definition of software component testing
(d) A useful taxonomy of software component testindniégues

(e) A practical taxonomy of component testability impement approaches

2. In the research areas of model-based testing anid-hHded testing:
(@) A study of model-based tests
(b) A new definition of model-based testing
(¢) A new test model definition
(d) A new definition of UML-based testing
(e) A core UML subset for SCT

(f) A study and review of use case driven testing aedario-based testing

The principal original contribution of this thesss to introduce a novel hybrid SCT
methodology, calleélodel-Based Software Component Testing (MBSCT), which consists
of five major methodological components, a threaggh testing framework, six main

methodological features and six core testing cdigiabi In more detail:

(1) The Model-Based Integrated SCT process incorporates software component

viii Abstract

development and testing into a unified UML-basetivere process as part of the software
development lifecycle, which provides a useful sx model for the entire MBSCT
methodology. This process supports the use of asisiemt UML-based approach and

specification for systematically developing testd®s and model-based component tests.

(2) The Scenario-Based Component Integration Testing technique focuses testing
priority on identifying and constructing appropeatest scenarios to exercise and examine
crucial deliverable component functions with theaasated operational use case scenarios (e.g.
behavioural instances and integration scenariol)s Technique specifically supports the
development of scenario-based test models and rfodyased test cases for component

integration testing that bridges component untirigsand component system testing.

(3) TheTest by Contract technique introduces a new test contract notion as a kdintes
support mechanism and a set of useful contractdbasacepts and test contract criteria to
improve component testability and bridge the idedi “test gap%in MBT. This technique
provides a stepwise TbC working process and a aohbrased fault detection and diagnosis
method to facilitate test model construction, congrd test design and generation, component
fault detection, diagnosis and localisation, whesttablishes the major technical foundation for

component test evaluation.

(4) TheTest-Centric Remodeling strategy provides a practical guide to assist test model
construction and model-based test derivation bynmedtest-centric model refinememhodel-
based testability improvemerand test-centric model optimisationThis strategy works

collaboratively with the corresponding MBSCT metblogjical components.

(5) TheComponent Test Mapping technique is developed as a hew mapping-based test
derivation approach, and focuses on mapping amsfening testing-related model artefacts

and associated test contracts into useful testfdagenerating target component test cases.

This thesis has undertaken a comprehensive vaidatnd evaluation of the MBSCT
methodology, which has demonstrated and confirnted it is effective in achieving the
required level of component correctness and qualltge methodology comparison has
concluded that the MBSCT methodology has significadvantages over the most-cited
representative SCT/MBT approaches reported in ttezature. This thesis has achieved
substantial and original contributions to the SaftevEngineering scholarly body of knowledge
in terms of the substantial literature review of TR@BT and the comprehensive MBSCT
methodology. The research results presented irthags should provide a solid foundation for
further research into SCT/MBT, which can help to@prcloser the ultimate goal of achieving

effective model-based component testing and producusted quality software components.

Publications

This thesis is based on a number of the authortsiqations, including research papers and

technical reports, which are part of the outconfeth® sole-authored research work during the
PhD candidature.

Some of the main research results and originalribtions of this thesis has been

formally published in the following six research ppas (book chapter, journal article,

conference paper and presentation):

[1]

Weigun Zheng and Gary Bundell, “A UML-Based Methtagyy for Software Component
Testing,” Proc. The 2007 International Conference on Softwkrejineering (ICSE
2007, Hong Kong, 21-23 March 2007, pp. 1177-1182.

[Note: The conference program committee has nomeh#tis paper for thBest Paper

Award of ICSE 2007, and also recommended this papetheredited book published by
Springer. This paper was awarde@extificate of Merit.]

[2]

[3]

[4]

[5]

[6]

Weiqun Zheng and Gary Bundell, “Model-Based Sofesv@omponent Testing: A UML-
Based Approach,”Proc. 6th IEEE International Conference on Computand
Information Science(ICIS 2007, Melbourne, Australia, 11-13 July 2007. IEEE
Computer Society Press, 2007, pp. 891-898.

Weiqun Zheng and Gary Bundell, “A Framework of UMlased Software Component
Testing,” Book Chapter 40, in Oscar Castillo, Li ¥ad Sio-long Ao (Eds.)Current
Trends in Intelligent Systems and Computer EngingelLecture Notes in Electrical

Engineering, vol. 6, pp. 575-597, Springer, May&00

Weiqun Zheng and Gary Bundell, “Test by Contract 1dML-Based Software
Component Testing,Proc. 2008 IEEE International Symposium on Comp&eience
and its ApplicationCSA 2008 Hobart, Australia, 13—-15 Oct 2008. IEEE Computer
Society Press, 2008, pp. 377-382.

Weigun Zheng and Gary Bundell, “Contract-Based &af¢ Component Testing with
UML Models,” International Journal of Software Engineering artgl Applications vol.
3, no. 1, pp. 83-102, January 2009.

Weiqun Zheng, Gary Bundell and Terry Woodings, “UBased Software Component

Testing,” 2010 Symposium in association with the Softwareirieeging Forum on

X Publications

Progress in Software TestingTEE College, Engineers Australia, Perth, Ausraluly
2010.

In addition, some of the main research resultsaiginal contributions of this thesis has
been also published and presented in a numbeclohitzal reports produced during the course

of this research. The following includes the techhreports most relevant to this thesis:

[1] Weiqun Zheng, “Software Component Testing and @emtion — The Software
Component Laboratory Project,” Technical ReportPSlI ISERG_TR-2006-01, Centre
for Intelligent Information Processing Systems, @hof Electrical, Electronic and

Computer Engineering, University of Western AustradiVA, Australia, 2006.

[2] Weiqun Zheng, “Towards a Standard Test Specifinatior Software Component
Testing,” Technical Report CIIPS_ISERG_TR-2006-02entre for Intelligent
Information Processing Systems, School of Eledtridalectronic and Computer

Engineering, University of Western Australia, WAygralia, 2006.

[3] Weiqun Zheng, “Model-Based Software Component figsti An UML-Based Approach
to Software Component Testing,” Technical RepofPS| ISERG_TR-2006-03, Centre
for Intelligent Information Processing Systems, @&whof Electrical, Electronic and

Computer Engineering, University of Western AustradiVA, Australia, 2006.

[4] Weiqun Zheng, “Component-Based Software Developmétit UML and RUP/UP —
Case Study: Car Parking System,” Technical RepbRS ISERG_TR-2006-04, Centre
for Intelligent Information Processing Systems, @&whof Electrical, Electronic and

Computer Engineering, University of Western AusirdiVA, Australia, 2006.

[5] Weiqun Zheng, “Model-Based Software Component TgstiA Methodology in
Practice,” Technical Report CIIPS_ISERG_TR-2006-05entre for Intelligent
Information Processing Systems, School of Elediridalectronic and Computer

Engineering, University of Western Australia, WAygralia, 2006.

[6] Weiqun Zheng, “Model-Based Software Component figsti Case Study: Car Parking
System,” Technical Report CIIPS_ISERG_TR-2006-06ent@ for Intelligent
Information Processing Systems, School of Elediridalectronic and Computer

Engineering, University of Western Australia, WAygralia, 2006.

[7] Weiqun Zheng, “Applying Test by Contract to Improv@oftware Component
Testability,” Technical Report CIIPS_ISERG_TR-200Z;- Centre for Intelligent

Publications xi

[8]

[9]

Information Processing Systems, School of Elediridaélectronic and Computer

Engineering, University of Western Australia, WAL#ralia, 2007.

Weiqun Zheng, “Model-Based Approaches: Models, Miadeand Testing,” Technical
Report CIIPS_ISERG_TR-2009-01, Centre for Intefiigdnformation Processing
Systems, School of Electrical, Electronic and CotaplEngineering, University of
Western Australia, WA, Australia, 2009.

Weigqun Zheng, “Model-Based Software Component hgstt Case Study: Automated
Teller Machine System,” Technical Report CIIPS_ ISERR-2010-01, Centre for
Intelligent Information Processing Systems, Schadl Electrical, Electronic and

Computer Engineering, University of Western AusiidVA, Australia, 2010.

Xii Publications

Acknowledgements

Firstly, I would like to express my sincere appaticn and gratitude to my principal supervisor,
Professor Gary Bundell, for his invaluable guidaramvice, encouragement, support, patience
and friendship throughout my PhD candidature. Herhade constructive research discussions
with me, and insightful suggestions and review cami® on the drafts and revisions of my
research papers, technical reports and PhD thegs, when he has had heavy administrative
duty as the Head of EECE School, busy schedulelbfifne teaching and research, or on his
sabbatical leave. His guidance over the years lpsfisantly improved my research and
writing skills, and | have learned a lot from himbeth academic research and personal levels.
This PhD would not have been possible without hesgsupervision. | am very grateful to have
him as my supervisor and friend.

I would like to thank my co-supervisor, Professtiomas Braunl, Director of CIIPS, for
his generous support, encouragement and friendshpgecially in the later stage of my PhD
candidature.

I would like to thank Professor Terry Woodings fooviding his valuable feedback on
the final thesis revision.

| would like to thank Professor Brett Nener, tharent Head of EECE School and
Deputy Dean (International Relations) of ECM Faufiyr his generous support in the later
stage of my PhD candidature.

| would like to thank the generous help and supforn staff of CIIPS, EECE School
and UWA Graduate Research and Scholarships Offiteank Ms Linda Barbour for her kind
assistance with administrative matters. Our staffadways vey helpful and supportive.

| would like to thank my friends, fellow postgradeastudents and members from
Information and Software Engineering Research Gr&&kRG), High-Integrity Computer
Systems Laboratory (HICSL), Centre for Intelligéntormation Processing Systems (CIIPS),
School of Electrical, Electronic and Computer Ewegiring (EECE), School of Computer
Science and Software Engineering (CSSE), Faculty Boigineering, Computing and
Mathematics (ECM), UWA. You know who you are angtis how we get on well together.
Your friendship and support greatly help me totgetugh this journey.

Finally and most importantly, | would like to exgeemy grateful appreciation to my
parents, my family, especially my loving wife Roagg and son Feifei. | dedicate this thesis to
all of you. More than anyone else, my wife has etiany highs and lows, and especially has
endured family hardship and daily housework, fiteng depression and bad temper, as well as
long hours away from home. This long journey woolmt have been possible without your
endless love, understanding, encouragement, suppdricompanionship during this difficult

period. Thank you.

Xiv Acknowledgements

Table of Contents

Statement of OrigiNalityo e e v
A S G ..o e Vi

PUDICALIONS ... e e e iX
o L0111/ =T [1= o 0= PP Xii
Table Of CONtENTSo e e e e X
IS A T T = XXV
S 0 0 1F=] PP XXX
List of Acronyms and ABDreviationscccviiiiiiiiiiiiieeeieeeeeeeeeeeee e e e XXXi

(O gF=T o] (=1 gt R [o1 1 Yo [Tox 1 o o [P
1.1 Research Problems and Challenges ..., 1
1.2 Research Motivations and ODJECLVES ... uceeeemeeeiiiiiiiiiiiiiiiiiiiiiieeereeeeeeeeeeeaees e 4
1.3 Overview of Original ContribULIONSccccuuuiiiiiiiiiiiiiiiiiriiiiirererereeeeeeeaaeend 6
1.4 Thesis Structure and OULIINEcceemeeeieiiiiiiiiiie e 8

Chapter 2 Foundation of Software Components and Stafvare Component Testing 13

P20 R 11 o o 11 o o T o SRR 13
2.2 SOftware COMPONENTSuueeiiiiiiiieieeriieeirrerererr e ———raaeeaaaeaaaeees 14
2.2.1 A Review of Software Component Definitions..............ccccceeeeee . 14
2.2.1.1 Different Definitions of Software Component...............cccccevvvvvvieeeennnnn... 14
2.2.1.2 Review and ANalysisooooiiiiicccce e, 15
2.2.1.3 Component-Related Stakeholderscccooevvviviiiiiei 16
2.2.1.4 Special CBSE Diversity CharacCteriStiCooeeeeeeeiurninnniiiineiinnnnns 17
2.2.2 A New Taxonomy of Software Component Charasttes 18
2.2.2.1 A Classification of Software Component Gas&ristiCSccccvvvvnnnnns 18
2.2.2.2 Interrelationship among Software Comporaracteristics 21
2.2.2.3 New Software Component CharacteristiCS..........ccovvveeeeriiiiiiiiieeeeeennns 24
2.2.3 A New Software Component Definitioncc...ccooiiiiiiiiiiieeiiieeeeee, 25
2.3 Software CompoNENt TESHINGuurriiieeeeeiriiiiiiiiie e eee e 27
2.3.1 Definition of Software Component TeStiNG..........ccvvrevieeeiiiiiiiiiiieeeee e 28
2.3.1.1 EXxisting SCT DefiNitioNScoiiieeeamiiieeeiiiiiiiiieeee e 28
2.3.1.2 A New Definition of Software Component TGt...........cccceeeeiiiiiiinnnnnnns 29
2.3.2 Main Characteristics of Software Componerstingccccvvveeeeeriiiivnnnn. 30

XVi Table of Contents

2.3.3 Component Test Cases and SPeCifiCatiON ccuweaeeevviviviriiiiiieeiiiiiieeeeeaen 31
2.3.4 Different Perspectives and Needs in COMPORESHiNGcccovrriuvrreereeeennn. 32
2.3.5 Limitations of Software Component TeStNG. --........vvvveieeeeiiiiiiiiiiieeeeeeeae 32
2.4 Software Component Testing Process and Levels............ccccvvvieeiiiiieeene. 33
2.5 A Taxonomy of Software Component Testing Tegh@scccooecvvriiieeeennnns 35
2.6 Software Component Testability and Improvenfg@ygroaches 36
2.6.1 Software Component TeStabIlity o eeeeiiiiiiiiiiece e 37
2.6.1.1 Testability CONCEPLccoeeiiiiii e, 37
2.6.1.2 Testability CharacteristiCscevveeieeiiiii i 38
2.6.2 General Strategies to Improve Component BE$fa...........ccccvvvvvvvievveernnnnnnnn. 40
2.6.2.1 General Steps to Improve Component Te#tabil................cccccceeeiin 40
2.6.2.2 A Taxonomy of Testability Improvement Apgchescccccveveeenennn. 41
2.6.2.3 Comparative STUAYoo et e e e e e e aeraa e 42
2.7 Summary and DiSCUSSIONcoiiiieeeeeeece e rreee e e e e e e aaeas 43
Chapter 3 Foundation of Model-Based Testing and UMEBased Testing 47
I % A [o1 (o To (3 Tod 1 [o PP PPRPPP 47
3.2 Model-Based TESHNGcccccuuuuuiueiscmmmmmms st beaeb e beeeeeeaeeaaasaaaaens 48
3.2.1 What is Model-Based TeStNG?uuruiiiiiiieiiciiiviiinrenveareee s eeeeee s 48
3.2.2 Why Should Testing Be Model BasSed? ...cceevevvveeeeeeiiiiiiiiiiiiieeeeeeeeeee, 50
3.2.3 What Testing Activities/Tasks Can Be Modes@aPcccoecvuunnnnnnnnnnnnns 50
3.2.4 MOAEl-BASEA TESLSuuuuuiiiiiiiiiii e e e e e s e e s eeees 51
3.2.5 A New Definition of Model-Based TeStiNG «eeeeevvvveeeeriiiiiiiiiiiieeeeeiiiieeee K2
3.2.5.1 Integrating MBT into the Entire SoftwareM@mpment Process 53
G T T =TS B 1Y/ [T [53
3.2.6.1 What Types of Models Can Be USed?ccccceeeeeiiiiiiiiiiiiieiiiiieeeeeeenn 53
3.2.6.2 A New Test Model Definitioncooi i 54
3.2.6.3 Bridging “Test GapS”ccuuvrrriimmccm et 54
3.2.7 MBT Advantages and LIimitationsccccceeeeeeeieiieeee e 56
ICTRC T U 1Y/ I = o B =] o USSR 57
3.3.1 A New Definition of UML-Based TeStiNG ..cceeervvvrrrrrririiiiiiiiiiiiiiiinniiennnenne. YA
3.3.2 UML-SCT: A Core UML Subset fOr SCTommuererreeiieeeniiiiiiieeeae e 58
3.3.2.1 UML Use Case Diagrams for Software Testing..........ccccvvvvvvvvevevieennnnn. 60
3.3.2.2 UML Sequence Diagrams for Software Testing..............cccoooeeeeeeen. 60
3.3.2.3 UML Class Diagrams for Software TeSting m....ccccccvvvvvvviieiiieiieeeennnnnnn. 61

3.3.3 Use Case DriveN TESHNGuuuurrruueiieeiuiiiiiiieieiireiiieierreeereeeeeeesessreeesesneaaees 61

Table of Contents Xvil

3.3.4 General Approaches/Strategies for ApplyinglLMagrams

fOr SOftWAre TESHNG ... vuve it e e e e e e 62
3.4 RElAted WOIK ..o 64
3.4.1 State-Based TESHNGuurreieiiiiicemmmemriiei et e e eeeeer e e e 64
3.4.2 Software Integration Testing With UMLcoooiiiiiiiieeeeeeee 66
3.4.3 Software System Testing With UML ..o 68
3.4.4 Software Testing with UML Use Cases and STBHIA................ccevvveeeeeernnnnnns 70
3.4.5 Software Testing with UML Sequence Diagrams..........ccccceeeeviunvnnnnnnnennnnnnns 72
3.4.6 Other Related WOrdc.oiiiniiiiiiiie e e 75
3.5 ANalysis and DISCUSSIONc..iviiitit it et et et e e aa e 76
I TN G S 1 U 11] 1 = Y SRS 78
Chapter 4 Model-Based Software Component Testing: Methodology Overview 81
N 1 1o To [F ox 1T o PSP PPPPRPPR 81
4.2 Methodology SUMMAIYcoiiiieiiis sttt e e e e e e aa e s e 81
4.3 Major Methodological COMPONENLSccomeereeiiiiiiiciiee e 83
4.3.1 Model-Based Integrated SCT PrOCESS ..ommeeeemreeerrriiiiiiiiiiiiieiiieiieeeseeeeeeieeens 83
4.3.2 Scenario-Based Component Integration TeSwuhniqueoooeeeeeeeeeeennee 87
4.3.3 Test by Contract TECHNIQUEoevviiiiieiiiiiiiiiiiiiiii e eeeeeeee e 89
4.3.4 Test-Centric Remodeling Strategyccevvvvveeeiiii e, 91
4.3.5 Component Test Mapping Techniqueeeevreeeeeeeeeeeieiiiiieeeeeeeeeeennnn.. 93
4.4 MBSCT FrAmMEWOIKuuuuuiiiiiiinititceeeeeeeeeeeeeeeeeeeeeeaaaaaaaeeaeeeaeeeeeaaeaeaaaaaaaaaaaaanes 94
4.5 Main Methodological FEAtUIES ettt eeee e 95
4.6 Core Testing Capabilili®Suuimmmmmmiairiiieieir e e eee s 97
A7 SUMIMATY oo e e n s mmmmmr e e e e e e e e e e e e e eeeees 98
Chapter 5 Building UML-Based TeSt MOAEISccmeeeeieeeiiiiiiiiiiiiieiiieeiieeeeeeeeeeeeveee e, 99
LS 700 R o1 1o o [o (o) o PP 99
5.2 Main Tasks and Techniques for Building Test B16d.............cccooiiiiiiiiiieennnnn 99
5.2.1 Applying the Model-Based Integrated SCT PS8CE...........cceveveeeriiiiiinniieeeeenn. 99
5.2.2 Applying the Scenario-Based CIT Technique...............cooeiiiiiinn 01K0]
5.2.3 Applying the ThC Technique ..o e 101
5.2.4 Applying the TCR SIrategycccvueemmrriiiieeeeee e 101
5.2.4.1 Test-Centric Model Refinementooeeeeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 102

5.2.4.2 Model-Based Testability Improvementccccoeeeeeeeeeeeeeeiieieeeeeen... 103

XViii Table of Contents

5.2.4.3 Test-Centric Model OptimiSationccccevvveeeeiiiiiiiiiiieeeeeeiieeeeeee 106
5.2.5 SUMMAIY .oeeiiiii ettt e e e e et nmmr e e e e e 106
5.3 Test Artefacts for UML-Based SCTuieriiiiiiiieee e 107
5.4 Use Case TeSt MOUEIuueeiiiiiiieeeeeeee e 109
5.4.1 Constructing the Use Case Test Modelcccoviiiiiiiiiiiiiiiiiiieeeeeeen 110
5.4.2 Identifying and Constructing Test SCeNarios..........ccccceeeviriiiiiieeeeeeeenns 110
5.4.3 Designing and Constructing Test CONractS..........cuvvvvveeeeriiiiiiiiiieeeeeennns 112
LR T @ T o] 1=t A I == 1Y, o T [P 114
5.5.1 Constructing the Object Test MOdel ...ccccenniiiiiiiiiee e 114
5.5.2 Test Scenarios for Test Model CONSIrUCHION.uvveiiieeeiiiiiiiiieeeeeeens 115
5.5.3 Test Contracts for Test Model Construction............cooecuvvvieeeeeeensniineee. 118
5.6 Summary and DiSCUSSIONcooiiiiceeceeeiiiieeiitie e reeeeeeeaaaeeens 121
Chapter 6 Test by Contract for UML-Based SCTcc..oovieiiiiiiiiiiiiiiieeeeesieeeeee e 123
L A [o1 (o To [FTox 1] o TS PPPUPPPRPPR 123
6.2 Test by Contract: AN OVEIVIEWcoceeeeeiiiiiiiiiiieeieee e e e e ereeeeeaa e 125
6.3 Contract for TeStabilitycccoeiiieereee e 126
6.3.1 Test Contract CONCEPL ...cceeviiiiieiieiie e e e e e e e eeeeaearee 127
6.3.2 Realising and Representing Test CONraCtScvvvvvvrvnmmieneiiiinninnnnnnes 128
6.3.3 Effectual Contract Scope — Internal/Extefiredt Contractccceeeeunnnns 129
6.3.3.1 Effectual CoNtract SCOPEuuceeeeeereriririiiiieieiieeieeeeeeeeeeeeeereeraeeees 130
6.3.3.2 Categories Of TESt CONIACLES e errreeriieeeaniirieeee e e e ennieees 130
6.3.3.3 Relationships between Internal and ExtéFaat Contracts 131
6.3.3.4 Test Contracts and Test Levels ... 132
6.3.4 Contract-Based TeSt Criteriauaociiieeeiieeeeaeeeieeieeeeeene e 132
6.3.4.1 Setting ThC Test CoNract Critera . veeeeeeeriiiiieeiieeeeiiiiieeeen 132
6.3.4.2 TbC Test Contract Criterion #1: test stateerage criterion 135
6.3.4.3 TbC Test Contract Criterion #2: test ew&wverage criterion 135
6.3.4.4 TDbC Test Contract Criterion #3:
class-operation-level test contract coverage @oiter.................oveeeeeeeee. 136
6.3.4.5 TbC Test Contract Criterion #4:
component-unit-level test contract coverage COtefi..............ccceveee..... 136
6.3.4.6 TbC Test Contract Criterion #5:
component-operation-level test contract coveragerimm 137

6.3.4.7 TbC Test Contract Criterion #6:

component-level test contract coverage Criterion.ccoeeeeeeennnnnnns 137

Table of Contents Xix

6.3.4.8 Adequate Test Contract Coverage and TeBfingency 138
6.3.5 Realising Component Testability Charactessimprovement 138
6.4 Test Contract Design for Test Model Constructia.cccoeeeviiiiiiieeeeeennnnnes 139
6.5 Contract-Based Component TESt DESION ..cceeeeeeieeeiiiiiiiiiiieeeeeeiiiieiee e 140
6.5.1 Designing Test Sequences and Test GroupsTeghContracts 140
6.5.1.1 Designing TESt SEQUENCESoeceeeaamreeeeriiinirieeeeensnaiireneeeeeeeesnnnns 140
6.5.1.2 OptimiSiNg TESt SEQUENCES ..ottt 142
6.5.2 Test Design for Verifying Component Interant with Test States 144
6.5.3 Test Design for Verifying Component Interant with Test Events 147
6.6 Related Work and DISCUSSIONccuiuireeriiiiiiiiiieeeesiiiiieeeeee e e sssieeeee s 149
B.7 SUMMMAIY eeeittiiieeieeeeiiiees e e e e e e e eeeataar e e e e et eeeaetaaraeaeeeaeeeeesss s s s eeeeeaeeessnnnns 150
Chapter 7 Component Fault Detection, Diagnosis andocalisationcccc....... 151
4% A [01 (o o (U1 1o o IO PRRPPP 151
7.2 Fault Causality Chain: Fault Error—> Failureccoooeeiiieiiiii i, 152
7.3 Contract for Diagnosabilitycceeeeivuiiiiiiiiiiiiiiie e e e e 154
7.4 Contract-Based Fault Detection and DiagnoSisdasccoeeeeeeeeeeeeeeeneeee 551
7.5 Fault Detection, Diagnosis and LocalisatiQn...............ccevvvvvivvieiiieeiiieiieerieeen, 159
7.5.1 Fault Propagation SCOPEcciiiicceecr ettt 160
7.5.2 Fault DIagN0OSIS SCOPE ...uuvuiiiiiiiiieeeirieriitiiiieiiiresreereeeeeeeeeereeerrerrieeeaeeesaens 160
7.5.3 TbC Test Contract Criteria and Fault DiagBoSi.......cccooeeeeeveeeiiiiicciieceeennn 621
7.5.4 Effectual Contract Scope and Fault DiagnosIiS..........ccccceeviiiiiiiiieeneeennns 163
7.5.5 Guidelines for Fault Diagnosis and Local®ati...............ccccovvrivrereeeeennnnnnd 631
7.6 Applying the CBFDD Methodcoiiiieeeeeeeee e 169
7.6.1 Applying the CBFDD PrOCESScceieiie e 169
7.6.2 Diagnosing and Locating Target ComponenttBaul................................ 171
7.6.2.1 A Specific Target Faultoeeeeerie e 172
7.6.2.2 Diagnosing and Locating the Specific TaFgiltccccvvvviiiiinnnnns 172
7.6.2.2.1 A Direct Fault Diagnosis Scenario AnN&YSL..........cccccevviviivvineenenn. 172
7.6.2.2.2 A Direct Diagnostic SOIUtiONcccemeveviiiiiiiiiiie e 74
7.6.2.3 Stepwise Diagnosis and Localisation ofSpecific Target Fault 177
7.6.2.3.1 Fault Diagnosis Scenario Analysisccccccccvvviieiiiiiccciiiicie, 178
7.6.2.3.2 Stepwise Diagnosis and Localisation. wu.....cccceeeeeeeeeeeeeniiniinnn.. 180
7.6.2.3.3 Stepwise Diagnostic SOIULIONccceeeeivvviiiiiiiiiiiiiiiireeeeeeeeeeeeeeeeaee 19
7.7 Selection of Test Contracts and Testing POINtS..............euvviiieiiiiiiiiiiiiiniiieen. 192

7.7.1 Selection of TESt CONFACESu.iviieeeeeiie et e s e e e e eaans 192

XX Table of Contents

7.7.2 Selection of Testing Points and Valid TeSRamNgeccccvvvvvveeviieiiieeeeenenn. 194
7.8 SUmMMAry and DiSCUSSIONuuuiiiiiieeeaneee e e et e e e e e e smmmne e e 196
Chapter 8 Component Test Design and GENErationccccccccvvvevviieiiieiiiiiiieiieeeeen, 199
S 700 R | 1o o 18 o o) o PP 199
8.2 Main Tasks and TECNNIQUES ceemmmmeeriiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeens 199
8.3 Component Test Mapping TeChNIQUE ... eeeecrrieieeieeeeniiniiiieeeeeeessnnneens 201
8.3.1 The CTM DEefiNitiONuuuuueeunitmmeeineiiieiiiieieiiieneeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeas 201
8.3.2 The StepwWiSe CTM PIrOCESSceummmmmmesisairirereeesaaniinnereeeeeesasneeeess 203
8.3.2.1 TMI1: MappPiNg SCENAIIOSuvvummmmmesesrreeeeeeeeeaasiinnreeeeeeee s s nseeees 204
8.3.2.2 TM2: MappPINg SEUUENCESeueiieeeeeereeeeeesaaiiireee e e s aasinnnneeeee e 207
8.3.2.3 TM3: Mapping MESSAQJEScccuvrrmmmmmeerieieee e e e e e 214
8.3.2.4 TM4: Mapping OPEratioNsSccoeereeiririeeeeeeiiiiiiee e e e 216
8.3.2.5 TM5: Mapping EIemMentsccvvvevvveeiiii e, 221
8.3.2.6 TM6: Mapping CONLrACLSuuuuruuuiiiiias i svieneeeneaaenrreees 225
8.3.3 Setting and Applying CTM Criteriaccceeverereeieiiiiiiiiiiiieeeeeeeeeee e eeen, 228
8.3.3.1 CTM Correctness Criterialccueemmeeeeeeriitiieeeeeeeiiiiiiieeeeeeeeesnnnees 228
8.3.3.2 CTM OptimiSiNg CHIEHAvvvriiiieeeeeieiiiiiieeeeeeeeee e, 230
8.4 Deriving CTS Test Case SPeCifiCationsccccvvvviveeerieeiiiiiiiiiiieeeeerieeniieeeeness 230
8.5 Summary and DiSCUSSIONcoiiiiiceececciiiiieitt et reeeaneeaaaeaens 231
Chapter 9 Methodology Validation and Evaluationcccccccvviviiieiiieiiieiiieeeeeeennn. 233
LS A [o1 o To (3 Tox 1] o U PPTPPPPRPPR 233
9.2 Case StudY DESIgN ..cocviiiiiieeceee e ———— 233
9.3 Case Study: Car Parking SYStEMcuuuuuiuieiiiiiiiiiiiiiiiiiiiiineirrrrrereeeeee e 235
9.3.1 Special Testing REQUIFEMENLSommmmmmreeereeeeiiiiiieiiiaiiiiiiiesieiieaassisaeeen. 23D
9.3.2 Evaluating Test Artefact Coverage and Adeguac............cccceevvunnnnnnnnnnnnnnns 236
9.3.3 Evaluating Component Testability Improvement..............c.ccoccvvvveeeeeeinnnnes 237
9.3.3.1 Evaluation Example #1: Parking Access S&eileccccoeeeeenn. 238
9.3.3.2 Evaluation Summary: Adequate Test Artefamterage and
Component Testability IMprovement ..., 239
9.3.4 Detecting, Diagnosing and Locating Compof@ulltsccccvvevveeveeennee. 240
9.3.4.1 Evaluation Example #1: Parking Access S&eleccccceeeeeenn. 241
9.3.5 Evaluating Component Fault Coverage and DisigmSolutions 242
9.3.5.1 Adequate Component Fault COVEIrage .o .vvrveeeeeeiiiiiiiiiiiieeeeneenes 242

Table of Contents XXi

9.3.5.2 Fault Diagnostic Solutions: Diagnosis Ressaihd Analysis 248
9.3.5.2.1 Evaluation Example #1: Parking Accesgigdule 249
9.3.5.3 Evaluation Summary: Adequate ComponenttEaalerage and
Diagnostic Solutions and ReSUIScccoeeiiiiiiiieeee e 252
9.4 Case Study: Automated Teller Machine System............ccccovvivieeeiiiiiiiineeenen. 253
9.4.1 Special Testing REQUIFEMENLSommmmrrreeeeeiiiiiiriieiiieeeeessnsneeeeeeneenns 294
9.4.2 Evaluating Test Artefact Coverage and AJe@UAC..............uueemmererenneennnennnns 255
9.4.3 Evaluating Component Testability Improvement.................oooeeeeeeeieeeninnnns 255
9.4.3.1 Evaluation Example #3: Account Balance d&loncccccvvvveeeeee. 256
9.4.3.2 Evaluation Summary: Adequate Test Artefamterage and
Component Testability Improvementcoceeeeiiiniiiniceicenns 257
9.4.4 Evaluating Component Fault Detection, Diag;mand Localisation 258

9.4.4.1 Analysing Fault Case Scenarios to Develgtiagnostic Solutions .. 258

9.4.4.1.1 Evaluation Example #3: Account Balanckddtion 260
9.4.4.2 Evaluating Adequate Component Fault Coverag........c..ccvvvvvvvveeennne. 261
9.4.4.3 Evaluating Fault Diagnostic Solutions am3RtSccccvvvvvvivinnnnnn. 266
9.4.4.3.1 Evaluation Example #3: Account Balanckdd#ion 267
9.4.4.4 Evaluation Summary: Adequate ComponenttEaalerage and
Diagnostic Solutions and ReSUILSccceeeriiiiiiieeeeeee e 270
9.5 Evaluation Comparison and DiSCUSSIONS ..ceceeaeieiiiiiiiieieiieieieieiieeeeeeeeeeeeeaeeeees 272
0.6 SUMMEAIY ..ot rern e e e e e e e e e e eeeeeeeeeas 274
Chapter 10 Conclusions and Future WOorkcccceviiiii e, 275
10.1 Original ContribULIONS ... ee e e e e 275
10.1.1 Methodology COMPANISONco e e et e e e e e e eneeeeeaas 281
O 1 (0 1= 0T P 285
10.3 ConcCluding REMAIKScooiiiiiiit ettt e e 287
RETEIEINCES ...ttt e e e e e e s e e e e e e e e et e e e e s e nnnbreee s 289
Appendix A Software Component Laboratory Projectccoooeeeiieiiiieiiiiei e 305
A.1l The SCL ProjeCt OVEIVIEWcoeee e ettt 305
A.2 XML-Based Component Test SPECIfiCatioN ...ccceevveeeeiiiiiiiiiiiiieeee e 306
A.3 Test Pattern Verifier ... 309

A.4 Main Limitations and Remaining ISSUESccccco.ivviiiiiieeiiiiiieeeee e 310

XXii Table of Contents

Appendix B Case Study: Car Parking SYStemccccoooeiiiiiiiiii e 313
B.1 Overview Of the CPS SYSIEMuuuiicieeeeeiiiiiiiiiiiieiieeivieeve e eereeeeeeeeas 313
B.2 Special Testing REQUIFEMENLSuummmmmmeiiiiiiiiiiiiieeeeeeeeee e eeeeees s 315
B.3 UML-Based Software Component Development. oo ..o 316
B.4 Constructing TesSt MOEISoeiiiieeeeiiiee e 316

B.4.1 Use Case Test Model CONSLrUCLIONo eeeeeeeeerneieeeeeieiieeeiieeeeeeeeeeeenen. 317
B.4.2 Design Object Test Model CONSIUCTION e vvvvveeeeeeiieiiiiiiiieeee e 319
B.5 Designing and Generating CompoNENt TESES. comuvvrrrrriieeeeeiiiiiiieeeee e ennees 323
B.5.1 Test Sequence DeSIONccccooiiis e e 323
B.5.2 Component TESt DESIGNuvviiiiiieiiiiiieiiiieee et e e ee e e e 325
B.5.3 Component TesSt GENEratioNccceeeeceeeeeiiimrriieee e amneeees 327
B.6 Evaluation Examples for Evaluating Adequatet Peefact Coverage and
Component Testability IMprovementccceeeeevviviieeiieeeeeeeeeeee e 336
B.6.1 Evaluation Example #2: Parking Pay-ServiceeRU...........c.ccccvvvvvevviveeennnnen. 336
B.6.2 Evaluation Example #3: Parking Service SeégRUleccooeeieiiiiieiiinnn, 336
B.7 Evaluation Examples for Fault Case Scenaridysigand
Fault Diagnostic Solution DESIGNcciieeeeeeiiiieecieeeee e, 337
B.7.1 Evaluation Example #2: Parking Pay-ServiceeRU...........c.cccvvvvvvvvveeeennnnnnn. 337
B.7.2 Evaluation Example #3: Parking Service SeégRUleccooeeieeiiiieeiinnn, 338
B.8 Evaluation Examples for Evaluating Adequate @onent Fault Coverage
and DiagnOoStiC SOIULIONSccooiiiiiiiireeeee e 339
B.8.1 Evaluation Example #2: Parking Pay-ServiceRU.............ccccccvniiiiiiinneenn. 340
B.8.2 Evaluation Example #3: Parking Service S&gRUle ... 342

Appendix C Case Study: Automated Teller Machine SYemccccccvviiieieeeiiiiiinnen, 345

C.1 Overview Of the ATM SYSIEMoovvivrmmmm e eee e e e e eeeeae s 345
C.1.1 ATM Devices and OPEratiONS oo seeeeeeeaaaaaaaaeaaaaaaaaaaaasaannnnnnmmnnes 345
C.1.2 Core ATM TranSACHONSuuuuuuuuimmieeeeeieee et ee et e e e aa e e e e e e e e e e aaaaaaaeeeeeeeaennes 347

C.2 Special Testing REQUIFEMENLSccommmmmreeeriiiiiiieieee e e e e s smmmne e e e 348

C.3 UML-Based Software Component DevelopmMENt . vvveeeeeeeiiiiiiiiiieeee e 350

C.4 Constructing TeSt MOUEISooeiiimieie e 351
C.4.1 Use Case Test Model CONSErUCHIONccooeeeiieeeeieeeeieeeee e, 351
C.4.2 Design Object Test Model CONSIUCHION wreeeeeeeeeeiiiiiiiiiiieeeee e 356

C.5 Designing and Generating Component TESES. e eveeeeeerrriiiiiiieeeeeeerinnineeeennn.300

Table of Contents XXili

C.5.1 TesSt SEqUENCE DESIGNuuvviiiieiiiieeeeeee it e e e eee e e 360
C.5.2 Component TESt DESIONccvviiiiiiiaimeeee ettt e e eseeeeeaaes 364
C.5.3 Component TESt GENEIAtIONommmmeeeeeeriiiaireieeeeaaaiirrre e e s eeeannees 368
C.6 Evaluation Examples for Evaluating Adequatet Petefact Coverage and
Component Testability IMProvementcceeeceeiiiiiiiiieeee e 380
C.6.1 Evaluation Example #1: Customer Validationcccceeerniiiiniineeeeennnd (38
C.6.2 Evaluation Example #2: Account Selection §@tiionccccceeeevriinnnen. 380
C.7 Evaluation Examples for Fault Case Scenaridysigmand
Fault Diagnostic SOIUtioN DESIGNvviiiceeee e 381
C.7.1 Evaluation Example #1: Customer ValidatiQn.....................cccceeeeee. 138
C.7.2 Evaluation Example #2: Account Selection Satiioncccoeeeiiiiiiennns 382
C.8 Evaluation Examples for Evaluating Adequate Gonent Fault Coverage
and Diagnostic Solutions and RESUILScceeeecuerrriiiiiiiiiiiiiiiiiieieeeeeeee 383
C.8.1 Evaluation Example #1: Customer ValidatiQnccccooeeee 438

C.8.2 Evaluation Example #2: Account Selection Satiioncccoeeeiiiiiiennns 388

XXiv Table of Contents

2.1
2.2

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4

6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

List of Figures

Taxonomy of Software Component Characterigliexonomy Part 3)

Characteristics of Software Component Testgbili

The MBSCT Methodology: Four Composite Modules
MBSCT Methodology: Model-Based Integrated SCdcess

Constructing the Use Case Test Model

Use Case Test Model (CPS System)

Constructing the Design Object Test Model

Design Object Test Model (CPS System)

Design Test Sequence Diagram (CPS TUC1 Test Scénari

Test by Contract: Stepwise ThC Working Process
Test Contracts: ITC and ETC

Test Sequence = test contracts + test opesatieidS TUC1 Test Scenario)

Structured Test Sequence = a series of subdgqaences
(CPS TUC1 Test Scenario)

Structured Test Sequence = a sequence ofrtegigg(CPS TUC1 Test Scenario)

Contract-Based Component Test Design: jointgesip for CIT
(CPS TUC1 Test Scenario)

An Extended Fault Causality Chain

Contract-Based Fault Detection and Diagnoisé&s

CBFDD: Test Contracts and Fault Diagnosis Ptgse

CBFDD: Fault Detection and Diagnosis (CPS TU&4t Sequence)
CBFDD: Fault Diagnosis and Localisation (CPSCIUTest Sequence)
CBFDD: Stepwise Fault Diagnosis and Localigatio

CBFDD: Stepwise Fault Diagnosis and Localisaffetep 3.1.1)
CBFDD: Stepwise Fault Diagnosis and Localisaffetep 3.1.2)
CBFDD: Stepwise Fault Diagnosis and Localisafstep 3.1.3)

7.10 CBFDD: Stepwise Fault Diagnosis and Localsa{Step 3.2.1)
7.11 CBFDD: Stepwise Fault Diagnosis and Localisa{Step 3.2.3)

8.1
8.2
8.3

The Stepwise CTM Process
CTM: Test Mapping Phases
TM1: Mapping Scenarios

24
38

82
85

110
111
115

116

126
130
141

142
143

148

153
156
159

169
175
181
183
184
186
718
918

203
204
205

XXVi

List of Figures

8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12

8.13
8.14

9.1

9.2

Al
A.2

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

B.9

Cl1
C.2

TM1: Overall CTS test sets mapped for the CBE T test scenario 207
TM2: Mapping Sequences 208
TM2.1: System test event sequences mappebddCPS TUC1 test scenario 209
TM2.2: test message sequences mapped for tBeTOE1 test scenario 210
TM2.3: test operation sequences mapped foCRfe TUC1 test scenario 211
TM2: CTS test sequences (test sets/groupstopesi

mapped for the CPS TUC1 test scenario 12-214
TM3: Mapping Messages 215
TM4: Mapping Operations 217 - 218
TM4: CTS test groups, test operations, testraots and basic test elements

mapped for the CPS TUCL test scenario 220
TM5: Mapping Elements 222 — 223
TM6: Mapping Contracts 226
Evaluation Example #1: Parking Access Safetig Ru

(Fault Diagnostic Solutions with the CPS TUCL1 Tssign) 249
Evaluation Example #3: Account Balance Valioiati

(Fault Diagnostic Solutions with the ATM TUC2 Té&stsign) 267
An extract of CTS Test Specification DTD (TS-D)T 307
Main TPV GUI: test selection, history and résydanels 309
The Car Parking System 314
Use Case Test Model (CPS System) 317 - 319
Design Object Test Model (CPS System) 320 - 322
Test Sequence Design (CPS System) 324
CTS Test Case Specification for the CPS TUCst Beenario 328 — 330
CTS Test Case Specification for the CPS TUC& Beenario 331-332
CTS Test Case Specification for the CPS TUCSR Beenario 333 -335
Evaluation Example #2: Parking Pay-Service Rule

(Fault Diagnostic Solutions with the CPS TUC2 T@ssign) 340
Evaluation Example #3: Parking Service SecRitje

(Fault Diagnostic Solutions with the CPS TUCS3 T2stign) 342
Use Case Test Model: Test Use Case Diagram (8y&tem) 352
Use Case Test Model: System Test Sequencedbiagr

(ATM Session Test Scenario) 354

List of Figures

XXVil

C.3 Use Case Test Model: System Test Sequencedbiagr

(ATM TUC1 Core Test Scenario)
C.4 Use Case Test Model: System Test Sequencedbiagr

(ATM TUC2 Core Test Scenario)
C.5 Design Object Test Model: Design Test Sequé&niagram

(ATM Session Test Scenario)
C.6 Design Object Test Model: Design Test Sequé&nagram

(ATM TUCL1 Core Test Scenario)
C.7 Design Object Test Model: Design Test Sequ&iagram

(ATM TUC2 Core Test Scenario)
C.8 Structured Test Sequence Design (ATM SessishSa@enario)
C.9 Structured Test Sequence Design (ATM TUC1 Qest Scenario)
C.10 Structured Test Sequence Design (ATM TUC2 Cest Scenario)
C.11 CTS Test Case Specification for the ATM SeasSiest Scenario
C.12 CTS Test Case Specification for the ATM TUCHkeCTest Scenario
C.13 CTS Test Case Specification for the ATM TUQGReCTest Scenario
C.14 Evaluation Example #1: Customer Validation

(Fault Diagnostic Solutions with the ATM SessiorsiTBesign)
C.15 Evaluation Example #2: Account Selection Vatiioh

(Fault Diagnostic Solutions with the ATM TUC1 Té&xtsign)

355

356

357

358

359

362

362

363

368 — 371

371-374

375 -379

384

389

XXViii List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2

4.1

51

6.1
6.2
6.3

7.1

9.1
9.2

9.3

9.4

9.5
9.6

List of Tables

Review of Software Component Definitions

Component-Related Stakeholders

Taxonomy of Software Component Characterigliexonomy Part 1)
Taxonomy of Software Component Characterigliexonomy Part 2)
Software Component Testing Characteristics

Different Perspectives and Needs Towards Cosgolesting

SCT Test Levels/Phases

Taxonomy of Software Component Testing Techesqu

Taxonomy of Testability Improvement Approactieaxonomy Part 1)
Features and Comparisons of Testability Imgmoent Approaches
(Taxonomy Part 2)

Review of MBT Definitions

UML Diagrams and Modeling for Software Testing
The MBSCT Methodology: an Overall Outline
Test Artefacts for UML-Based SCT

Test by Contract: Model/Component Artefact, €axt Artefact
Test by Contract: TbC Test Contract Criteria
Contract-Based Component Test Design (CPS TI#31 Scenario):

test sequences, test groups, test operationgaesacts and test states

The CBFDD Guidelines: an Outline

Measurement of Test Artefact Coverage (CPS Sasty)

Evaluation Summary: Adequate Test Artefact Caye and
Component Testability Improvement (CPS Case Study)

Analysis and Evaluation of Adequate ComponentitFCoverage and
Diagnostic Solutions (CPS Case Study)

Evaluation Summary: Adequate Component Faule@Gmge and
Diagnostic Solutions (CPS Case Study)

Measurement of Test Artefact Coverage (ATM Ciitsely)
Evaluation Summary: Adequate Test Artefact Caye and
Component Testability Improvement (ATM Case Study)

15
17
19-20

23
30
23
34
36
41

42

49
59

83

108

812
134

514

164

237

239

43— 247

252
525

257

XXX

List of Tables

9.7

9.8

9.9

9.10

9.11

10.1

Al
A2

B.1
B.2

Ci1i
C.2

C3

C4

Analysis and Evaluation of Adequate ComponenttfCoverage and
Diagnostic Solutions (ATM Case Study)

Evaluation Summary: Adequate Component Faule@ge and

Diagnostic Solutions and Results (ATM Case Study)

Evaluation Comparison: Test Artefacts Covetdgasurement

(CPS Case Study vs. ATM Case Study)

Evaluation Comparison: Adequate Test Artefamterage and

Component Testability Improvement (CPS Case StgdyAVM Case Study)
Evaluation Comparison: Adequate Componenttaerage and
Diagnostic Solutions and Results (CPS Case Studi™Mgl Case Study)

Comparison Summary: the MBSCT Methodology vs.
Representative SCT/MBT Approaches

Component Test Specification: DTD and Test Doent

Test Specification Document: structures, elemdnags, attributes

Use Case Test Model: Test Use Cases (CPSngyste
Component Test Design (CPS System):

test sequences, test groups, test operations:,dlmacts and test states

Use Case Test Model: Test Use Cases (ATM System

Component Test Design (ATM Session Test Scahari

test sequences, test groups, test operationgaeisacts and test states
Component Test Design (ATM TUCL1 Core Test Skepa

test sequences, test groups, test operationgaeisacts and test states
Component Test Design (ATM TUC2 Core Test Skiepa

test sequences, test groups, test operations:,dlmacts and test states

26 265

271

273

273

274

282

306
308 — 309

319

325 -327

353

5 36

6 36

367 — 368

ATM

CBCTD
CBFDD
CBS
CBSE
CDD
CfD
CfT

CIT
COTS
CPS
CTC
CTI
CT™M
CTS
CuT

DbC
DOTM
DTD

ETC

FDD

GUI

IBT
IEEE
ITC

MBD
MBSCD
MBSCT
MBT
MDA

List of Acronyms and Abbreviations

Automated Teller Machine

Contract-Based Component Test Design
Contract-Based Fault Detection and Diagnosis
Component-Based Software/System
Component-Based Software Engineering
Component Descriptor Document
Contract for Diagnosability

Contract for Testability

Component Integration Testing
Commercial-Off-The-Shelf (component)
Car Parking System

Component Test Case

Component Testing Index

Component Test Mapping

Component Test Specification

Component Under Test

Design by Contract
Design Object Test Model

Document Type Definition
External Test Contract

Fault Detection and Diagnosis
Graphical User Interface

Implementation-Based Testing
The Institute of Electrical and Electronics Engiree USA

Internal Test Contract

Model-Based Design/Development

Model-Based Software Component Development
Model-Based Software Component Testing
Model-Based Testing

Model-Driven Architecture

XXXl

List of Acronyms and Abbreviations

MDD
MDE

OCL

ODM
OMG
OOA
00D
OOoP
ooT

PAL
PIN

RSD

SBT
SCD
SCI
SCL
SCT
SDLC
SUT

ThC
TCR
TC
TG
™
TO
TPV
TS
TSD
TUC

UBT
UCM
UCTM
UML

Model-Driven Development

Model-Driven Engineering

Object Constraint Language
Object Design Model

Object Management Group, USA
Object-Oriented Analysis
Object-Oriented Design
Object-Oriented Programming

Object-Oriented Testing

Parking Access Lane

Personal Identification Number

Result Set Document

Specification-Based Testing

Software Component Design/Development

Software Component Integration
Software Component Laboratory

Software Component Testing

Software/System Development Life Cycle

Software/System Under Test

Test by Contract
Test-Centric Remodeling
Test Contract

Test Group

Test Mapping

Test Operation

Test Pattern Verifier

Test Sequence/Scenario
Test Specification Document

Test Use Case

UML-Based Testing
Use Case Model
Use Case Test Model

Unified Modeling Language

List of Acronyms and Abbreviations

XXXiii

UML-SCT A core UML subset for SCT

uP Unified Process
W3C World Wide Web Consortium
XMI XML Metadata Interchange

XML Extensible Markup Language

Chapter 1 Introduction 1

Chapter 1
Introduction

This chapter presents an overall introduction ie tiesis. For the purpose of this reseaBgt-
tion 1.1discusses the main research problems and challeriggimary interest in the research
areas of software component testing and model-bastidg.Section 1.2lescribes the primary
motivations and objectives of this research. Tigattion 1.3resents an overview of the origi-

nal contributions of this thesiSection 1.4utlines the structure of this thesis.

1.1 Research Problems and Challenges

Since the term of “software components” was cre&tetb68 pPQ], software components have
been the primary foundation for building componkased software/systems (CBS) in compo-
nent-based software engineering (CBSE)| [139 [117] [137)]. In recent years, services (e.g.
component-based services, web services) and samemed architecture5g] have been
evolving as a new generation of software compon@misCBSE, which further shows their im-

portance to the entire software domain.

Software component testing (SCRY] [66] is a proven software engineering approach to
evaluating, improving and demonstrating componelmlbility and quality {2] [66] for produc-
ing trusted software componens3] [94], which plays a critical role in support of thecsass
of CBSE. A major factor is that inappropriate reo$eintested, defective, unreliable and poor-
quality software components may lead to seriousvsoé reliability and quality problems. Al-
though component functionality and reusability ateays needed, SCT particularfssures
component reliability and quality, and thus becomesntegral part of the development lifecy-
cle of software components and CBS. Therefore,irttportance of SCT in CBSE cannot be
underestimated.

SCT focuses on producing component test cases (CWAgh is the central part of all
SCT tasks. Our literature review (hapter 2and Chapter 3 will show that there are three
main categories of commonly-used testing approafdragst design and generation, which are
implementation-based testing (IBT), specificati@séd testing (SBT) and model-based testing
(MBT) (especially as reviewed iection 2.5 Among them, one of our findings is that MBT
has more advantages, and can well support compamegtation and system testing (as re-
viewed inSection 3.2.). Furthermore, recent model-driven software dgwalent paradigms,
such as model driven architecture/development/eeging (MDA/MDD/MDE) [106§ [84]
[134] together with the standardised Unified Modelirenguage (UML) 10§ [28] [125, have

2 Chapter 1 Introduction

enabled MBT to become much more popular, and UMdelaesting (UBT) emerges as a new
and active mainstream approach to MBT. This thadapts MBT/UBT as the primary approach
to SCT to accomplish the effective integration @ TSand MBT, and particularly focuses
SCT/MBT on UML-based testing of software componertd CBS (i.e. UML-based SCT). The
main areas of SCT/MBT in this thesis cover UBT &iML-based SCT.

Although MBT has evolved from model-based desigvétlspoment (MBD), advancing
from MBD to MBT poses crucial challenges for thevelepment of useful MBT approaches.
The same is true for the development of effectil¥ tbased SCT approaches when advancing
SCT with UML from software component design/devetemt (SCD) with UML. Despite much
research on the areas of SCT/MBT in the literatilmexe still exist a number of important chal-
lenging problems that remain unresolved and hartipeutilisation of SCT/MBT (as reviewed
in Chapter 2and Chapter 3 especially inSection 3.5 Resolving these problems requires fur-

ther research to achieve the goal of desirable BBT/effectiveness.

The following outlines the most important reseapcbblems that are directly related to

the scope of this thesis:

(1) Lacking a unified testing process, where SCT/MBTivitties can be integrated properly
into the entire software development process (dbdureviewed irSection 3.2.5.1Sec-

tion 3.2.6.3 Section 3.5andSection 3.%

On the one hand, because the use of MBT approawbars a significant paradigmatic
change from IBT or other traditional testing aptuoes, there are some obstacles in technology
transfer of MBT into testing organisations, so tiverall process of software development and
testing must be adapted. On the other hand, beadube aforementioned problem, software
models used for test generation are not incorpdrappropriately with software artefacts pro-
duced from the software development process, dwaoé models are defined merely by and
for a specific MBT approach in use. This can cahseuse of an MBT approach not to be cost-
effective.

This research emphasises the intrinsic connectidiBYT to its counterpart MBD. We
argue that MBT should be an integral part of, amoud be incorporated into, the entire soft-
ware development process. We also argue that tip®riemce of models constructed for
SCT/MBT (i.e.test modelsas termed in this thesis) should be consideredllygwith models
constructed for SCD/MBD (i.edesign/development modeds termed in this thesis), which
could allow model-based component development astihg to collaboratively work together
for producing quality components. This suggestsithia very important to investigate a unified

SCT/MBT process that can well integrate model-basadponent development and testing ac-

Chapter 1 Introduction 3

tivities. It would be also very useful to apply UMhodeling in this unified process to enable
the utilisation of a consistent model-based appgr@a specification with UML for all compo-

nent development and testing activities.

(2) The deficiency in the investigation of how to brédiest gapsfor component testability
improvement in MBT/UBT (as further reviewed $ection 3.2.6.3Section 3.5andSec-

tion 3.9

There is a misunderstanding that existing developmeodels can be reused directly
(without change) as test models for MBT/UBT. Thasmpractical because ordinary develop-
ment models by their nature are simply not testlyes testable. In fact, there exist certain gaps
between ordinary development models (which aretastable) and target test models (which
should be testable). A primary reason for the erist of thesetést gaps (as termed by this
thesis) is that ordinary development models maamty for component design and implementa-
tion, and accordingly, they may not contain suffitly adequate testing information to support
MBT/UBT. Such “test gaps” are a major obstacle weroome inadequate model-based compo-
nent testability, with the result that relevant MBBT activities (e.g. model-based fault detec-
tion and diagnosis) can not be carried out propartiie MBT/UBT practice.

Therefore, it is necessary to explore what thesst ‘gaps” are exactly and how to cope
with them in the MBT/UBT practice. In particulat,Wwould be useful to investigate a testing
technique that can bridge the “test gaps” and inprodel-based testability to facilitate rele-
vant MBT/UBT activities.

(3) The deficiency in methodological comprehensiveriasmost reported SCT/MBT ap-

proaches (as further reviewedSection 3.%

In most situations, a SCT/MBT approach reportetthé@literature has only fewer (usually
one or two) individual testing techniques. Consedyethis results in the SCT/MBT approach
having limited testing features and capabilitielisTis seen in the most reported representative
SCT/MBT approaches that have been highly cited bpynwesearch papers in the literature (as
reviewed inChapter 2andChapter 3. For example, they do not sufficiently cover faliagno-
sis and localisation, or lack detailed and openrati@escriptions about how to generate actual
test cases and oracles, etc.

Although it is impractical to have a complete orfpet testing approach, we argue that it
would be much more useful to develop a new commrgiie SCT/MBT methodology, which is
expected to contain a set of supporting testingrtiegies and processes, methodological fea-
tures and testing capabilities to undertake aluireg SCT/MBT activities. Software testers
would wish to have such a comprehensively integré¢sting methodology to meet practical

testing requirements, which could considerably cedine costs of method learning and selec-

4 Chapter 1 Introduction

tion. We argue that methodological comprehensivereesa key to the success of any SCT/MBT

methodology.

(4) Lacking comprehensive validation and evaluation moost reported SCT/MBT ap-

proaches (as further reviewedSection 3.%

Most SCT/MBT approaches reported in the literatane not evaluated analytically and
empirically, and are shown only with some indivibigsting examples. Lacking comprehensive
validation and evaluation for a testing approacksdnot provide convincing evidence on its
practical usefulness, which could make it difficidt software testers to select and apply this
testing approach for their testing needs.

We argue that any SCT/MBT approach under investigashould be validated and
evaluated comprehensively, for example, by usiegrees of full case studies. This can not only
confirm the testing features and capabilities &t claimed by the SCT/MBT approach, but

also demonstrate its advantages over other releséidg approaches.

1.2 Research Motivations and Obijectives

The primary research motivation of this thesisisaddress the four most important challenging
research problems as describedettion 1.1 The principal research objective of this thesis i
to introduce a novel hybrid UML-based SCT methodglocalled Model-Based Software
Component Testing (MBSCT), to effectively support the most important SCT/M8ctivities,
especially for test model construction, componest tlesign and generation, component test-
ability improvement, component fault detection asidgnosis (FDD), and component test
evaluation, with the ultimate goal to produce tedstjuality software components and benefit all
component stakeholders (e.g. developers, testeessluin CBSE. This research focuses on
component integration testing (CIT) that bridgemponent unit testing and component system
testing, which particularly supports software comgrat integration (SCI) that is the most com-

mon component reuse method employed in CBSE peactic

To address the first challenging research probtkim research introduces a novel unified
testing process, callddodel-Based Integrated SCT process, which aims to integrate UML-
based SCT activities with the corresponding UMLdahSCD activities as the core phases of
the SDLC (software/system development life cycld)is enables the utilisation of a consistent
UML-based approach and specification for all SCl &CT activities under this integrated
SCT process. By guiding test model construction rodel-based test development iteratively
and incrementally, the integrated SCT processhiase methodological component for the en-

tire MBSCT methodology and its framework.

Chapter 1 Introduction 5

This research addresses the second challengingrcasproblem by identifying tést
gaps in MBT/UBT and introducing a novel contract-basesting technique, calleBest by
Contract (TbC) technique, which aims to bridge the identifi¢éelst gapSand improve compo-
nent testability. The ThC technique is another M&SCT methodological component, and
provides a stepwise ThC working process and a adnlrased fault detection and diagnosis
(CBFDD) method to support test model construction, corapbriest design and generation,
component fault detection, diagnosis and locabsati

In addition to the above two base MBSCT methodalaigtomponents, this research pro-
poses a new scenario-based testing techniqued cdienario-Based Component Integra-
tion Testing (CIT) technique, which aims to emphasise the ingyare of identifying and con-
structing test scenarios and test sequences atielvlop scenario-based test models and sce-
nario-based component tests for the CIT purposis fHsearch also introduces a novel testing
strategy, called’est-Centric Remodeling (TCR) strategy, which aims to incorporate the TbC
technique into model-based testability improvensnd the scenario-based CIT technique into
test-centric model optimisation in test model corgton. Finally, this research introduces a
novel mapping-based testing technique, call@dnponent Test Mapping (CTM) technique,
which provides a stepwise CTM process and aimsutdegtest mapping and transformation
from testing-related component artefacts at differaodeling levels towards test derivation of
target CTCs.

This research addresses the third challenging nesgeioblem with the development of
the MBSCT methodology that has the desired methgiicdl comprehensiveness. The MBSCT
methodology is developed with the abovementidiadmajor methodological componentise
model-based integrated SCT process, the scenasedl@T technique, the TbC technique, the
TCR strategy, and the CTM technique. They jointipmort the most important SCT/MBT ac-
tivities in thethree-phase testing framewofikcluding test model construction, component test
design and generation and component test evaljatiod enable MBSCT to be model-based,
process-based, scenario-based, contract-based bBB&s and mapping-based, which form the
six main MBSCT methodological featurédl these methodological components and features
further support theix core MBSCT testing capabilitieghich are: (1) test model construction,
(2) component test design and generation, (3) cosmdault detection, diagnosis and localisa-
tion, (4) adequate test artefact coverage, (5) corapt testability improvement, (6) adequate
component fault coverage and diagnostic solutions.

This research also undertakes two full case studrethe comprehensive validation and
evaluation of the MBSCT methodology (including theethodological components, testing
framework, methodological features and testing baifias), in order to address the fourth chal-

lenging research problem.

6 Chapter 1 Introduction

In addition, this research conducts a comprehergemture review on SCT/MBT and
introduces a set of useful new SCT/MBT concepts @afehitions to create a solid conceptual
foundation for the development of the MBSCT metHodp. The MBSCT methodology inte-
grates these new SCT/MBT concepts and definitiates the MBSCT methodological compo-
nents to consolidate the MBSCT'’s testing framewank&thodological features and testing capa-

bilities.

This research was initially motivated by the presidSoftware Component Laboratory
(SCL) work, which was an Australian Government feehgbroject 40] [96] [97] [98] [88] (Ap-
pendix A describesan overview and review of the SCL work). The SChjgct proposed an
XML-basedcomponent test specificati¢g@TS) for specifying and representing component test
cases (calle€TS test case specificatiQngvhich has several unique characteristics ana@amdv
tages over traditional test case representatidfld 117] [137] (such as a well-defined and well
structured specification format), and is used lyMBSCT methodology. The SCL project also
developed an accompanying testing tool, tdst pattern verifie(TPV) for verifying CTS test
case specifications in dynamic testing, which $®alsed by the MBSCT methodology.

To further the work of the previous SCL projecisttihesis intends to address some of the
main limitations and remaining issues of the SChjgut (as reviewed iBection A.4in Appen-

dix A), specifically by the investigation of a systeroapproach to model-based design and
generation of component test cases represente@&$eSt case specifications, component inte-
gration testing, component testability improvememgi component fault detection and diagno-

Sis.

The significance of this research is to addresstaoEthe most important challenging
problems remaining in the SCT/MBT area in general a number of the main limitations of
the previous SCL project in particular. The progbBSCT methodology is put forward as
our resolution to these problems, which aims torawme certain obstacles to advance wide-
spread SCT/MBT utilisation and to achieve the ddder SCT/MBT effectiveness. The signifi-
cance of this research is strongly supported wiktaof original contributions achieved by this

research, which are described in the r&edtion 1.3and revisited irChapter 10

1.3 Overview of Original Contributions

This thesis makes substantial and original contidbs to the Software Engineering scholarly
body of knowledge in the main research areas diveoé components, software component

testing, model-based testing, UML-based testingtract-based testing, scenario-based testing,

Chapter 1 Introduction 7

mapping-based testing, and fault detection, diagnasd localisation. The original contribu-

tions comprise two major parts, with respect togtlestantial literature review for the solid re-

search foundation and the comprehensive MBSCT mdetbgy developed as the result of this

research.

11
(1)
)
®3)
(4)
()

1.2
(1)
)
®3)
(4)
()
(6)

The following presents an overview of the origioahtributions of this thesis:

The original contributions arising from the literature review for the research foun-
dation (in Chapter 2 and Chapter 3)

In the research areas of software components and software component testing

A new comprehensive taxonomy of software componkatacteristics (isection 2.2.p
A new software component definition @ection 2.2.8

A new definition of software component testing fiection 2.3

A useful taxonomy of software component testindgptégques (inSection 2.%

A practical taxonomy of component testability impement approaches (Bection 2.%

In the research areas of model-based testing and UML-based testing

A study of model-based tests @ection 3.2.%

A new definition of model-based testing @ection 3.2.5

A new test model definition (i8ection 3.2.%

A new definition of UML-based testing (fBection 3.3.1

A core UML subset for SCT (iSection 3.3.2

A study and review of use case driven testing ahario-based testing (iBections
3.3.2 to 3.3.3andSections 3.4.203.4.9

The principal original contributions of the MBSCT methodology (in Chapter 4 to
Chapter 9)

The principal original contributions of this resglaare to introduce a novel hybrid SCT

methodology -Model-Based Software Component Testing (MBSCT), which is developed

to possess five major methodological componentbree-phase testing framework, six main

methodological features and six core testing céifiabi

2.1

(1)
)
®3)

The five major MBSCT methodological components that have been developed
are:

Model-Based Integrated SCT ProcessGiapter 4andChapter %

Scenario-Based Component Integration Testing TecdlenfinChapter 4andChapter %
Test by Contract (TbC) Technique @hapter 4o Chapter

8 Chapter 1 Introduction

(4) Testing-Centric Remodeling (TCR) Strategy @hapter 4andChapter %
(5) Component Test Mapping (CTM) Technique @hapter 4andChapter §

2.2 The MBSCT framework has been created as a new model-based testing frame-
work with the following three main phases for undertaking UML-based SCT:

(1) Test Model Construction (i@hapter 4andChapter %

(2) Component Test Design and GeneratiorQlivapter 4o Chapter §

(3) Component Test Evaluation (@hapter 7andChapter 9

2.3 The MBSCT methodology and its framework have six main methodological fea-
tures.
The MBSCT methodology enables SCT to be model-hagestess-based, scenario-
based, contract-based, FDD-based, and mapping-bateel SCT practice.

2.4 The MBSCT methodology and its framework have six core testing capabilities.
(1) MBSCT Capability #1: test model construction

(2) MBSCT Capability #2: component test design and gaioan

(3) MBSCT Capability #3: component fault detectiongiasis and localisation

(4) MBSCT Capability #4: adequate test artefact cowerag

(5) MBSCT Capability #5: component testability improwamh

(6) MBSCT Capability #6: adequate component fault cagerand diagnostic solutions

1.4 Thesis Structure and Outline

This thesis is structured into ten chapters aneetlappendices. After the thesis introduction in
this chapterChapter 2andChapter Jpresent the comprehensive literature review amigt eex
search results (including the new concepts anaitiefis as described iBection 1.3 Chapter

4 to Chapter 8ntroduce the MBSCT methodology and its framewairkgl systemically demon-
strate how to apply them to UML-based SCL actigitigth a number of illustrative testing ex-
amples.Chapter Qundertakes further methodology validation and watébn with two full case

studies, followed by the thesis conclusion andstigggestions for future work @hapter 10

The outline of chapter and appendix contents i ttiésis is described below:

(1) Chapter 2 Foundation of Software Components and Stfare Component Testing
Chapter Zoresents a comprehensive review of important qascerinciples, characteris-

tics and techniques of software components and i8Gfie current literature. Based on this,

Chapter 1 Introduction 9

further research work on software components an@l iS@escribed with a number of further
research results (including new concepts and dieins) as part of the original research contri-

butions achieved by this thesis.

(2) Chapter 3 Model-Based Approaches: Models, Modelingnd Testing

Chapter 3comprehensively reviews model-based testing, UM&elnl testing and related
work in the current literature. Based on this,Hartresearch work on model-based development
and testing is described with a number of furtlesearch results (including new concepts and

definitions) as part of the original research catwitiions achieved by this thesis.

(3) Chapter 4 Model-Based Software Component Testing: Methodology Overview
Chapter 4presents an overview of the MBSCT methodology ésmdramework intro-
duced by this research, which are the principadioal contributions achieved by this thesis.
The main principles and technical aspects of tiile fnajor MBSCT methodological compo-
nents are described. This chapter also outlineshiiee-phase testing framework, the six main

methodological features and the six core testipgiogities of the MBSCT methodology.

(4) Chapter 5 Building UML-Based Test Models

Chapter Sapplies the MBSCT methodology to develop a sdi/Mi-based test models
for UML-based SCT in the first phase of the MBSGa&nfiework. This chapter discusses the
main tasks and techniques for test model constnuetith the first four MBSCT methodologi-
cal components, and demonstrates how to apply tberanstruct UML-based test models (e.qg.
use case test model, design object test model) théhillustrative testing examples selected

from the first case study, the Car Parking SysteRS).

(5) Chapter 6 Test by Contract for UML-Based SCT

Chapter 6introduces the TbC technique and several importantract-based test con-
cepts (including test contract, Contract for Tetitgbeffectual contract scope, internal/external
test contract), and designs a set of six contrasedh test criteria (i.e. TbhC test contract crijeria
for effective testability improvement. This chaptigvelops a useful stepwise TbC working
process, and demonstrates how to put the TbC wpahmnto practice for contract-based testing
activities to undertake UML-based SCT, which igstrated with the selected testing examples

from the CPS case study.

(6) Chapter7 Test by Contract for Component Fault Detetion, Diagnosis and
Localisation
Chapter 7ocuses the TbC technique (especially the advapbade of the stepwise TbhC

working process) on component fault detection, nlesis and localisation. After introducing an

10 Chapter 1 Introduction

extended fault causality chain and a new notiof€ontract for Diagnosabilitythe CBFDD
method (including the CBFDD process and guidelinesjeveloped to guide FDD activities.
This chapter analyses important interrelationshipsveen test contracts and fault diagnosis
properties in terms of fault propagation scopetfdiagnosis scope and effectual contract
scope. Based on this, the CBFDD method is appbedetelop fault diagnostic solutions (in-
cluding direct diagnostic solutions and stepwissgdostic solutions in two major testing con-
texts), and to detect, diagnose and locate compdaelts with the illustrative testing examples

selected from the CPS case study.

(7) Chapter 8 Component Test Design and Generation

Chapter &discusses the main tasks and techniques for coenpoest design and genera-
tion with the five MBSCT methodological componemtsthe second phase of the MBSCT
methodology. In particular, this chapter introduttess CTM technique, and describes the CTM
definition and the stepwise CTM process with themsain CTM steps for component test deri-
vation. The CTM technique is applied to derive ¢arG@TS test case specifications, which is

illustrated with the selected testing examples fthenCPS case study.

(8) Chapter9 Methodology Validation and Evaluation

Chapter 9eports two full case studies (i.e. the Car Parl8ystem (CPS), and the Auto-
mated Teller Machine (ATM) system) undertaken iis ttesearch for further validation and
evaluation of the MBSCT methodology and its frameiwd he case studies examine and assess
the testing applicability and effectiveness of $hecore MBSCT testing capabilities. The result
of this methodology validation and evaluation destmtes and confirms that the six core
MBSCT testing capabilities are effective to achidwe required level of component correctness

and quality.

(9) Chapter 10 Conclusions and Future Work
Chapter 1@oncludes this thesis by revisiting the origiredearch contributions with fur-
ther discussions, and exploring important openeisstoncerning methodology improvement

and research directions for future work.

(10) Appendix A Software Component Laboratory Project
Appendix A presents an overview and review of the previouk B@ject, which moti-

vated this research to address some of its maitations and remaining issues.

(11) Appendix B Case Study: Car Parking System
Appendix Bpresents the CPS case study, and provides thgtoacid and supplemen-

tary information about this case study. The mogiartant aspects of methodology validation

Chapter 1 Introduction 11

and evaluation with this case study are describé&hapter 9

(12) Appendix C Case Study: Automated Teller Machine Sytem
Appendix Cpresents the ATM case study, and provides thedgraokd and supplemen-
tary information about this case study. The mogidrtant aspects of methodology validation

and evaluation with the ATM case study are desdrib€hapter 9

12

Chapter 1

Introduction

Chapter 2 Foundation of Software Components an8oftware Component Testing 13

Chapter 2
Foundation of Software Components and
Software Component Testing

2.1 Introduction

SCT plays a critical role in support of the suca&s€BSE and its importance in CBSE cannot
be underestimated (as described earli€santion 1.1) Software components and CBS are the
primary subject of software/system under test (SliTthe scope of this thesis, and SCT (in-
cluding testing of software components and CB#)escentral focus of this research.

Our study shows apecial CBSE diversity characteristic: a distinguishing characteris-
tic of component-based software engineering diffete the traditional (non component-based)
software engineering is thdifferent stakeholderée.g. developers, testers, users, etc.) gify
ferent roleswith different perspectivefor different needsand work withdifferent resource
different contextsThis special CBSE diversity characteristic (whisfadapted from1[66], and
will be further discussed iSection 2.2.1.4nd other related sections) influences the appesac
for both SCD and SCT in CBSE practice, and posgsifgiant challenges in these important
research areas. Accordingly, it is necessary terstand and investigate fundamental aspects of

software components and SCT.

Among many aspects, this chapter particularly fesusn the following important issues

and concerns of primary interest in software congptsmand SCT:

(1) What is a software component? Why are there difftecemponent definitions that con-
tain different component properties in the CBSE dimr (inSection 2.2.1)

(2) What are software component characteristics? Wbatponent characteristics support
SCT? How do we classify them to develop a propesrtamy? (inSection 2.2.2)

(3) How do we develop a new component definition tdipalarly emphasise the importance
of software component testing and quality in CBE&Bection 2.2.3)

(4) What is software component testing? What are the ofaracteristics of SCT? What are
CTCs and specification? (Bection 2.3)

(5) What are the general SCT process and test levalS&¢tion 2.4)

(6) How do we classify SCT techniques to develop a@régxonomy? (irection 2.5)

(7) What is software component testability? What aeerttain approaches to improve test-

ability? How do we classify them to develop a prapgonomy? (irSection 2.6)

14 Chapter 2 Foundation of Software Componentsna Software Component Testing

This chapter presents a comprehensive review obitapt concepts, principles, charac-
teristics and techniques as well as related workoftivare components and SCT in the litera-
ture. Based on this in-depth literature review, unelertake further research work to develop
new concepts and definitions, which aims to entfh relevant knowledge and principles of
software components and SCT in the literature. Woevsour research viewpoints and results to
reinforce the importance of component testing and qualitg BSE, which is the central focus
of this research. The principal goal of this reskan Chapter 2is to create a solid foundation
and proper background in these primary researasdoz the development of the new MBSCT

methodology by this research.

This chapter is organised into two main parts. fits¢ part isSection 2.2hat reviews a
number of different component definitions and chaastics (inSection 2.2.), and introduces
a new comprehensive taxonomy of software compotiggriacteristics (isection 2.2.2 Based
on this, we propose a new software component diefn(in Section 2.2.8 The second part of
this chapter fronBection 2.3to Section 2.&ocuses on SCTSection 2.3proposes a new SCT
definition, and describes the associated genesiintgeprocess and main testing tasksét-
tion 2.3.1) We then study and analyse important SCT chaiatitar (in Section 2.3.p test
cases and specification concepts Siection 2.3.8 different testing perspectives and needs (in
Section 2.3.4)and main SCT limitations (i8ection 2.3.p Section 2.4describes the main SCT
phases and levels in the general SCT process, ifidividual components to component inte-
gration and CBSSection 2.5introduces a useful taxonomy of SCT techniquegdet design
and generation, and correlates them to relevantidesls. Section 2.6studies and discusses
component testability concepts, characteristics, general strategies to improve component
testability. We then develop a practical taxonorhyesting approaches for component testabil-
ity improvement and show a comparative study fraffeint perspectives. Finalljgection 2.7

presents the summary and discussion of this chapter

2.2 Software Components

2.2.1 A Review of Software Component Definitions

2.2.1.1 Different Definitions of Software Components

The concept of software components has been actittee computer software community al-
most for four decades, since it was initially imlvged by Dr Mcllroy at the 1968 NATO Soft-
ware Engineering Conference(]. However, the question of “what is a software poment?”

is not simple with a definitive answer. There atnerous definitions about software compo-

Chapter 2 Foundation of Software Components an8oftware Component Testing

15

nents in the literature3p] [38] [74] [44] [139 [94] [159 [66] [127 [87]. Table 2.1lillustrates
some of the important component definitions givgrte well-known researchers/organisations

in the literature.

2.2.1.2 Review and Analysis

It is necessary to study and review existing conapodefinitions, and identify and evaluate the

essence of common software components, in ordangwer the above question appropriately.

To effectively analyse and evaluate existing congmbrdefinitions, we extract and summarise

the key software component characteristics thatmeetly/indirectly involved in the respective

definitions, as shown ifable 2.1(Section 2.2.2will further discuss software component char-

acteristics in detail).

Definition
Reference Source

Table 2.1 Review of Software Component Definitions

Definition Description

Component
Characteristics

~

Definition by A reusable software component is a logically Reusability, modularity
Booch P7] cohesive, loosely coupled module that denotes a | (cohesive, coupling),
single abstraction. encapsulation (abstraction
Definition in A component represents a modular, deployable, § Modularity, deployable,
OMG UML v1.5 | replaceable part of a system that encapsulates replaceable, encapsulation
[107] implementation and exposes a set of interfaces. | interfaces
Definition by A software component is a software element that | Component model,
Heineman & conforms to a component model and can be independent deployment
Councill [74] independently deployed and composed without | and composition,
modification according to a composition standard.| composition standard
Definition by A component is a software element (modular unit) Modularity,
Meyer 4] satisfying the following conditions: usability/reusability, usage
1. It can be used by other software elements, its | interfaces, independent use
“clients.”
2. It possesses an official usage description, hwisic
sufficient for a client author to use it.
3. Itis not tied to any fixed set of clients.
Definition by A software component is a unit of composition witf Composition, contract-

Szyperski 139

contractually specified interfaces and explicit teo
dependencies only. A software component can beg
deployed independently and is subject to

composition by third parties.

based interfaces, context-
dependencies, independent
deployment, third-party
composition

There are some common component characteristibe iaxisting component definitions,

such as modularity, reusability, interface, etatiiermore, we can see that different definitions

take different viewpoints and focus on differenpexds of software components. Accordingly,

each definition holds some key component propeftt@s its particular perspective.

16 Chapter 2 Foundation of Software Componentsna Software Component Testing

(1) Booch’s P7] definition seems relatively simple.
This definition has three basic component attribwatereusability, modularity and encap-

sulation (abstraction).

(2) The component definition in OMG UML v1.8(7 has a similar approach.
This definition includes a few more component praps of modularity, encapsulation,

interfaces, deployable and replaceable attributes.

(3) Heineman & Councill T4] base their definition on some aspects of higlelleemponent
standards.
This definition requires software components toehawnformance to component models
and composition standards, in addition to some sszcg component properties of independent

deployment and composition.

(4) Meyer 4] takes a broad view of components with certainratigristic-based condi-
tions.
This definition views a broad range of (small/laggain) modular units as components, if
they fulfil the three conditions on important compat characteristics of usability/reusability
(condition #1), usage description or interface #mation (condition #2), and independently

usable by any client or independency (condition #3)

(5) Szyperski 139 gives a more rigorous and precise component idiefin

This definition emphasises the key component chariatics, such as composition, con-
tract-based interfaces, context-dependencies, amtlmt deployment, and third-party composi-
tion perspective. But the definition does not mamtany component models and standards.
Among many other definitions in the literature, Besski’'s definition is well-known and

widely-accepted in the CBSE community.

2.2.1.3 Component-Related Stakeholders

When studying software components and their défimst we need to consider another impor-
tant factor associated with component-related sialkiers. We can classify component stake-

holders into three main categories in the CBSE dionas shown ifable 2.2

(1) Component production stakeholder: developer, tegtality engineer, project manager.

These stakeholders are the major producers ordrgilaf software components in CBSE.

(2) Component trade stakeholder: trader/vendor.

Note that a tester may also be part of the compamnade stakeholder group because it

Chapter 2 Foundation of Software Components an8oftware Component Testing

17

may be necessary to undertake final testing jusiré@ component sale to customers.

The above two types of component stakeholdersrd)(2) are jointly called component

providers/suppliers according to the primary rbleytserve for component users.

®3)

Component consumer stakeholder: user/customer.

The component user is the final stakeholder whallfipurchases, uses/reuses and oper-

ates software components in the CBSE domain.

Stakeholder

Table 2.2 Component-Related Stakeholders

Description

(Role/Perspective/Need)

Resource

Context

Relation
-ship

Analyse, design and implement development development production
Developer) . .
components. information | environment| member
o Test, verify and validate component testing testing :
= Uils information | environment| Production
= member,
3|8 Qualit Standardise, measure and evaluate quality quality or trade
5 m En ineyer component quality; certify and ship | information | environment| member
a 9 components.
Project | Plan, manage and coordinate managemen| managemen| production
Manager | components project. information | information | member
Trader Manage component repository; trad trade trade trade
/NVendor and sell components. information | environment| member
Select, reuse, integrate and deploy | use/reuse | uselreuse | use/reuse
User/Customer components; build, use and operate /deplpyment /deplpyment member
CBS. /application | /application
information | environment

2.2.1.4 Special CBSE Diversity Characteristic

Based on the above study and reviewSattion 2.2.1.10 Section 2.2.1)3 we can conclude a
special CBSE diversity characteristic as definetlexan Section 2.1 As shown inTable 2.2jt
is clear that different stakeholders hold differ@etspectives towards software components.
One may see and get different component definitioms different component stakeholders
who have different needs or requirements for gamdponents. Such requirements are closely
related to what characteristics components shoave hin order to fulfil all stakeholders’ needs,
especially for the component users who finally page, use and operate software components.
Accordingly, this special CBSE diversity charactgciis a primary reason why there are
different component definitions that contain difflet component properties in the CBSE do-
main. Another important reason for this is that te@cept of software components itself has
actively evolved gradually from its early stagewaods more maturity nowadays, along with
many different concepts and techniques of SCD aB& @esign/development that have

emerged for building software components and CBS.

18 Chapter 2 Foundation of Software Componentsna Software Component Testing

Currently in the CBSE domain, there is no singleni@ component definition. Further-
more, there is no standard that specifies what'goad” software component, what is the stan-
dard for component models, what is the standarcbofponent infrastructure and framework,
and so on. Because of the lack of standardisatmftware engineers can only take advantage of
some key component characteristics to a limitedrexh CBSE practicesp]. Section 2.2.2will

discuss software component characteristics in metail.

2.2.2 A New Taxonomy of Software Component Characteristie

Generally speaking, software components should hawvember of characteristics and proper-
ties that can denote and reflect component funatityn quality and performance relevant to all
component-related stakeholders, and especiallyatalle to component users3[]. So what
are “good component characteristics”? Accordinglis necessary to study and review compo-
nent characteristic aspects in the literat@@ [74] [154] [44] [139 [159 [66] [87] in order to
identify “good component characteristics” to editbla component quality metric for meas-
urement of “good software components”. This israpartant aim of this research to further the
knowledge of component concepts and principlediénliterature (as described earlierSec-
tion 2.1).

In this section, we introduce a new comprehensixertomy of component characteristic
properties (as shown ihable 2.3 Table 2.4and Figure 2.1below). A major goal of this new
taxonomy is to establish a proper component qualijric for the determinant of what a “good
software component” is. Another important goaldsapply this new taxonomy to guide soft-
ware component testers to focus on the crucial compt characteristics during testing. Note
that the list of component characteristics in #nehomy is intended to be neither completely
inclusive nor exclusive to other classificationghe literature. The important purpose here is to
provide a solid foundation for systemically studyioomponent characteristics, developing a
new component definition for effective componeistitey.

The following subsections discuss in detail comporgharacteristic classification (in
Section 2.2.2) interrelationship (irSection 2.2.2 2 and new component properties 8ec-
tion 2.2.2.3 (which we have identified and added to the taxaypoas shown as the asterisked
items inTable 2.3 Table 2.4andFigure 2.1below).

2.2.2.1 A Classification of Software Component Characterists

Our taxonomy includes twenty-two (22) software comgnt characteristics. We classify these
component characteristics into four (4) main catiego as described ihable 2.3(Taxonomy

Part 1). The first category describes essential functi@eenponent properties, and the other

Chapter 2 Foundation of Software Components an8oftware Component Testing

19

three categories describe non-functional compoattrnbutes.

Level

Implicit/essential

Table 2.3 Taxonomy of Software Component Characteristics (Taxonomy Part 1)

Characteristic

Functionality

Description

Well-defined, dedicated capability that providesdtions and services to
fulfil specified requirements. Functionality feagsrusefulness and values th
are most important to all stakeholders.

at

Executability

The capability of being executed to perform reqiiftenctions in the
specified context. Executability is a prerequisitéunctionality and other
related properties to be achievable and deliverabdecution.

Usability

The ease of use of component deliverables as esgpacd satisfied. Usabilit
requires the capability of being learned, undeidtaod operated, and the
efficacy of use from the user perspective.

Basic

Identity

The unique representation of a component so tpattacular component can
be differentiated from other peers, and can béndistely identifiable in the
lifecycle contexts of development, testing, rewsmloyment, operation,
maintenance and repository. Identity can be reptedewith a well-defined
naming scheme for the distinguishing identification

Modularity

The extent of being composed of individually distionits (called modules).
Good modularity requires high cohesion and low diogpwhich is a key
requirement of a module to be one or part of a corapt.

Encapsulation

Enclosing related representation and implementati@me unit of
organisation. Encapsulation hides internal workifgrmation (e.g.
implementation and data) to be externally invisénel inaccessible, except
external interfaces. Typical units of encapsulatiom objects, classes,
modules and packages.

Interface

Abstraction of component services with externalible operational
specifications (e.g. publicly accessible operatigignatures, but not their
implementation details). Interfaces are accesstptinfunctional services by
external clients, and provide a common interconoadietween two or more
components for interactions and communications.

Independence

Separation of responsibilities from operationalimmments for integration
and deployment; being delivered as independens garthat they can be
replaced under certain conditions and constraints.

Reusability

The capability of ease of reuse by different chantdifferent application
environments. Component reuse can be as a whatepart (ideally without
modification). Typical reusable component elemémthude functions,
interfaces, specifications, source code, executaldst cases, user manualg
etc., but not just executable programs only.

Portability*

The capability of being platform-independently golrtand executed from on
computer system environment to another (idealhjheout modification).

Documentation

Specifying and documenting software elements, dholy software
documents for specifications, interfaces, reusployenent, user manuals, et
Component elements should be documented for efeease/reuse.

o

Intermediate

Customizability

The capability of modifying software artefacts teehindividualcustomer
needs and/or particular operating environment requénts. Customization
selects, tailors and configures component functiotierfaces and other
related elements, and then packages customizedarmmpelements for a
new delivery. Customizable components hold enhaneese and deployme
capabilities.

20

Chapter 2 Foundation of Software Componentsna Software Component Testing

Deployability

The capability of software distribution to put iniee and operation from
development and/or third-party sites into the terd@perating environment
Deployment customises (if applicable), packagestalts and activates
executable component instances to be ready fouéracand use in the
runtime environment. It is the final stage of re@g component reuse in the
new target environment.

Interoperability

The capability of supporting intercommunications alata/message
exchanges between peer components across diffs@gsses on the local
computer system or over the network system. Inenaige components
jointly fulfil communications and collaborationsquired in integration
contexts.

Composition

Composing parts into the whole (ideally without rifizdtion) to construct
complex components and systems. Composition reuskassembles
composite components or parts for component integraComposition
relationship is transitive.

Integrability*

The capability of being integrated to develop commbcomponents and
systems in the operating environment. The integmngirocess includes
customisation, composition, configuration and othgivities to combine ang
unite all software and/or hardware componentsamnt@verall executable
system.

Substitutability*

The capability of replacing a component with anothehe same or different
contexts under certain conditions. The permittdab8tution requires that the
substituting component fulfils the equivalent featiof the substituted
component (e.g. functions, interfaces) and usuellycertain improved
effects (e.g. better performance or reliability).

Advanced

Testability*

The extent of the ease of being tested for confao®do certain testing
requirements. Testable components facilitate ttebéishment of test criteria
and performance of tests to determine whether tbotia have been met.
Strong testability indicates the ease of obseraimgj controlling test inputs
and outputs to enhance testing effectiveness dititety.

Reliability*

The capability of a component/system that canlftii& required functions
and maintain the level of performance consistestlyf satisfactorily under
stated conditions. Reliability requires correctnasd robustness, and denot
the probability of failure-free operation in a sified environment for a
specified period of time.

Integrity*
(security, safety)

The condition/state/quality of being unimpairedthemtic or perfect with the
protection against software damage and dangehas@tcomponent/system
able to control and protect its programs and aasedtidata against
unauthorised access and malicious attack (e.g.fioatibn, deletion), and to
prevent inadvertent and hazardous operations, @idemtal failure, injury
and life risk. Integrity holds two key associatepects of security and safet
and enforces protection mechanisms and procedeigsauthentication,
access control, encryption) to assure softwarergg@nd safety as well as
deliverable correctness and reliability.

is

=~

Selectability*

The ease with which a particular component canvatuated and acquired
from a candidate set of potential components fos@eand construction of
other components and systems. Selection measwiadénfunctional and
non-functional factors with many unique componewperties to ensure
functional and quality components are selected gntgp

Standardised
/Standardisation
/Standards

Standardising components and associated activitiesonform to uniform

deployment, project management, etc. Componentiatdisation establishe
certain mandatory requirements and measurementstiance compone

standards and models for development, testing,itquaksurance, reusg

c,

characteristics for building standardised compaogient

Chapter 2 Foundation of Software Components an8oftware Component Testing 21

The four main categories of software componentattaristics are described as follows:
(1) Implicit/essential component characteristics (3rabgeristics)

These component characteristics are the most edskemictional properties that all soft-
ware components should implicitly possess. In fple¢ software components share some es-
sential characteristics with good computer softwareparticular, software components should
be executable, usable and deliver the requireditumadity.

Note that, although this category of component attaristics is not classified separately
and discussed explicitly in the present literafui4 [44] [139 [66], we particularly highlight
their significance with our taxonomy. For import&8€T objectives (SCT will be discussed in
Section 2.3and onwards), SCT focuses on testing softwexexutableorograms for functional

testing of software components and CBS, whichrigapor focus of this research.

Besides the essential functional properties, wee haentified nineteen (19) non-
functional component characteristics that supporttional delivery with good quality and per-
formance. These component characteristics canrbigefuclassified into three main categories
based on the level of componentisation qualityidyastermediate, advanced.

(2) Basic component characteristics (8 characteristics)

The level of basic component characteristics regmssnecessary attributes for software
components. They serve as a basis for higher-mraponent characteristics.
(3) Intermediate component characteristics (6 charnatit)

The intermediate level of component characterigtidkects certain desired quality fea-
tures of software components above the basic level.

(4) Advanced component characteristics (5 charactes)sti
Advanced component characteristics stand at théetegb of the proposed taxonomy and

are required particularly for high quality softwa@mponents.

Among these component properties in our taxonommfet exist severalniquecompo-
nent characteristics that can demonstrate thavamtcomponents are explicitly different from
ordinary software modules, units or other piecessaftware systems. These distinguishing
component characteristics typically feature in hgglality software components, and mainly
include reusability, customizability, interoperatlyil deployability, composition, integrability,
substitutability, selectability, etc. Some of these new component characteristics, which are
added to the taxonomy (as shown as the asteriskers inTable 2.3 and will be further dis-
cussed irbection 2.2.2.3

2.2.2.2 Interrelationship among Software Component Charactestics

In this taxonomy, we have given a concise desoripfor each component characteristic, as

22 Chapter 2 Foundation of Software Componentsna Software Component Testing

shown inTable 2.3 Furthermore, we correlate each component chaistateto other relevant
characteristics (if applicable), as shownTable 2.4(Taxonomy Part 2). The characteristic in-
terrelationship indicates that a particular compwreharacteristic is either workingot” or
supported By” some related component characteristics in termsomponent characteristic
correlations. For example, the characteristic “dggbility” is workingfor the feature “reusabil-
ity” and supportedy the attributes “independence”, “customization’prigoosition”, etc.

Furthermore, we also correlate a particular compbaokaracteristic to one or more com-
ponent-related stakeholders (if applicable) intthenomy as shown ifable 2.4 The compo-
nent user has the major role of stakeholder becsofé@are components are built for use by
either internal users (e.g. corporate businessrttapats) or external users (e.g. third-party cus-
tomers). Thus, the characteristic correlation te tomponent user is especially important,
which is illustrated with &sp. user” in addition to the ordinary correlatioAli” for all compo-
nent-related stakeholders as showmahle 2.4

In addition to the textual descriptions, we alseega diagrammatic representation of the
taxonomy as shown iRigure 2.1(Taxonomy Part 3), to aid visualisation of interrelations and
their related levels of component characteristicthe taxonomy. A series of right block arrows
indicates that component properties proceed frdowdevel to a high level toward the highest
level of component standardisation. Converselyljizsrated with left block arrows, component
standardisation implies that a number of supportimmgponent attributes are included.

Among many component propertiggusability is one of most important component
characteristics. This component feature is supddifemost basic and intermediate component
characteristics for effective component reusehéiudd be noticed that the “standardised” fea-
ture possesses a special mutual interrelationsiipother component properties. Good compo-
nent properties can be united together to supperestablishment of a characteristic foundation
of component standards; on the other hand, comp@iandards can standardise component
models and CBSE processes, and promote good comipfeetures across all component
stakeholders, so as to produce high-quality softiveammponents. Frormigure 2.1 complete
standardisation is seen to be the ultimate goadbieving high quality software components in
CBSE.

Note that our taxonomy shows the basic common riglsgionships among component
characteristics in general cases. However, whamtifging some interrelationship between two
component properties, it is indeed quite diffidoltabsolutely say that a component property is
just only workingfor (or equivalently, supportdaly) another component property, but definitely
not vice versa,; or they are mutually independergxmliusive without any connection at all. In
some case, two component properties (e.g. compesind integration) may work together
and/or mutually support each other in one way a@tlar. Investigating the precise interrela-

tionships andrthogonalityof all component characteristics is useful anddrtgnt. However,

Chapter 2 Foundation of Software Components an8oftware Component Testing

23

such a study is beyond the current scope of tsisareh.

Level

Table 2.4 Taxonomy of Software Component Characteristics (Taxonomy Part 2)

Characteristic

Related Characteristics

Stakeholder

/Standards

_ | Functionality For: all All, esp. user
s By: executability, usability
o C
E_ & | Executability For: all, esp. functionality, usability All, esp. user
(%]
=< Usability For: all, esp. functionality All, esp. user
By: interface, documentation
Identity For: reusability, selectability All
Modularity For: encapsulation, reusability, testability All
Encapsulation For: reusability, testability All
By: modularity, interface
Interface For: reusability, substitutability, testability,leetability | All, esp. user
By: encapsulation
-§ Independence Fo.r: reusa_b_ility, deployability, substitutabilitigstability | All, esp. user
3 By: portability
Reusability For: selectability All, esp. user
By: most basic & intermediate properties, esp.
independence, portability, customizability, deploisy,
interoperability, composition, integrability,
substitutability, testability, reliability, intedyi
Portability* For: executability, independence, reusability All, esp. user
Documentation | For: all All, esp. user
Customizability | For: reusability, deployability, integrability All, esp. user
Deployability For: reusability, substitutability All, esp. user
o By: independence, customizability, integrability
% Interoperability | For: reusability, integrability All, esp. user
€ | Composition For: reusability, integrability All, esp. user
] . o hili
E By: customizability
Integrability* For: reusability, deployability All, esp. user
By: composition, interoperability
Substitutability* | For: reusability, deployability, selectability All, esp. user
Testability* For: reusability, reliability, selectability All, esp. user
By: modularity, encapsulation, interface
Reliability* For: reusability, selectability All, esp. user
By: testability
D
o Integrity* For: all All, esp. user
Y (security, safety) | By: testability, reliability
©
<< | Selectability* By: all, esp. functionality, reusability, testabili All, esp. user
reliability
Standardised For: all All
/Standardisation | By: all

24 Chapter 2 Foundation of Software Componentsna Software Component Testing

Essential Basic Intermed iate Advanced Standar dised
\ \ \ \ \
Functionality Identity > Customizability> Testability* > Standardised
[
Modularity >
[Deployability >
Encapsulati0n> ‘ —
‘ Reliability* >
Interface > Interoperab|llty>
Executability \ Standardisation
Independence> Composition >
Integrity* >
Reusability >
‘ Integrability* >
Portability* > ‘
[
Usability Documentatior> Substitutability*> Selectability*> Standards
| \ | [

Figure 2.1 Taxonomy of Software Component Characteristics (Taxonomy Part 3)

2.2.2.3 New Software Component Characteristics

In this section, we study a number of new comporiatacteristics in the taxonomy (marked
with the star symbol “*” inTable 2.3 Table 2.4andFigure 2.}, which are not described in the
current literature{4] [44] [139 [66]. In the taxonomy, the seven (7) new componentasttar-

istics are identified and added to the three matagories respectively as follows:

(1) Inthe category of basic component characterigticgability
Software components need to be reused in variompai@r environments across differ-
ent platform systems. Compongurtability is necessary for effective component reuse irethes

diverse reuse contexts.

(2) In the category of intermediate component charesties: integrability and substitutabil-
ity
Software components are often used in new integratontexts for building new CBS.
No component integration implies no component re@®d componenntegrability can en-
able effective component integration, reuse andogegent. This research examines and evalu-
ates component integrability in the component irgggn context in conjunction with compo-
nent integration testing, which is a central fooisur SCT methodology (to be described later

from Chapter 4and onwards).

Chapter 2 Foundation of Software Components an8oftware Component Testing 25

Substitutabilityfacilitates component replacement to meet the compt users’ varied
needs, such as component reuse, selection andemaite. In general, it is quite common and
reasonable for the component users to substitutexesting software component with a new
software component that has equivalent functiomshkatter quality in an existing or new reuse
context. A particular component user may do compbmeplacement if the new equivalent
software component is more consistent with thegnatiion context (e.g. has the same or com-

patible computer language implementation and/ctimenenvironment).

(3) In the category of advanced component characiesistestability, reliability, integrity

and selectability

These advanced component properties specify higlitgueatures of good software
components in addition to all other component faates, which is crucial to the success of
CBSE. A major purpose is to minimise and preverdrselection and reuse of non-testable,
unreliable and insecure/unsafe components. Gesthbility can enable relevant component
properties to improve the ease of being assesaabl@redictable, and particularly aid in exam-
ining and evaluating component functionality aedability. Testable and reliable components
hold high interest for component selection to bi@iBS effectively, and support component
selectability The same characteristic of componsglectabilityis also important for component

integrity particularly in high safety and security CBS.

These new component characteristics (especiallpdiranced characteristics) introduced
with our taxonomy aim to support the delivery ofjthisoftware quality for component reuse,
integration and deployment, and conform to the etqmk component requirements, specifica-
tions and performance. A major focus of this resleds on evaluating and improving compo-
nent testability and reliability to produce qual@tgftware components, so that they can be se-
lected, reused and integrated effectively andiefiity.

According to Meyer 93] [94], trusted componentare the combination of reuse with a
special attention to the quality of the compondmgimg reused. Our taxonomy developed with
the new component characteristics aims to estahlisteasurement base of guaranteed-quality
components, in order to build and provide the &distomponents with necessary quality-

specific characteristics for the software industry.

2.2.3 A New Software Component Definition

A simple component definition is that a softwarenponent is a reusable software unit for
building other components and software systems.édsew to provide effective reuse and con-
struction capabilities, software components nequbsess certain good component characteris-

tics. Moreover, software components also need t@ ls@me additional high-level properties

26 Chapter 2 Foundation of Software Componentsna Software Component Testing

that can effectively support and enhance religbdind quality. Therefore, based on our study
on the component definitions (Bection 2.2.}, characteristics and taxonomy @ection 2.2.p,

we can propose a new software component defingsofollows:

Definition 2-1. A software component is a functional, reusable, testable and reliable
software unit with specified interfaces and operating contexts for software composition,

interoperation, integration and deployment.

The new component definition covers common compbokaracteristics in the existing
component definitions (as reviewed3ection 2.2.. Moreover, the new component definition
has certain important implications and aspectsrbatl to be discussed. The discussion is con-
ducted particularly in conjunction with the new aapmy of component characteristics devel-

oped inSection 2.2.2

(1) This definition first emphasise&inctionality, which is the most essential component
property as shown in the taxonomy. No functionalitgans no interest in use/reuse to all
stakeholders. A particular software component lecsed for possible reuse firstly be-
cause the component user is interested in itsiimecbefore considering any other soft-

ware aspect.

(2) This definition emphasisasusabilityas the second most important component property.
The potential benefit of software reuse is onehef primary reasons for developing and

using software components in CBSE.

(3) This definition includes some important and enhdrm@mponent characteristics that can
support effective software reuse to build compleftvgare components and CBS. These
component properties consistafmpositioninteroperation integrationanddeployment
which cover most of the important software actéstin CBSE. These characteristics are
unique to software components and not found inittcahl software, as discussed in the

taxonomy.

(4) Specified interfaceprovide useful mechanisms for component reuserdaperation and
integration. This feature allows a software commbrie be reused as a whole, not par-
tially, with no need to access the internal cortdiom details encapsulated in the compo-
nent unit. In other words, software componentsransed merely through their specified
interfaces. This feature supports software compiotesting, especially for black-box and

functional testing based on the component interépeeifications.

Chapter 2 Foundation of Software Components an8oftware Component Testing 27

(5) Operating contextspecify component environments where a particaanponent is
reused, integrated and deployed as well as operatexse component contexts may be
any kind of virtual, simulated or runtime envirorm®in component-based systems. This
feature also supports software component testiecause software components are tested

in a similar integration and/or operating contextsere they are used/reused.

(6) Testability and reliability are the advanced component characteristics asnshrowhe
new taxonomy. In practice, the component usergalésiknow how well software com-
ponents are developed and conform to the requinectibnality and quality. These value-
added component properties particularly emphasigmitant software quality features,
and address a verifiable and measurable exterdfiege quality that would be satisfac-
tory to the component users. Accordingly, theseoirtgmt component properties can ef-

fectively assist the users in selection and refisestable and reliable components.

The proposed component definition extends the iigfincoverage scope and contains
the most important component characteristics thatcanceptually supported by most compo-
nent properties at the basic and intermediate deielthe new taxonomy (iection 2.2.p
Based on our literature review, this new compordgiinition appears to be the most compre-
hensive available in terms of the range of impdremmponent characteristics covered, and has
a significant advantage over most existing compbdefinitions (as reviewed earlier Bection
2.2.1). Based on this new component definition, our MBSCathndology is developed to im-
prove component testability and quality, which e @f the major objectives of this research.

Note that the new component definition appliesh® different types of component soft-
ware, which covers common functions/proceduresiratisdata types, object-oriented classes,
individual components, integrated or complex congmis, and even component-based systems.

This research addresses testing of all these tfpgmmponent software.

2.3 Software Component Testing

Among many other factors, the success of CBSEsrai® not only functional and reusable
software components, but also reliable and highitgusoftware components for building CBS
effectively and efficiently. SCT has been showibéoa proven approach to examining, improv-
ing and demonstrating the reliability and qualifysoftware components and CBS in practice
[16] [24] [10Q [66]. SCT is the central focus of this research. Afeariewing software compo-
nents inSection 2.2we move on to study the foundation aspects of 80T this section on-

wards.

28 Chapter 2 Foundation of Software Componentsna Software Component Testing

2.3.1 Definition of Software Component Testing

2.3.1.1 Existing SCT Definitions

There are many publications and much researchtefftr regard to SCT, but there is no single
formal SCT definition that has been widely accepted used in the SCT domain. For the ques-
tion of “what is software component testing?”, meststing SCT definitions were based on
traditional software testing at the unit level, ISCT is basically treated as traditional unit-test

ing of software modules. For example,

(1) According to Gao et al6p], software component testing refers to testingvaies that
uncover software errors and validate the qualitgaffware components at the unit level.
In traditional software testing, component testirsgially refers to unit testing activities

that uncover software errors in software modules.

(2) According to Sommerville136, component (or unit) testing is that individuanepo-
nents are tested to ensure that they operate tdgrieach component is tested independ-

ently, without other system components.

(3) The IEEE Standard Glossary/] gives a definition of component testing as folkowhe

testing of individual software components or groapeelated components.

From a quick analysis of the existing SCT defimtpwe can observe some implications

and limitations as follows:

(@) The SCT definition by Gao et abf] involves two traditional testing aspects of vieaf

tion and validation clearly at the unit level.
(b) The SCT definition by SommervilldBg mainly relates to testing of a single component.

(c) The SCT definition by the IEEE Standard Glossar [s still very simple, while it con-

siders an aspect of an extended SCT scope ovegla somponent.

In CBSE, SCT and unit testing have some similajtieut they are not exactly same.
Among many other factors, the differences betwdwmt mainly come from the concept of
software components, which evolves from a simpfenswe unit to an entire CBS (as described
in Section 2.2.3 This means that a good SCT definition must calermportant testing as-

pects of different types of component software.

Chapter 2 Foundation of Software Components an8oftware Component Testing 29

2.3.1.2 A New Definition of Software Component Testing

After a brief review of existing SCT definitionsn(5ection 2.3.1)1 we propose a new SCT

definition in this research as follows: (which dapted from174)

Definition 2 —2. Software component testing denotes a set of software testing
activities that analyse component artefacts, design and generate component tests,
detect and uncover component faults, and evaluate component reliability and quality

of software components and systems under test.

In common with all software testing, the underlyingplication of this definition indi-
cates a generic testing process with six majoinggthases to carry out key testing tasks as fol-

lows:

(1) Component analysis and test planning: to produsteplans and management documents
based on component analysis. The test plans desgaptesting objectives and require-

ments; (b) strategies and approaches; (c) resquiosts and schedules, etc.

(2) Component test design and generation: to developponent test specifications that de-

scribe test inputs, execution conditions, and etgqueoutputs/results for each CTC.

(3) Component test execution: to execute and operatgpaoents/systems with test cases in

target testing environments.

(4) Component testing observation and examination:bgerve actual test results, analyse
the observed test results against CTCs (especghynst the relevant expected test re-

sults), and examine component functions and bebesiio

(5) Component fault detection: to detect and uncovessipte component faults based on

component testing observation and examination.

(6) Component testing evaluation: to assess and deteroaimponent reliability and quality

against component specifications and testing adlvxt

Note that the new SCT definition goes beyond thditional scope of SCT at the indi-
vidual unit or single component level. In this rash, we use the ter®CTto generally de-
scribe the core testing activities for a single ponent under test (CUT), individual compo-
nents, integrated components and CBS. Our MBSCThadetogy integrates this new SCT

definition and particularly focuses on the testifigntegrated components and CBS.

30 Chapter 2 Foundation of Software Componentsna Software Component Testing

2.3.2 Main Characteristics of Software Component Testing

In principle, SCT shares common characteristicgenferal software testing as describedan
ble 2.5 This table contains the four main testing chamastics, which are adapted from the
IEEE Software Engineering Body of Knowled#ad,.

Table 2.5 Software Component Testing Characteristics

Dynamic This characteristic pertains to dynamic testingrstatic testing.

Dynamic testingletects software faults with the aid of computetems, and requires tre
actual execution of the SUT’s program with tesuitspto evaluate functions and
behaviours in the real runtime or simulated taegstronment. This requires test cases
being executable. By contrastatic testings performed without running the operationzll
program of the SUT to uncover potential inconsisies and incompleteness in
requirements and specifications, and is typicasigdiin early development stages prior to
existence of the SUT’s executable code. Testinglghge ultimately dynamic on the
SUT'’s implementation to meet the user’s real nebdsause the user actually makes use
of the SUT’s program for real-life business regsgeststead of specification documents.

Finite This characteristic pertains to finite test spaeer @xhaustive testing.

The entire test space could be theoretically itdimiith too many test cases due to all
possible combinations of program data and condjieths, makingxhaustive testing
impossible and infeasible even for trivial (smallkample) programs. Thignite test space
allows a limited number of test cases to be execisteactual testing within limited
testing time and resources. Testing is non-exhausaid based on finite test cases.

Selected This characteristic pertains to properly selectst tases from a vast or infinite test spiice.

Testing needs good test techniques that can guitibly identifying and selecting finite
test cases based on certgEst criteriaof test selection and coverafp desired testing
effectiveness and efficiency. Well-selected tesesamply cost-effective testing in order
to reveal more faults with the selected test cases.

Expected This characteristic pertains to expected test tesvith test oracles.

Testing needs to determine test pass or fail foh é@st execution to evaluate expected
software reliability and quality. This requiresgesial test mechanism calledest oracle
which is a test generator to produce the expeetstd¢sults for a specified test input, and
a test comparator to compare and check the aestaldsults against the expected test
results. The observed function or behaviour caexaenined against requirements
(validation) or specificationsverification). Thus, the expected testing is determined
(validated or verified).

The new MBSCT methodology introduced by this resledocuses on designing and
generatindinite component test cases aexpectedest results fodynamictesting of software
components and systems, and applying selecteccdsss to detect and diagnose component
faults.

Chapter 2 Foundation of Software Components an8oftware Component Testing 31

2.3.3 Component Test Cases and Specification

From the SCT definition and characteristics as mesd in Sections 2.3.5nd2.3.2 we can see
that SCT activities are driven by component tesesahat form the central part of all SCT
tasks. This section describes important terms andepts of component test cases and specifi-
cation, which is adapted from§5 [164.

Conceptually, a&component test cag€TC) specifies the CUT’s initial state, test envi
ronment, test inputs, test execution conditionpeeted test outputs/results designed for a par-
ticular test objective, such as causing failuretecting faults, or examining functions. There

are three important parts in the CTC concept:

(1) Thetest inputspecifies test data input to the CUT to discovassible faults or verify

specific outcomes as expected.

(2) Theexpected test resulf a description of what expected output will lbeduced by exe-

cution of the CUT with the associated test input.

(3) Thetest executiois running a test on the CUT, where the CUT dagstést inputs speci-
fied by the CTC, and the actual test outputs asenied and evaluated against the ex-
pected test results specified by the same CTC.t@$teng can be evaluated with a test
oracle that is the test generation and comparisechamism (as introduced Trable 2.5.
Test oracles are developed mainly based on softweapgrements/specifications, and/or
testing knowledge and experience of the testett dresles may be manual, automated or

partially automated.

A test case is a specification of one scenariesd the CUT. Atest set(sometimes re-
ferred to as &est suit@is a collection of test cases that are typicadlated and organised into a
sequence of test cases for a specific testing parfar the CUT. The related test cases or test
sets constitute the core part otest specificationwhich is a software specification that de-
scribes, specifies and represents all testinga@lattefacts associated with all testing activities
Several types of test documentation are derivem tiee test specification, including test plans,
test requirements, test design, test environmésts,cases, test execution, test evaluation and
analysis reports (e.g. faults, errors and repadciiigtions, etc. The test specification of the
CUT should specify all test cases or test setd@fQUT. Because CTCs are the central part of
all SCT tasks and a clear focus of this researehwill often refer to test specifications or test

cases or test sets, and these terms are usedrapépte contexts in this research.

32 Chapter 2 Foundation of Software Componentsna Software Component Testing

2.3.4 Different Perspectives and Needs in Component Tesg

All testing activities are mainly conducted by &stor testing tools operated by testers. Be-
cause of the special CBSE diversity characteristic described irSections 2.1and2.2.1.9,
different rolesof software component testers work wdlifferent resources different contexts
and thus takeifferent approachetwards SCT activities. This indicates that SCimdae chal-
lenging than ordinary software testing. Accordingtyis necessary to understand thifferent
perspectiveandneedsof the various stakeholders towards componenntgsivhich are sum-
marised inTable 2.6(which is adapted fromLpg).

This research mainly focuses on functional tesapgroaches to support the common
needs of both types of component testers, as irdicsith Table 2.6 Moreover, the user-side
tester could employ specification-based functidaating approaches for SCT, in the same way
that the production-side tester does, if the uskr{ester could access component specifications

(e.g., which may be packaged and provided witlrctdmponent product on request).

Table 2.6 Different Perspectives and Needs Towards Component Testing

Different Roles Different Resources Different Contexts Different Approaches

Testers on the Have unrestricted access to/ Work in the devel- Can use all possible testing ap-
component (2) full component specifica- opment environ- proaches at different testing
production side tions (e.g. software models); ment with strong levels:
(2) implementation (e.g. pro- technical support: (1) structural testing approaches
grams or source code) hardware, software (e.g. verification techniques);
and technical staff (2) functional testing ap-
proaches (e.g. verification and
validation techniques)

Testers on the (1) Have restricted access t¢ Work in the de- Have to use functional testing
component user limited informal specifica- | ployment and/or approaches (e.g. verification
side tions only on functions and ' application envi- and validation techniques),
interfaces; ronment, with lim- based on only available limited
(2) Have no access to analy ited or no technical component information in the
and design specifications, support user’s target environment
implementation (programs o
source code)

2.3.5 Limitations of Software Component Testing

SCT aims to examine and evaluate component coggstand quality with numerous advan-
tages. However, SCT also shares certain technighlnan-technical limitations with general

software testing. It is necessary to emphasise sdrte main testing limitations as follows:

Chapter 2 Foundation of Software Components an8oftware Component Testing 33

(1) Complete or exhaustive testing is infeasitilg] [24]

Despite testing costs being extremely high (se®€B)w), complete or exhaustive testing
is practically unattainable, because of the testimgracteristics as describedTiable 2.5(e.qg.
Finite, Selected). In other words, testers can aaljeve as much test coverage as possible un-

der certain constraints in practice (e.g. time eost).

(2) Testing is not decidable

As Dijkstra states, “Program testing can be useshtiw the presence of bugs, but never
to show their absence!4}] In other words, testing cannot show the absefcefects, and it
can only show that software defects are preséBjt This implies that some software defects
may remain undetected. On the other hand, becamnsplete/exhaustive testing is unachievable
in practice (see above (1)), some software artefaety remain untested, where some software
defects hide out. Accordingly, testers cannot guaeathat any tested software is completely

100% correct and perfect.

(3) Testing is labour-intensive and expensive

Testing is time-consuming and a major part of thére SDLC. Testing costs a large
amount of human resources, management effort addebucompared to other development
activities and phases. In particular, studies stiwav testing can consume more than fifty per-
cent of the total software development cod®§ [70] [21]. As software complexity and critical-

ity grow continuously, testing becomes more andeexpensive and difficult.

Due to the testing limitations described above,néxet best testing that testers can attain
is to carry out adequate testirigto fulfil the practicably achievable testing objres and re-
quirements. The MBSCT methodology developed in tbsearch takes this approach to under-
take SCT activities.

2.4 Software Component Testing Process and Levels

In the same manner as the development processftarase components and systems, the gen-
eral SCT process includes a number of test levetifeerent testing phases, which are de-
scribed inTable 2.7(which is adapted fromlp5 [167]. The lower three test levels focus on
testing of a single CUT, which covers from compdraperation testing, class unit testing up to
inter-class integration testing for the CUT. Theeptwo advanced test levels go beyond the
scope of a single CUT and focus on testing of otenponent integration and component-

based systems.

34 Chapter 2 Foundation of Software Componentsna Software Component Testing

Table 2.7 SCT Test Levels/Phases

Test Level/Phase Description

Component Testing the complete CBS composed of multiple camepts to conform to
System system specifications and requirements. The testiagnines and validates
Testing I functions, performance, boundary conditions an@ioglystem properties.
Testing multiple collaboration components thatiategrated together to forn;
Component heavy-weight complex components/subsystems. Tke-@dmponent testing
Integration examines integration architecture and design,act@ns and relationships
Testing among integrated components in the component iatiegrcontext. It is
I coarse-grained integration testing compared tsdtaegration testing.
Testing a cluster of interdependent and couplessekthat are integrated
Component : . . i .
together to form the CUT. The interclass testingmixies multiple composite
ol lass interf di i he tivkec! its in th
Integration class interfaces and interactions across the ¢iveclass units in the
O | Test integration context of the CUT. It is a foundatioirhigh-level integration and
% I system testing.
(5]
[.
= Testing a particular class unit that forms the Gholly/partially. The testing
o examines more fine-grained class operations tharpoaent operations, and
5 | Component | s all public and bli tions of theess under test. Note that
2 | Class Unit ests all public and non-public operations of tizss under test. Note tha
S : public class operations are candidates for cortstiggcomponent operations,
o | Testing ; . . .
S) while non-public operation may not part of any camgnt operations. A
Q@ I component class is a basic test unit in SCT.
(@]
=
n Testing one or more component operations to exeasisl examine a
Component particular function or behavioural capability o€t@UT for which the
Operation component operation fulfils wholly/partially. Thesting may involve testing
Testing of several class operations (in the same clas®or different classes) that
jointly form the specific component operation untisst.

In Table 2.7 the relationship between these SCT test levallisrated with a sequence
of upward arrows, which indicate that the testiogiplexity increases as the test level ascends
and vice versa. A lower level is usually regarde@ doundation for the next higher level. How-
ever, a test level may not be completely adequataé way or another in testing practice. Ac-
cordingly, integration testing can detect and uecaomponent faults that are not only in the
SCI context but also in the unit context.

SCl is a very common component reuse to producglentomponents and CBS. While
each component is tested individually in its depailent context, it must be also tested in the
SCI context. The concept of CIT builds on the bafinition of general integration testing as
follows: “testing in which software components aombined and tested to evaluate the interac-
tions between them”7[7]. A software component, whether it is integratedividually or with
other components or modules, requires CIT to exaraimd ensure that component collaboration
and interaction are correct in the actual SCI emvitent. In CBSE practice, the component user

is concerned more about CIT, which can really deitee whether a particular component is

Chapter 2 Foundation of Software Components an8oftware Component Testing 35

selected and reused correctly in the user's CB¥®.bétomes an indispensable testing phase in
the SCT domain.

Our MBSCT methodology has a principal focus on @hHl covers both inter-class inte-
gration testing and inter-component integrationirigs which bridges component unit testing
and system testing. The MBSCT methodology aimsetied and diagnose component faults

particularly in the SCI context.

2.5 A Taxonomy of Software Component Testing Techniques

There are various SCT techniques, making it diffitmidentify a common homogeneous basis
to classify all testing techniques appropriatelg. aAkey focus of SCT, test design and genera-
tion are based on component development informasioch as component requirements, analy-
sis and design specifications, component implententgsoftware programs or executable
code), etc. On this basis, we can develop a usatehomy of SCT techniques, as shown in
Table 2.8(which is adapted fronip5 [164).

A major goal of this taxonomy is to classify comriyensed SCT techniques particularly
describing approaches for test design and generaftee taxonomy also correlates the classi-
fied testing techniques to the relevant test levEte first two types of testing approaches (IBT
and SBT) represent the two main categories, whgFepically supports unit testing, and SBT
particularly supports integration testing and systesting. The last two types of testing tech-
niques (MBT and UBT) fall into the sub-categoridgh®e second main category (SBT). MBT
and UBT are important testing techniques that bélicomprehensively reviewed @hapter 3,
and further developed and extensively appliedimntsearch (fronChapter 4and onwards).

Note that, although testing techniques vary with tigsting information or artefacts used
for test development, a key characteristic of SE€@yinamic testing (as describedTiable 2.5
of software programs or executable code (whichtla@ecentral subject of testing, as described
in Section 2.2.% Usually, software tests are not directly appliedor executed on software
specifications/models, although these forms of “emacutable” software specification docu-
ments are a key foundation for fulfilling testiragks (e.g. test design and generation, test result
evaluation). Conversely, we view that “testing” sifftware specifications/models verifica-
tion, which is conductedifidirectly’ or “implicitly” mainly through dynamic testing of their
implementation (software programs or executableefdd particular, dynamic testing is under-
taken with tests that are derived from softwarecipations/models and applied to software
implementation in the runtime execution environmdhithe dynamic testing results reveal
some defects or imperfections in the software $ipations/models, they can be rectified and
improved to ensure that the software implementasaorrect. This is a typical use of verifica-

tion of software specifications/models for the @letesting purposes. In other words, software

36 Chapter 2 Foundation of Software Componentsna Software Component Testing

specifications/models (non-dynamic) are verifiedhiéir corresponding software implementa-
tion (dynamic) is tested. This is a fundamentalpprty of testing (especially the relationship
between SBT/MBT and IBT), which will be further dajped in this research (frol@hapter 3

onwards).

Table 2.8 Taxonomy of Software Component Testing Techniques

Technique Description Component Test
Information Level

Implementatior (1) IBT focuses test design and generation on | Component imple- Unit
-based testing component implementation, which is software 'mentation, programs testing
(IBT) program in the form of source code that finally | or source code

implements the CUT as the executable softwar

(2) Testing mainly examines program structure

internal mechanisms and artifacts.

(3) Synonyms: structural testing, program-base

testing, code-based testing, white-box testing.

Specification- (1) SBT focuses test design and generation on. Component require- Integration
based testing specification of component requirements, analy ments, analysis and testing,
(SBT) and design, other than on how the component design specifications system

implemented in some programming language c¢ testing

computer platform.

(2) Testing mainly examines software functions

and behaviors.

(3) Synonyms: functional testing, behavioral

testing, black-box testing.

Model-based MBT bases testing tasks (including test design Model-based compo- Integration

testing (MBT) generation, test result evaluation) on the softw: nent specification, testing,
model of the CUT. MBT is an important form ol software models for system
SBT where the component specification isa | component develop- testing
model-based specification. ment and constructio

UML-based UBT is a type of MBT where the software mod¢ UML-based compo- Integration
testing (UBT) used for MBT are constructed and specified wi' nent specifications, testing,
UML modeling (UML models). UML-based software system
models for componer testing
development and cor
struction

2.6 Software Component Testability and Improvement
Approaches

Our software component definition (as describedieran Section 2.2.B explicitly states that
testability is a key advanced component charatitgrishich can aid testing efforts to effec-
tively support component reliability and qualityydareduce testing cost&4] [66]. Improving

component testability is vital to enhance the tabta of component-based software and sys-

Chapter 2 Foundation of Software Components an8oftware Component Testing 37

tems, because their testability is essentially dase the testability of individual composite
componentsgo].

In this section, we address basic concepts andipl@s of software component testabil-
ity, and discuss important characteristics of congmb testability as a key foundation for the
measurement of “good software component testabilAjter studying the general steps and
testing approaches to improving component testapilie develop a practical taxonomy of test-
ability improvement approaches and conduct a coatpar study and discussion on these ap-
proaches. The content of this section is mainlyefam the research work on component test-

ability and improvement approaches T [175 [174].

2.6.1 Software Component Testability

2.6.1.1 Testability Concept

In principle, the concept obffiware component testabilityuilds on the basic definition of gen-
eral software testability as follows7]: (1) The degree to which a system or componetitifa
tates the establishment of test criteria and thiéopeance of tests to determine whether those
criteria have been met. (2) The degree to whichgairement is stated in terms that permit es-
tablishment of test criteria and performance ofstés determine whether those criteria have

been met.

This definition implies that testability is a meeahle software quality indicator that de-
notes the ease of testing for conformance to cetémiting requirements and objectives, such as
test effectiveness, test coverage and test adequieyia. Accordingly, we can identify two

important aspects of testability as folloves]

(@) The way in which a software system and its comptnare developed to enhanest
effectiveness
This aspect concerns the development of a softeggem and its components, which
needs to incorporate test enhancements (e.g. withig testing-support mechanisms and facili-

ties) to assist the establishment of test critenid performance of tests.

(b) Certain software requirements to achitsst adequacy
This aspect concerns certain testable and measusafilvare requirements that can be
used as a sufficient basis to devise and defineeahble and adequate test criteria and perform-

ance of tests.

38 Chapter 2 Foundation of Software Componentsna Software Component Testing

2.6.1.2 Testability Characteristics

Testability analysis is very useful to evaluate d¢juality of software testing to achieve the de-
sired software reliability. Voas and Millet$1] view software testability as one of three pieces
(software testability, software testing and formatification) of the “software reliability puz-
zle” as they called it. To enable component fumaliy and reliability to be easily assessable
and predictable, we can use the following fivedbiity characteristics as a key foundation for
the measurement of “good” software component tddtalcomponent traceability, component
observability, component controllability, componenderstandability, and component test sup-
port capability. We can illustrate these comportestability characteristics with a testability

fishbone diagram as shownkigure 2.2(adapted from173).

Controllability Observability Traceability

\ \ \‘ Testability
7 7 >

Test Support Capability Understandability

Figure 2.2 Characteristics of Software Component Testability

Among them, Freedmarb§] uses observability and controllability to deseriwhat he
called “"domain testability”. Binder2[3] also considers testability having these two kagets
and discusses traceability for testability représ@on and test support environments. Gao et al.
[64] particularly studies component traceability aratking solutions. More recently, Gao et al.

[66] [67] further discusses component testability in teaithese five testability properties.
The five characteristics of software componenttaifity are described as follows:

(1) Component Traceabilitindicates how easy it is to track down differeqds of external
/internal component behaviours and related progrments. Traceable components can
facilitate and support tracing and recording spea@bmponent element information as
necessary to reflect component execution informatay component testing. The main
component traces that can aid test effectivenesgymaclude operation, state, event, er-

ror/exception, and performance traces.

(2) Component Observabilitydicates how easy it is to observe componeningggiforma-
tion based on component operational behavioursjripats and actual test outputs for a
particular test case. Well-defined component iam§ can enhance component ob-

servability to facilitate the establishment of thapping relationship between test inputs

Chapter 2 Foundation of Software Components an8oftware Component Testing 39

and corresponding test outputs. Observable compoesirartefacts aid the determination
of how the given inputs affect the associated dstplurring test execution. Component
design and specification with enhanced componesgrhbility can support the monitor-
ing of component functions and behaviours with eisded component tests during the

component development and testing process.

(3) Component Controllabilityndicates how easy it is to control component {efoutputs,
operations and behaviours of component executioimglaomponent testing. This prop-
erty measures the ease of exercising componestdast producing a specific output in
the output domain from a specific input in the ihdamain, so that certain expected out-
puts can be controllably predicted and producethftbe associated inputs. Good com-

ponent controllability can facilitate both develogmhand verification of component tests.

(4) Component Understandabilitpdicates how easy it is to understand compongatma-
tion, so that component testers can easily use/raigvant component information (e.g.
requirements and specifications) for testing pueppsnd design effective component
tests and criteria for SCT. This characteristioimgs two main aspects: (a) theailabil-
ity of component information, i.e., how much compondatumentation is provided,
such as component requirements, specificationscsaode, user manuals, etc; (b) the
understandabilityof component information, i.e. how well compongribrmation is pre-
sented in component documentation (e.g. being bdadand understandable). Highly un-

derstandable components can improve test effeesgeand adequacy.

(5) Component Test Support Capabilitydicates how well component test automation is
supported with capable software tools. This chargtic particularly focuses on test op-
eration during testing, and involves four main atmetest generation capability, test
management capability (e.g. to manage test casprocess, etc.), test coverage analy-
sis and evaluation capability, and test executioth support capability. Well-supported

test automation can improve test effectivenesseéficdency.

The first three characteristics are very imporfantproviding good component testabil-
ity. Technically, component traceability is an egi&# property that affects and supports com-
ponent observability and controllability. Strongygmonent testability can reinforce component
design and specification to be able to trace, ofesand control component behaviours and test
elements (e.g. operation, state, event, etc.) ofpoment execution for component testing, in
order to facilitate the establishment of appropriist criteria to enhance test effectiveness and

efficiency. This research seeks useful test meshaiand techniques to improve component

40 Chapter 2 Foundation of Software Componentsna Software Component Testing

testability with a particular focus on the enhaneatrof the first three testability characteristics

described above.

2.6.2 General Strategies to Improve Component Testability

In practice, component developers and testers atmounter some critical questions during

design/testing phases:

. How to improve component testability?
. How to develop testable components?
. How to facilitate SCT activities for good compongastability in an effective and sys-

tematic way?

To address these questions, this section exammesra strategies (including general
steps and testing approaches) to improve compdestatbility. We then present our taxonomy
of testability improvement approaches and conduiraparative study from different perspec-

tives.

2.6.2.1 General Steps to Improve Component Testability

With regard to what component development stepsisseciated with testability improvement,

there are two main steps:

(@) During the SCD process: component developers reegply appropriate testing tech-
niques to design testable artefacts, and incorpdestability enhancements together with
component design and specification. Such testalitiprovement before testing is con-
ducted supports component test design effectiveting the testing step. This approach

is in line with test-driven developmeritd] [79].

(b) During the SCT process: if component testabilityas considered or insufficiently ap-
plied in the SCD stage, component testers will Haveubsequently apply certain testing
techniques to enhance component design and spdidficfor component testability.
Such post-design testability improvement is necgsbafore component test develop-

ment.

The first step described in (a) above is stronglyommended, which can alleviate sub-
stantial testing overheads in the later testingegaThe second step described in (b) above is
also used, although the workload of testability smements may vary in SCT practice. In

many situations, testability improvements are ottedertaken in both steps in CBSE practice.

Chapter 2 Foundation of Software Components an8oftware Component Testing

41

2.6.2.2 A Taxonomy of Testability Improvement Approaches

With regard to general testing methods in theditgne, there are certain testing approaches par-
ticularly for component developers/testers to ipooate appropriate testing-support artefacts
(e.g. assertionslp4] [151] [157 [123 [153) for improving component testability. We can de-

velop a practical taxonomy that contains four ntastability improvement approaches, as de-

scribed inTable 2.9(Taxonomy Part 1).

Table 2.9 Taxonomy of Testability Improvement Approaches (Taxonomy Part 1)

No.

Approach

Description

#1

Framework-based
testing facility

This approach develops a well-defined testing fraor& (e.g. testing-
support class libraries and tools) that is dedit&tefacilitate testability
improvements. Component testers can use the teéfstimgwork to add

[81] in the component program appropriate test codesit@#sses test
interfaces of the test framework and interacts Withframework’s
testing-support tools. As a typical example, Jini lightweight testing
framework that supports adding simple test codeaffy for unit testing
of Java class code.

#2 | Built-in tests This approach allows component developers/testeadd or embed
built-in tests (e.g. assertions) as extra (nontfonal) component code

[157] artefacts along with component implementation, suqgports self-

[159 checking and self-testing at runtime. Built-in geate usually not part of

[159 the original component functional requirements, &y are added

[12] especially for the testing-support purpose.

#3 | Component test This approach aims to augment and convert a basiponent to be a
wrapping testable component by means of wrapping the casreipg CUT
mainly with additional testing-support artefactsgdo produce a

[65] companion component test wrapper to facilitate comejpt testing.

[17] Being separate from the CUT, the companion compioleshwrapper is

[56] executable, deployable and testable particulanyesting of the CUT

and its related interacting components.

#4

Component test
bench and provider
certification

[96]
[98]

This approach requires that component providerkggesoftware
components with executable CTCs and test resutisgtored in XML
documents), and accompanying testing-support tedish have all
been developed for component testing and certificaComponent
users can directly perform component verificatiod &alidation with the
provided CTCs and tools for re-testing in the fiagplication
environments. With component providers taking tremtesting
responsibilities to greatly reduce testing costfomponent users, this
approach is provider self-testing and self-ceuifien, and offers
verifiable testability evidence to component usemsiediately.

In developing this taxonomy, we study the maindezd of these approaches from differ-

ent perspectives and conduct relevant comparisendescribed ifable 2.10(Taxonomy Part

42 Chapter 2 Foundation of Software Componentsna Software Component Testing

2), which is adapted fromlL[3 and extends a similar description B6] with appropriate en-
hancements as indicated (especially for Approagh A4urther comparative study based on

this taxonomy is presented in the next section.

Table 2.10 Features and Comparisons of Testability Improvement Approaches (Taxonomy Part 2)

Different Perspectives Framework- | Built-in Component Component test
based testing tests test wrapping | bench and provider
facility certification

Developer/provider-oriented Yes Yes Yes Yes

User-oriented No No Yes No

Component interface access Yes Yes Yes, access onlf Yes

Component source code access Yes Yes No Possible, if needed

Test artefacts are code-embedded in CUT |Yes Yes No Possible, if needed

Wrapper: test artefacts separate from CUT |[No No Yes Possible, if needed

Overheads for test programming Low High Low Low/High

CUT complexity with test artefacts Low High Low Low/High

Test change impact on CUT No or Low Yes & High |[No or Low No/Yes

CUT change impact on component tests No or Low Yes & High |No or Low No/Yes

Usage flexibility (approach usability) High for Low for High for High for users
providers providers | providers/users

Test level Focusing on | Focusing on|All test levels | All test levels
unit testing unit testing

Applicable component types In-house & newly developed components, in-housadggnodules

COTS

2.6.2.3 Comparative Study

In Table 2.10(Taxonomy Part 2), we showed the main comparisons of testabilitgromement
approaches from different relevant perspectives. foblowing discussion describes a compara-

tive study of these four main approaches.

(1) The first and second approaches both mainly worknoreasing code-based testability,
which is not very suitable for higher-test levedach as component functional testing and
integration testing based on design specificateam$ models. Both approaches assume
that component source code is accessible, whialsésunsuitable for SCT activities con-
ducted by component users who do not have the gaivilege of component source
code access as component developers or in-hougmoemt testers have. In addition, in-
serting built-in test code into component code dde&d to inadvertently incorrect com-

ponent changes, which may negatively impact testing

Chapter 2 Foundation of Software Components an8oftware Component Testing 43

)

®3)

(4)

By contrast, the third approach has advantagestbedirst two approaches, and is more
flexible for improving code-based and design-basmtponent testability. This approach
can enhance component testing capabilities for oot functional testing and integra-
tion testing mainly via component interfaces anecsfication, without access to the low-
level details inside component code. Another achgais that a component test wrapper
can be developed and implemented as well as exkoutgarallel in the same way as its
counterpart CUT, especially by using the same deafgproach and programming lan-

guage, and by executing in the same runtime envieor.

The fourth approach takes a very different SCTtegpafrom the other three approaches.
This approach shifts almost all testing effort bh@ tomponent provider side, and thus
greatly reduces testing costs for component uséttspugh the actual testing effective-

ness and quality may depend on the CTCs and testaolg provided by component pro-

viders. As the production-side testers have thalpge of accessing all component speci-
fications and source code as well as the inteedirtical support, this approach could
produce high quality component tests in a morecéffe and efficient way than the same
work conducted by the user-side testers. In practiomponent providers can employ the
first three approaches and other SCT techniqueevelop CTCs and testing tools, and

fulfil the provider certification required in thedrth approach.

From the viewpoint of component stakeholders, lal four approaches are provider-
oriented, and only the third approach is user-¢e@nA key advantage of the third ap-
proach is that the user-side testers can unde@@Reactivities mainly via component in-

terfaces and specification, without the prereqeisit component code access. The third
approach is applicable to both component providatsusers, so that they all can benefi-

cially use a consistent approach to improve teliabor desired test effectiveness.

2.7 Summary and Discussion

This chapter has provided a comprehensive revigeoimportant concepts, principles, charac-

teristics and techniques of software componentsc{ware the primary subject of SUT in this

research scope) and SCT (which is the central fottisis research). We identified the special

CBSE diversity characteristic (as described eanti€ection 2.1and Section 2.2.1.4as a prin-

cipal study theme. Based on this, we discussedrdeuof important issues (as introduced ear-

lier in Section 2.} concerning software component technology for 0D SCT.

44 Chapter 2 Foundation of Software Componentsna Software Component Testing

Furthermore, we have carried out further researotk what extends and consolidates the
relevant research foundation, and accomplishednabau of research findings and results (in-
cluding new definitions and concepts), which aresarised below with our intention about

how to apply them in this research:

1. A new comprehensive taxonomy of software componkatacteristics (isection 2.2.p
This new comprehensive taxonomy of software compbokaracteristics has been sys-
tematically developed, based on our study of corapbnoncepts and characteristics. This tax-
onomy classifies twenty-two (22) software componaaperties into four (4) main categories
at different componentisation levels, and showsatiaristic interrelationships between com-
ponent properties as well as component stakehol8ersen (7) new component characteristics
have been identified and added to the taxonomyrphesise high-level component properties.
This work enables this taxonomy to be more informeaind comprehensive than the existing

component characteristic classifications in theenirliterature.

2. Anew software component definition @ection 2.2.8

This new software component definition was basedwnnew taxonomy of software
component characteristics. Compared with other corapt definitions in the literature, our
component definition extends the definition coneesgope by adding new component quality
properties (e.g. testability and reliability) tosase component functionality, reusability and
other important component properties. This new aamept definition appears to be the most
comprehensive available in the current literataréerms of the range of important component
characteristics covered. This research appliemthis component definition to develop the new

MBSCT methodology to improve component testabdityl quality.

3. A new definition of software component testing Siection 2.3

This new SCT definition describes a generic tesfimress and the main testing tasks,
which goes beyond the traditional scope of SChaindividual unit or single component level.
Based on the new SCT definition, we studied andyaed important SCT characteristics, test
cases and specification concepts, and differetintgperspectives and needs. This research fo-

cuses on CIT and integrates this new SCT definitiotievelop the new MBSCT methodology.

4. A useful taxonomy of software component testindptégues (inrSection 2.%

This taxonomy of SCT techniques was developedrimdef component development in-
formation used for component test design and géoardl he taxonomy illustrates the relation-
ship between the classified testing techniquestestdevels. With support from this taxonomy,
this research focuses on model-based testing éogdial of component integration and system

testing.

Chapter 2 Foundation of Software Components an8oftware Component Testing 45

5. A practical taxonomy of component testability impement approaches (Bection 2.%
Based on our study of component testability corssegtiaracteristics and improvement
approaches, this practical taxonomy of componestabdity improvement approaches has been
developed, in conjunction with a comparative stfidyn different stakeholder perspectives.
This research puts a particular emphasis on conmpdestability improvement to support com-
ponent quality and to achieve component testingcéiffeness. The new MBSCT methodology

aims to improve component testability and quality.

The comprehensive literature review and furtheeaesh results in this chapter make
original contributions to the body of knowledgetle main research areas of SCD and SCT in
the literature. This has created a key conceptuabdation to support the development of the
new MBSCT methodology.

46

Chapter 2 Foundation of Software Componentsna Software Component Testing

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing a7

Chapter 3
Foundation of Model-Based Testing and
UML-Based Testing

3.1 Introduction

Model-based testing (MBT) emerges as a natural rambraent of specification-based testing
(SBT), where software models are used as modelbsapecifications for software testing.
MBT is a new and evolving testing paradigm, andspsses its own concepts and features dif-
ferent from traditional testing techniques (to lsatibed inSection 3.2 MBT has been be-
coming increasingly popular and is now a mainstresftware testing approach, especially
MBT with UML, namely UML-based testing (UBT). This mainly due to the popularisation of
emerging model-centric software development paragignd their intuitive connections to
MBT, such as the standardised UML (Unified Modelihgnguage) 10§ [28] [12H and
MDA/MDD/MDE (model driven architecture/developmestigineering) 106 [84] [134].

MBT/UBT is the primary software testing approachwse in this research. Among many
other modeling and testing aspects, this chaprsies on a number of important issues and

challenges in the principal areas of MBT and UBT:

(1) Whatis model-based testing? Why model-based tgstin Sections 3.2.4nd3.2.2

(2) What testing tasks can be model-basedSgéntion 3.2.8What are model-based tests?
(in Section 3.2.%

(3) How do we develop a new MBT definition to reinforttee integration of MBT with
MBD into the entire SDLC process? @ection 3.2.bWhat are main MBT advantages?
(in Section 3.2.y

(4) What types of models can be used for MBT? Whattessaamodel? What is a good strat-
egy to obtain test models? @ection 3.2.%

(5) Whatis UML-based testing (UBT)? How do UML mod&isnto MBT? (in Section 3.3

(6) What are the main aspects of software integratgstirtg with UML? (inSection 3.3.2
andSection 3.%

(7) What is use case driven testing? Qection 3.3.BWhat are the main aspects of software
system testing with UML? (i8ection 3.3.2andSection 3.4

(8) What are the main outstanding problems and linaitetin MBT/UBT? (inSection 3.5)

48 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

This chapter presents a comprehensive review obitapt concepts, principles, charac-
teristics and techniques of MBT in general and UBparticular, which aims to create a solid
technical foundation in these important researelasito support the new MBSCT methodology
that is proposed and developed by this researchstWdly and review related research work on
MBT/UBT in the literature, and identify and analytt® main problems and limitations in the
current MBT/UBT domain. At the same time, we undket further research work to develop
new concepts and definitions, with the intentiorenhancing the relevant knowledge and prin-
ciples of MBT/UBT in the literature.

The remainder of this chapter is structured to celve abovementioned important issues
in MBT/UBT. Section 3.2reviews important MBT concepts, principles, chégastics and as-
sociated issues. We propose a new MBT definitinrs@ction 3.2.pand a new test model defi-
nition (in Section 3.2.pbased on our further research workSection 3.3we propose a new
UBT definition (in Section 3.3.)}, and describe main UBT concepts and associase@sspar-
ticularly on how UML models support MBT. ISection 3.4we comprehensively review re-
search work related to state-based testingS@ntion 3.4.), software integration testing with
UML (in Section 3.4.% software system testing with UML (Bection 3.4.8 software testing
with UML use cases and scenarios $iaction 3.4.1 and software testing with UML sequence
diagrams (inSection 3.4h Section ¥ examines the main problems and limitations in
MBT/UBT. Finally, Section 3.6resents a summary of this chapter. A more deltditierature
review of MBD/UML and MBT/UBT can be found i 7.

3.2 Model-Based Testing

3.2.1 What is Model-Based Testing?

The idea of MBT originates from MBD, and both shesenmon concepts and characteristics of
model-based approaches. Intuitivetypdel-based testing a general term denoting that soft-
ware testing is based on software models of the.QUBT derives test cases from software
models, not from source code. As software modeterilge software requirements and func-
tional specifications, MBT is usually regarded a®mn of black-box functional testing. MBT
generates functional tests that can be applietl tesa levels and that are more effective for in-
tegration testing and system testing.

There are many types of testing techniques (usnigiio models) developed by academic
researchers and industry practitioners with difietesting views, which leads to the situation
that there is no single formal MBT definition tHas been well accepted and widely used by

all. Table 3.1summarises some of the existing MBT definitionghia literature.

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing

49

Definition
Reference Source

Table 3.1 Review of MBT Definitions

Definition Description

Definition by Dalal et
al. [46]

According to Dalal et al., model-based testing nsemapproach to
automatic test generation using models extractad Boftware artefacts.

Definition by El-Far &
Whittaker b7]

According to El-Far & Whittaker, “model-based testis a general term
that signifies an approach that bases common ¢etstgks such as test casg
generation and test result evaluation on a modtlefpplication under
test.”

Definition by Pretschnel

etal. 11§ [12Q

According to Pretschner & Philipps, “the idea ofdabbased testing is to
use explicit behaviour models to encode the intdrmhaviour and to
derive test cases that are used for verifying élspective implementation.”

Definition by Gross 9]

According to Gross, “model-based testing is theetlgwment of testing
artefacts on the basis of UML models, which prowttk primary
information for developing test cases and tesesu#nd for checking the
final implementation of a system.”

Definition by Utting &
Legeard 148 [15Q

According to Utting & Legeard, “model-based testiaghe automation of
the design of black-box tests.”

Definition by Frantzen
& Tretmans 2] [141]]

According to Frantzen & Tretmans, “in model-basesting, a model of the
desired behaviour of the implementation underigette starting point for
test generation and serves as the oracle fordssltranalysis.”

Definition by Hartman
etal. [7]]

According to Hartman et al., “in model-based tegtitests are generated
automatically from models that describe the behavid the system under
test from a perspective of testing.”

Definition by Bertolino
[21]

According to Bertolino, “the leading idea of modiesed testing is to use
models defined in software construction to drive tibsting process, in
particular to automatically generate the test cases

Definition by Pezze &
Young [117

According to Pezze & Young, “model-based testingsists in using or
deriving models of expected behaviour to produsedase specifications
that can reveal discrepancies between actual probehaviour and the

model.”

From a review of each of these definitions, we saa that most of the existing MBT

definitions are given informally in certain contexand develop some specific testing character-
istics and/or purposes. In the case of MBT, thgeaiof testing remains unchanged, which
means that MBT aims to test the implementatiorhef$UT as a key testing goal shared by all
testing approaches. However, the basis of testndgBT shifts to models, not based on im-

plementation/code or some other basis, compar&adddional testing paradigms. Accordingly,

the principles of MBT should reflect relevant moetelsed implications for effective software

testing, in terms of important MBT-related concegutsl characteristics.

50 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

3.2.2 Why Should Testing Be Model Based?

A primary reason why testing should be model basetiat software models capture system
requirements and functionalities that determineasects of both software design and testing.
In the case of use case driven development, use roaslels are used throughout software
analysis, design, implementation and testing. A@otkason is that MBT could take advantage
of good principles and characteristics of MBD. Qie¢he fundamental MBT principles is that

applying software models to software design anthswé testing enables both phases to utilise
a consistent model-based specification approagirdducing functional and reliable software

with better effectiveness and efficiency.

In the common context of MBD, software models ayestructed usually before or paral-
lel to the actual development of the SUT, and radijubecome a central foundation of software
testing. As a quick overview, we examine two typicsage situations, where MBT is especially

suitable:

(@) For anew system under development and test
For a new system, MBT enables testing to startrbetoding, which is a key advantage
of MBT (in Section 3.2.Y. In this situation, since the system developniemot finished, soft-

ware models are the only source of testing infolonadvailable for undertaking testing tasks.

(b) For a developed system under test

Another situation is that the system has been dpeel from software models, but it has
not been tested yet or it needs further testinghigsituation, because software models capture
system requirements and software development irgtbom of the SUT, they naturally become

a better choice as a testing basis to examine \aldage the SUT.

MBT is a representative paradigm of SBT. Compacettaditional IBT [L6] [100, SBT
has more advantages and benefits, as shown inasetadies 24] [104 [105 [169. In particu-
lar, Binder indicates that traditional IBT has “stdmtial limitations”, and “should not be the
primary basis for testing”2{]. Section 3.2.7Aurther discusses a number of MBT advantages
and benefits to demonstrate that MBT is very silgtand widely used in the software testing

domain.

3.2.3 What Testing Activities/Tasks Can Be Model Based?

In common with MBD that bases common developmesksan software models, MBT sup-
ports important model-based software testing ds/iand tasks, which are summarised as fol-

lows:

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 51

(a) Test Analysidegins with a model of the SUT, analyses modefacts describing the
system behaviour under test, and explores tedegies to examine the respective SUT
behaviour. Model-based test analysis serves asrtingt point for subsequent model-

based test design and generation.

(b) Test Design and Generatiatevelops test cases based on the SUT model imdzcume
with specified test strategies and/or testing dbjes. In particular, certain testable model
artefacts are extracted from the SUT model, andfuatber transformed (with possible
test improvement) into test data to produce andesgmt test cases (calletbdel-based
tests.

(c) Fault detectionreveals possible software faults with model-batestis against the ex-

pected SUT behaviour captured by model-based rmeints and specifications.

(d) Test Evaluationassesses software correctness and quality of the &gainst model-

based requirements and specifications as wellrgstttesting objectives.

3.2.4 Model-Based Tests

MBT derives model-based tests from software modetbe SUT, which is performed manually
or by certain testing tools. There is a questiagsed here: are model-based tests executable on
the SUT for dynamic testing? Technically, there tare steps required to develop model-based

tests for dynamic testing of the SUT.

(a) Step #1: abstract test cases

A model usually shows a part of the SUT behavibacause by nature it is only a simpli-
fied representation of the SUT at a certain leehlwstraction or precision. Accordingly, test
cases developed directly from the model remaithatsame level of abstraction as the model,
and are originally represented in terms of abstlata and operations extracted from the model.
Thus, at least at the initial stage, such modegthassts are usually regardedadistract test
cases Because models and code appear at differentsl@fghe SUT, these abstract test cases
are not directly executable against the SUT, wtats derived from code usually can be exe-
cuted on the SUT. This means that the initial @losttest cases derived directly from an “ab-

stract” model of the SUT are not ready to be usedhfe dynamic testing of the SUT.

(b) Step #2: concrete/executable test cases
Dynamic testing requires test cases to be exearidtle concrete implementation of the

SUT. For this testing purpose, it is necessaryM8T to undertake a further test development

52 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

step: mapping and transforming the abstract testscderived from a model of the SUT into
low-level concrete test cases that are ultimateitable for test execution in dynamic testing of
the SUT. Such test mapping and transformation siep&n important part of the MBT process,
with the aim to make model-based tests derived filoenSUT model executable on the SUT
implementation for dynamic testing. This researdtirasses this important MBT issue concern-

ing test mapping and transformation with the depelent of the new MBSCT methodology.

3.2.5 A New Definition of Model-Based Testing

Based on our review of existing MBT definitions @ection 3.2.), and of important MBT-
related issues and characteristic aspectSéiction 3.2.20 Section 3.2.11 we propose a new

definition of model-based testing in this reseastiollows:

Definition 3-1. Model-based testing bases software testing on explicit software
models with model-based development of the software/system under test. In the
model-based testing process, MBT particularly designs and generates test cases

(with oracles), and evaluates test results based on the relevant software models and

kmodel-based specifications for testing the SUT. /

In the following, we discuss some important impiicas associated with our MBT defi-

nition, in comparison with other existing MBT défians (as reviewed iection 3.2t

(1) A distinguishing feature of our definition is th&is definition firstly emphasises the in-
trinsic connection of MBT to its counterpart MBDhieh is a key difference from the
other existing MBT definitions. Both MBT and MBDalild be integrated and collabora-
tively work together in the iterative/incrementaftsvare development process (this point

is further amplified inSection 3.2.5.below).

(2) This definition emphasises that the testing basiexplicit software models and model-
based specifications that describe and represenBthr on which MBT undertakes the

model-based software testing process.

(3) This definition contains important model-basedwafe testing activities and tasks in the

testing process, including test design, test g¢ioarand test evaluation.

(4) This definition emphasises and supports the genestihg goal: MBT aims to test the
implementation of the SUT by using test casesdhaderived from model-based specifi-

cations.

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 53

3.2.5.1 Integrating MBT into the Entire Software Developmert Process

This section further discusses the importancetegiating MBT into the entire software devel-
opment process, as emphasised by our proposed M&itibn above. For the purpose of ef-
fective MBT practice, we argue that MBT should betsimply based on a single unconnected
model or some unsystematically-developed indivisdnatlels that are not well connected to the
current MBD process. As discussedSaction 3.2.6elow, not using any development models
for MBT not only is unrealistic, but also waste$tsare development resources, and we should
adapt relevant selected development models for MB€. also argue that the importance of
models constructed for software testing (iest modelsas defined irSection 3.2.B should be
treated equally with models constructed for sofevdevelopment. We recommend that test
models in MBT should be built in parallel to relavaevelopment models in MBD. The effec-
tiveness of the MBT process relies on the cleaneotion and close collaboration with the cor-
responding MBD process, where relevant softwareaisodave been designed and constructed
to provide a solid foundation for different testiagpects and purposes. Based on the relevant
MBD phases and associated development models, MBTihen take advantage of fully inte-
grated approaches for collaboratively undertakioffjwsare modeling and testing. Both MBT
and MBD should work together to fit into the ent8BLC process, in order to produce quality
software effectively and efficiently.

This research incorporates our proposed MBT déaimito develop the new MBSCT
methodology with an iterative and incremental psscef UML-based software component de-

velopment and testing. This aspect is further dised inSection 3.5

3.2.6 Test Models

3.2.6.1 What Types of Models Can Be Used?

Software models used for MBT may appear in differgipes (e.g. process model, domain
model, behavioural model, etc.), and can be reptedan different modeling notations and/or
languages (e.g. UML)/[L]. There is no single model that is sufficient erfpct to solve all test-
ing issues, and not all “models” are suitable ésting.

Different types of models may support differentitesaspects or purposes. For example,
process models are very useful to describe reldeating processes for undertaking testing ac-
tivities and tasks. Behavioural models specify ingat requirements and specifications for the

system behaviour, which forms a MBT basis for mdabeded test analysis, test design and gen-

54 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

eration, and test evaluation. Compared to otheesypf models, an appropriate behavioural
model can be enhanced to capture the expected ibeh@f the SUT and describe important

testing relationships between test inputs and asifgo that the behavioural model can particu-
larly support the derivation of test cases vaitacle information (e.g. the expected test results of
the SUT). This research mainly employs behavioamal process models in model-based testing

of software components.

3.2.6.2 A New Test Model Definition

MBT conducts test derivation and evaluation bagedaftware models. Informally, a model is
referred to as test model if the model is used in a MBT process. Based anMiBT definition

(in Section 3.2.5 we propose a new test model definition in thisearch as follows:

Definition 3-2. A test model denotes a test representation of the SUT in terms of
models that describe the test relationships among elements of the SUT.
Model-based testing constructs test models and applies them to undertake

testing activities, especially model-based test design, generation and evaluation.

There is a close relationship between test modelsMBT. MBT starts with test model
development, which is the first important testiagkt in MBT. As indicated irSection 3.2.6.1
above, not all “models” are suitable for testingd & a model is not test-ready or non-testable,
it cannot be used directly for MBT. For the purpos$elesired MBT effectiveness, test models
must be developed to be test-ready and testaldepport important model-based testing tasks
(as described igection 3.2.B

3.2.6.3 Bridging “Test Gaps”

There are some questions with regard to test mddeMBT: where do test models come from
for MBT? How are test models in MBT different froaxisting software models (e.g. design
models) in MBD? What is a good strategy to obtest tnodels? To answer these questions, we

examine the following three main approaches toiolstaest model for MBT1[50:

(1) Fully reusing a simple or ordinary software modetctly from software development as
a test model with no modification

The full “as is” reuse of a simple or ordinary sadte model without any change is usu-

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 55

ally not applicable in MBT practice. A key reasasrthat there exist certaite’st gaps” between
ordinary software models (which are not test-readynon-testable) and target test models
(which are test-ready or testable), because sutihayy software development models tend to
focus on software design/implementation, and oftety not contain adequate testing-related
information and testing-support artefacts requil@deffective test generation in MBT. Such
“test gaps” are a major cause of inadequate maatdd testability in MBT. This is not an ap-

proach that would usually be used in MBT practice.

(2) Building a test model exclusively for MBT from stzh without using existing software

development models

No reuse of any existing software models is impcattn MBT practice. On the one
hand, this approach would simply ignore availalovgare information described by software
models (e.g. the SUT functions) that is implicgbyplicitly useful for testing, which wastes
software development resources and accordinglyesatesting to be more costly. On the other
hand, any test model would eventually contain scwitware artefacts already described in
relevant software models of the SUT, which meaiis dpproach is unrealistic. Accordingly,

this is not an approach that would usually be aetbpt MBT practice.

(3) Transforming and improving a selected developmendeh(e.g. a design model) into a

target test model

Based on the analysis of the rejected approaclmealb is necessary for MBT to take an
intermediate approach that appropriately reusesaaiaghts selected software models (e.g. de-
sign models) as a key testing basis for develoganget test models (e.g. design test models).
The MBT tester needs to undertake additiomaiiodeling activities to transform and improve
non-testable models into testable models, befaertbdels can be used for MBT. In particular,
the MBT tester needs to bridge the identified “igaps” for model-based testability improve-
ment in test model development. This is an integratpproach, which is practical and cost-

effective in MBT practice.

In MBT practice, a test model is not exactly thensaas its associated development
model that is selected from MBD for test model ¢argion. In some cases, a test model could
be smaller and/or simpler than its associated dewetnt model, in terms of software details
contained for a particular testing purpose. A “rolehumb” is that a good test model should be
reasonably simple and/or more abstract than theremimplementation of the SUT, but it also
must be adequately precise for the target testijectve [L16 [119 [149 [15Q.

In this research, we introduce this new notiontekt gaps” to emphasise a major MBT

focus: remodeling and improving model-based tebtald bridge the identified “test gaps” for

56 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

effective test model construction. This is a stgrtpoint that has motivated this research to
adopt the abovementioned integrated approach 8eve), and to develop thest-Centric
Remodelingstrategy and th&est by Contractechnique with the new MBSCT methodology.

This aspect is further discussedSection 3.5

3.2.7 MBT Advantages and Limitations

MBT has become a mainstream testing approach ngwdd4 [150. While borrowing or in-
heriting some features from the general model-b@seddigms, MBT retains its own testing
principles and characteristics, and holds varioeselits and advantages, compared to tradi-
tional testing approaches, such as code-baseddgesthite-box testing, or other manual testing

approaches (without using models) (e.g. manuabiesign, hand-crafted individual tests).

The following summarises a number of the importdBT benefits and advantages (in

terms of overall MBT, but not related to specifi@Wtechniques):

(1) Model-based requirements and specifications camocesimulate actual functions, be-
haviours and scenarios of the SUT
. Using explicit models helps understand the SUTdadfy the requirements
. Provide a key basis for test design, generationezatliation

. Direct testing towards the correct starting poimd direction, i.e. go for MBT

(2) Effectively support black-box functional testingtivihe aid of model-based requirements

and specifications.
(3) Virtually support all test levels, and more effgety on integration and system testing.

(4) Make model-based test cases independent of themepitation of the SUT, with no as-
sumptions on particular implementation aspectsandfernal structures
. Support test cases to be reusable
. Particularly benefit SCT in different component Iepentation/application con-
texts, i.e. develop model-based component casepémdient of component im-

plementation to support special SCT needs

(5) Enable test case development to get started mutibrea the SDLC, so that test cases
are ready for test execution before the SUT impleaten is started or completed
. Shifting testing earlier than coding

. Shifting testing earlier for effective test plardaest development

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 57

. Reduce testing time and costs

(6) Help identify system errors/faults (deficiencigg;ansistencies and/or incompleteness) in
requirements/specifications in the earlier phaseéiseoSDLC
. Improve the requirements/specifications beforeri@ementation starts

. Reduce/save development time and resources

(7) MBT studies show that model-based tests (whichaatematically or manually derived
from explicit model-based requirements) detect moggquirement-level errors than
manually designed tests (or hand-crafted individasls) directly from informal require-
ments [L21] [46].

(8) Provide a potential for automated testing withdlteof model-based testing tools.

However, MBT also has certain disadvantages anithlilons, for example:

(@) Possibly miss some faults, because the model iexmitly the same as the low-level
concrete implementation of the SUT. That is, conepte exhaustive testing with MBT is

still unachievable (as describedSection 2.3.b

(b) Difficult to measure the quality of model-basedtse® achieve high testing coverage,

because of basic model characteristics: abstraatidrsimplification.

(c) Require more knowledge and skills of both modekmgl testing for testers than tradi-

tional testing approaches (e.g., code-based testiagual testing without models).

3.3 UML-Based Testing

Model-based testing with UML or UML-based testingB(l) emerges as a new approach to
MBT. UBT is the major type of MBT approach we usdhis research.

3.3.1 A New Definition of UML-Based Testing

Technically, UBT is a new type of MBT where soft@anodels used for testing are UML-
based software models (or UML models for abbremgtithat are developed with UML dia-
grams and specifications. We propose a new UBTnitiefi that is derived from our earlier
MBT definition (in Section 3.2.bas follows:

58 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

Definition 3-3. UML-based testing bases software testing on explicit UML-based
software models with UML-based development of the software/system under test. In
the UML-based testing process, UBT particularly designs and generates test cases

(with oracles), and evaluates test results based on the relevant UML-based software

\models and UML-based specifications for testing the SUT. /

In principle, UBT retains the important conceptsngiples and characteristics of MBT
(as described isection 3.2 Moreover, UBT has its own testing features aagabilities that
benefit from the standardised notations and rigereemantics of the UML. One promising
benefit is that the UML enables software testersrtploy standard modeling notations rather
than non-standard ones, and take advantage ofl Lieiu features in MBT activities. Another
benefit is that, by unifying UML-based developmeanid testing together, software engineers
can utilise a consistent UML-based approach andifsgeion for both component development
and testing to produce functional and quality safevcomponents and systems with better ef-
fectiveness and efficiency. Therefore, UBT reaity into MBT practice, and advances MBT a

further step.

3.3.2 UML-SCT: A Core UML Subset for SCT

The UML is very complex and contains a comprehansiet of numerous modeling diagrams
and notations for general-purpose system modelihg. current UML 2.x defines 13 types of
modeling diagrams. In practice, software enginefien need to select and use a subset of the
UML that is most suitable and useful for their pigad development purposes. Fowléd] in-
dicates that class diagrams and sequence diagmartieamost common and useful types of
UML diagrams. Dobing & Parson§] review the UML literature, and survey the UML ptia
tioners and their clients. Their research restitsisthat class diagrams, sequence diagrams and
use case diagrams are used most often, while coroatiom diagrams are used least (note that
communication diagrams in UML 2.x were called dofleation diagrams in UML 1.x). Dias
Neto et al have recently conducted a more compsaeisurvey of MBT/UBT approaches in
the literature 47] [48] [49] [50] [5]] [57] [53]. One of their findings is that, among different
types of behavioural models in all 47 analysed mapsing UML, the top 4 of the most used
UML diagrams are statechart diagrams, class diegrasguence diagrams, and use case dia-
grams {7).

For the goal of UML-based component developmenttasting in this research, we se-
lect and use a core UML subset (callé®lL—-SCT), which mainly includes use case diagrams,

activity diagrams, class diagrams, sequence diagrand statechart diagrams, as well as OCL

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 59

expressionsl[6q. The five main UML diagrams, notations and senwsnn UML-SCT are the
same as defined in the standard UML 2.x. The litgeareview (as summarised in the above
paragraph) shows that our selection of UML-SCT &l wonsistent with the commonly-used
UML diagrams to support UML-based SCT.

Table 3.2summaries UML diagrams and modeling for softwasting, which focuses on
the five UML diagrams in UML-SCT. There are someamant implications for the use of
UML diagrams in testing:

(1) For requirements-based system testing, we employ. Ubk case diagrams, sequence
diagrams and class diagrams.
(2) For integration testing, we also use the above Ulidigrams at the integration level.
(3) For unit testing, we mainly use UML state diagraand class diagrams.
(4) Testing (at any level) must use relevant UML diagidescriptions and model specifica-
tions, because a graphical diagram alone providgswery limited information for test-
ing [69].
Table 3.2 UML Diagrams and Modeling for Software Testing
View/Type Diagram Modeling for Testing Test Level
Requirements| Use Case | Modeling system requirements with use cases, gctord Integration
Diagram |their interaction relationships, system behaviowd avents. |/System
Deriving system/integration test requirements, Hegrel| Testing
test design.
Activity Modeling a process/workflow of control and data poma- |Integration
Diagram |tion step by step, dynamic system behaviour andepro |/System
dural/parallel functions. Testing
Complementing test requirements.
Behavioural |Sequence |Modeling a sequence of temporally-ordered messages |Integration
/Dynamic Diagram | (method calls) for dynamic interactions betweereots in |/System
realising use case scenarios. Testing
Deriving test scenarios, test sequences of test set
State Modeling states and their transitions for eventeoed dy- |Unit Testing
Machine |namic behaviour of an object.
Diagram | Deriving unit tests.
Structural Class Modeling classes (attributes and operations), fextess and | Unit Testing
/Static Diagram |their relationships for the static design strucifra system.| supporting
all test levelg

In our MBSCT methodology, we mainly employ use cdisgrams (use case view), se-
quence diagrams (behavioural/dynamic view) andsclliagrams (structural/static view) in
UML-SCT to undertake UML-based SCT for componest tkesign, generation and evaluation.
The following subsectionsSgctions 3.3.2.10 3.3.2.3 further discuss these three most often
used UML diagrams in UML-SCT and how they are useslipport MBT activities.

60 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

3.3.2.1 UML Use Case Diagrams for Software Testing

UML use case diagrams can model the requirementysiEms, subsystems and integration
functions (i.e. what a system/subsystem should ldsg¢. case diagrams can show many aspects
of system requirements, and use case specificatiessribe functional behaviour and require-
ments, allocation of functionality to classes, abjateractions and object interfaces, user inter-
faces, and user documentatid@][Use case diagrams and associated use caseicqtemifs

are a suitable and important resource for derigygfem/integration tests for UML-based sys-

tem/integration testing.
The following gives a general process for deriviest cases from use cases:

(1) Step #1: Developing use case instances or scenarios
The tester needs to analyse each use case andyiddinise case instances or scenarios,

including success, variation/alternative, faillaegd exception scenarios.

(2) Step #2: Developing abstract test cases
The tester needs to identify and design at leasttest case for each use case scenario,
especially developing test cases for core scenarii®e use case. These model-based tests are

initial test requirements and/or abstract testcasdigh-level test design (Bection 3.2%

(3) Step #3: Developing concrete/executable test cases
The tester needs to construct actual test dataransform abstract test cases to generate

concrete test cases suitable for test executiodyieamic testing of component implementation.

(4) In principle, the basic test coverage requiredhad test cases at least cover each use case

and each actor in the use case diagram.

From the above test derivation process, we carttsgiethe first two steps are mainly
based on UML use case diagrams. However, aftela@wng abstract test cases with use cases,
the tester needs to employ other UML diagrams arté&iing-support information to identify
and construct the necessary test data to genewitedual tests for developing concrete test

cases.

3.3.2.2 UML Sequence Diagrams for Software Testing

UML sequence diagrams mainly focus on realisingdfional and operational) scenarios of use

cases in the use case model, where use casesoneeddfined into one or more sequence dia-

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 61

grams for the next level of refinement and develepim Sequence diagrams show dynamic
modeling of system behaviour, which is specifieditiy associated use case scenarios, and the
sequentially time-ordered interaction messagegh@form of method calls/invocations) be-
tween participating objects that communicate aneract with each other, and collaborate to
accomplish some tasks or functions in the integnatr subsystem/system context. Accord-
ingly, UML sequence diagrams are mainly used ass&slio derive test sequences (consisting of
test messages or test operations), which can deggn and generation of integration/system
tests for software integration/system testing. dimgiple, a sequence diagram corresponds to
one or more test sequences and test cases thatdtferent states of interacting objects in

software integration.

3.3.2.3 UML Class Diagrams for Software Testing

UML class diagrams represent the static structdira system, and show how the system is
structured or organised, rather than how the sysienaves. Class diagrams define and show
the system’s classes, attributes, operations,fates, and their static structural relationships,
which focus orhow classes are related but not how classes imtetditeach otherClass dia-
grams specify these important model elements aftva® artefacts that can be used for de-
scribing various software models and specificatifag. object-oriented analysis and design
models), and for constructing software implemeatetithrough forward and reverse engineer-
ing. Class diagrams define what software classeseeded to capture the interaction relation-
ships between all objects participating in sequetiagrams, and what class operations and at-
tributes are needed in relevant software class@mptement and represent the required func-
tions. As the most common UML diagrams used in abjeiented modeling, class diagrams
provide important test information to construct ibagst data for deriving concrete test se-

guences and test cases, which can used to supptimgtat all test levels.

3.3.3 Use Case Driven Testing

Use case diagrams are usually considered as thimgtpoint for test case design and genera-
tion, particularly for component functional testiagall test levels. This is where the idea of a
use case driven testing approach comes from. ByjgusML use case diagrams for software
testing as described ®ection 3.3.2.-above, we can apply use case driven principl€stp

undertake use case driven testing. That is, our Epgroach starts with use cases to derive
functional system/integration test requirementsd{an high-level test design), and employs
relevant UML models to drive the test processtadl way through test planning, test analysis,

test design, test generation and test evaluation.

62 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

Technically, use cases are related to the earjesththe SDLC, while test cases are as-
sociated with the latter stage of the SDLC. Use chis/en testing leverages use cases with test
case development and enables testing to be undartaiich earlier in the development process.
This is a key MBT advantage (iBection 3.2.Y that use case driven testing aims to support.
With use case driven testing, we can employ modséd tests to undertake SCT in two impor-

tant aspects:

(1) Validating component specification with model-badesits in the form of test require-
ments and abstract test cases. This aids in uriogverrors/faults made in component

specifications in the early phases of componen¢idgwment.

(2) Verifying component implementation with model-bagests in the form of test require-
ments and concrete test cases that are subseqdentrgd from the abstract test cases.
This aids in detecting errors/faults made in congmynimplementations in the latter

phases of component development.

In this research, we incorporate use case driv&@ingein our MBSCT methodology for

UML-based integration/system testing of softwareiponents.

3.3.4 General Approaches/Strategies for Applying UML Diagams
for Software Testing

According to the MBT principles (as describedSaction 3.2, ordinary UML-based develop-

ment models are usually not “test-ready” to be udiegctly for model-based testing. One im-
portant task of MBT with UML is to bridge the “tegaps” between ordinary UML-based de-
velopment models and UML-based test modelsSgetion 3.2.6 There are two general ap-

proaches for applying UML diagrams to model-bassting:

1. Approach #1: Improving and augmenting the presevit. diagram/model with particu-
lar annotations or testing-support artefacts fet &hancements to facilitate test deriva-
tion from the augmented UML model.

Comparatively, Approach #1 has several advantages:

(1) Advantage #1: Using standard UML diagrams/modets E@NL-based specifications as
the core basis for conducting test derivation dhMBT activities.

(2) Advantage #2: The augmented test information cdno@s two main sources:

(&) Source #1: The augmented test information is maietsieved from UML-based
specifications, such as UML use case templatesspedifications (e.g. require-

ments, functions), sequence diagrams (e.g. seallgrtime-ordered interactions),

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 63

®3)

(4)

(1)

)

®3)

(4)

class diagrams and specifications (e.g. clasdates, operations), data dictionary,
etc.
(b) Source #2: If Source #1 is not sufficient, someitamithl commonly-used test en-
hancement information is used for testability imgment.
Advantage #3: The annotated supplements are usityrfar UML-based test enhance-
ments to facilitate test derivation, and do notnggathe normal process and activities of
MBT with UML.
Advantage #4: This approach is very straightforwand acceptable in MBT practice,

and becomes a commonly-used approach in the MBTaohom

Approach #2: Transforming the UML diagram/modebisiome intermediate graphical
representation, some intermediate notation or sotner new model, or directly using
these intermediate forms, from which test caseslariged.

In contrast, Approach #2 has some disadvantages:

Disadvantage #1: The intermediate graphical reptaien may be domain specific or
user-defined, and not known or familiar to all égst This implies that using this ap-
proach may require a more demanding learning dianvehe tester.

Disadvantage #2: The introduced intermediate gragbmepresentation or notation is of-
ten not as standardised as UML models. Consequémdywhole testing process contains
two different sub-processes: while the front-ersting sub-process is UML-based, the
subsequent backend testing process is not.

Disadvantage #3: The introduced intermediate reptasion may complicate the testing
process, and/or change the normal process or sciiyaof UML-based testing.
Disadvantage #4: Both in practice and technicatlis very difficult to ensure that this
transformation is correct, and/or to guarantee Hwh forms (the original UML dia-
gram/model and the transformed intermediate reptagen) are equivalent in terms of

test design, generation and evaluation.

Comparatively, the first approach has more advastamyer the second. The first ap-

proach is also consistent with the integrated aggrdor bridging the identified “test gaps” (as
describedn Section 3.2.6.83) above). Thus, our MBSCT methodology takes &pph #1 and

is fully UML-based, and does not use any intermedgraphical representation. This research

introduces a new testing-support mechanisresf contractgor testability improvement. Test

contracts are represented with commonly-used &mserand applied as special test condi-

tions/constraints on particular UML model elemeart®facts of testing interest. Test contracts

and associated techniques are fully described €bapter Jonwards.

64 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

There is another issue to be considered and thalhésher testing is applied directly to
the software specification or to the software immpdatation. In general, UBT should follow the
primary MBT concepts and principles (as describe8eaction 3.2 One of them is that UBT
derives test cases from a UML-based model to besimiplementation of the software specified
by the relevant UML-based model. This is contrargame views in the literature that focus on
testing software designs in terms of UML design elsdrather than testing the software im-
plementation §] [68] [114] [115. In this research, we focus on testing the im@etation of
software components and systems by using test taaeare derived from UML-based models
and specifications, and thus directly support dyioamsting as the ultimate testing goal. We
take the viewpoint that software specifications/eledare “verified (non-dynamic)” when their
corresponding software implementations are tesigdaimic), as discussed earlier Siection
2.5

3.4 Related Work

MBT/UBT has played a crucial role in the softwaesting domain. There are a number of
MBT/UBT methods and techniques that have diffeparadigms, characteristics and perspec-
tives. They rely on various testing-related aspesish as relevant models for testing, available
test artefacts, target test environments, testctibgs, etc. A comprehensive study and review

of current MBT/UBT in existing related research wopuld bring several benefits:

(@) Understanding relevant methodologies, and the gtinen benefits and limitations of ex-
isting MBT/UBT approaches;

(b) Helping the users of MBT/UBT to select suitable MBBT approaches for the particu-
lar test requirements and test objectives;

(c) Aiding to identify new research issues, improvestng MBT/UBT techniques, and de-

velop new MBT/UBT approaches.

This section comprehensively reviews research weldted to MBT/UBT to provide a
key foundation of the literature review, so thateem identify the important problems and limi-
tations in MBT/UBT (to be described 8ection 3.5 More details about the literature review of
related work in MBT/UBT can be found ia]7).

3.4.1 State-Based Testing

One of the classic MBT approaches is state modstdbaesting or state-based testing, which
develops test cases by modeling the SUT as ams@taine. Binder44] presents how to de-

velop testable state models and state-based t&t,dacluding basic state machines, state mod-

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 65

els for object-oriented software (e.g. Mealy stai@chine, Moore state machine, Statecharts,

etc), and state-based test design and testinggiteat

There are a number of research papers on statd-besteng with UML state diagrams
(or UML statecharts or state machines), suchLag [105, [85], [72], [32] [34] [35] [36] [99]
[4], [133, [82], [41], [129. This section focuses on reviewing and discusmgfirst ten pa-

pers because they are most relevant to our research

Offutt & Abdurazik [LO3 develop a testing technique that adapts stateebapecifica-
tion test data generation criteria to generate ¢ases (for implementation code) from UML
state diagrams. A test data generation tool (UMBTissdeveloped to automatically generate
test data. This work is evaluated with an empirgtatly (i.e. based on a cruise control system).
A limitation is that this work only uses a resteidtform of UML state diagrams. This technique
only considers enabled transitions while UML ha® fiypes of categorised transitions, which
may result in some states not being entered oheghacl his technique also is limited to class-
level testing, and may not directly support intéigratesting. The authors claim that their work

is the first formal testing technique that is basedJML models.

Kim et al. B5] discuss the application of UML state diagramslass testing. According

to their method, control flow is identified by tsforming UML state diagrams into extended
finite state machines (EFSMs), data flow is ideatifby transforming EFSMs into flow graphs,
and then conventional data flow analysis techniguagsbe applied to test case generation based
on data flow in UML state diagrams. The resultieg af test cases provides the capability of
checking that classes are correctly implementethagthe specifications written in UML state
diagrams by testing whether class implementatistedéish the desired control and data flow as
described in the specification. A limitation ofg¢hwork is that it only focuses on unit testing of
classes, and does not consider interrelationstdpgden classes to support object-oriented inte-

gration testing using UML state diagrams.

Hartmann et al.]2] presents a UML-based integration testing apprdachising UML
statechart diagrams as the basis to generate btactests for unit and integration testing. With
UML statechart diagrams, this approach models iddad components by using a state ma-
chine to define the dynamic behaviour of each carepy specifies component interactions,
and annotates the state machines with test reqeivsnio construct a global behavioural model
of the composed statecharts. Then, test casesi@mmatically derived from the annotated state-
charts and global behavioural model, and execuate@rify component conformance behaviour.
Their approach is evaluated with a simple exampla design-based test environment, the TnT

environment (which consists of test generation TE/UML and test execution tool TECS),

66 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

which integrates test generation and execution wethmercial UML modeling tools, e.g. Ra-
tional Rose (which is now available as IBM RatioBalftware f6]). The work is claimed to

support testing of middleware-based components GOd/DCOM and CORBA middleware).

Briand et al. have published a set of researchrpape state-base testing with UML
statechart diagram87)] [34] [35] [3€] [99] [4]. The work in BZ] [35] proposes a methodology
to automate the derivation of test cases from Uhlditeshart diagrams for a given set of transi-
tion test sequences. The procedure required fon@ated derivation is based on a careful nor-
malisation and analysis of operation contracts r{gaetion) and transition guard conditions
written in the Object Constraint Language (OCL§(]. The work in B4] investigates the cost-
effectiveness of state-based testing for classedass clusters modeled with UML state dia-
grams (i.e. flat statecharts), and focuses on xperenental evaluation of a well-known state-
based testing strategy: round trip testig][with a series of three experiments in controlled
experimental settings. Their results show thatnost cases, state-based testing techniques are
not likely to be sufficient by themselves to detexcist of the faults present in the code, and they
need to be complemented with black-box functiomstihg, such as the category-partition
method [L14.

Test criteria for state-based testing are usuaBoeated with states, transitions and/or
predicates in state models. Offutt et 40J [105 present four useful test criteria at different
levels of abstraction of state-based specificati@ash of which requires a different extent of
testing: (1) transition coverage criterion; (2)l fodedicate converge criterion; (3) transition-pair
coverage criterion; (4) complete sequence critefidrese four test criteria are mainly used for

class-level testing with state models.

3.4.2 Software Integration Testing with UML

This section reviews and discusses research wtakedeto software integration testing with
UML models [L3] [14] [19] [20] [16 [72] [113 [12] [4]. We concentrate our attention on the

first four papers because they are most relevaoteesearch.

Basanieri & Bertolino 13] presents an approach for UML-based integraticstirtg,
called Use-Interaction testing, which uses UML uaee, class and sequence diagrams. They
use UML use case diagrams to represent the systeatidnalities under test, UML class dia-
grams to define operations and attributes (at b lgel of abstraction) required by classes for
the interactions of their objects, and UML sequedliegrams to realise the functionality execu-
tion in the selected use case and to analyse theesee of messages between components in

the sequence diagram. They combine message seqaralysis and the category partition

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 67

method 10 to generate test data manually. Since this iSrpreary work on UML-based in-
tegration testing as part of an ongoing researofegr, this approach can only generate some

“abstract” test cases (which are not executablelyaamic testing).

In their subsequent work for the same researctegroBertolino et al.40] extend their
approach to develop a framework for testing comptbeased software with UML. They pro-
vide an overview of an integrated testing framewitwdt will reuse and integrate several tools
and techniques:

(&8 UML Components43] provides a modeling notation and a process fecipng com-
ponent-based systems.

(b) Cow_Suite [4] is a UML-based test environment, originally degsd in the area of
object-oriented testing, which will be expandedatiow for the derivation of test cases
from the UML specifications.

(c) Java-based CDT frameworkd supports component deployment testing.

Wu et al. L67] presents a new test model and relevant UML-béssidadequacy criteria
that can be used for UML-based integration tesbhgomponent-based software. The test
model is used to define and analyse four key testents, which can model the characteristics
of the interactions among components and which mestonsidered during component-based
testing:

(@) Interfaces Integration and system testing need to test eaafiponent interface at least
once as the interfaces activate components imtkegrated environment.

(b) Events Every event in the system regardless of its tigng. externall/internal events)
needs to be covered by some tests. Interfacesvamisetesting ensures that every possi-
ble interaction between components is exercised.

(c) Context-dependence Relationshipedel how interfaces and events interact, anegefl
control sequences of objects in a component wipeaet to single interactions between
actors and the component. Testing context-sengiiygendence relationships may serve
to identify interoperability faults caused by impes interactions among different com-
ponents in the integration context.

(d) Content-dependence Relationshipke interface dependence relationship can beatkri
from the function dependence relationship of th@gonent interface, where one or more
correlated functions, whose signatures are encaigslivith the interface, may be exe-
cuted to perform the requested service. Contergisen dependence relationships can

provide valuable additional information in genangttest cases and detecting faults.

Wu et al. also use UML behavioural diagrams to descelevant component relation-

ships with an illustrative example of an ATM seeemponent, where interaction (i.e. collabo-

68 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

ration/sequence) diagrams and statecharts aretaispecify context-dependence relationships,
and collaboration diagrams and statecharts aretosggecify content-dependence relationships.

This paper also lists some UML-based test adequatsria to test key model artefacts
for context/content-dependence relationships iir thet model: each transition, each sequence,
each context-dependence relationship and contgerdence relationship in the relevant UML
diagrams have to be tested at least once.

The main research results presented in this papetha definition of the four key test
elements and relevant discussions with UML diagithrstrations, as well as some UML-based
test adequacy criteria listed (but without anyHartdiscussions). While these test elements and
test criteria are useful to test component-basévace, this work is at the stage of “approach
development and description”. This paper does noeatly discuss and give practical ways on
how to use their approach to generate actual ésstscand oracles for component-based testing.
Their so-called “test model” mainly illustrates tbentext/content-dependence relationships de-
fined by the authors, and constructing a realrtestel abiding by important MBT principles (as
described earlier isection 3.2.Brequires additional work to effectively drive tegneration
from the test model.

In addition, the authors made several assumptioiiseir work, including: (i) assuming
that each individual component has been adequtgstgd by the component providers when
testing component-based software; (ii) assumingahah interface only includes one operation,
and the references to the interfaces and to theatpe are identical. These assumptions imply
that their work currently considers only some sifigal situations, which could have limitations

in applying their approach to actual component-dssting practice.

Hartmann et al.q2] carry out software integration testing using Ulgtiatechart diagrams

(see our review of this work as describe&attion 3.4.5above).

3.4.3 Software System Testing with UML

This section reviews and discusses research wtatedeto software system testing with UML
models BO] [73] [107 [9] [132.

Briand & Labiche B0] present a system test methodology that derivestional system
test requirements from UML-based analysis models dhe produced at the end of the analysis
development stage. These UML analysis artefactsegnmesented with use cases (use case dia-
grams and descriptions), interaction (sequenceltaboration) diagrams (associated with each
use case), class diagrams (composed of applicdtiorain classes), a data dictionary (describ-
ing each class, method and attribute) (which is atsassumptiorof their approach). First, they

build one activity diagram per actor in the systermodel and capture sequential dependencies

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 69

and constraints between the use cases relatee tctors, and generate legal sequences of use
cases according to the sequential dependenciesispaa the activity diagram. These use case
sequences and dependencies constitute the firgparmmt of system test requirements. Then,
they use the system sequence diagrams augmentegretise OCL guard conditions (which is
an assumptionof their approach) to describe the associatedcases, derive operation se-
quences of use case scenarios to be executedsted, tend identify test oracles for each opera-
tion sequence based on the OCL-specified posteondiof operations in the sequence. Finally,
for a given use case, they formalise all identifipgration sequences to be tested, related initial
conditions and test oracles into a decision takléch is used as a formal set of system test re-

quirements. This paper uses a library system a&xample.

However, this work does not currently address howednerate actual system-level test
cases and oracles by using the test requirement&devith their methodology. Producing the
complete test requirements for the SUT requirestiadd! work, and the methodology needs to
be improved and evaluated with more complex casties. In addition, this approach relies on
a number of assumptions they make regarding the avevL analysis model is developed,
such assumptions as the data dictionary, and OQ@ktnts on the UML analysis artefacts
under test (e.g. OCL expressions for invariantsaah class, and for pre/post-conditions of each
operation). Such assumptions implicitly presume #raordinary UML analysis model would
already have certain “good” testability propertiand be “test-ready” to be used directly as a
target test model for test derivation, or thatduhd be “easy” to fulfil the relevant requirements
for the assumptions, making these assumptionsalliytacceptable or valid in UBT practice.
However, these “virtually-acceptable assumption® @mot realistic and are linked to certain
“test gapsthat are required to be bridged in UBT practiehjch is regarded as a very impor-
tant part of MBT principles as described earlieGattion 3.2.6Among many other testing is-
sues, how to improve testability and obtain testghiequirements are among the most crucial
and difficult testing tasks. A key focus of oure@arsch is on model-based testability improve-

ment for effective test model construction in olB®CT methodology.

Hartmann et al.]3] describes a tool-support approach for automdyigenerating and
executing system tests. They use UML use caseafimgand activity diagrams to model the
dynamic behaviour of systems, manually annotatebgteavioural models (activity diagrams)
with test requirements, and refine the activitygdéems in more detail for the test genera-
tor/executor. System tests are automatically géeerixom the behavioural models, and then
executed with their TnT environment. The TnT enwinent is developed originally to support
unit and integration testing with UML statecharfg][and currently to support system testing

with UML use case diagrams and activity diagran$§. [

70 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

Nebut et al. 102 [101]] carry out software system testing using UML uaees and sce-

narios (which is further reviewed Bection 3.4.4elow).

3.4.4 Software Testing with UML Use Cases and Scenarios

UML use case diagrams and scenarios mainly focudeseribing system requirements and
analysis to construct use case models and anahmigls, which capture system requirements
and (integration) functionalities at high levelsatfstraction. Accordingly, UML use case dia-
grams and scenarios are mainly used as a baserit@ dystem/integration test requirements,
which can further drive design and generation stay/integration tests for system/integration
testing. UML use case diagrams and scenarios (@se ¢iew) are often used in conjunction
with UML sequence diagrams (behavioural view) toemake system/integration testing. This
section reviews and discusses research work relatedftware testing based on UML use case

diagrams and scenarios.

Nebut et al. J07 present a use case driven approach for autoregsiem test genera-
tion. They enhance UML use cases with requiremergticontracts based on use case pre and
post conditions to describe system requiremelg][and use UML sequence diagrams to de-
scribe use case scenarios. They propose a two-phesed to automatically generate func-
tional test scenarios from requirement artefagtghé first phase aims at generating test objec-
tives (i.e. relevant extracted paths of the vadiquences of use cases) from a use case view of
the system (with use cases, contracts and coveragga); (ii) the second phase aims at gener-
ating test scenarios from these test objectivesrdnsforming the test objectives into the test
scenarios using sequence diagrams). Then, thefiesiae test cases from the derived test ob-
jectives and test scenarios with their tool-suppartsition system. The approach is empirically

evaluated with three case studies in terms ofrsté coverage with the generated tests.

Basanieri & Bertolino13] apply UML use case diagrams and other UML diagréctass
and sequence diagrams) to UML-based integratidingegsee our review of this work as de-
scribed inSection 3.4.p

Briand & Labiche B0] apply UML use case diagrams, in conjunction witkiL class
and collaboration/sequence diagrams, to produce {UbHed analysis models and derive sys-
tem test requirements for UML-based system teg8ag the review of this work as described in
Section 3.4.3

Hartmann et al.43] apply UML use case diagrams and activity diagramns/ML-based

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 71

system testing (see the review of this work asritest inSection 3.4.3

Tsai et al. have published several research papkted to scenario-based testing, such
as [L47 [143 [144 [149 [144 [147]. The work in [L47 proposes a scenario-based functional
regression testing method, which is based on emuitlbintegration test scenarios and focuses
on the functional correctness of integrated systEom the end user’s viewpoint. They repre-
sent test scenarios in a template model that erabdxbth test dependency and traceability in-
formation, and use a ripple effect analysis to fderall affected, including directly or indi-
rectly, scenarios, and thus the set of test cadested for regression testing. The workiAJ
presents a process to develop adaptive objecttedestenario-based test frameworks for test-
ing embedded systems. Their process uses technsgiebsas design-for-change, design pat-
terns, scenarios, ripple effect analysis and regyegesting, and is illustrated with a test exam-
ple of a mobile phone system. The work irl4] presents a scenario-based object-oriented
framework to test distributed systems rapidly addpaively by using several techniques, such
as scenario modeling, state modeling, design patteerification patterns, regression testing,
ripple effect analysis and test simulation. Theanfework is illustrated in testing a supply chain
management application developed using web servideswork in 45 proposes a scenario-
based web service testing framework that provitleset main distributed components: (a) test
masters that manage scenarios and generatesripts; db) test agents that dynamically bind
and invoke web services; (c) test monitors thatwapsynchronous /asynchronous messages
sent and received, attach timestamp, and trace statnge information. As they claim, the
benefit of using this framework is that the usellyareeds to specify system scenarios based on
the system requirements without needing to wrisé ¢ede. Then, the framework generates test
scripts, executes tests, collects and monitorsrésstits, and evaluates test results at runtime.
The work in [L44 presents a scenario-based object-oriented framefeo adaptive and rapid
testing, which improves their earlier work it and includes new features such as database
support, regression testing, assurance-baseddgestiree-tier architecture and web-based tool
support. Their framework takes test scenario sjpatibn as input, prepares data for test execu-

tion, performs test execution, and evaluates &=stlts with a database support.

3.4.5 Software Testing with UML Sequence Diagrams

This section reviews and discusses research wiatedeto software testing based on UML se-
quence diagramds.f] [30] [10 [131 [89] [129 [54] [10] [11] [135 [13q [61] [8Q].

Basanieri & Bertolino13] use UML sequence diagrams to realise functiopabkiecution
in the selected use case and analyse the sequeneessages between components in the se-

quence diagram for UML-based integration testireg (sur review of this work as described in

72 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

Section 3.4.2 Briand & Labiche 30] use the system sequence diagrams to descrilzssoei-
ated use cases, derive operation sequences ofissescenarios to be executed and tested for
UML-based system testing (see the review of thiskves described iSection 3.4.3 Nebut et

al. [107 use system-level sequence diagrams in the seglase of their use case driven ap-
proach to system testing (see the review of thikves described isection 3.4.%1 They em-
ploy sequence diagrams to represent the instadhtiege case scenarios, which are used to re-
place the instantiated use cases in the test olgeatierived in the first phase, and obtain the
sequences of scenarios. They then transform theagoesequences into test scenarios using

strong sequential composition.

Many reported methods require transforming UML diags into some intermediate
graphical representations. For example, the woilk &i] presents a method of generating test
cases from UML sequence diagrams. This methodftrans a UML sequence diagram into an
intermediate graph called a sequence diagram gheggraugments each node in the converted
graph with test information (retrieved from useectamplates, class diagrams and data diction-
ary), and then the augmented converted graphversad to generate test cases (e.g. test input,
output, postcondition). The work iBJ] presents a test case generation method basedvian U
sequence diagrams augmented with OCL expressidnis.nfethod firstly converts a sequence
diagram into an intermediate scenario tree reptaten, and then selects and transforms condi-
tional predicates (pre/post-conditions in OCL) émerate test data. The work PP describes
a testing method to generate test cases from UMuesee diagrams using dynamic slicing.
This method identifies message guards on sequeageaths, creates dynamic slices with re-
spect to the slice, and generates the test cabaagpect to the slice. The generated test cases
satisfy a slicing coverage criterion formulatedaa®st adequacy criterion. However, the above
methods are based on using some intermediate gedpbpresentation that is not as standard-
ised as the UML notation. Accordingly, this mayuies the relevant testing method that is not
suitable for a tester on the component user sideissiinfamiliar with these intermediate repre-

sentations in UBT practice.

On the other hand, some reported methods requieetlyi using some non-UML stan-
dard notations or graphical representations to kbase methods on, which have similar defi-
ciencies as the above. For example, Dinh-Trond. ¢54] introduce a graphical representation
called the variable assignment graph (VAG) that lnioes relevant information from UML se-
guence diagrams and class diagrams for UML desiggiefa. A symbolic execution based ap-
proach is used to derive test input constraintsftioe paths of this directed graph. The derived
test inputs help fault detection in UML design misd€&ollowing this work, Bandyopadhyay &
Ghosh [LO] [11] develop an extended variable assignment grapmA(®MWhat integrates rele-

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 73

vant information from UML sequence diagrams antestitagrams to generate test inputs. Their
own mutation analysis on their pilot study showattthe EVAG is more effective than the
VAG by using more precise information describing #ifects of message sequences in the state

machine models.

A key feature of a sequence diagram is its featfisequential ordering in arranging in-
teraction messages, which can drive and facilidateeloping corresponding test sequences in
test case generation. Ih35, a method is presented to generate test sequénces combina-
tion of UML sequence diagrams, which is complemeridg the use of state diagrams. A se-
quence diagram describes a set of test sequerfterindi in terms of the different states of the
participating objects. An attached state diagranme&zh participating object describes its states
(and the transition behaviour between these std@gh combination of initial state configura-
tion and initialisation sequences describe at leasttest case in the set. II8{], a method is
presented to generate test sequences from UMLeResce diagrams. The method first trans-
forms a sequence diagram into an intermediate faited a sequence dependency graph from
which test sequences are generated. They defimetfpas of message dependency relation-
ships (indirect message dependency, direct messggendency, simple indirect message de-
pendency, and simple direct message dependenay)denive message sequences using the
“execution occurrence” feature of sequence diagrarne derived message sequences are in-
corporated into the transformed sequence dependgaph. Finally, a traversal algorithm is
described to generate test sequences from the remuependency graph. However, in the
above methods, except for the test sequences beirerated, it is not very clear how individual
tests and the necessary checking in a test cagemeeated and arranged in the specific derived

test sequence.

UML sequence diagrams can be used as a basisvtotdd development of model-based
testing tools. Fraikin and Leonhardl] develop a test tool SeDiTeC that supports autechat
generation of test stubs based on their refinedeseze diagrams, which are complemented by
test case data sets consisting of parameters &nth realues of method calls. For classes and
their methods whose behaviour is specified in secgieliagrams and given the corresponding
test case data sets, the test tool can automgtgeatierate test stubs thus enabling early testing
before the completion of the implementation pha&gidation compares the test case data sets
with the observed data, and also includes validatioclass method pre/post-conditions. How-
ever, this test tool relies on a particular platipand is developed with the UML CASE tool

Together Control Centre (which is now availabldagdand Together]9)).

Javed et al.g0] develop a model transformation prototype tooktmpport their model-

driven testing method, which utilises the modehsfarmation technology of model-driven ar-

74 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

chitecture 10€ to generate unit test cases from a platform-iedelent model (PIM) of the
SUT. Their method is based on UML sequence diagrdomming the platform-independent
model), where the generation of unit test casesistsnof two steps. The first step models a se-
guence diagram as a sequence of method calls, whelitomatically transformed into a gen-
eral unit test case model xUnitd3 by applying model-to-model horizontal transformat
(PIM to PIM transformation) using Tefkat4(. The second step generates concrete and execu-
table JUnit 1] test cases from the xUnit model by applying medeiext vertical transforma-
tion (PIM to platform-specific model transformatjamsing MOFScript 95]. While this method
takes advantage of MDA technology for automati¢ tese generation from UML sequence
diagrams, it is not very clear that how the inisajuence diagrams, which they use for the two-
step model transformations, would contain adequstable information for generating unit test
cases by using their prototype tool. As indicatadier in Section 3.2.6bridging the actual
“test gaps” between sequence diagrams and readyetdest models is a challenging task in

UBT practice.

Test criteria based on UML sequence diagrams arallysassociated with messages, a
sequence of messages, and/or start-to-end mesatgeip sequence diagram models. Among
other test criteria, the all-paths criterion reqaieach possible message path to be taken and
exercised at least once. This is an important reqent of adequate testing of sequences of
messages or equivalent representations. Severatphave used a similar all-paths criterion in
their testing techniques, with coverage of messagpiences in sequence diagraffg [61]
[131 [89 [83], message sequences in collaboration diagrdingLpZ, or use case sequences
(i.e. all scenarios) in use case diagraB@.[However, many papers do not address a critical
problem associated with the practicality of thepalths criterion: there is a possibility to have
an infinite number of all start-to-end message pathsequence diagrams. To deal with the
problem of such infinity, Binder suggests usinguaset of all start-to-end message paths in a
sequence diagrand4]. This indicates that the all-paths criterion webabt be always feasible in

testing practice, and the problem of its practigatmains to be resolved.

The use of UML sequence diagrams for integratistirnig was evaluated in several stud-
ies. For example, Abdurazik et aP] [3] [83] present a single project experiment on the fault
revealing capabilities of model-based test seteigead from UML statecharts and sequence
diagrams. Their results show that the sequenceaiiatests have better capability of revealing
integration level faults than the statechart teastg] they recommend that sequence diagrams

should be used for integration level testing.

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 75

3.4.6 Other Related Work

This section briefly reviews other MBT-related wdekg. non-UML based) that is in the
literature but is not directly related to the scabehis research, in order to show the acknowl-
edgment of other MBT-related work with our compnesiee literature review.

One worth-mentioning type of MBT (non-UML based)fesmal testing that employs
model-based formal specifications for softwareitgsfLl82 [189 [19(. The work on this type
of MBT applies relevant formal specifications, fxample, finite state machines9p] [183
[184 [191], labelled transition systems and input outputgron systems19g [141] [199, Z
specifications 187] [18], etc. Because formal testing relies on matherabyidbased formal
specifications (e.g. mathematically based languagesations, syntax and/or semantics) to
specify software models for MBT, they are used tyosithin theoretical research academia,
but are not favoured by software engineers/testarglustry. Accordingly, this type of MBT is
much less popular and practically useful than UBTE outside the scope of this research.

Based on the OMG UML 2.0 standard, the UML Tesfirgfile (UTP/U2TP) is a do-
main-independent test modeling language for tes# specification, test data specification, test
deployment, and test result visualisatid®3y. However, since its perception (e.g. the OMG
UTP 1.0 release in 20059.94]), the UTP does not have high research interest€ademia, and
is not widely used in software engineering industsyexpected1lpg [184] [185 [201] [18]]
[199 [197] [200. A straightforward reason would be that ones @thbacademic and industry
communities have already employed UML models (Wit¥iL diagrams) as test models well
before the UTP perception. The more important neasoe that the current UTP has a number
of itself own limitations 197] [200. For example, (1) the UTP does not directly suppest
case generation except for test specificationti{@)UTP is not a testing methodology that can
provide effective testing processes, techniquesgandkelines to derive actual test cases and to
undertake fault detection and diagnosis; (3) testiication documents described with the UTP
have inadequate readability just as the UTP hadaingnconsistencies to the UML 2.0 standard;
(4) there are no effective and sufficient testiogl$ supporting software testing using the UTP
in MBT practice.

Accordingly, this research does not use the UTRdst specification. The main objec-
tives of this research are to address more impbctaailenging research problems (as outlined
in Section 1.1 and as further reviewed in Sectidnli&low) beyond the way of test modeling
and specification as with the UTP. The new MBSCThodology introduced by this research is
a novel comprehensive SCT methodology for test moolestruction, component test case de-
sign and generation, component testability imprametncomponent fault detection and diagno-
sis, and component test evaluation (as outline@hHapter 1 and as further described in more

detail from Chapter 4 onwards).

76 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

3.5 Analysis and Discussion

Based on our literature review, we have identiBedumber of important problems and limita-
tions that remain unresolved in MBT/UBT, which farra very important part of the research
results of our literature review. These issues i@ddrly appear in many representative
MBT/UBT approaches reported in the literature (iemte been highly cited by a larger number
of research papers), such &89 [72 [30] [162] [105 [102.

The following analyses and discusses these impogpaoblems and limitations in
MBT/UBT:

1. MBT/UBT practice and the entire software developty@ncess
The current MBT/UBT practice (including approachestjvities) has not been fully inte-

grated (at least not in an effective and efficieaty from our literature review) into the entire

software development process, and/or the projegztfosation’s continuous test process. This

MBT/UBT limitation reflects on three main aspecssfallows:

(@) On the one hand, because the use of MBT approachass a significant paradigmatic
change from IBT or other traditional testing aptoes, there are some obstacles in tech-
nology transfer of MBT into testing organisatioss, the overall process of software de-
velopment and testing must be adapted.

(b) On the other hand, because of the aforementioraagm, software models used for test
generation are not incorporated appropriately wiftware artefacts produced from the
software development process, or software modelglafined merely by and for a spe-
cific MBT approach in use. This can cause the dsnaMBT approach not to be cost-
effective.

(c) More important, there is no unified software depehent process that integrates
MBT/UBT activities effectively and efficiently intthe entire SDLC.

This problem in MBT/UBT was also observed in sekpreor studies 46] [25] [21] [47]

[48] [26]. Their studies focused on relevant process ag@risation issues and impacts of
MBT in terms of research findings, project expetiesy learned lessons, encountered chal-
lenges, constructive recommendations and/or futerels.

This issue is very important and should be resolavever, many of the abovemen-
tioned representative MBT/UBT approaches (as listeolve in the first paragraph of this sec-
tion) do not well address this problem. In thisemesh, we argue that the integration of MBT
and MBD activities should allow both to work coltahtively together in the SDLC process to
deal with this crucial problem in MBT/UBT. Our praged MBT definition (inSection 3.2.p

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 77

has provided a conceptual basis to address thidgono This research aims to overcome this
limitation in MBT/UBT practice by using thilodel-Based Integrated SCT Proceks/eloped
for the new MBSCT methodology (as described eaii€ection 1.landSection 1.2

2. “Test Gaps” and inadequate model-based testabiliyBT/UBT

As reviewed inSection 3.2.6.3there exist certain “test gaps” causing inadegjuaddel-
based testability in MBT practice. However, thisug has not been recognised appropriately in
the literature and there are some misunderstandibngst how to create a test model. One mis-
understanding is a belief that to build a test nadelusively for MBT from scratch can be
done without using existing software developmentlet® Another misunderstanding is a belief
that it is possible for a tester to “fully reusesianple or ordinary software model directly from
software development as a test model with no mzatifins. These misunderstandings can re-
sult in the waste of software development resouocgsadequate model-based testability. Ac-
cordingly, a lack of recognition of the “test gapsSue is a practical obstacle to undertake
MBT/UBT effectively.

Our literature review shows that most MBT/UBT ammioes reported do not address this
problem, including the representative MBT/UBT apgmioes as mentioned above in the first
paragraph of this section. The “test gaps” issuery important and should be resolved. In this
research, we argue that it is important to additesgorrelation between “test gaps” and inade-
quate model-based testability. This research aomsvercome this MBT/UBT limitation by
bridging the “test gaps” and improving model-bagestability with theTest by Contractech-
nique and th&est-Centric Remodelingtrategy developed with the new MBSCT methodology

(as described earlier Bection 1.landSection 1.2

3. Comprehensiveness in MBT/UBT approaches

Dias Neto et al. conduct a comprehensive survayiBT/UBT approaches4[7], and in-
dicate that: “MBT approaches usually cannot repres@ad test non-functional requirements,
such as software useability, security, performaaod, reliability” 48]. This corresponds with
the findings of our literature review. In additibmthis type of deficiency, our literature review
shows that, due to various reasons, most MBT/UBdr@grhes reported in the literature lack
certain methodological comprehensiveness: theyllysoantain only limited (usually one or
two) individual testing techniques, causing therhtochave sufficient core testing features and
capabilities, such as testability improvement, tfaaitection, diagnosis and localisation. For ex-
ample, almost all of the abovementioned represeatdfIBT/UBT approaches do not ade-
quately cover these core testing features and dajsb Furthermore, some of these ap-
proaches do not show important detailed and ops@tidescriptions on how to apply them to

generate actual test cases and oracles, such &@8ihapproaches bys[)] (as reviewed irSec-

78 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

tion 3.4.3 and [L67 (as reviewed irSection 3.4.p

This research aims to address this limitation inTWBBT practice. The new MBSCT
methodology is developed to be a comprehensive Wided SCT methodology that has a
number of effective testing techniques and processme testing features and capabilities (as
described irSection 1.JandSection 1.2

4. Validation and evaluation of MBT/UBT approaches

In their review of MBT/UBT approachedT], Dias Neto et al. also indicate that: “most
MBT approaches are not evaluated empirically, andti readily transferred from the aca-
demic research environment to the practical ingustivironment” fi8). This corresponds well
with the research results of our literature reviéwparticular, our literature review shows that
most MBT/UBT approaches reported in the literatane presented only with limited individual
testing examples, which means that most MBT/UBTraeaghes have not been comprehen-
sively validated and evaluated. This is also seenthe abovementioned representative
MBT/UBT approaches.

This research aims to address this MBT/UBT limitatiOur MBSCT methodology has
been validated and evaluated comprehensively withfull case studies, in terms of the most
important SCT/MBT activities, such as test modeistaiction, component test design and gen-
eration, component testability improvement, comporfault detection and diagnosis (as de-
scribed inSection 1.JandSection 1.2

In addition, there are some other MBT/UBT problddentified in the literature review
[177). For example, many MBT/UBT approaches reportethaliterature appear to be manual
testing and/or are deficient in tool-support tagbeation, or they usually do not have adequate
test criteria to enhance and ensure testing qualitgt so on. These limitations are also seen in
many of the abovementioned representative MBT/UBpreaches. In the scope of this re-
search, we patrticularly focus on addressing thevedstated four most important problems and
limitations in MBT/UBT with the development of timew MBSCT methodology.

3.6 Summary

This chapter has provided a comprehensive litezatewview of the important concepts, princi-
ples, characteristics, methods and techniques of MBjeneral and UBT in particular. We dis-
cussed a number of important MBT/UBT issues andaated aspects (as raised earlieBat-
tion 3.1). Both MBT and MBD must be integrated and collaimely work together as part of
the SDLC. UBT advances MBT towards a mainstream Mpproach. In this research, we em-

ploy MBT as the primary software testing approdghklL as the object-oriented software mod-

Chapter 3 Foundation of Model-Based Testing and Ul-Based Testing 79

eling language, and UBT as the major type of MBjrapch.

The comprehensive literature review and furtheeaesh work undertaken in this chapter
have attained a number of research results anoh§iadincluding new concepts and definitions,
important problems and limitations in MBT/UBT), whi make original contributions to the
body of knowledge in the main research areas of MBd@ UBT in the literature. The following
summarises our main research results in this chaptedescribes how we intend to apply them

in this research:

(Note that the main problems and limitations ididi in MBT/UBT are described in
Section 3.5above.)

1. A study of model-based tests @ection3.2.4

As described irBection 3.2.4the initial form of model-based tests derivededily from
test models is “abstract”, and such abstract tes¢gare not ready to be used for dynamic test-
ing. Accordingly, it is very necessary to have s@mactical testing technique that can support
transforming abstract test cases into concretectests suitable for test execution for dynamic
testing. For this purpose, we develop a test mapg@ohnique for SCTComponent Test Map-
ping, which is an integral part of our MBSCT methodgloghis technique will be introduced
in Chapter 4and further discussed and appliecCimapter 8

2. A new definition of model-based testing @ection3.2.5

We have proposed a new definition of model-basstingg which covers the main MBT
activities, tasks and goals. A key characteristithe new MBT definition is that it clearly em-
phasises the integration of MBT into the softwaesedlopment processes, enabling MBT and
MBD to work together in the SDLC. Our proposed MB&finition aims to use an integrated
testing process to overcome the first outstandmgdtion in MBT/UBT (as described iSec-
tion 3.5. We incorporate this important feature of the Md®T definition in the development
of theModel-Based Integrated SCT Procedgth the new MBSCT methodology, which will be
introduced inChapter 4and applied irChapter Sonwards.

3. A new test model definition (iBection 3.2.%

We have proposed a new test model definition, anphasised the relevant implications
and importance of test models in MBT practice. #t odel for MBT is not exactly the same
as its associated development model from MBD. Adgest model should be reasonably sim-
ple and/or more abstract than the concrete impléatien of the SUT, but it also must be ade-
quately precise for testing requirements. We afipdge useful guidelines to develop test mod-

els with our MBSCT methodology.

80 Chapter 3 Foundation of Model-Based Testing anUML-Based Testing

More important, we must bridge the identified “tgaps” and improve model-based test-
ability for effective test model construction, irder to resolve the second outstanding limitation
in MBT/UBT (as described iBection 3.5 This is an important starting point that has imot
vated this research to develop thest-Centric Remodelingtrategy and th&est by Contract
technique with the new MBSCT methodology, whichl g described iiChapter 4to Chapter
7.

4. A new definition of UML-based testing (fBection3.3.1)

A new UBT definition is proposed based on our MBfinition. UBT is the major type
of MBT approach we use in this research to obtagnbenefits of the standardised notations and
rigorous semantics of the UML. Based on this UBTirgiion, our MBSCT methodology is a
new approach for UML-based testing of software congmts and systems (i.e. UML-based
SCT).

5. A core UML subset for SCT (i8ection3.3.2

Among 13 types of UML diagrams, we have selected fmain UML diagrams to form
our core UML subset, UML-SCT. Our selection wagifiesl based on a major point: our litera-
ture review shows that UML diagrams in UML-SCT anest commonly used for object-
oriented software behaviour modeling and testisg¢ziewed irSection 3.3.2, Section 3.4td
Section 3.4.p Our MBSCT methodology is BIML-based SCT approach to develop UML-
based test models and UML-based component testsatbadescribed by UML diagrams in
UML-SCT.

6. A study and review of use case driven testing arehario-based testing (iBections

3.3.2t03.3.3 andSections3.4.2t03.4.5

We have studied the main concepts and reviewetkcelaork of use case driven testing
and scenario-based testing. Motivated by this rewee introduce th&cenario-Based Compo-
nent Integration Testingechnique in our MBSCT methodology. This technigmeploys sce-
narios as concrete use case instances to captugiberal interaction dynamics in the integra-
tion context, which aims to develop test scenatind associated test sequences for UML-based
integration testing of software components. Thihbéque will be introduced i€hapter 4and

applied fromChapter Sonwards.

By providing a comprehensive literature review ahdther research results in
MBT/UBT, the research work in this chapter has t@e@an advanced methodology foundation
to support the development of the new MBSCT metlamo which will be described from
Chapter 4onwards.

Chapter 4 Model-Based Software Component Testingd Methodology Overview 81

Chapter 4
Model-Based Software Component Testing:
A Methodology Overview

4.1 Introduction

The early chaptersChapter ZandChapter 3 of this thesis presented a comprehensive litezatu
review and associated further research results;hatrieates a solid conceptual and methodo-
logical foundation to support the development & ttew methodologyChapter 4to Chapter 9

of this thesis describe the main body of the newhodology, which is the core part of this re-
search. Starting fror@hapter 4onwards, we formally introduce and describe the nmesthod-
ology of Model-Based Software Component Testing (MBSCT) we have developed in this
research]67 [169 [171 [17 [173 [174 [179 [179 [179.

This chapter presents an overview of the MBSCT pudlogy. First,Section 4.2gives
an overall methodology summary. Then, we deschieemtajor MBSCT methodological com-
ponents (irSection 4.3 the MBSCT framework for UML-based SCT @ection 4.4, the main
MBSCT methodological features (Bection 4.5 and the core MBSCT testing capabilities (in
Section 4.6)Finally, Section 4.7resents a summary of this chapter. More techdietlils and
application of the MBSCT methodology are furthesadissed and illustrated with case studies

in the subsequent chapters of this thesis.

4.2 Methodology Summary

The MBSCT methodology is a novel hybrid UML-base@TSapproach that aims to address a
number of the most important challenging researoblpms in SCT/MBT (as identified earlier

in Section 1.1and as further reviewed Bection 3.5 and to achieve the following goals:

(1) Integrating UML-based testing into a unified UMLdeal software process as part of the
SDLC, enabling the utilisation of a consistent UMased approach and specification for
all UML-based component development and testingyities;

(2) Bridging the test gap’ between ordinary UML-based software models (whiéch not
test-ready or non-testable) and target test mdadéigh are test-ready or testable) to sup-
port UML-based SCT;

(3) Improving model-based component testability foeefiive test model construction, com-

82

Chapter 4 Model-Based Software Component Terti: A Methodology Overview

(4)

(5)

(6)

(7)

(8)

ponent test design and generation, componentdatéttion, diagnosis and localisation;
Focusing testing priority on the development oinsc®-based test models and scenario-
based test cases to support component integraggimg that bridges component unit
testing and component system testing;

Deriving model-based component test artefacts teigee target component test cases
(e.g. CTS test case specifications);

Incorporating SCT activities with widely-used praveoftware concepts and practices
(e.g. object orientation, UML modeling, Unified lBess, use case driven principlés][

to develop a comprehensive integrated SCT appredtthunique methodological fea-
tures and testing capabilities;

Undertaking comprehensive methodology validatiod amaluation to achieve the re-
quired level of component correctness and quality;

Advancing SCT/MBT approaches and practices to predrusted quality software com-

ponents with better effectiveness and efficiencg BGE.

The MBSCT Methodology is developed to possess ffinagor methodological compo-

nents (process/technique/strategy), a three-plessmg framework, six main methodological

features and six core testing capabilities, whittogather represent four modules of the

MBSCT methodologyFigure 4.1lillustrates the composition (static) of the fouBBICT mod-

ules.Table 4.1shows an overall outline of the MBSCT methodoloflye subsequerections
4.3 to 4.6 further describe each MBSCT module and their nuhagical collaboration (dy-
namic) to support the entire MBSCT methodology.

Figure 4.1 The MBSCT Methodology: Four Composite Modules

Chapter 4 Model-Based Software Component Testingd Methodology Overview 83

Table 4.1 The MBSCT Methodology: an Overall Outline

1. Model-Based Integrated SCT process
Five Major 2. Scenario-Based Component Integration Testirgnigoe
Methodological 3. Test by Contract technique
Components - -
4. Test-Centric Remodeling strategy
5. Component Test Mapping technique
e BlheEe 1. Test model construction
Testing 2. Component test design and generation
Framework -
3. Component test evaluation
1. Model-based
2. Process-based
Six Main ;
. 3. Scenario-based
Methodological
Features 4. Contract-based
5. FDD-based
6. Mapping-based
1. Test model construction
2. Component test design and generation
Six Core Testing 3. Component fault detection, diagnosis and loatibs
Capabilities 4. Adequate test artefact coverage
5. Component testability improvement
6. Adequate component fault coverage and diagnsstitions

4.3 Major Methodological Components

This section introduces the five major methodolab@mmponents developed with the MBSCT
methodology, including the Model-Based Integrat&il $rocess (irSection 4.3.), Scenario-
Based Component Integration Testing techniques@ation 4.3., Test by Contract technique
(in Section 4.3.8 Test-Centric Remodeling strategy @@ection 4.3.54 and Component Test
Mapping technique (isection 4.3.5

4.3.1 Model-Based Integrated SCT Process

The Model-Based Integrated SCT process is the most important methodological camapb
and provides an overall process model for the eMiBSCT methodology. Its primary objec-
tive is to support the MBSCT methodology'’s threalgdl), (2) and (6) (as described3action
4.2):

(@) Supporting goal (1) by addressing the first chajleg research problem (as described

84 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

earlier inSection 1.2and Section 3.p and incorporating the new MBT/UBT definition
(i.e. Definition 3—1in Section 3.2.5and Definition 3—3in Section 3.3.1)enabling the
MBSCT methodology to have model-based and procaseebfeatures;

(b) Supporting goal (2) by providing a key process ftation for bridging the “test gaps” for
effective UML-based SCT;

(c) Supporting goal (6) by integrating this SCT procesh commonly-used proven soft-
ware concepts and practices (e.g. object-orientithods, UML modeling, Unified Proc-

ess, use case driven principles).

This SCT process integrates software componeni@@vent and testing activities into a
unified UML-based software process as part of i phases of the SDLC, and enables the
use of a consistent UML-based approach and spatdic for the systematic development of
UML-based test models, model-based component tasts model-based test evaluation. It is
developed to be an extension of the general iterand incremental development approaches
/processes (e.g. Unified Process) to the new doofaiiML-based SCT. The entire SCT proc-
ess consists of two main parallel workflow steamedel-based SCD (MBSCD) andmodel-
based SCT (MBSCT), which work collaboratively togethdfigure 4.2illustrates both work-
flows and their relationships, where the left-diddf of the figure represents the MBSCD proc-
ess and the right-side half of the figure represémé MBSCT process. Both workflows follow
the proven iterative and incremental approach ef W principles, and jointly apply UML
modeling to component development and testing.

In particular, the integrated SCT process guidestdrative and incremental construction
of UML-based test models for SCT in combinationhwgarallel UML-based development

models for SCD, which is described as follows:

(1) MBSCD Process

In the context of object-oriented SCD, the MBSCDaass is composed of a number of
UML-based development steps (markB@, D1, D2, ...), which feature Object-Oriented
Analysis/Design/Programming (OOA/OOD/OOP) and praeda set of UML-based software
models for SCD (calle®6CD models at different modeling levels, including the Usasé
Model, Object Analysis Model, Object Design Mod®id Object Implementation Model.

Thecentral control point'ID” evaluates and manages the iterative/incrementaiggs of
development/modeling. In particular, when the auiridevelopment/modeling step is not com-
pleted, or when the current development/modeliregp $6 completed but the entire develop-
ment/modeling has NOT been completed, thB”“point evaluates the current develop-
ment/modeling step and decides which next iteratigeemental D” step (among Step1 to

StepD4) is to be carried out.

Chapter 4 Model-Based Software Component Testing\ Methodology Overview

85

terative Deweloprent

[MO]

MESCD

b

comiponent to develop

Bridge the “Test Gallp>

MESCT

Rer=tive Testing

@D: Select and identify snftwar:.ll

- Y
/(Dl: Use Case I\'Indelj
)

DZ: O0AQOD: Objel::\l

Analysis Model

W
3@3: OOA/OOD: Ohject |
Design Model ./

W

D4: OOD/MOOP: Objecqt\'l

Implementation NModel

dewelopment

complete 7

[YES]

=g | " To: Selectand identify Phase 0
software component to test ¥
te=ting r./- \1(A
{T1: Use Case Test MudeD\\
ta=ti
== {T2: 0OT: Analysis
._Ohject Test Model
W Phase 1
te=tirg
|'/_T3: OOT: Design
'._Object Test Model
te=sting
l'/'i'4: 00T: Iinplementation
__ Object Test Model v
A
T5: Design and generate Phase 2
test cases
Th: Execute and verify
test cases
Phase 3

T7: Examine and
evaluate testing

l

testing complete

[HO]

7

te=ting pas=s 7
[TES]

Figure 4.2 MBSCT Methodology: Model-Based Integrated SCT Process

86 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

(2) MBSCT Process

In parallel, as shown on the right-side halfFojure 4.2 the MBSCT process is linked
and works closely with the MBSCD process. Workingthe counterpart context of object-
oriented SCT (object-oriented testing or OOT), MBSCT process covers a number of corre-
sponding UML-based testing steps (marked] T1, T2, ...), which build a group of UML-
based test models for SCT (cal8€T modelsat different test levels, including the Use Case
Test Model, Analysis Object Test Model, Design @bjéest Model, and Implementation Ob-
ject Test Model.

Thecentral control point'IT” evaluates and manages the iterative/incrementalgss of
testing/retesting. In particular, when the curresting/retesting step is not passed, or when the
current testing/retesting step is passed but theedrsting/retesting has NOT been completed,
the “IT” point evaluates the current testing/retestingp séexd decides which next itera-

tive/incremental T” step (among Stepl to StepT4) is to be carried out.

The integrated SCT process guides what types ofmteslels need to be developed in
terms of the different levels of use case and ¢lgst models. This entails the iterative and in-
cremental development of a series of UML-based mestlels in different test steps (e.qg.
MBSCD/MBSCT Steps D1/T1 to D4/T4), as described in (1) and (2) aboMate that a T”
(Test) step in the MBSCT process corresponds tarallpl “D” (Development) step in the
MBSCD process at the same modeling level. Usualligter “D” step is mainly based on its
preceding “D” step, for example, the Object Dedigodel in MBSCD Step D3 is constructed
based on the Object Analysis Model in its preced®SCD Step D2. However, a later “T”
step is mainly based on its parallel “D” step atsdpreceding “T” step, for example, we con-
struct the Design Object Test Model in MBSCT St&pbhsed on the Object Design Model in
its parallel MBSCD Step D3 and the Analysis Objeest Model in its preceding MBSCT Step
T2.

As shown inFigure 4.2 the entire integrated process has emry points the left-side
entry point represents the start of the MBSCD pgscand the right-side entry point represents
the start of the MBSCT process. However, the el8©d process has just oegit point the
single exit point means that any iterative/incretabdevelopment work must be tested, and the

entire process is not finished until all developtreamd testing activities have been completed.

The MBSCT methodology employs core UML diagramshi@ UML subset UML-SCT
(as introduced earlier iBection 3.3.2to describe both SCD models and SCT models, gmabl
SCT/SCD to utilise a consistent UML-based spedificaapproach. UML-SCT contains what
we callUML-based test diagramsvhich are mainly adapted from corresponding steshd ML

diagrams (e.g. UML use case diagrams, sequenceadiag class diagrams, etc.), and are ap-

Chapter 4 Model-Based Software Component Testingd Methodology Overview 87

plied particularly for the purpose of UML-based SQ@T principle, a UML-based test diagram
(e.g. test sequence diagram) is a diagrammaticgntaof its corresponding UML diagram (e.g.
sequence diagram). While a UML diagram is developgr@cused for describing development
models in UML-based SCD, its corresponding UML-loatest diagram isesting-focusedor
describing test models in UML-based SCT (e.g. fettng relevant test operations and associ-
ated test contracts). Accordingly, the UML-basest tkagrams in the UML subset UML-SCT

includetest use case diagrafisst sequence diagranisst class diagrametc.

This SCT process covers a series of important Ulseldl SCT activities and tasks,
which are further supported by other relevant MBS€&dhniques. Fror@hapter Sonwards, we
further discuss how to put this SCT process intxfice to undertake UML-based test model
construction, model-based component test designganération, component fault detection,

diagnosis and localisation.

4.3.2 Scenario-Based Component Integration Testing Techgue

In principle, the MBSCT methodology is developedsigpport SCT at various test levels
/phases, including (in a bottom-up order) comporagdration testing, component class unit
testing, component class integration testing, campbintegration testing (CIT) and component
system testing (as shown earliefMiable 2.7in Section 2.% As described earlier iBection 2.4
the component user is more concerned about CITghwikian indispensable testing phase in the
SCT domain, and influences whether component reandéntegration are used correctly in pro-
ducing the specified CBS. Accordingly, a princigahl of the MBSCT methodology is to sup-
port CIT, which is based on the completion of eatlts underlying test levels and associated
testing activities, and aims to bridge componeiit testing and component system testing.

The model-based integrated SCT process (as deddnt#ection 4.3.1has a key focus
on use case driven testing and scenario-baseddggsis described earlier Bections 3.3.20
3.3.3andSections 3.4.20 3.4.9, which aids in exploring the particular relatibis between
testing and use cases with their scenarios. A ase scenario illustrates a specific functional
behaviour and forms a typical integration contextering the required interaction dynamics.
Accordingly, a central CIT focus is on examiningndtional scenarios that specify and realise
software component integration (SCI) with objedeiactions among integrated components
and their composite objects in the specific SCltexn Using UML modeling, we can model
object interactions with use cases, interactiogrdias (e.g. sequence diagrams) and class dia-
grams to capture scenarios, sequences, messagasfmpe classes, elements (states/events),
etc, which all are important testing-related cormgrafmodel artefacts for CIT (which are fur-

ther discussed iBection 5.3

88 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

Consistent with use case driven principles, we ripo@ate scenario-based testing with
CIT and conduct what we cdBcenario-Based Component Integration Testing. One key
feature of this technique is that it clearly focusiee keyCIT priority ontest scenarioso exer-
cise and examine critical deliverable componenttions with the associated operational use
case scenarios (e.g. behavioural instances) amttobjteractions (e.g. integration scenarios),
and to test multiple components and composite tbgong with the scenario execution paths
in the related SCI context. A major CIT task isdentify and construct test scenarios for the
related functional scenarios that fulfil the reganents of component functions under test. Test
scenarios can be represented in terms of retaggdequencesith logically-orderedest opera-
tions and associatetest contractgseeSection 4.3.For the TbhC technique). A test scenario
naturally forms a useful integration testing cobhtexexamine component functions for the pur-
pose of CIT. When applying this scenario-based €thnique, the tester can employ a single
test scenario to exercise and verify the CUT’s ipldtobjects and operations participating in
the associated scenario under test. In additientester can also test a single CUT with multiple
test scenarios for diverse test objectives andirements, typically when the CUT is involved
in multiple SCI contexts. Such multiple test scéasmused for CIT are especially necessary
when software components are integrated into diffecomponent-based applications under
development. The scenario-based CIT technique migtis consistent with the use case driven
principles, but also provides a practical way tayc@ut use case driven testing and scenario-
based testing for UML-based SCT.

One objective of the scenario-based CIT technidoes & gain a rational trade-off be-
tween test coverage and testing costs. In testiacfipe, full coverage testing is well known to
be impractical, and high-level coverage testing &400 expensive (as described earli€gaa-
tion 2.3.5. Compared to other testing techniques, our sezbased CIT technique prioritises
test coverage by focusing on the key test scen#vaiscover and verify the crucial component
functions that must be delivered based on the caemiorequirements and specifications. Such
testing prioritisation is derived from the ideaidéntifying and using the scenario priority for
core deliverable component functions, which is phienary testing concern of the component
user.

The scenario-based CIT technique directly suppgbgsMBSCT methodology’s goal (4)
and also partially supports the MBSCT methodologyals (5) and (6) (as describedSection
4.2). The significance of this technique is that idfgitig and developing appropriate test sce-
narios can help establish the foundation for stmirety and constructing scenario-based test
models, and undertaking scenario-based test désighe CIT purpose, which will be further

discussed fronChapter Sonwards.

Chapter 4 Model-Based Software Component Testingd Methodology Overview 89

4.3.3 Test by Contract Technique

Based on our literature review of MBT/UBT descriteadlier inChapter Jespecially about test
models inSections 3.2.53.2.6 Definition 3—2 Sections 3.3.4nd3.5), we have introduced the
new notion of test gapsand stated that developing target test modeledas related ordinary
software models requires bridging the identifieelsttgaps” between them in MBT/UBT prac-
tice. Such “test gaps” can lead to certain compbaeefacts being non self-testable, because
the related ordinary SCD model used for descriliegcomponent artefacts under test may not
comprise sufficient testing-support information atada as required for component test deriva-
tion and evaluation. For those non self-testablapment/model artefacts that are required to
be tested according to certain testing objectivesraquirements, testing could not be properly
carried out or could become very difficult to urtdée effectively. In particular, when such non
self-testable component/model artefacts are pattefcrucial functional component scenarios
under test, the associated test scenarios can kegomtestable. Accordingly, using those test
scenarios with poor testability for test model c¢angtion can result in ineffective SCT models
being produced with poor testability. Therefordsihecessary to develop a useful testing tech-
nique that can bridge the identified “test gaps’l amprove model-based testability in
MBT/UBT.

To address this second challenging research profaerdescribed earlier fBection 1.2
and Section 3.5)we apply the Design by Contract (Db@)Y] [92] principle to both SCD and
SCT activities, and develop a novel contract-ba&S€d techniqueTest by Contract (ThC).

The TbC technique extends Design by Contract tméve domain of UML-based SCT, which
takes it beyond the original DbC scope of code-thaset testing of traditional software classes.
The TbC technique introduces a new useful testingpsrt mechanism dést contracts, which

is based on the component’s contract relationséipden both component partners (i.e. service
supplier/contractor and client}39. Our strategy is to leverage UML-based SCT witl test
contract mechanism at different modeling levelsl design and construct adequate model-level
test contracts to improve model-based componetathitisy (seeSection 2.6or the component
testability concept). The TbC technique applieddesigned test contracts to enhance and con-
solidate test model construction, undertake cotitrased test design and generation based on
test models, and conduct component fault deteetimhdiagnosis based on contract-based tests,
which are the main contract-based testing actsvitithe ThC technique.

Test contracts are realised and represented weitopditions, postconditions and invari-
ants in the form of commonly-used assertions amsdaated conceptsl b [24], which are
applied as special test conditions/constraints amiqular UML model elements or component

artefacts of testing interest. Based on the relatigp between theffectual contract scopand

90 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

the software context (e.g. component context oreatiiog context) of a test contract, we can
classify test contracts into two main categoriapafinternal test contrac(ITC), which has the
same effectual contract scope as its software xpr{t® anexternal test contradeTC), which
has the effectual contract scope different fronsdfware context. With regard to the common
usage of the two types of test contracts for S@TIT& is often used in component unit testing,
but the ITC is required to be re-examined in the &fitext where it is involved. By contrast,
an ETC is often used in CIT, where the ETC is vedliin one integration module whereas it is
defined and applied to another integration modAlgpropriate types of test contracts are de-
signed and constructed for improving componentatstty and facilitating component test de-
sign, which should be side-effect free, and showldaffect or change the important sequencing
attribute of relevant test sequences for modeldasenponent test development.

The TbC technique is an integral part of the MBS@&thodology, and supports the
MBSCT methodology’s goals (2), (3), (5) and (6) ¢escribed irSection 4.2 With regard to
its methodological importance, the TbhC techniqua igrimary base MBSCT methodological
component, and plays the key role of a “methodolgigye” that connects and incorporates the
relevant MBSCT methodological components togetlsearaintegrated testing methodology to
support UML-based SCT activities.

Because of the nature of the ThC technique armspisial role in the MBSCT methodol-
ogy, we need to create a specific layered stru@ndearrangement for the TbC technique con-
tents and related technical aspects, so that wesystematically describe them in the several

relevant chapters of this thesis as follows:
(1) Chapter dresented a basic introduction to the TbC techn{guthis section).

(2) Chapter 5applies the ThC technique to test model constractespecially inSections
5.2.35.2.4.2 5.3, 5.4.3and5.5.3. This supports Phase #1 (test model constructidn)
the MBSCT framework (se®ection 4.4or the MBSCT Framework).

(3) Chapter 6formally describes the TbC technique in more dieW&ie describe the ThC
foundation principles with a set of important cawetroriented test concepts, stepwise
process, test contract criteria and methods weldever contract-based SCT (iBec-
tions 6.2and6.3). On this basis, we discuss test contract desigtest model construc-
tion (in Section 6.4 and contract-based component test design as aselissociated
technical aspects (iBection 6.5 This supports Phase #2 (component test design an

generation) of the MBSCT framework.

(4) Chapter 7Particularly focuses on contract-based fault deir@nd diagnosis (FDD) with

Chapter 4 Model-Based Software Component Testingd Methodology Overview 91

the TbC technique. This jointly supports Phasec@nponent test design and generation)
and Phase #3 (component test evaluation) of the GIB&amework, enabling the

MBSCT methodology to have unique contract-basedridid-based features.

(5) Chapter 8discusses contract-based test generation as fpatnmgponent test derivation
(especially inSection 8.3.2.6)This supports Phase #2 (component test desigrgand
eration) of the MBSCT framework.

4.3.4 Test-Centric Remodeling Strategy

Based on our literature review of MBT/UBT descritestlier inChapter 3especially inSec-
tions 3.2.53.2.6and3.3, andDefinitions 3-1 3-2 and3-3), we stated that a UML-based test
model should be developed based on a relevant Udsledh software model. As guided by the
integrated SCT process (as describedéattion 4.3.), for example, the Design Object Test
Model is developed mainly based on the Object ekigdel.

In practice, software models selected for test mddgelopment need to go through a
form of “remodeling process that is principally test-centric for tsfarming and improving
non-testable models into testable models (as iipatetd earlier irSection 3.2.6.8 To support
test model development effectively based on relewedinary software models, we introduce a
new testing strategy, calletest-Centric Remodeling (TCR) strategy, which has three main

technical aspects as follows:

(1) Test-Centric Model Refinement

According to the MBT/UBT principles described earlin Chapter Jespecially inSec-
tion 3.2.6.3, the full adoption of ordinary software modelsusually not applicable in test
model development, which indicates that only sonwdeh artefacts selected from ordinary
software models are actually used for test modesicaction. On the other hand, not all arte-
facts from ordinary software models are usefultésting, which indicates that some model ar-
tefacts may be not required to be tested, or mag&teng-irrelevant, or may not be transform-
able into testable artefacts to be useful forrestlel construction.

The TCR strategy for test-centric model refinermants to select and retain only testing-
related component/model artefacts that are usefukst model development. This means that a
test model should not contain testing-irrelevatgfacts. For this purpose, we need to refine the
existing software models used for test model caostin by omitting redundant information
from them (e.g. omitting testing-irrelevant modetalls, which, for example, may be concerned
simply with low-level implementation aspects thaaymot be needed for MBTA major goal
is to require that target test models not only aimnhecessary testing-related component/model

artefacts for test model construction, but alsoratienally simpler and/or abstract than the con-

92 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

crete implementation of the component under Hsis TCR strategy aspect helps test under-
standing and management, simplifies the test psoeesl eases the complexity of MBT/UBT in
practice. Test models contain testing-related corapmodel artefacts, which forbasic test
artefactsfor UML-based SCT (which will be further describ@dSection 5.3

(2) Model-Based Testabilitynprovement

The TCR strategy for model-based testability improent focuses on enhancing the se-
lected development models (e.g. a design model) agpropriate supplementary testing-related
and/or testing-support information, and transfogniand improving non-testable compo-
nent/model artefacts to become testable as regiarexnstructing the target test models (e.g. a
design test model). A major purpose is to improwslet-based component testability for bridg-
ing the ‘test gap%(as identified earlier irSection 3.2.6.8 and to enhance test model develop-
ment for effective model-based test design, gergraind evaluation.

As described irSection 4.3.3the TbC technique is developed to support thd gba
bridging the identified “test gaps” and improvingdel-based component testability for effec-
tive test model construction. Therefore, the MBS@&thodology supports this TCR strategy
aspect by using the ThC technique to realise mbdséd testability improvement for UML-
based SCT. Test models contain well-designed tagtracts as necessary testing-support arte-
facts, which formspecial test artefactor UML-based SCT (which will be further describied
Section 5.3

(3) Test-Centric Model Optimisation

Test-centric model optimisation builds on test-dennodel refinement and model-based
testability improvement. An effective approach fest-centric model optimisation is that we
can construct related test models by selectingusimty crucial model artefacts that have high
testing priority for the principal testing objeai and requirements. A major purpose is to re-
quire target test models to contain key test astefavith high testing priority, which accord-
ingly supports what is a very important testingu®cThis aspect of the TCR strategy helps im-
prove and optimise test model construction to becamre concise and precise for the goal of
enhancing testing effectiveness.

As described irsection 4.3.2the MBSCT methodology employs the scenario-b&iéd
technique that focuses the key CIT priority on iffging and developing suitable test scenarios
to exercise and examine critical deliverable congmbrfunctions in the related SCI context.
Test scenarios are used as the primary basis straohtest models and associated model-based
tests for the purpose of CIT. Accordingly, the MBS@ethodology mainly uses the scenario-

based CIT technique to fulfil test-centric modelimysation.

Chapter 4 Model-Based Software Component Testingd Methodology Overview 93

The TCR strategy aims to provide a practical guadearrying out actual test model de-
velopment, and supports the MBSCT methodology’sg(3, (3), (4), (5) and (6) (as described
in Section 4.2, in conjunction with the TbC technique and thersrio-based CIT technique.
FromChapter Sonwards, we apply the TCR strategy to test modestuction for model-based
test derivation.

4.3.5 Component Test Mapping Technique

Based on our literature review of MBT/UBT descritesdlier inChapter 3Jespecially concern-
ing model-based tests Bections 3.2.4nd3.3.2.D), it is necessary to develop a testing tech-
nique for UML-based SCT that can support transfogninodel-based abstract test cases into
concrete target test cases suitable for test ewectdr dynamic testing of component imple-
mentation. To further this issue, it is also regdito provide practical test transformation strate-
gies that can support the construction of modetthdsst artefacts with test models towards the
generation of target component test cases with mded tests to be used in the process of
UML-based SCT. To address this important issueintveduce a new mapping-based test deri-
vation technique, called tl@omponent Test Mapping (CTM) technique.

By exploring the fundamental relationships betw&D artefacts and SCT artefacts
with UML models, the CTM technique createsla-(n) test mapping relationship between the
set of UML-based SCD model artefacts and the seiMif-based SCT model artefacts. That is,
an element in the former set may be mapped, areldbirespond to, one or more elements in
the latter set for constructing and specifying s fer a specific testing objective. The CTM
technique refines and details the method and psoafesiodel-based test design and generation,
and focuses on how to map and transform testabtiehaotefacts and associated test contracts
into useful test case data, so that they can b toseonstruct test scenarios, test sequences, test
operations and test elements for generating tagaponent test cases. The CTM process takes
a series of test mapping steps for test transfaomaBind constructions with respect to the rele-
vant UML models and model elements at different eliog levels towards the derivation of
intended component test cases. The CTM technigigiairealising test case derivation from
abstract test cases to concrete test cases thatoaeesuitable for test execution to support dy-

namic testing.

As an integral part of the MBSCT methodology, thEMCtechnique aids in carrying out
the actual derivation of UML-based component tases in UML-based SCT practice, thus the
CTM technique supports the MBSCT methodology’s g¢8) and (6) (as described $®ction
4.2). From Chapter 5onwards, we apply the CTM technique in conjunctath actual test

model construction and component test derivati@sel on the basic introduction to the CTM

94 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

technique presented in this secti@mapter &urther describes the CTM technique in more de-
tail particularly concerning the test mapping désom, the CTM process and associated CTM
steps towards the generation of target Componesit Sjgecifications (se@ppendix Afor the

definition).

4.4 MBSCT Framework

As described irBection 4.3.1lwe can observe that the entire integrated proalfses the two
parallel workflow streams to jointly establish antriemental and systematic framework with a
series of SCD/SCT steps that covers almost alhth@ UML-based SCT tasks. Technically,
for this MBSCT framework, we can group the relagezps into four phases, as showikigure
4.2

Among the four main phases, Phase #0 (including B&T0) is about component selec-
tion, and not further discussed here as it is datlie scope of this research, but it is referved t
elsewhereq4] [139 [6€]. In addition, Step T6 in Phase #3 is about taseexecution and veri-
fication with dynamic testing, which is referreditothe previous SCL work (as described in
Appendix A).

Accordingly, Phase #1 to Phase #3 together formctite of the MBSCT framework

(called thethree-phase testing framewdrkvhich is described as follows:

(1) Phase #1 (including Steps D1/T1 to D4/T4): Test 8dlddonstruction — Building UML-
based SCT models based on relevant UML-based SGiglmminChapter %
The MBSCT methodology employs the integrated SGXc¢ss, scenario-based CIT and
ThC techniques as well as the TCR strategy to oactstelevant SCT models as the key foun-
dation for UML-based SCT, which will be discussadCihapter 5 The framework Phase #1 is
model-based, process-based, scenario-based andatdrdsed, which is supported jointly by

the first four MBSCT methodological components.

(2) Phase #2 (including Step T5): Component Test DeaighGeneration — Deriving com-
ponent test cases from the relevant test model®#ued test information (iChapter 5o
Chapter 3
Based on related UML-based SCT models and tedharte the MBSCT methodology

mainly employs the scenario-based CIT and TbC fegcas to undertake component test de-

sign, which will be discussed i@hapter 6 Furthermore, we design component tests to detect

diagnose and locate component faults for the gbalcbieving effective test design; in other

Chapter 4 Model-Based Software Component Testingd Methodology Overview 95

words, component fault detection and diagnosicansidered and undertaken as a crucial inte-
gral part of component test design, which will lecdssed irChapter 7

In addition, the MBSCT methodology employs the Cia@dhnique to refine and detail
the method and process of test design and generaspecially mapping and transforming
model-based abstract test cases into concretet temggonent test cases, which will be dis-
cussed inChapter 8 Thus, the framework Phase #2 is model-based epsdsased, scenario-
based, contract-based, FDD-based and mapping-bakéxh is supported jointly by all of the

five MBSCT methodological components.

(3) Phase #3 (including Step T7): Component test etialuéin Chapter 7andChapter 9

With model-based component tests being designedlarmaed, we undertake component
test evaluation mainly in conjunction with the @sseent of the core MBSCT testing capabili-
ties (which are to be described $ection 4.5 which specifically focuses on validating and
evaluating adequate test artefact coverage, compdestability improvement, adequate com-
ponent fault coverage and diagnostic solutionsrasdlts. This will be discussed @hapter 7
andChapter 9

Under the MBSCT framework, Phase #1 and Phase w& ¢loe important methodologi-
cal aspects for developing model-based componshtéses for UML-based SCT. This is an
important focus of the MBSCT methodology, which\pdes the primary framework for Phase
#3. The framework Phase #3 particularly supporsNBBSCT methodology’s goal (7) (as de-
scribed inSection 4.2 Therefore, the five major MBSCT methodologicalmponents and the
MBSCT framework jointly support all the MBSCT mettadogy’s goals (1) to (8) (as described
in Section 4.2

4.5 Main Methodological Features

The MBSCT methodology is a comprehensive SCT ajgpralat is jointly supported by the
five major MBSCT methodological components, witle tihhtegration of new SCT/MBT con-
cepts and definitions (as developedGhapter 2and Chapter 3 and commonly-used proven
software concepts and practices (e.g. object-atentethods, UML modeling, Unified Process,
use case driven principles). The MBSCT methodokgy its framework have their own unique

methodological features different from other redateork, which are:

(1) Model-based feature
The model-based feature is supported jointly byntioelel-based integrated SCT process,
the scenario-based CIT technique and the TCR giralethe MBSCT methodology undertakes

96 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

UML-based testing of object-oriented software congs and systems, and SCT models are
UML-based test models that are constructed basedlevant UML-based development models
(as described i®ection 4.3.1 The development of scenario-based test modethasises the
key CIT priority (as described fBection 4.3.2 The TCR strategy plays the major technical role
in test model development by means of test-cemodel refinement, model-based testability

improvement, and test-centric model optimisatiandescribed isection 4.3.%

(2) Process-based feature

The process-based feature is characterised by tiuelrbased integrated SCT process,
which is the overall process of the MBSCT methodwpl@as described i8ection 4.3.1 In ad-
dition, the other two major MBSCT methodologicahgmonents contain their own technical
processes, including the stepwise TbC working m®and the CBFDD process in the ThC
technique (which will be described @hapter 6andChapter 7respectively), and the stepwise
CTM process in the CTM technique (which will be d#sed inChapter 8).

(3) Scenario-based feature

The scenario-based feature is supported by theasodmased CIT technique that derives
test scenarios and associated test sequences forbdbéd CIT. This technique is consistent
with the use-case driven principles, and providgsaatical way to carry out use case driven
testing and scenario-based testing for scenarieebi@st model construction and scenario-based

test design (as describedSection 4.3.2

(4) Contract-based feature

The process-based feature is characterised by i@ t€chnique that employs well-
designed test contracts to bridge the identifiedt‘gaps” and improve component testability for
effective UML-based SCT. The TbC technique is agplto contract-based test design and

evaluation, contract-based fault detection andrdiaig (as described Bection 4.3.3

(5) FDD-based feature
The FDD-based feature is supported by the TbC tqubrand its CBFDD method to un-
dertake contract-based fault detection and diagnesiich is a primary part of component test

evaluation.

(6) Mapping-based feature
The mapping-based feature is characterised by T t&chnique that maps and trans-
forms testable UML model artefacts and specialdestracts into useful test case data for gen-

erating the intended component test cases.

Chapter 4 Model-Based Software Component Testingd Methodology Overview 97

4.6 Core Testing Capabilities

The MBSCT methodology and its framework have siredesting capabilities that are built on
the five major methodological components and tlensin methodological features. The six
core MBSCT testing capabilities can be classifigd itwo main categories: the MBSCT testing
applicability (including MBSCT Capabilities #1 t@¥and the MBSCT testing effectiveness
(including MBSCT Capabilities #4 to #6), which akescribed as follows:

1. MBSCT testing applicability
(1) MBSCT Capability #1: test model construction
This testing capability is supported jointly by tiest four MBSCT methodological com-

ponents and the first four MBSCT methodologicatdess.

(2) MBSCT Capability #2: component test design and geion
This testing capability is supported jointly by &ilfe MBSCT methodological compo-

nents and the six MBSCT methodological features.

(3) MBSCT Capability #3: component fault detection,giasis and localisation
This testing capability is supported particularly the ThC technique and its CBFDD
method, and the contract-based and FDD-based ésatur

2. MBSCT testing effectiveness
MBSCT testing effectiveness is based on the MBSE€SIing applicability and further

shows the methodological effectiveness in termidBECT Capabilities #4 to #6 as follows:

(1) MBSCT Capability #4: adequate test artefact coverag
Software test artefacts designed and derived wehMBSCT methodology are capable
of achieving adequate test artefact coverage ¢h¢eeelated component/model artefacts and

associated test contracts for the purpose of eéftentodel-based component testing.

(2) MBSCT Capability #5: component testability improvemh
Based on adequate test artefact coverage, the MB®Hodology is capable of bridging
the identified “test gaps” and improving compontgsgtability effectively for fulfilling testing

requirements.

(3) MBSCT Capability #6: adequate component fault cagerand diagnostic solutions
The FDD capability is regarded as a major meastitheoeffectiveness of software test-
ing approaches3f] [37]. Based on the above MBSCT Capabilities #1 tot#® MBSCT meth-

odology is capable of achieving adequate compdiaeiitcoverage and diagnostic solutions for

98 Chapter 4 Model-Based Software Component Terti: A Methodology Overview

the purpose of effective FDD and fulfilling testireguirements.

The first three MBSCT Capabilities #1 to #3 show tiiimary testing applicability of the
MBSCT methodology and its framework, which will bemonstrated and validated with many
selected case study exampleLCinapter 5to Chapter 8 This creates the basis for examining
MBSCT testing effectiveness with the remaining ¢hk4BSCT Capabilities #4 to #6. Further-
more, this thesis employs two full case studiesunidertake comprehensive validation and

evaluation of the six core MBSCT testing capalgifiwhich will be presented @hapter 9

4.7 Summary

This chapter has provided an overview of the MB3@Xhodology by introducing the five ma-
jor MBSCT methodological components, the three-phB8SCT framework, the six main
MBSCT methodological features and the six core MB3€sting capabilities, which form the
principal original contributions of this researddased on this overall introduction to the
MBSCT methodology and its framework, we can illagdrand demonstrate how to put the
MBSCT framework into practice to undertake UML-b&&CT fromChapter Sonwards. Many
important technical aspects of the MBSCT technidespecially the TbC technique, the TCR
strategy and the CTM technique) will be furthercdissed in more detail in the subsequent
chapters of this thesis in conjunction with theecatidies, which validates and evaluates the

applicability and effectiveness of the MBSCT metbiody.

Chapter 5 Building UML-Based Test Models 99

Chapter 5
Building UML-Based Test Models

5.1 Introduction

In common with MBT in general (as described eaiieBection 3.2, the MBSCT framework
starts with UML-based test model development tovigie the crucial foundation for UML-
based SCT (including model-based component tesgdesd evaluation). This chapter pre-
sents how to put the MBSCT methodology into pract develop UML-based test models in
the first phase of the MBSCT framewodg[/] [169 [171] [177 [173 [174 [179 [179 [179.
First, Section 5.2describes the main tasks and techniques for bgiltitst models with the
MBSCT methodologySection 5.3iscusses the main test artefacts for UML-baset. SGen,
we describe the construction of the Use Case TesteM(in Section 5.% and the Object Test

Model (in Section 5.5 Section 5.6ummarises this chapter.

The testing of the Car Parking System (CPS) idithecase study that is used throughout
this thesis (the CPS case study is introducetipipendix Band is further described ®ection
9.3). This chapter employs the CPS case study tandtes (through a number of testing exam-
ples) how to apply the MBSCT methodology to theaitiwe and incremental development of a
series of UML-based test models, with the aim tmalestrate and validate the important meth-
odological features, applicability and effectiveme$ the MBSCT methodology particularly for

test model development.

5.2 Main Tasks and Techniques for Building Test Models

Following the MBSCT framework for developing modeised component test cases (as de-
scribed earlier irBection 4.4, the main tasks in the first phase are to buitgtaof UML-based
test models for SCT (i.e. SCT models) based owvaaleUML-based software models for SCD
(i.e. SCD models). In particular, we apply thetffeir MBSCT methodological components (as
introduced earlier itvection 4.3to develop UML-based test models, including theded-based
integrated SCT process (Bection 5.2.), the scenario-based CIT technique $iection 5.2.),

the TbC technique (iBection 5.2.8 and the TCR strategy (Bection 5.2.1

5.2.1 Applying the Model-Based Integrated SCT Process

With regard to test model development with the MBS@ethodology, the model-based inte-

100 Chapter 5 Building UML-Based Test Models

grated SCT process (as described earli&eiction 4.3.1guides what types of test models need
to be constructed in terms of the different lewslsise case and object test models. This entails
the iterative and incremental development (which uedertaken typically with the
MBSCD/MBSCT Steps D1/T1 to D4/T4) of a series of UML-based test models, including t
Use Case Test Model, Analysis Object Test Mode§idreObject Test Model, and Implemen-
tation Object Test Model. The integrated SCT preadsarly shows what relevant SCD/SCT
models are needed as the basis for constructipgafis SCT model. For example, the Object
Design Model is needed as the basis for constmitiie Design Object Test Model in conjunc-
tion with the Analysis Object Test Model.

A patrticular test model is built for a specific ting objective, for example, the Design
Object Test Model is constructed mainly for thepgmse of testing component objects at the
design model level. This is also part of the iteetnd incremental process of developing a
series of test models for the purpose of derivigleibased tests from the initial form of ab-
stract test cases towards concrete test caseggashid earlier isection 3.2.% Sections 5.4
and5.5 discuss the construction of the use case test Inapdeobject test model respectively
with the CPS case study.

5.2.2 Applying the Scenario-Based CIT Technique

With the MBSCT methodology, we apply the use caseed testing principle (as described
earlier inSection 3.3.Bto undertake test model construction, and stétt wonstructing the
relevant use case test model, which is used te dni iterative and incremental development of
all subsequent test models. In particular, we appéy scenario-based CIT technique (as de-
scribed earlier irSection 4.3.2, and undertake the construction of a target riesdel for the
purpose of UML-based CIT (which is a principal goithe MBSCT methodology). Our testing
priority focuses on identifying and constructingpegpriatetest scenariosvith relevant opera-
tional use case scenarios (e.g. behavioural instaaod integration scenarios) to exercise and
examine crucial deliverable component functionsl @ntest multiple components and compos-
ite objects along with the scenario execution pattlthe associated SCI context. We model test
scenarios mainly with scenario mapping and transdtions from the corresponding functional
scenarios under test, which are usually describidtd WML use case diagrams, sequence dia-
grams and class diagrams in the relevant UML-b&@d models. Accordingly, test scenarios
are typically captured witkest use case diagramest sequence diagranasdtest class dia-
grams which are the main UML-based test diagrams (@abre UML subset UML-SCT) that
are used in the MBSCT methodology to describe UNMEdal test models (as described earlier
in Section 4.3.1and Section 3.3.2 Test scenarios are specified in terms of reletest se-

guence<gonsisting of logically-orderetibst operationand associatetést contractswhich aid

Chapter 5 Building UML-Based Test Models 101

in structuring and constructing relevant scenaasdadl test models and scenario-based test de-
sign for UML-based SCT. Relevant illustrative exdmspare described with the CPS case study
in Sections 5.4.2nd5.5.2

5.2.3 Applying the TbC Technique

As investigated earlier i®ection 3.2.6.&nd inSection4.3.3 the presence oftést gapsis a
major cause of the production of ineffective testdels with inadequate testability. Good test
model development is required to improve model-Basemponent testability by means of
transforming and enhancing non-testable componedgiartefacts under test to become test-
able as required (e.g. for the target testing divjes and requirements). To bridge the identified
“test gaps” for effective test model constructiam apply the TbC technique (as described ear-
lier in Section 4.3.Bto design and construct useful test contracta &gy testing-support
mechanism for improving model-based component bdgya We augment the relevant test
models under development with well-designed testtraots for model-based test enhance-
ments. When constructing a particular SCT modelcareincorporate appropriate test contracts
with the relevant artefacts of components and/eir ttomposite classes under test. For exam-
ple, test contracts can be used as preconditicstefpaditions to complement the compo-
nent/class operation under test; similarly, testtaets can be also used as invariants to com-
plement the component/class under test. By meassialf model-based test improvement, we
can effectively transform non self-testable operaior similar component/model artefacts un-
der test to become testable, and accordingly, wieechance and consolidate test model con-
struction to achieve good component testabilityleiRant illustrative examples are provided
with the CPS case study 8ections 5.4.2nd5.5.3

Based on contract-based testability enhancemengffective test model development,
the TbC technique can further support UML-based &ZThodel-based component test design
and generation, and component fault detection,ndisig and localisation. This will be further
discussed irChapter 6and Chapter 7which formally describe the ThC technique andaeaiss

ated technical aspects in more detail.

5.2.4 Applying the TCR Strategy

As described earlier isection 3.2.6.3and Section4.3.4 test model development requires a
“remodeling” process that transforms and improwsvant ordinary SCD models (which are
not test-ready or are non-testable) into target ®tbels (which are test-ready or testable).
With the MBSCT methodology, we apply the TCR siggtéo create such a test-centric remod-

eling process for test model construction by meaingest-centric model refinement, model-

102 Chapter 5 Building UML-Based Test Models

based testability improvement, and test-centric ehogtimisation (as earlier describedSec-
tion 4.3.4. The TCR strategy plays a major technical roléest model construction, which is

carried out in cooperation with the applicatiortleé relevant MBSCT techniques.

5.2.4.1 Test-Centric Model Refinement

Model-based component testing deals with baimponent artefactsn component software
being implemented anahodel artefactsn models describing relevant component artefants
der test. It is important to recognise not only whamponent/model artefacts atesting-
required(i.e. they are required to be tested, are neeate@$ting, and/or can be used for testing
purposes), but also what component/model artetaetgapable of being self-tested or set
testable The testing-relatedcomponent/model artefacts comprise these testiggired and
testable artefacts. A major purpose is to utiligehstesting-related component/model artefacts
to effectively support test model development armbehbased test derivation. To carry out
test-centric model refinement with the TCR stratégy earlier described iBection 4.3.1 a
key challenge is how to identify and extract (andéodesign and construct, if needed) testing-
related model artefacts in relevant SCD models dmatuseful to construct corresponding SCT

models.

For the purpose of UML-based CIT (which is a ppatigoal of the MBSCT methodol-
ogy), our approach focuses on a range of corentgstlated component/model artefacts and

elements, which are described as follows:

(1) Use Case Model: use case diagrams and use ¢aseSections 3.3.2nd3.3.3

These model artefacts describe component systewvation requirements and behav-
ioural functions in terms of use case specificaioffe focus on identifying and extracting the
main testing-related model artefacts, includingeydintegration-level use cases with their sce-
narios, system sequences, system events/operagymtem states, etc. They are most important
to derive system/integration test requirements @mjdctives, and use-case based test scenarios
and associated test artefacts, which forms thes basuse case driven testirfgection 5.4dis-
cusses in detail how these use case model artefiecissed to construct the target use case test

model.

(2) Behavioural Model: sequence diagrams and intergatiressageéseeSection 3.3.

These model artefacts comprise the dynamic modedapture integration dynamics, and
describe how a use case scenario (e.g. for spegifyibehavioural instance or an integration
function) is realised and how interactions are cated with a sequence of interacting messages

over time between collaborating components/objeldie main testing-related model artefacts

Chapter 5 Building UML-Based Test Models 103

we can identify and extract include concrete saesaefining and realising use cases, message
sequences describing integration interactionsyaoteng messages describing collaborations,
software classes/objects participating integraitnbevactions, class operations/states realising
messages, et8ection 5.5iscusses in detail how these model artefactssed to construct the

related object test model.

(3) Structural Model: class diagrams, operations atementgseeSection 3.3.2

These model artefacts comprise the static modelsrduwide the structure of software
components and systems under test. They defineaeftclasses (e.g. operations, states and
attributes), and describe class interfaces and tkh&tionships, which are testing-related and
provide the essential test information and datatést model construction (to be discussed in
detail inSection 5.5

By applying the TCR strategy for test-centric moadginement (as discussed above), we
can develop the required core testing-related compdmodel artefacts that are identified and
extracted from the relevant UML-based SCD modelsckvform the principal foundation for
test model construction. A primary goal of the 4m=ttric model refinement strategy is to en-
sure that test models do not include redundanintestelevant information, so that the target
test models are test-focused, and are simpler amnd abstract than the component implementa-

tion under test.

5.2.4.2 Model-Based Testability Improvement

In addition to the required core testing-relatechponent/model artefacts being developed, we
need to apply the TCR strategy for model-based oompt testability improvement (as de-
scribed earlier irsection 4.3.%to design and construct supplementary test atetes required,

in order to bridge the identified “test gaps” in UNdased SCT for achieving the desired testing
effectiveness. The notion of théeSt gapswas initially introduced inSection 3.2.6.&and de-
scribed inSections 4.3.2nd5.2.3 and we have stated that the occurrenceesdt“gapsis a
major cause of inadequate model-based testahiliig. section further analyses and explores its
underlying attributes and associated issues, aulistes how to apply the TCR strategy to deal

with them for test model construction with effeetitestability improvement.

We focus on two main types of “test gaps” for mbdsed testability improvement as

follows:

(1) Bridging Test-Gap #1 with Supplementary Testingafeel Component/Mod@lrtefacts

There are some situations where the existing tesélated component/modaitefacts in

104 Chapter 5 Building UML-Based Test Models

the associated ordinary SCD model are insufficegrihcomplete for the purpose of test model
construction and model-based test development. dduars especially when the relevant SCD
model leaves out some important testing-relatedrmétion (e.g. relevant component/model
artefacts) that is required for developing appmeritest scenarios, test sequences, test opera-
tions or other related test artefacts in the teslehunder development. Although the omission
of such testing-related component/modegkfacts may not affect component design and/er im
plementation, the absence of these testing-retatatkl artefacts could lead tdalure to ade-
guately describe some aspect or the whole of acpkat testing-required component artefact
(e.g. a component/class operation under test)efsing purposes. As a negative consequence,
this could further result in theubsequent failuréo exercise and examine the related component
artefact (e.g. failing test execution of the tegtinquired component/class operation) for the
target testing objective and requirement. Acconging particular type of tést gap results
from the omission of such testing-related compdnardel artefacts if they are required to be
tested.

To deal with this first type of “test gap” (we céllTest-Gap #1) for enhancing testing ef-
fectiveness, we need to design and construct apatefsupplementary testing-related compo-
nent/model artefacts (which are testing-requiredrertestable), and add these relevant test arte-
facts to the test model under development. Theorssistent with the principle of model-based
testability improvement with the TCR strategy asagor purpose is to develop appropriate test-
ing-related component/modattefacts that are sufficiently adequate for thigeitesting objec-
tives and requirements. In practice, how to deaigh construct appropriate supplementary test-
ing-related component/model artefacts in the fofradulitional test artefacts is based on several
aspects, including: the component requirementsspedifications, the target testing objectives
and requirements to be achieved, the tester's letyel of the associated SCD model actually
used for test model development, the tester'snigstkills and experience, etc. This resembles
the similar situation of how to carry out improvamef effective SCD in CBSE practice. It is
very difficult or even impractical to exercise aexiamine certain testing-required but omitted
component/model artefacts for testing purposesowtitsuch supplementary testing-related arte-

facts. A relevant illustrative example is givenwibhe CPS case study$®ction 5.5.2

(2) Bridging Test-Gap #2 with Complementary TestingpdupArtefactyTest Contracis

The combination of the existing and supplementasying-related component/model ar-
tefacts can jointly form the prototype of the testdel with adequate testing-related artefacts for
the purpose of UML-based SCT. Then, according ttagetesting objectives and requirements,
we need to undertake special treatment for cetesting-related component/models artefacts
under test, if they are required to be testedthmyt arenot self-testable.e. such testing-related

but non-testable model artefacts could not be asdtie sole basis for properly testing the asso-

Chapter 5 Building UML-Based Test Models 105

ciated component artefact (e.g. a component/clpssaton under test) that is merely described
by them. Accordingly, another type akst gap results from the inadequate testing capability
(i.e. inadequate testability) of such non-testalolmponent/model artefacts if they are required
to be tested.

To cope with this second type of “test gap” (we dalest-Gap #2), we need to trans-
form and enhance those non-testable component/radgéhcts to become testable by means of
model-based testability improvement, which is seadi by applying the ThC technique (as de-
scribed inSection 4.3.3andSection 5.2.8 Well-designed test contracts can provide adadtitio
useful testing-support information and data to clemgent the relevant test artefacts for the test
model under development, so that we can transfodreahance non-testable component/model
artefacts under test to be testable as requiredftic-based SCT. For example, a test contract
(e.g. in the form of a postcondition assertionjasstructed and then applied to a specific com-
ponent/class operation under test to verify (eygchecking test results) whether this operation
is performed correctly against its component fuor@l requirement. It is extremely difficult or
even impossible to examine and evaluate the aptadel-based test execution of those testing-
related but non-testable component/class operatiwitisout such complementary testing-
support artefacts. A relevant illustrative examiglelescribed with the CPS case studysat-
tion 5.5.3

(3) Bridging Both Test-Gap #1 and Test-Gap #2 to Impréemponentestability

Note that there are some important implicationsceomng these two types otest
gaps. Test-Gap #1 is caused by the omission of cedamponent/model artefacts that are test-
ing-related and required to be tested, and thuseed appropriate supplementary testing-
related artefacts for testing purposes. Test-Gaig £aused by the inadequate testability of cer-
tain testing-related component/model artefacts #natrequired to be tested, but are not self-
testable, and thus we need appropriate complenyetasting-support artefacts for testing pur-
poses.

From the current literature review, there is véityel research work on dealing with Test-
Gap #1, which may well be based on an impksisumption/misconception MBD/MBT: all
necessary testing-related information (e.g. basst artefacts) are available in software devel-
opment models for all testing purposes. Likewibe, accurrence of Test-Gap #2 may well be
due to another similar implicissumption/misconception MBD/MBT: all testing-related arte-
facts available in software development modelsteseable for all testing purposes. However,
both assumptions are not always valid, becauseadctipe there is no perfect software devel-
opment model that can fulfil such extraordinantitescentric requirements. We can observe
that simply bridging Test-Gap #1 would not alwayswge that the target testing objective is

accomplished successfully, and bridging Test-Gajs#tually more important in test model

106 Chapter 5 Building UML-Based Test Models

construction for effective model-based testing. réfare, it is very important to bridge both
Test-Gap #1 and Test-Gap #2 to improve model-bassdponent testability, in order to

achieve the target testing objectives and desastihg effectiveness.

5.2.4.3 Test-Centric Model Optimisation

By using the TCR strategy for test-centric moddineament and model-based testability im-

provement, we can develop useful test artefactduing testing-related component/models
artefacts and associated testing-support artefactg)nstruct test models for UML-based SCT.
Furthermore, we can improve and optimise test modestruction to prioritise on the most im-

portant test artefacts by means of test-centricahogtimisation with the TCR strategy (as de-
scribed earlier irsection 4.3.% For the purpose of UML-based CIT, our testinigity focuses

on appropriate test scenarios to exercise and eeaoure integration scenarios with multiple

integrated components and composite objects irasBeciated SCI contexts. Such SCl-related
test scenarios can be used as the foundationrigtsting and constructing relevant scenario-
based test models and scenario-based test desighef@IT purpose, which is supported by

applying the scenario-based CIT technique (as thestinSection 4.3.andSection 5.2.p

5.2.5 Summary

As discussed in the abo®ections 5.2.10 5.2.4(including Subsections 5.2.41b 5.2.4.3, we
can observe that the TCR strategy plays the majmical role, and incorporating it with the
related MBSCT techniques can effectively guide testlel development in UML-based SCT
practice.Sections 5.4and5.5 will employ the CPS case study to illustrate bgraples the im-
portant methodological characteristics and techmispects of the MBSCT methodology on test

model construction.

As a summary, to construct a UML-based SCT modgl fbe design object test model)
based on its related UML-based SCD model (e.goliect design model), we need to carry out
the following tasks with the MBSCT methodology (etbe TCR strategy and the related
MBSCT techniques):

(1) Applying test-centric model refinement with the TGRategy (as discussed $ection
5.2.4.):
We identify and extract the core existing testiatpted component/model artefacts from
the related UML-based SCD model, and transform emtubance them to become appropriate

basic test artefactéseeSection 5.3

Chapter 5 Building UML-Based Test Models 107

(2) Applying model-based testability improvement witle fTCR strategy:

(@) If the testing-related artefacts (which are maunded for basic test artefacts) in the asso-
ciated ordinary SCD model are insufficient or ingdete (this is Test-Gap #1 as dis-
cussed irbection 5.2.4.p
We need to design and construct certain supplemetasting-related component/model

artefacts, and appropriately add these basic teeftets to the test model under development.

(b) If some testing-related artefacts (as basic testaats) are not self-testable (this is Test-

Gap #2 as discussed@ections 5.2.4.2nd5.2.3:

We need to design and construct certain complememesting-support artefacts (e.g.
special test contracts), transform and enhancdesiable component/model artefacts under test
to be testable as required, and then appropriattdl thesespecial test artefactéseeSection
5.3) to the test model under development. This is edraut in conjunction with applying the
TbC technique.

(3) Applying test-centric model optimisation with th€R strategy (as discussedSections
5.2.4.3and5.2.2:
We can improve and optimise test model construdipfocusing our testing priority on
core SCl-related test scenarios as the primaryshastructure and construct relevant test mod-
els for the CIT purpose. This is carried out injoaction with applying the scenario-based CIT

technique.

5.3 Test Artefacts for UML-Based SCT

During the course of test model development with MBSCT methodology, we identify, ex-
tract, design and construct a range of usefulastacts that correspond to testing-related com-
ponent/model artefacts and associated testing-suppiefacts (as described Bection 5.2
Typical test artefacts used for UML-based SCT nyaiimtlude test use cases, test scenarios, test
sequences, test messages, test operations, esgitabjects, test elements (e.g. test states, test
events), and special test contracts, while somdiadal test artefacts may also be needed de-
pending on the specific testing requirement or remvhent used in testing. We can classify
relevant test artefacts into two main categoriesidtest artefacts and special test artefacts (as
shown inTable 5.}, which work together in UML-based SCT.

(1) BasicTestArtefacts
These test artefacts are built on the core exigésting-related component/model arte-
factsand elements that are testing-required or aralikstwhich is carried out mainly with the

TCR strategy for test-centric model refinementdascribed irSection 5.2.4)1 They are iden-

108 Chapter 5 Building UML-Based Test Models

tified and extracted based on the corresponding 80Bels, and are then transformed into ba-
sic test artefacts in test model construction terege and examine component functions with
operational scenarios and/or related component/hatiesfacts for UML-based SCT. In addi-
tion, we need to design and construct certain smpphtary testing-related component/model
artefacts for enhancing testing effectiveness,afttithese useful test artefacts to the test model
under development (as describedbertion 5.2.4.9

Under this category, there are several types at best artefacts being produced in terms

of the granularity of test artefacts, which are marised inTable 5.1 These basic test artefacts

principally form the prototype of the test modetiendevelopment.

Table 5.1 Test Artefacts for UML-Based SCT

Test Artefact Description Test Level
A test use case exercises and examines one orrelated use cases (e.g. | Integration
Test Use : . .
Case behavioural use cases) under test, and is usualistgred into use-case /Sys_tem
related test sequences. Testing
A test scenario exercises and examines one or matated use case instang Integration
Test (e.g. behavioural scenarios) under test, and iallysstructured into scenariq /System
Scenario related test sequences. A test scenario is a plartinstance of its Testing
corresponding test use case.
Test A test sequence consists of a sequence of logioallgred test messages, t{ Integration
operations and/or other related test artefacts. /System
Sequence .
Testing
A test message exercises and examines the cordisganessage(s) under| Integration
Test s : :
test for verifying relevant message-based intevastbetween collaborating| /System
Message . .
components/objects. Testing
A test event exercises and examines the correspgprdient(s) under test fo Integration
Test Event |relevant event-based communications between calitibg components /System
/objects. It represents the special test messatie(siake the form of event.| Testing
A test operation is used to exercise and exammedhresponding Unit
operation(s) under test for component/class omaraéisting. Test operation| Testing,
Test :] : e] 3]
Operation are essentially used for unit testing. In addititest operations also _reallse 1 supporting
related test messages/events and relate to compsysam/integration all test
testing. Thus, they support all test levels. levels
A test state is used to exercise and examine thiesgonding state(s) unden Supporting
Test State test that reflects the current condition/situatiorchange of its host class | all test
/object (e.g. values of class/object attributegstTtates provide the essent levels
test information that relates to and supportsesi kevels.
A test class is used to exercise and examine tiiesponding class(s) unde| Supporting
Test Class |test. Test classes provide the essential testiEoon and data that relate tq all test
and support all test levels. levels
Test A test contract provides additional testing-supjmidrmation and data to | Supporting
Contract complement the relevant test artefacts, transfagraimd enhancing non- all test
testable component/model artefacts under testdorbe testable as require(levels
(2) SpecialTestArtefacts

Special test artefacts are designed and constractedprove model-based component

Chapter 5 Building UML-Based Test Models 109

testability with the TCR strategy for effective ttesodel development (as describedSection
5.2.4.9. These test artefacts are mainly composed of mgntary testing-support artefacts
(e.g. special test contracts as showrTamle 5.), which aid testing-related component/model
artefacts under test to become testable if theyeatreelf-testable.

Note that there is a major difference here: annangi testing-related operation (as a basic
test artefact) essentially exercises the execufdts relevant component function(s), whereas
its associated test contract (as a special tesflaat} employs appropriate testing-support asser-
tions to verify whether the operation executiorcisrect and complies with the expected re-
quirement. This is because test contracts witlabdstassertions can be used to detgghora-
clesfor verifying the expected test results. MoreoVelhe associated test contract retufiadse
a possible component fault is then detected. Weseanthat such test contracts as special test
artefacts can well improve component testability dffective UML-based SCT. Test contracts
and contract-based fault detection and diagnodis thie TbC technique will be described in
more detail respectively i€hapter 6and Chapter 7 in conjunction with relevant illustrative

examples selected from the CPS case study.

For UML-based SCT with the MBSCT methodology, testdels mainly contain basic
test artefacts (e.g. the core existing and suppitang testing-related component/model arte-
facts that are testing-required or are testabld)special test artefacts (e.g. the special test con
tracts as complementary testing-support artefdws ¢nable non-testable component/model
artefacts under test to become testable). Test Imadenot need to, and should not, include
other redundant testing-irrelevant artefacts aslired by the TCR strategy for test-centric
model refinement (as describedSection 5.2.4)1 Both basic and special test artefacts jointly
work to undertake UML-based SCT. A complex testfadt often takes the form of a combina-
tion of both basic and special test artefacts.dx@mple, a test scenario is a sequence of logi-

cally-ordered test messages, test operations aasiéociated test contracts.

5.4 Use Case Test Model

The precedingections 5.2and5.3 have presented the important technical aspecaplf/ing
the MBSCT methodology to test model developmenttlis foundation for test model devel-
opment, we are able to construct individual UMLdthsSCT models in th®IBSCT Steps
D1/T1 to D4/T4 (as described in the integrated SCT proce&eittion 4.3.JandSection 5.2.1
The following Sections 5.4and5.5 focus on the particular technical aspects for tansng a
specific test model in a MBSCT step. We will emptbg CPS case study to illustrate by exam-
ples the relevant technical aspects for test modestruction with the MBSCT methodology

particularly for the CIT purpose (as indicatedSiection 5.1

110 Chapter 5 Building UML-Based Test Models

The model-based integrated SCT process requiréshidage are two major levels of test
models under development: Use Case Test Model (UGIHd Object Test Model. This section
discusses the firédBSCT Step: D1 - T1 to construct the UCTM mainly based on the related
Use Case Model (UCM) at the use case level foCtfiepurpose.

5.4.1 Constructing the Use Case Test Model

Using UML models, the UCM mainly describes the sy¥integration behaviour, functions and
requirements in terms of a set of actors (e.g. @yapt users), use cases and their relationships
as well as use case specifications for the CBS gooent-based system) under test (as de-
scribed earlier irBection 3.3.2 Our main task is to focus on identifying andragting, design-
ing and constructing testable component/model astefwith the UCM, and then transforming
and enhancing them to become appropriate testatsefor constructing the UCTM (as shown
in Figure 5.). The UCTM is mainly described with test use cdisggrams and system test se-
guence diagrams in the core UML subset UML-SCTsfasvn inFigure 5.2.

We apply the TCR strategy to develop basic tesfagts for establishing the prototype of
the UCTM (as described iBection 5.2.% We further use some selected examples of the CPS
case study to illustrate how to develop SCl-relaiest scenarios and test contracts for the

UCTM construction in the following subsections 8ections 5.4.2nd5.4.3.

D1: Use Case Model T1: Use Case Test Model
1.Functions and requirements. Teksting objectives and requirements.
2.Use-case diagrams. Test use case diagrams with test actors, test®vent
3.Actors and descriptions. Best actors and descriptions.
4.Use cases and scenario descriptions. E> Tedt use cases and test scenario descriptions.
5.System sequence diagrams for system 5.System test sequence diagrams for system test
scenarios with system events. scenarios with test actors, test events.

6.Contracts for system events and scenatrios.| 6.Test contracts for system test events and scenarios

Figure 5.1 Constructing the Use Case Test Model

5.4.2 Identifying and Constructing Test Scenarios

We apply the scenario-based CIT technique to ifleatid construct relevant test use cases and
test scenarios that have high testing priorityhesgrimary basis for developing the UCTM (as

described irSections 4.3.2, 5.22nd5.2.4.3. For the CIT purpose, test scenarios are devdlope
based on the associated use case instances tasexand examine the corresponding SCI sce-

narios that fulfil component functions in the S@htext.

Chapter 5 Building UML-Based Test Models 111

Car Parking System

e

TestCar/TestDriver TUC2

Withdraw
Ticket

(a) Test Use Case Diagram (CPS System)

% : CarParkingSystem

: TestCar/TestDriver

Test Contract: stopping bar is in the state of "SB_ DOWN"

test car waits for traffic light to turn to the sta te of "TL_GREEN"

traffic light turns to the state of "TL_GREEN" from "TL_RED"

-

test car crosses and passes through the PAL entry p oint

traffic light turns to the state of "TL_RED" from " TL_GREEN"

<

Test Contract: traffic light is in the state of "TL _RED"

' gt

(b) System Test Sequence Diagram (CPS TUC1 Test Scenario)

Figure 5.2 Use Case Test Model (CPS System)

Among other CPS use cases, we identify and condintee cordest use casedUCS)
to develop test scenarios for testing typical CB&ations:

(&) TUCLI: exercise and examine that the test car entererttrg point of the parking access

112 Chapter 5 Building UML-Based Test Models

lane (PAL) to start accessing the PAL;

(b) TUC2: exercise and examine that the test driver witlvdra parking ticket at the PAL
ticket point;

(c) TUCS: exercise and examine that the test car exit®#ieexit point to finish accessing
the PAL.

All TUCs for these three main parking phases ctutstian overall test scenario/sequence
of one full parking access process cycle for anmkipg in the CPS system. Because the car
movement along the PAL interacts with a set of @S parking control devices, each of the
TUC test scenarios conducts certain CIT activitegxercise and examine the relevant CPS
operations. These TUCs provide the typical CIT ert# to verify the related integration test
scenarios. As an exampleigure 5.2shows a partial UCTM of the CPS system, with & ties
case diagram for the three core TUCs (Biegire 5.2(a)) and a system test sequence diagram
that illustrates the system test scenario foritlse €PS TUCL1 test scenario (degure 5.2(b)).

With the UCTM, atest actorplays the representative testing role of the uskuse cases
of the CBS under test. For the CPS system, a ¢&st is atest car(or equivalently, dest driver
of the car) that represents the CPS user thaigiblel to access the PAL for car parkingsgs-
temtest evenexercises and examines related system eventsp@lkjng control operational
activities) that cause an interaction between #s¢ actor and the system.tést scenarids a
typical test use case instance (e.g. an instan@&@flL in Figure 5.2(b)), which exercises and
examines a sequence of system test events that loetuween the test actor and the black-box
system under test (e.g. our CPS system), and #stis the associated system operational use
case scenarios for the required behaviour (e.gtetstecar enters the PAL correctly) in the use
case under test (e.g. TUC1). A test scenario ituoag with a system test sequence diagram to

illustrate the corresponding scenario-based UCT&/&fown irFigure 5.3.

5.4.3 Designing and Constructing Test Contracts

In the UCTM, a test scenario also reflects the esponding changes of relevaystem test
states(e.g. the traffic light turns the state ofL! GREEN” from “TL_RED” or vice versa, as
shown inFigure 5.2(b)), which are usually trigged by system testréwde.g. parking control
operational activities) and are very useful in scenbased testing. A clear testing objective is
that certain functional requirements (e.g. the test should enter the PAL correctly in the
TUCL1 context) are correctly fulfilled as expectatbugh an examination of the related test sce-
nario and associated test states (él'y. GREEN”, “TL_RED” in the TUC1 test scenario).
Because the UCTM treats the entire CBS as a blaxlehtity at the system test level, the

main test contracts developed with the TbC tecleiqu the system-level scenario under test

Chapter 5 Building UML-Based Test Models 113

consist of a set of system-level preconditionstqmglitions and invariants, which are special
test artefacts in the related test scenario fosttoating the UCTM. The system-level test con-
tracts are used to examine and verify conformandkee testing requirements in the related sys-
tem-level test scenario. Taking the CPS TUCL1 testario as a testing example, we can design

and construct the following system-level test cactis (as shown iRigure 5.2(b)):

(1) TUC1 preconditions

(@) All CPS control device modules are started andraa® operational status;

(b) The test car is started, ready and eligible to ssctiee PAL;

(¢) The stopping bar is in the state & DOWN?", after the last car has finished access and
exited the PAL in the last parking access procgskcand before the new car enters the
PAL. This partially abides by the special mandatosyking assess safety rule in the CPS
system: bne access at a tirhéwhich is one of the CPS special test requiremeatbe
described irSection 9.3.%or the full CPS case study);

(d) The traffic light is in the state ofTt_GREEN”", before the test car starts entering the
PAL.

(2) TUC1 postconditions
(@) The test car has entered the PAL;
(b) The traffic light is in the state offt_RED”, after the current car has entered the PAL.

This also partially abides by the same speciaktgatde: “one access at a tirhe

(3) TUCLI invariants
The abovementioned safety ruleife access at a tirfjeis a typical invariant, which is
applied to and required for all parking control i®mns and car parking activities in the CPS

system.

Note that, because the UCTM is built with regardhe black-box system under test in
the firstMBSCT Step D1 - T1, certain internal system event/state changes reagvisible to
the external actor in the UCTM (e.g. the state geamof the in-PhotoCell sensor device that
monitors cars entering into the PAL, which areringé to the CPS system). Such internal opera-
tion information and relevant test artefacts wél farther explored and illustrated in subsequent
test models (se8ection 5.5.2 The UCTM is the initial step in test model caostion, which
leverages system level scenarios to develop af setre test scenarios for scenario-based CIT.
The UCTM describes the main test requirements adtbociated test scenarios and test con-
tracts, which form the basis for use case drivating to guide the stepwise testing activities
towards the iterative and incremental developméisubsequent test models with concrete and

detailed test artefacts.

114 Chapter 5 Building UML-Based Test Models

5.5 Object Test Model

Working with object-oriented testing techniques fest model development at the object test
level, we build a series of object test modelsluiding the Analysis Object Test Model, Design
Object Test Model, and Implementation Object Tesid®l. Object test model development is
undertaken in th&BSCT Steps D2/T2 to D4/T4, which follow different object-oriented de-
velopment phases that require different leveldadsiobject details. This section focuses on the
MBSCT Step D3 - T3 to describe the construction of the Design Objest Model (DOTM)
based on the Object Design Model (ODM), which se@® an example of test model develop-
ment at the object test level. Our primary purposee is to use the DOTM as a representative
test model to undertake UML-based CIT.

5.5.1 Constructing the Object Test Model

The UML-based object model captures and specihegponent-based systems in terms of ob-
jects/classes (attributes, operations) and thkitioaships (associations, interactions, collabora-
tions), and its structure is represented with UNHss diagrams (as described earlieBattion
3.3.2. We base CIT on the behavioural object model ¢bgyODM) that describes the use case
realisation for dynamic behaviour and functiongdamms of collaborating objects and their in-
teractions in the related SCI context, which isidagily represented with UML sequence dia-
grams (as described earlierSection 3.3.2

To develop the corresponding object test model withMBSCT methodology, we first
develop the basic test artefacts to produce thmtyme of the object test model with the TCR
strategy (as described 8ection 5.2.4and Section 5.8 Our main tasks are to identify and ex-
tract, design and construct testable component/lramtiefacts with the related object model
(e.g. the ODM), and then transform and enhance tioeebecome useful test artefacts for con-
structing the target object test model (e.g. theTDIR Then, we apply the TCR strategy and
related MBSCT techniques, and employ some selentathples of the CPS case study to illus-
trate how to undertake test-centric model optimesatvith crucial SCl-related test scenarios
and how to undertake model-based testability impnoent with well-designed test contracts for
effectively constructing the DOTM (this processade further described in the followilggc-
tions 5.5.2and5.5.3. As a typical illustration of test model develogmh at the object test level,
Figure 5.3shows constructing the DOTM mainly based on thated ODM in theMBSCT
Step D3 - T3. The object test model can be represented withctass diagrams and test se-
guence diagrams in the core UML subset UML-SCTsfasvn inFigure 5.4.

Note that there is a major difference here betwke®tJCTM and DOTM: test artefacts in

the object test model correlate now with relevast tlasses and associated test elements, rather

Chapter 5 Building UML-Based Test Models 115

than to the entire black-box system at the use tmsd. For example, test artefacts in the
DOTM can be specified and represented with desigh dlasses that are developed based on
relevant design classes in the ODM, in conjunctudth certain supplementary testable compo-
nent/model artefacts (as showrFigure 5.3. Furthermore, some internal operation information
and associated test artefacts of the CBS undecaesbe explored and tested by relevant class
elements with the DOTM.

D3: Object Design Model T3: Design Object Test Model

1.Design classes in software solution domain. | 1.Design test classes, e.g. design classes anddelate
test helper classes.

2.Design class diagrams with design classes. Degign test class diagrams with test classes.

3.Design sequence diagrams for use case F> 3.Design test sequence diagrams for test scenafios
realisations with objects of design classes: with test classes.

4.Interaction messages/operations and 4.Test scenarios, test sequences, test messages, and
sequences with objects of design classes. test operations.

5.Contracts for the main operations of design |5.Test contracts for the main operations of test
classes. classes, test states, test events.

Figure 5.3 Constructing the Design Object Test Model

5.5.2 Test Scenarios for Test Model Construction

As a SCT model for testing design objects, the DO§Monstructed with test scenarios, test
sequences, test messages, test operations, amtatsss as well as test contracts at the object
design levelFigure 5.4shows a design test sequence diagram for theCi?§& TUCL1 test sce-
nario, which is part of the DOTM for testing the £Bystem. We intend to perform CIT on how
the test car enters the PAL correctly in the TUGtegration testing context, where the PAL
entry point is jointly controlled by the traffigglnt and in-PhotoCell sensor devices. For this CIT
purpose, we apply the scenario-based CIT techrimdevelop the corresponding test scenario:
exercising and examining the crucial object intdoms with the associated integration-
participating operations and associated test atefaith relevant test classes in the CIT con-
text. As shown irFigure 5.4 we construct the DOTM based on the TUC1 testa@eno verify

the related parking control operations of how s tar enters the PAL correctly in TUC1. The
TUCL test messages for verifying object interactioan be realised with the associated integra-
tion-participating operations and associated tdsfacts, which are described with six relevant
test objects/classes (e.g. two of these are dlaa$f i cLi ght in the device control compo-
nent and test objettest Car Cont r ol | er in the car control component). Test scenarios (e.g
the CPS TUCL) establish the basic structural frapnkvior the test model under construction
(e.g. the CPS DOTM) in terms of crucial test segesnthat are composed of the logically-
ordered test operations from the related test eékaaad complementary test contracts added to

the test classes.

116 Chapter 5 Building UML-Based Test Models

testCPSController| | testCarController | | testCar: Car| [: DeviceController| |: TrafficLight | | inPhotoCell| |: StoppingBar|
: CPSController : CarController : PhotoCell
: TestCar/TestDriver
1 T T T T T T T
\ 1]]]]]]
: enterAccessLane() ! ! ! ! ! !
D—Hj ' ' ! 0.11TC: checkState(stoppingBar, "SB_DOWN")

: | i i u‘ ! ! ’EII
! ! 1 TS: tunTrafficLightToGreen() | ; i | T

1 1 1 - 1 1 1
i ! ! > 1.1 TO: waitEvent(stoppingBar, "SB_DOWN")
1 1 1 i i 1
|]]]]]
|]]]]]
! : : : ! !
i ! ! 1.1 ITC: checkEvent(stoppingBar, "SB_DOWN")
I 1 1 1 1
| : : ! : g
! ! ! 1.2 TO: setGreen() ! !
| : : : :
! i i . | |
i ' ' 1.2 ITC: checkState(trafficLight, "TL_GREEN")
: ! ! —>0 ! !
! ; i . i i i
' 2Ts: enterAccelssLane() ! ! ! ! !
! —>—] 1 1 1 1
i 2.1 TO: waitEvent(trafficLight, "TL_GREEN") ! ! !
| : : : : :
|]]]]]
! ' ' ' ' '
' 2.1 ETC: checkEvent(trafficLight, "TL_GREEN") ! !
. : : : : :
i ! ! g ' '
! 2.2 T0: goTo(gopace-cross-inPC, int) i i i
i —>] : : : :
! ! : : : :
i 2.3 T0: occup;y() : : ' i
l : : : :
i 2.3 ETC: checkState(inPhotoCell, "IN_PC_OCCUPIED") ! !
! i i i |
i 2.4 TO: goTo(gopace-crossov er-inPC, int) 1 1 1
! 4”]' i i i i
| 1 1 1 1
|]]]]]
|]]]]]
: 2.5 TO: clear() ' i i i

1 1 1]

l : : : :
i 2.5 ETC: checkState(inPhotoCell, "IN_PC_CLEARED") ! !
! t t t 1
1 | | | >|:| |
| -]]]]]
: ! ! ! ! ! !
! 3 TS: turnTrafficLightToRed() 1 1 1 1 1
! ' ' P 3.1 TO: waitEvent(inPhotoCell, '
! i i "IN_PC_CLEARED") i i
: ! ! ! ! !
! i i i i i
I ! ! L ! ! !
! i i 3.1 ETC: checkEvent(inPhotoCell, i
! i i "IN_PC_CLEARED") i i
; : : : :
| 1 1 1 1
: ! ' 3.2 TO: setRed() ' i
! i i 4”]' i i
| 1 1 1 1
| : : : : :
! 1 1 3.2 ITC: checkState(trafficLight, "TL_RED")
! i i 4”]' i i
| 1 1 1 1
| ma 1 1 - 1 1 1
|]]]]]]]
1 1 1 1 1 1 1 1

Figure 5.4 Design Object Test Model (CPS System)
Design Test Sequence Diagram (CPS TUC1 Test Scenario)

Chapter 5 Building UML-Based Test Models 117

With test scenarios for constructing the DOTM, vge the car control component for the
test car to interact with the CPS system undey &est for the CIT purpose, we examine:
(&) Whether the parking control operations functionrecity with the parking control de-
vices in the device control component;
(b) Whether the test car correctly performs its parldngess to the PAL;
(c) Whether the CPS operations properly abide by thedatary parking assess require-

ments (e.g. the special parking assess safety“are: access at a tirfje

For the CIT purpose with the DOTM, test messagewvédaifying object interactions are
mainly realised and represented with related tpstaiions and test contracts. For example, a
basic test operation (e.get Gr een()) from its test class (e.g. classaf fi cLi ght) exer-
cises and examines what the CPS system does withpration under test (e.g. the traffic light
is set to the state offt_GREEN"). Besides testing the external operations (gej.G een())
visible to the CPS user (e.g. the car/driver), a® oow describe and examine the CPS internal
operations with relevant test class elements irDi@& M. For example, operatiarccupy|() is
performed internally inside the TUC1 scenario, vehtre in-PhotoCell sensor device monitors
and detects whether the test car occupies andesrtiss entry point in the PAL. This CPS in-
ternal control operation and its associated stdtermation, which were invisible to the external
car/driver in the UCTM at the use case level (escdeed inSection 5.4.3 can now be exer-
cised and examined with test cl&®t oCel | in the DOTM. This example demonstrates how
more detailed component artefacts in the CBS utestrcan be explored and tested with the
MBSCT methodology at theIBSCT Step D3 - T3 for the DOTM construction. Similar test-
ing tasks are also undertaken at each related MB&€Ep, as the integrated SCT process ad-

vances forward iteratively and incrementally (asvehin Figure 4.3.

In addition to the existing basic test artefacenitfied and extracted from the current
ODM, we also need to supplement certain testinatedl artefacts to the associated test scenario
for constructing the scenario-based DOTM, in otddoridgeTest-Gap #las described iGec-
tion 5.2.4.2(1). For example, suppose the current ODM is degaate and has left out opera-
tion set Red(). Since this operation is performed to set thaffitr light to the state of
“TL_RED” only after the car enters into the PAL, it is ramtually involved with and does not
affect the current scenario of the car’'s accesiad®?AL entry point. Thus, there is some possi-
bility that the current ODM might have omitted thiperation during object-oriented develop-
ment of the CPS system. In this situation, becafishe omission of this operation, the traffic
light is still in the state of TL_GREEN" after the current car enters into the PAL; acaagty,
as a negative result of this omission, anotherwaauld be incorrectly permitted to enter the

PAL while the current car is still accessing thelLPAhis violates the special parking assess

118 Chapter 5 Building UML-Based Test Models

safety rule in the CPS system: “one access ate twhich is certainly required to be tested in
the TUCL1 test scenario as part of the CPS teséggirements. But the omission of operation
set Red() could also lead to the negative testing-relaect that we cannot exercise and ex-
amine this operation to verify whether the traffght is in the correct state offt._RED” in
TUC1, because this testing-required operation igtedmistakenly and is not included as the
basic test artefact for this specific testing pgso

Therefore, if this testing-related operation is ted in the ODM, we must abide by the
CPS testing requirements to design and add it (agpplementary basic test artefact) to the
TUC1 test scenario for constructing the DOTM, alate it in the associated test sequence just
after the current car enters the PAL. Just as shawfigure 5.4 test operatiorset Red() is
added after operatiozl ear () in TUC1. If test operatior| ear () functions correctly (i.e. the
in-PhotoCell sensor device monitors and detectstiigacurrent car properly crosses over and
passes through the entry point in the PAL), theenircar will have entered the PAL success-
fully. And then the added test operatisat Red() must be executed in TUC1 to prevent the
other car from incorrectly accessing the PAL atshme time while the current car is still ac-
cessing the PAL. This testing example has shownitienot feasible to exercise and examine
certain testing-requiredhut omitted component/model artefacts without such suppleangnt
testing-related artefacts added as basic testaatsefand that accordingly this resulting “test
gap” (i.e. Test-Gap #las described itfsection 5.2.4.41)) can be bridged properly with the
MBSCT methodology (especially the TCR strategy).

The above illustrative examples show that test isodeist contain adequate basic test
artefacts, including the core existing testingtelacomponent/model artefacts (which are iden-
tified and extracted from the existing SCD models)yl the supplementary testing-related com-
ponent/model artefacts (which are designed andtiearted as required to add to the corre-
sponding SCT models). The CPS DOTM constructiorsgmted in this section has demon-
strated how the MBSCT methodology (especially tidRTstrategy) is applied to develop ade-
guate basic test artefacts for test model constructhus, the MBSCT methodology is capable
of achieving an adequate set of basic test artefantl bridging Test-Gap #1 for UML-based
SCT.

5.5.3 Test Contracts for Test Model Construction

This section further discusses that appropriatept@mentary testing-support artefacts (e.g. test
contracts as special test artefacts) are not @gjyired for test model construction, but also very
effective to bridge Test-Gap #2 and realise modskld component testability improvement for

effective UML-based SCT. We apply the TbC technigne illustrate how test contracts are

Chapter 5 Building UML-Based Test Models 119

designed and constructed particularly for develgpie CPS DOTM.

As described irSection 5.3 built on its counterpart ODM, the DOTM mainly ¢aims
the basic test artefacts and special test artefaotshe basic test artefacts, a basic test aparat
essentially exercises what the operation underd@ss. However, simply executing the opera-
tion under test does not always ensure that itttess carried out properly and the relevant
target testing requirement is attained. There isrgoortanttestabilityissue related to the nature
of the ordinary ODM for component design and impaiation: although the operation under
test is exercised, it could bwt self-testablei.e. its testing may not be properly completed
merely based on the artefacts included in the ntu@®M. This can occur because such a test-
ing requirement may not be considered as part wipoment design and implementation with
the ODM, and thus we cannot verify whether the afy@n under test is performed correctly
with the ODM. For example, suppose the ODM includpsrationset Red() during object-
oriented development of the CPS system. Howevés, dperation could be not self-testable
simply based on the current DOM. This occurs egfligaivhen the current ODM does not con-
tain appropriate testing-support artefacts forinigspurposes (e.g. evaluating related test re-
sults). In this situation, we cannot verify whetloperationset Red() is correctly implemented
(e.g. this operation sets the traffic light to twerect state of TL_RED”), and/or this operation
is executed with its correct invocation for certabject interactions. Consequently, due to such
inadequate testabilitywe cannot evaluate whether this operation funsticorrectly for the tar-
get testing requirement, even though it is includéth the current ODM (or it is added to the
DOTM under construction, as described abové&dattion5.5.2 and it is exercised with the
DOTM.

To cope with this “test gap” (i.8.est-Gap #&s described iBection 5.2.4.22)) for real-
ising model-based component testability improvemeset need to design and construct appro-
priate complementary testing-support artefactsfferDOTM under construction, and transform
and enhance the non-testable operations to bélesta effective UML-based SCT. With the
ThC technique, special test contracts are develagatie complementary testing-support arte-
facts to verify whether the operation under testqums correctly, and to examine whether the
operation integrated in the SCI context fulfils #esociated object interactions and collabora-
tions for the CIT purpose. Test contracts are Blpiaealised and represented with testable as-
sertions, which can be used to dedigst oracledor evaluating test results. Test contracts are
constructed as special test operations added evare test classes for enhancing the DOTM
under construction.

For the above testing example in the CPS systenmugt abide by the CPS target testing
requirement for operatioset Red(), and design and construct test contr@iceck St at e(

trafficLight, “TL_RED”), which is added as postcondition assertioto verify whether

120 Chapter 5 Building UML-Based Test Models

operationset Red() performs correctly in the TUC1 test scenario $aswn inFigure 5.3.
This verification can be now carried out propelgcause of testability improvement: this test
contract also provides the special test staterbf RED”, enabling the contract-based postcon-
dition assertion to becomerifiable for evaluating the expected test result, i.e.tth#ic light

is in the correct state off_RED” after this operation is executed. In additionsthdded test
contract can be used to examine the related testage: verifying whether this operation cor-
rectly realises the associated object interactetwéen control clasSar Control | er in the
car control component and device classaf fi cLi ght in the device control component.
Such object interaction is performed in TUC1, wheoatrol clas<Car Cont r ol | er invokes
operationset Red() in device clas3r af fi cLi ght for the functional collaboration over the
two control components in the CPS system. Thisnigg&ixample has demonstrated well that it
is not achievable to examine and evaluate thosage®lated,but non-testableoperations
without such complementary testing-support artsfgetg. special test contracts, which are
added as required), and that thus this resultiegt ‘ap” (i.eTest-Gap #2s described iSec-
tion 5.2.4.2(2)) can be bridged properly with the MBSCT metblody (especially the TbhC

technique).

In addition, the TbC technique also provides ac$etseful contract-based test concepts
and test contract criteria to guide test contrasigh (which will be further discussed@mnapter
6). To test the CPS system that is required to bareeand reliable for providing high quality
public access services, we apply the TbC test aontriteria for a high-level coverage of ade-
guate test contracts (including ITCs and ETCs, Wwihvere introduced iection 4.3.2and will
be further described i€hapter § With the CPS TUCL1 test scenario for constructing
DOTM, we design and apply appropriate test corgrémteach of the associated operations of
the traffic light and in-PhotoCell sensor devioghkich jointly control the test car’'s access to the
parking entry point. As described above, a spaestl contract is developed to verify whether
the operation under test performs correctly, ararere whether the operation-related object
interactions are fulfilled correctly for the CIT qpose. Such a test contract is added to the rele-
vant test scenario (e.g. the CPS TUC1 test scgparnd is annotated with the appropriate pre-
fix ITC or ETC to show its property of internal externaleffectual contract scopghis con-
tract-based concept will be also formally definadChapter § Test contracts are also hum-
bered with their corresponding test operationsitumstrated with the shaded narrow rectangles

as shown irFigure 5.4

The above illustrative examples show that test dsogheist contain adequate special test
artefacts that are test contracts designed asal@éftesting-support artefacts, enabling the test-

ing-related,but non-testablecomponent/model artefacts to become testable@gred. The

Chapter 5 Building UML-Based Test Models 121

CPS DOTM construction presented in this sectiondeamonstrated how the MBSCT method-

ology (particularly the TCR strategy and the Tb€htaque) is applied to develop adequate spe-
cial test contracts for test model constructioreréfore, the MBSCT methodology is capable of
achieving adequate special test contracts, bridgesj-Gap #2 and realising model-based com-

ponent testability improvement for effective UMLdesml SCT.

5.6 Summary and Discussion

This chapter has applied the MBSCT methodologyeeetbp a set of UML-based test models
in the first phase of the MBSCT framework. Thetffeur MBSCT methodological components
were applied to test model construction, which MLl:based, process-based, scenario-based
and contract-based. The model-based integratedB@Ess guides what types of test models
need to be built (e.g. use case and object tesels)odnd what relevant UML-based software

models are needed as the basis for developingiaylar test model.

The construction of a specific test model was uiadten in the following technical proc-
ess, where the TCR strategy plays the major teahnide in collaboration with the relevant
MBSCT techniques:

(1) We applied the TCR strategy for test-centric madéhement to identify and extract the
core set of basic test artefacts (which are tesghajed component/model artefacts that
are testing-required or are testable) for creatiregprototype of the test model and ensur-
ing that the test model under construction doescootain other testing-irrelevant infor-

mation.

(2) We applied the TCR strategy for model-based tdg@tabhprovement to design and con-
struct appropriate supplementary testing-relatadpmment/model artefacts as the addi-
tional basic test artefacts for the test model umdestruction, so that they can enable
certain testing-requiredut omitted component/model artefacts to be tested (i.egbrid
Test-Gap #1).

(3) Further applying the TCR strategy for model-basstiability improvement with the ThC
technique, we designed and constructed approggatecontracts, which are used as the
special test artefacts for enhancing the test maadér construction, and are complemen-
tary testing-support artefacts to enable the tgsgthated, but non-testable compo-

nent/model artefacts to become testable as reqiieedbridging Test-Gap #2).

(4) Finally, we applied the TCR strategy for test-cientnodel optimisation with the sce-

122 Chapter 5 Building UML-Based Test Models

nario-based CIT technique to improve and optimest model construction: we focused
test model construction on developing the basicaesfacts and special test artefacts re-
lated to the core test scenarios that have higingepriority for the CIT purpose. Test
models must contain adequate basic test artefadtsecial test artefacts, but test mod-

els do not need to, and should not, include otdumdant testing-irrelevant artefacts.

In this chapter, we have applied the MBSCT methaglpkto construct relevant use case
and object test models for the CPS case studytéldtimg examples selected from the CPS case
study have illustrated how the MBSCT methodology \applied to develop both adequate ba-
sic test artefacts and adequate special test ctsfia test model construction. The construction
of the CPS test models has well shown that the MB8@thodology is capable of bridging the
identified “test gaps” (both Test-Gap #1 and Teap@&2) and improving model-based compo-
nent testability for effective test model constroiet Therefore, this chapter has demonstrated
the MBSCT testing applicability and capabilitiestmaularly for test model construction, ade-
guate test artefact coverage and component tagtabiprovement (which are the core MBSCT
testing capabilities #1, #4 and #5 as describelieedn Section 4.5 A more comprehensive

validation and evaluation of the MBSCT methodolegl be presented iChapter 9

A major purpose of the first phase of the MBSCTnfeavork aimed to develop useful
model-based test artefacts and construct test madethe principal foundation for UML-based
SCT. The subsequent testing activities with the K@BSramework are component test design
and evaluation, which will be discussed fr@hapter 6onwards. Furthering the TbC'’s intro-
duction and application to test model construcpogsented ifChapter 4andChapter 5Chap-
ter 6 will formally describe the ThC technique and asstec technical aspects in more detail,
and undertake contract-based test design for UMleth&SCT.

Chapter 6 Test by Contract for UML-Based SCT 123

Chapter 6
Test by Contract for UML-Based SCT

6.1 Introduction

After test model development (as describedCimapter ¥, the second phase of the MBSCT
framework starts with component test design to bgveomponent test cases for component
test evaluation. With the MBSCT methodology, congrantest development imodel-based
which means that component tests are designed bast constructed UML-based test mod-
els. Component test developmenprscess-basedvhich means that the integrated SCT proc-
ess guides the iterative and incremental developwietest models and model-based compo-
nent tests. Component test development is s¢emario-basedwhich means that component
tests are designed based on test scenarios forgtesticial component functional scenarios.
Moreover, component test developmentamtract-basedwhich means that the Test by Con-
tract (TbC) technique plays a major role in conttzesed component test design. The ThC
technique is one of the most important MBSCT methagical componentsChapter 4pre-
sented a basic introduction to the ThC techniqneséction 4.3.8 andChapter 5applied the
ThC technique to test model construction (espgciallSections 5.2.,35.2.4.2 5.3, 5.4.3and
5.5.3. This chapter formally describes the TbhC techaigud related technical aspects in more
detail 173 [179 [174.

The TbC technique is introduced for the principadigof bridging Test-Gap #2 and im-
proving component testability in model-based congmbriesting. IrSection 2.6we have stud-
ied the component testability concept and charsties, and reviewed the main strategies and
approaches for component testability improvemeethhically, these approaches (especially
the first three approaches as described earli&eation 2.6.2are in line with the general idea
of assertions64] [151] [157 [12] [153 and the Design by Contract (DbC) concejif] [97).
However, they mainly employ a traditional appro&zimserting some test artefacts (e.g. asser-
tions) inside component programs at the level of@® code. Such a traditional approach may
be applicable to code-based testing, but has nelitaitations to effectively support model-
based approaches to component integration te<iifig @t the model-based specification level.
This research takes a different approach to oveeciiose limitations by incorporating appro-
priate testing-support artefacts (e.g. specialdestracts) at the model-based specification level
to bridge Test-Gap #2 and improve model-based capotestability with model-based test
contracts. This ensures that model-based testabifinds at a test level above traditional code-

based testability and thus effectively supports ehbdised approaches to SCT.

124 Chapter 6 Test by Contract for UML-Based SCT

The DbC concept was originally proposed by Meyedasigning traditional software
classes, and was used to formalise the contradiaeship between a supplier class and its cli-
ents, and define the associated object-orienterdetements. While it might not be initially
considered as a SCT technique, the DbC concepbsigphe common testing goal of assuring
component correctness and quality. This researaptadhe idea of the DbC concept and ap-
plies it to bridge Test-Gap #2 and improve softwacenponent testability particularly for

UML-based CIT. We investigate the following keytieg-related questions:

(1) Can the DbC concept be combined with UML modelsUdL-based CIT, beyond the

DbC'’s initial object-oriented class level?

(2) How can the DbC concept be used to improve compdastability for CIT? In particu-
lar, this issue has two further associated asjgectsllows:

(@) How can the DbC concept be adapted and then appliegtilitate component test design
and generation?

(b) How can the DbC concept be adapted and then apili&tilitate component fault de-

tection and diagnosis?

(3) Can the DbC concept be further extended to deve@lopw contract-based approach for
CIT with UML models?

We argue that the combination of UML-based testind the DbC concept is an effective
approach for bridging the “test gaps” in UML-bagedting and improving model-based com-
ponent testability for effective UML-based SCT. TH&C technique is introduced as a new con-

tract-based SCT technique to address these impoetsting issues.

This chapter formally describes the ThC techni@extion 6.2resents a technical over-
view of the ThC technique and describes a stepWi€eworking processSection 6.3liscusses
the TbC foundation principles to support the priyngoal of Contract for Testability This is
accompanied with a set of important contract-baestl concepts and associated technical as-
pects we have developed for the ThC techniquealtiqular, Section 6.3.Tormally introduces
thetest contract concepSection 6.3.2liscusses how to realise and represent test ctsfiar
test contract desigisection 6.3.3ntroduces theffectual contract scopsoncept, and describes
different categories ointernal/external test contractand their testing relationshipSection
6.3.4introduces a set of neWbC test contract criteriand discusses how they are used for con-
tract-based SCTSection 6.3.5escribes how the ThC technique can improve coemotest-
ability characteristics. Then, we move on to apmgythe TbC technique to UML-based SCT,
and employ the CPS case study to illustrate by el@srhow to put the ThC technique into

Chapter 6 Test by Contract for UML-Based SCT 125

practice to undertake contract-based SCT with UMidets.Section 6.4applies the ThC tech-
nique to undertake test contract design for tesdieghoonstructionSection 6.5discusses con-
tract-based component test desi§ection 6.6discusses related work and describes the main

characteristics of the ThC techniq&ection 6.7resents our summary of this chapter.

6.2 Test by Contract: An Overview

TheTest by Contract (TbC) technique is developed to be a new contract-b&§Edtechnique
that extends the DbC concept to the new domaibJfdL-based SCT, beyond the original DbC
scope for code-based unit testing of traditiondtvware classes. By introducing the primary
concept of gest contrac{TC), we further develop a set of useful conttaased test concepts
and test contract criteria, which establish thééal foundation for the TbhC technigue. On
this basis, the TbC technique employs the usestinig-support mechanism ¢dst contracts

and designs and constructs appropriate test cesmtiaandertake contract-based SCT activities.

Figure 6.1lillustrates a typical stepwise ThC working procesth five major ThC steps
to carry out key testing tasks with the ThC techeiqThis stepwise testing process shows how
to put the ThC technique into practice for conti@a@sed testing activities to undertake UML-

based SCT, which is summarised as follows:

(1) Step TbC1 deals with the test contract concept,basit characteristics of test contracts
(seeSection 6.3.10 Section 6.3.8

(2) Step ThC2 deals with test contract design to impmmwodel-based testability and enhance
test model construction (s&ection 6.3.40 Section 6.3.5andSection 6.4);

(3) Step ThC3 deals with contract-based test desigedbas test models (s&ction 6.30
Section 6.},

(4) Step ThC4 deals with fault detection and diagneis contract-based test design, which
aims to achieve the goal of effective componerit design (se€hapter J. Also con-
tract-based fault detection and diagnosis in Ste@4Tis a central part of component test
evaluation (se€hapter 9,

(5) Step ThC5 deals with contract-based test generétesChapter §.

Technically, the overall TbC working process corsesi two main phases: Steps ThC1,
ThC2 and ThC3 form the Thfundation phaseand Steps TbC3, TbC4, and TbC5 form the
ThC advanced phasgs shown irFigure 6.). In particular, Step TbC3 is the kernel of theCTh
technique, which is based on test contract desigim t@st models and aims to undertake con-
tract-based test design to detect and diagnose ammp faults and to generate contract-based

component tests.

126 Chapter 6 Test by Contract for UML-Based SCT

ThC foundation phase ThC advanced phase
[« > g
ThC1l ThC2 ThC3 ThC4 ThC5
Component _
ICnct)?\rt]:'aacc::?S |:> Test Contract Fault Contract
Detection -Based
Contract and Test
Component Design i Diagnosis Generation
Element
Contracts
Component
Specifications
Testing
Requirements[>
& Objectives =

Figure 6.1 Test by Contract: Stepwise TbC Working Process

6.3 Contract for Testability

The ThC technique is a goal-driven SCT approachctieve the central testing goals of the
Contract for Testability (CfT) concept, which aims to:

(@) design and construct appropriate test contractbridging the test gapsand improving
component testability in UML-based SCT;

(b) apply and supplement test contracts for develoggEatable components;

(c) conduct and facilitate component test design anterggion for conformance to target
testing requirements;

(d) detect and diagnose component faults for achietgirget testing objectives;

(e) evaluate and demonstrate the required level of compt correctness and quality.

The above CfT goals actually involve two major paftl) testability specification and
improvemen{covering CfT goals (a) — (c)), which are the @ignCfT goals, and are mainly
discussed in this chapter aGtiapter 8(2) testability verification and evaluatioftovering CfT
goals (d) — (e)), which are the higher-level CfTalgo and will be discussed ®hapter 7and
Chapter 9The two CfT parts work collaboratively togetheraichieve effective SCT.

To support the stepwise TbC working process andCfiiegoals, we develop a set of im-
portant contract-based test concepts, test corgréetia and associated technical aspects. This
section describes these essential TbC foundatjpectsrelated to Steps TbhC1, TbC2 and TbC3
of the TbC foundation phase (as showrrigure 6.). This extends the basic introduction to the
TbC technique as described earlieSiection 4.3.3and further discusses the TbC technique in
more detail. The later sections of this chaptee &ection 6.4to Section 6.5 employ the CPS

Chapter 6 Test by Contract for UML-Based SCT 127

case study to illustrate by examples the relevantract-based test concepts and test contract
criteria, and how they are applied to contract-diaest model construction and component test

design.

6.3.1 Test Contract Concept

One key feature of the ThC technique is that itudjefocuses on identifying and designing
what we call test contracts, which is the primasting-support mechanism to achieve the CfT
goals. For software component integration (SClthbeomponent developers and users reuse
and deploy a particular component as an encapdutatitware unit mainly via its component
interfaces, which define certain contractual rilesveen composite components in the integra-
tion context. Theseomponent (interface) contracspecify how to use component interfaces
correctly to access component functional serviedgch are typically represented and realised
with component operations) for SCI. In particulesmponent contracts capture the mutual re-
sponsibilities (e.g. obligations and benefits) thath partners of a component (i.e. service sup-
plier/contractor and client) must comply with, ipeéadent of how they are fulfilled and imple-
mented. Component contracts govern the operatioddrderactions of composite component
objects that are integrated into a component fraonkewapplication or component-based sys-
tem. Any occurrence afontract violationindicates one or more potent@mponent faultse-
sulting from incorrect component design. addition to contracts specified at the component
interface level, we can also desiggmponent element contraesthe component element level
to examine certain low-level component elementsedgiohg the component interface for in-
depth testing coverage. In particular, componegrmneht contracts can be used to verify a spe-
cific component state or an individual underlyifgext operation that composes the component
operation under test for the CIT purpodeom the viewpoint of component contracts, a major
task of CIT is to design appropriate test contrad¢selop contract-based component tests, and
examine component integration to conform to theciigel component contracts for the target
testing objectives and requirements.

The new test contract concept introduced in the T@aBnique adapts the contract notion
used by 139 in defining software component interfaces. The mest contract concept extends
the contract notion used with the DbC concéd] [92] in designing software classes to the
new domain of UML-based SCT (as described eairie3ection 4.3.3 Based on the new test
contract concept for undertaking contract-based ,S@I design and construct test contracts
based on relevant component contracts (e.g. imtettvel contracts, element-level contracts,
etc.), and test contracts work as the primaryrigsgupport mechanism to improve component
testability and support the CfT goals. This indésathat the ThC technique also supports test-

driven development particularly for contract-basesting.

128 Chapter 6 Test by Contract for UML-Based SCT

6.3.2 Realising and Representing Test Contracts

This subsection describes software realisationraptesentation of test contracts, which pro-
vide the basis for test contract design (Step Th@&ards contract-based test design and gen-
eration (Steps TbhC3 and TbC5). Technically, testtra@ts can be applied to various testing-
related artefacts at different modeling levelsdsttmodel construction (s&ection 6.4 and at
different test levels/phases (e.g. integration/tasting, se&ection 6.3.8for the CfT goals. In
practice, test contracts are usually realised apdesented witlassertionsand associated con-
cepts in the form of commonly-usedeconditionspostconditionsandinvariants[24] to design
contract-based component tegiable 6.1summarises the main forms of test contracts agid th
relationships with the main model and componemfacts.

Table 6.1 Test by Contract: Model/Component Artefact, Contract Artefact

Model Model/Component Artefact Contract Artefact
Use case | Use case Pre/postcondition, invariant
L] Scenario Pre/postcondition, invariant

Sequence Pre/postcondition

System behaviour Pre/postcondition

System operation/event Pre/postcondition

System state Pre/postcondition, invariant
Object Scenario Pre/postcondition, invariant
2] Sequence Pre/postcondition

Behaviour Pre/postcondition

Message Pre/postcondition

Operation/event Pre/postcondition

Class Pre/postcondition, invariant

(object) state (attribute) Pre/postcondition, invariant

Conceptually, arassertionis a formal constraint or condition that describestain se-
mantic properties of software artefacts. An asselis expressed as a logi&dolean predicate
whose value is eithdrue or false when it is evaluated. An assertionvisrifiable or testable
true indicates that the software artefact concernedocors to the required software property;
false indicates an error or fault, which means thatdbiware artefact concerned violates the
required software property. Among the three commymes of assertions, preconditions and
postconditions form the basic assertions that eaagplied to almost all component/model arte-
facts, and invariants are usually applied to clsseenarios and use cases, as well as states of

components/objects. For example, for an operatrmeutest, greconditionis an assertion de-

Chapter 6 Test by Contract for UML-Based SCT 129

fining certain properties that must hdidie before the operation is invoked and executed. A
postconditions an assertion defining certain properties thastnholdtrue after the completion

of the operation’s execution. Anvariant is an assertion defining certain properties thastm
hold true at all times in the scope of a class, scenariaser case, or for a state of a compo-
nent/object.

FromTable 6.1 we can see that test contracts can be appliddfearent forms in differ-
ent software contexts. In the context of comporagtafacts, a test contract for an operation is
composed of basic assertions (preconditions ammstconditions) that are applied and evalu-
ated before and/or after the execution of the djmeraln addition to the basic assertions, a test
contract for a component class unit may be a dlasziant (if applicable). In the context of
model artefacts for model-based CIT, a test cohtim@ test model is a special test mes-
sage/operation that aims to verify relevant colfabon messages/operations between interact-
ing objects in the SCI context. A special test ragefoperation, which behaves in the way be-
ing consistent with an ordinary message/operatantdsting purposes, will be mapped and
transformed to one or more concrete test operatiomisare finally realised with appropriate
assertions for testing component artefacts (seedHieerSection 4.3.5or the CTM technique).
The TbC technique uses special test operationspi@sent test contracts, which are composed
of common assertions for verifying component adefaThey are developed to be compatible
with the usual operations of components or clafimgissuch special assertion-based test opera-
tions should have one of two possible Boolean netatuesirue or falsg, and thus are able to
be executable with component programs to suppaoramyc testing.

In the same manner as common assertions, testactstrepresented with assertions
should be side-effect free (s&ection 6.5.7or relevant illustrative examples), and should no
affect or change the important sequencing attrilofiteslated test sequences (S=xtion 6.5.1
for test sequence design and relevant illustragkemples), when they are used as special test-
ing-support artefacts to improve component tedtgbilnd facilitate component test design.
Based on the feature of assertions being verifiableestable, test contracts represented with
testable assertions can be used as the basisign delevantest oracledor verifying test cases
and evaluating test results. These characteriatizsvery important for test contract design and

contract-based test design (which is to be furtierussed irfsection 6.5

6.3.3 Effectual Contract Scope — Internal/External Test @ntract

This section further explores some important cattbased test concepts and characteristics.
First, we introduce the effectual contract scopecept, and describe different categories of in-
ternal/external test contracts. Then, we discussehationships between internal and external

test contracts, and the relationship between iateaxternal test contracts and test levels.

130 Chapter 6 Test by Contract for UML-Based SCT

6.3.3.1 Effectual Contract Scope

Any software artefact (e.g. an ordinary class lafté or operation) has an existence context
with a scope of access and visibility. To deal wihkt contracts effectively, we introduce an
important new concept for a test contraffectual contract scopevhich refers to a software
context (e.g. a component context or model contextyhich the test contract can take effect
(e.g. the test contract can be verified for a paldir testing purpose). A test contract functions
relative to its effectual contract scope. The inigace of this concept is that it indicates how a
particular test contract actually affects the ek outcome of the required testing that is re-
lated to this test contract.

6.3.3.2 Categories of Test Contracts

Based on the effectual contract scope concept,ameegplore the relationship between the ef-
fectual contract scope and the software contezttekt contract, and classify test contracts into
two main categories (as shownFigure 6.2):

(1) Aninternal test contrac{ITC) is defined and applied to, and is also wedfwithin, the
same effectual contract scope and the same softeaarext, i.e. both have the same
component/model context. For example, a test contoa a class attribute (object state)

is normally an ITC (as shown Figure 6.2.

Software Component

Component Interface
component operation

component state

E Component Class #1
i class operation
1
1

class attribute \
! Component Class #i/i/

1
1
i class operation
1
1

[~
ITC
/

class attribute i

Figure 6.2 Test Contracts: ITC and ETC

Chapter 6 Test by Contract for UML-Based SCT 131

(2) An external test contradfETC) is defined and applied to a software contbut is veri-
fied outside this software context. This indicatiest the effectual contract scope of the
ETC is not the same as its software context. Famge, a test contract for a component

operation is usually an ETC (as showririgure 6.3.

6.3.3.3 Relationships between Internal and External Test Catracts

Whether a test contract is internal or externdlyekepends on its effectual contract scope, and
this characteristic is usually not subject to whtetest contract is defined. In some situations,
the type of a test contract may turn into anotlgpe twhen the extent of its effectual contract

scope is changed. To illustrate this, let us exarttie following situations:

(i) If the scope narrows, an ITC in the original eftedtcontract scope may become an ETC
outside the new narrowed scope.
For example, an ITC of a component may become ab &Ta constituent class in this
component, when this test contract becomes corai@pexternal to this class. Such refinement
of the effectual contract scope is necessary aefiu® clarify the actual relationship of the test

contract to its host class within the component.

(i) If the scope broadens, an ETC in the original ¢ff@ccontract scope may become an
ITC inside the new broadened scope.
For example, an ETC of a class may become an IT&Cngfiw component, when this class
becomes part of this new component. While this scgigfting is appropriate, it is especially
useful to identify and construct the proper typaest contracts (ITCs and ETCs) for this new

component, when we develop components made uifefetit classes.

It is very important to analyse and recognise ttoperties of these types of test contracts
and their relationships, in order to design andyapppropriate types of test contracts for con-

tract-based testing:

(@) Usually, an ITC exists independent of any ETCs.fyieig an ITC is usually irrelevant to
the verification of any ETCs. However, an ITC magpyide some testing-support arte-

facts for one or more related ETCs.

(b) By contrast, an ETC may relate to, or depend om,armore ITCs, where an ETC may
be composed of some ITCs and other test artefastsyerifying this ETC may require

the verification of the associated, underlying ITCs

132 Chapter 6 Test by Contract for UML-Based SCT

6.3.3.4 Test Contracts and Test Levels

In principle, test contracts are applicable to masi software artefacts at different test lev-
els/phases for conducting SCT. In practice, ITG$ BMCs can work at their particular test lev-

els, which are slightly different but are stillegant, as illustrated by the following points:

(1) ITCs are often used in unit testing of the compeénbuat they are required to be re-
examined in the CIT context where they are used.

(2) By contrast, ETCs are often used in CIT, where @& ks verified in one integration
module (e.g. an integration class that controlsesdvunderlying integrated classes)
whereas this ETC is defined and applied to anattiegration module. When an ETC in-
cludes some underlying constituent ITCs in theatifal contract scope, these associated
ITCs are required to be verified along with this@&ET

(3) ITCs are often used to trace and examine intermadponent/object states, e.g. for the
purpose of unit testing.

(4) ETCs are typically used to trace and examine eateromponent operations/events and
states, e.g. for the CIT purposes.

(5) In the same manner as common assertions, ITCs a@$ Bhould be side-effect free
when they are used to examine and trace relevatimdgeinformation (the relevant illus-

trative examples will be provided Bection 6.5.2)

6.3.4 Contract-Based Test Criteria

To support the CfT goals, we need to develop araoibased testing guide for test contract
design with effective measurable test contract @ge and adequacy rules or requirements.
This section discusses the development of usehiract-based test criteria for the ThC tech-

nique, which are called thebC test contract criteria

6.3.4.1 Setting TbhC Test Contract Criteria

In principle, test criteria refer to the criterfzat a system or component must meet in order to
pass a given test]]. Test criteria are regarded as very useful tgstjnidelines, rules or re-
guirements to enhance and thus ensure testingyuadr the TbC technique, we study test cri-
teria in the context of test contracts, and ses&taf useful contract-based test criteria to guide
how to design and apply adequate test contractstefély for achieving the CfT goals. The
TbC test contract criteria are developed to supfastt contract design, contract-based test de-
sign and fault detection and diagnosis (as destiihé&Steps ThC2, ThC3 and ThC4 shown in

the stepwise TbC working processHigure 6.). Technically, we mainly focus on two crucial

Chapter 6 Test by Contract for UML-Based SCT 133

aspects of the ThC test contract criteria: testraghcoverage and test contract adequacy:

(a) TbC Test Contract Criteria: test contract coverage

Test contract coveragesfers to theextentto which one test contract or a set of test con-
tracts can properly exercise and examine the seddiést requirement for a given component
artefact, component or system under test. Goocttegtact coverage criteria require appropri-
ate test contracts mverand examineach important component artefact that is requtiodak
tested, according to all the specified test requénats for testing of the entire component or

component-based system under test.

(b) TbC Test Contract Criteria: test contract adequacy

Test contract adequaagfers to thequality of one or more test contracts that are able to
sufficientlymeet a specified testing requirement correctly satgsfactorily. Good test contract
adequacy criteria require that a certaimimal amounibf appropriate and necessary test con-
tracts carsufficientlycover and examineach of the important component artefacts thateare
quired to be tested, in order to comply with a# 8pecified testing requirements correctly and

satisfactorily.

A major purpose of the ThC test contract critesi#oi provide practical testing guidelines
for test contract design and construction to supiher CfT goals. The TbC test contract criteria
for test contract coverage aim to guide what testracts are needed for effective test design to
cover and examine possible component artefactsnprove component testability. Because
there are various levels of granularity of compdr&sftware composition and formation (as
described earlier isection 2.2.8 we need to design and construct adequate testacts to
exercise and examine different types of componegatets at different complexity levels. The
ThC test contract criteria are created to accommeodgportant testing-related component arte-
facts under test, such as states, events, opesatitasses and components, which are all the
essential software constituents to compose androahginal executable programs of software
components and systems under test. For the priaaidsievable testing purpose, we base the
“adequacy of test contracts on the testing-required comporaatefacts that are sufficiently

covered by appropriate test contracts for the gbdesired test effectiveness.

We introduce a set of new TbhC test contract cetésir adequate test contract coverage
shown inTable 6.2 in order to provide practical testing guidelirfes test contract design to
support the CfT goals. They comprise a collectibmantract-based testing rules that impose
certain mandatory testing requirements on a seelefant test contracts to adequately cover
and examine the important testing-related compoagefacts for effective test design. All the

ThC test contract criteria #1 to #6 showrTable 6.2provide structural coverage measures and

134 Chapter 6 Test by Contract for UML-Based SCT

can be categorised into three different levels. [Blaelevel TbC test contract criteria #1 and #2
focus on component elements and form a foundatowther ThC test contract criteria. As the
middle-level test contract criteria, TbC test cantrcriteria #3 and #4 work on the component
unit level. Test contracts for the high-level Th&€3ttcontract criteria #5 and #6 focus on the
overall component level and are usually composezkdhin relevant test contracts used for the
underlying lower-level TbC test contract criterla. this case, verifying a test contract for a

higher-level TbC test contract criterion (e.g. Tt®St contract criterion #5 or #6) requires the

examination of all constituent test contracts uedhe lower-level ThC test contract criteria.

As described irsection 6.3.2test contracts represented with basic asserfasonditions and

postconditions) can be applied to all the TbC testtract criteria #1 to #6 shown Trable 6.2

Test contracts represented with invariant assertaoa usually applicable to the ThC test con-

tract criteria #1, #4 and #6, if the associatedpoment artefact has an invariant property.

Low-Level 4
Test Criteria

Middle-Level
Test Criteria

High-Level
Test Criteria

Table 6.2 Test by Contract: ThC Test Contract Criteria

No. Test Criterion

#1

Test state coverage
criterion

Description

The test contract set must contain adequate test
contracts that can test and check each state of the
component or its objects under test.

#2

Test event coverage
criterion

The test contract set must contain adequate test
contracts that can test and examine each event
pertinent to the component or its objects unddr tes

#3

Class-operation-level
test contract coverage
criterion

The test contract set must contain adequate test ¢
tracts that can test and check each constitutdi¢pub)
class operation that contributes to the (full attip§
formation of a component operation under test.

A=

#4

Component-unit-level
test contract coverage
criterion

The test contract set must contain adequate test
contracts that can test and examine each condtitue
class unit that contributes to the (full or palitial
formation of the component under test.

#5

Component-operation
level test contract
coverage criterion

The test contract set must contain adequate test
contracts that can test and check each operatitieg
component under test.

#6

Component-level test
contract coverage

criterion

The test contract set must contain adequate test
contracts that can test and examine the componen

under test.

The description of the TbC test contract critetiavegn in Table 6.2focuses on the com-

ponent under test (CUT) as the major subject of S@wever, the TbC test contract criteria

we develop are also applicable to similar softwaules, such as individual classes/objects
with well-defined interfaces. The following subgens further discuss each of the TbhC test
contract criteria in detail, especially how theg ased and their relationships for contract-based
SCT.

Chapter 6 Test by Contract for UML-Based SCT 135

6.3.4.2 TbC Test Contract Criterion #1: test state coverageriterion

ThC Test Contract Criterion #1: test state coverage criterion
The test contract set must contain adequate test contracts that can test and check

each state of the component or its objects under test.

Component states capture certain useful testirggrivdtion about component existence condi-
tions, attributes, properties and/or relationshipth other peer components/objects in time.
Components may reside in multiple states at anytiome A component must satisfy its related
state conditions or constraints for the softwargeminess purpose. A state invariant indicates
that the component must have certain consisteatjyired conditions in a specified environ-
ment for a specified time. Test contracts for T test contract criterion may be used as part
of test contracts at the class unit level (see TéxT contract criterion #4) and the component
level (see ThC test contract criterion #6) as \asllsome other test contracts if applicable. In
this case, verifying test contracts at the clagsller component unit level requires the verifica-
tion of test contracts for checking underlying asst@d states.

In addition, test states may be also associated switne related test events that may af-
fect the state’s attributes, conditions and/or teation. In this case, test contracts for checking
test states are associated with test contractshiecking related test events (see ThC test con-

tract criterion #2 below).

6.3.4.3 TbC Test Contract Criterion #2: test event coverageriterion

TbC Test Contract Criterion # 2: test event coverage criterion
The test contract set must contain adequate test contracts that can test and

examine each event pertinent to the component or its objects under test.

An event is associated with a relevant occurrericeassage sending (e.g. object communica-
tion for collaboration), response reception (exguotf a server, class or component), state transi-
tion stimulus (e.g. in a state machine), or exteseavice request (e.g. from the user in a GUI
context). A fired or triggered event can activdite éxecution of an event operation, which may
change certain associated states of the CUT. Destacts for this TbC test contract criterion
may be used as part of test contracts at the ofzemtion level (see TbC test contract criterion
#3) and component operation level (see TbhC tedtactrcriterion #5) as well as some other test
contracts if applicable. In this case, verifyingtteontracts at the class operation level or com-

ponent operation level requires the verificationest contracts for checking associated events.

136 Chapter 6 Test by Contract for UML-Based SCT

In addition, test contracts for checking test esentaly be also associated with test con-
tracts for checking certain associated test st#fested by the event’'s occurrence and execu-
tion. In this case, the examination of the test@mts for checking test events leads to the veri-
fication of the test contracts for checking thergxessociated test states (see ThC test contract

criterion #1 above).

6.3.4.4 ThC Test Contract Criterion #3: class-operation-leel test contract
coverage criterion

ThC Test Contract Criterion #3: class -operation -level test contract coverage criterion
The test contract set must contain adequate test contracts that can test and check
each constitute (public) class operation that contributes to the (full or partial) formation of a

component operation under test.

A component operation is typically realised wittea@r more class operations from one or more
underlying class units, which constitute the congmirwhere this component operation exists.
Public operations of class units are typical caaigigl for constructing component operations,
which are a key basis for component interface aesi@pis TbC test contract criterion ensures
that necessary test contracts can cover and examjatant class operations, which estab-
lishes a coverage basis for other ThC test contrdtetria covering component units (see ThC

test contract criterion #4) and component operat{sae TbC test contract criterion #5).

6.3.4.5 TbC Test Contract Criterion #4: component-unit-leve test contract
coverage criterion

TbC Test Contract Criterion # 4: component -unit -level test contract cover age criterion
The test contract set must contain adequate test contracts that can test and examine
each constituent class unit that contributes to the (full or partial) formation of the component

under test.

A class is regarded as the basic software unit osing a software component. This ThC test
contract criterion requires necessary test corgréxtcover and examine certain underlying
component artefacts inside the component. FofTi test contract criterion, test contracts can
be (fully or partially) composed of test contraatsthe class operation level (as described in
TbC test contract criterion #3), and test contractgering component states/events in the class
unit (see TbC test contract criterion #1 and #2)wall as some additional test contracts as nec-

essary. In this case, verifying a test contrath@tcomponent unit level requires the verification

Chapter 6 Test by Contract for UML-Based SCT 137

of all underlying test contracts related to testialjted class operations and elements in the
component unit. Note that, whether or not a compbrtass has any invariant properties de-
pends on the actual component requirements andfispgons. Accordingly, this test contract

coverage may not always include assertions fosctagriants.

6.3.4.6 TbC Test Contract Criterion #5: component-operationlevel test contract
coverage criterion

ThC Test Contract Criterion # 5: Componen t-operation -level test contract coverage criterion
The test contract set must contain adequate test contracts that can test and check each
operation of the component under test.

Component operations are specified mainly through well-defined component interface,
which is used as the basic means for accessingarmmp functions. Because a component op-
eration typically consists of several class operatifrom the component’s underlying compos-
ite classes, test contracts for this ThC test egbtriterion can be (fully or partially) composed
of test contracts used at the class operation (@getlescribed in TbC test contract criterion #3)
and some additional test contracts as necessatfyislnase, verifying a test contract at the com-
ponent operation level requires the verificatioralbtonstituent test contracts at the class opera-
tion level.

Moreover, component functional testing mainly exassi the component interface and
undertakes component operation testing. Followhig ThC test contract criterion, applying
adequate test contracts to cover and examine aponent operations can effectively support

component interface testing and thus componentifurad testing.

6.3.4.7 TbC Test Contract Criterion #6: component-level tescontract coverage
criterion

ThC Test Contract Criterion # 6: Component -level test contract coverage criter ion
The test contract set must contain adequate test contracts that can test and
examine the component under test.

Testing individual components is the foundationtedting component-based systems that are
composed of software components. Because a companeer test is usually composed of
multiple underlying composite classes and compopeetations defined through the compo-
nent interface, we actually need a set of appraptiast contracts for testing the CUT in two
main aspects:

(@) For component functional testing:

138 Chapter 6 Test by Contract for UML-Based SCT

This TbC test contract criterion requires suffitiéest contracts to cover and examine
each of the component operations specified thrabghcomponent interface (as described in
TbC test contract criterion #5). Accordingly, tAiBC test contract criterion requires sufficient
test contracts to test all component operationst@atomponent interface. This TbC test con-
tract criterion works based on TbC test contraitéieon #5 for the purpose of component func-

tional testing.

(b) For component structural testing of the underlyiogponent artefacts behind the com-
ponent interface:

This ThC test contract criterion requires suffitiéest contracts to cover and examine
each of the underlying composite classes (as destin TbC test contract criterion #4) and
component elements (as described in ThC test aimrideria #1 and #2) inside the component.
Accordingly, this TbC test contract criterion workased on TbC test contract criteria #4, #1

and #2 for the purpose of component structurainigst

6.3.4.8 Adequate Test Contract Coverage and Testing Efficrecy

A major purpose of the TbC test contract critedaddequate test contract coverage promotes
and supports a high-level coverage of adequatectestacts that are applied to possible com-
ponent operations and elements under test (e.de$ting safety-critical software components
and systems). However, the high-level coveragedefjmate test contracts would attract higher
testing overheads, and lead to low testing perfan@and efficiency. On the other hand, this
would also produce the result that some testingctwhequires higher-level adequate test con-
tract coverage, could become unattainable andsitfleain testing practice, due to the increas-
ing size and complexity of software components syslems under test.

In testing practice, the necessary extent of adedeat contract coverage really depends
on the actual testing requirements and objectidasappropriate trade-off between test con-
tracts, testing overheads and efficiency requinas test contract coverage needed for test de-
sign should be as minimal and as adequate as otsimeet the required level of target testing

requirements and objectives.

6.3.5 Realising Component Testability Characteristics Impovement

A major goal of the ThC technique is to improve poment testability. As described earlier in
Section 2.6.1the first three characteristics of componenttaty (i.e. traceability, observabil-
ity and controllability) are very important for piding good component testability. To realise
component testability improvement, the ThC techaigarticularly employs the test contract
mechanism and the TbC test contract criteria tagdesnd apply adequate test contracts to en-

hance the three important component testabilityadtaristics.

Chapter 6 Test by Contract for UML-Based SCT 139

(1) Improving component traceabilitAdequate test contracts can examine differenfpoem
nent traces concerning component behaviours aradecelsoftware elements, such as
state, event, operation, etc. Because these tlacadbfacts may exist internally (inside a
component) or externally (on the component int&¥atest contracts can trace and record
component execution and test execution informatioiboth white-box and black-box

views.

(2) Improving component observabilitiBased on component information traced with ade-
quate test contracts, we can observe dynamic irgtiom of component functions, test-
ing-related behaviours and certain possible failnfermation. In particular, test con-
tracts can aid monitoring and examinationirgut-output inconsistencgf component

tests, which is a key property that affects compoobservability.

(3) Improving component controllabilityBy enhancing component traceability and ob-
servability, we are able to control the processmhponent execution and test verifica-
tion. We can observe specific traced test inforomafie.g. with initial test states as test
inputs) to monitor and control related test outggatg. resulting test states) during testing.
Such atest-input-output correlations very important to evaluate the observed test re
sults, and determine test passes or fails of testution for assessing the expected com-

ponent correctness.

6.4 Test Contract Design for Test Model Construction

After introducing the ThC foundation aspects (idhg the contract-oriented concepts and ThC
test contract criteria), we follow the stepwise TWOGrking process (as shown kigure 6.},
and use the CPS case study to illustrate how tohguTbhC technique into practice particularly
for undertaking contract-based CIT with UML modeBne important objective is to demon-
strate the applicability and effectiveness of theCTtechnique for UML-based SCT. This sec-
tion focuses on test contract design for contraseld test model construction (i.e. Step ThC2).
To support the CfT goals for UML-based SCT, testtaact design aims to bridge the
“test gaps” in UML-based SCT and improve model-dasemponent testability for effective
test model construction. For this purpose, the Tdxbnique works together with the relevant
MBSCT methodological components, as describedegariChapter 5especially inSections
5.2.35.2.4.25.3, 5.4.3and5.5.3. Also as described earlier 8ection 5.3we classify test arte-
facts used in test model construction into two ntEtegories: basic test artefacts and special

test artefacts. Our strategy for test contractgieBicuses on developing effective model-level

140 Chapter 6 Test by Contract for UML-Based SCT

test contracts as the special test artefacts ts@ezomponent testability at the modeling level
and improve test model construction. We design aakeqtest contracts, and apply them as
complementary testing-support artefacts to endiddedsting-required, but non-testable compo-
nent/model artefacts (which are in the categorasfic test artefacts) to become testable as re-
quired for contract-based test model constructiomarticular, for testing the CPS system that
is required to be secure and reliable to providgh lgjuality public access services, we need to
apply the TbC test contract criteria for a highelewoverage of adequate test contracts. In other
words, we design and apply sufficient test congrdictcluding ITCs and ETCs) to all parking
control operations of the related CPS control devithat jointly manage the car’s access to the
PAL. In Chapter 5Sections 5.2.2nd5.2.4.2have clearly described these technical aspects of
the ThC techniquesections 5.4.2nd5.5.3have illustrated by examples (selected from th& CP
case study) to demonstrate that test contractgmsiwith the TbhC technique are capable of
bridging the “test gaps” (especially Test-Gap #2) amproving model-based component test-

ability for effective test model construction.

6.5 Contract-Based Component Test Design

This section focuses on the core Step TbhC3 (asmshokigure 6.) to undertake contract-based
component test design with the TbC technique far. @ UML-based SCT, test design is car-
ried out based on UML-based test models that anetnacted and enhanced with test contract
design (i.e. Step TbC2 as describedsattion 6.5 We further use some selected examples of
the CPS case study to illustrate how to undertakeract-based component test design for ef-
fective CIT.
Note that we employ some naming conventions fasraans/abbreviations of the follow-

ing testing terms in the MBSCT methodology: TSst ts2quence/scenario, TG — test group, TO

— test operation, TC — test contract, and ITC/ETifternal/external test contract.

6.5.1 Designing Test Sequences and Test Groups with Té&sbntracts

6.5.1.1 Designing Test Sequences

For the CIT purpose, an important testing focusoisest component interactions, especially
verifying related underlying object interactionslasbject state changes with those interactions,
because SCI takes place mainly with the interastibnough the interfaces of component ob-
jects in the SCI context. Our contract-based corapbtest design for CIT is based on a test
model that captures a sequence of test artefacemlise test scenarios for testing relevant func-

tional integration scenarios. st sequenc€lS) refers to a sequence of logically-ordered re-

Chapter 6 Test by Contract for UML-Based SCT 141

lated test artefacts, such as test operations (Tt€st)elements (e.g. test state, test event), test
contracts (TCs), etc. Technically, test design stant with test sequence design, and combine a
set of related test operations and test contragesther into an appropriate test sequence (e.g. a
test group which is defined in the negection 6.5.1.pto verify inter-component/object inter-
actions for CIT. This testing requires well-desidrtest contracts to isolate, track down and ex-
amine different component traces (including notyomperations but also states and events),
which are important test contracts to improve congmb traceability and support contract-based
component test design for effective CIT.

Test sequences play the key role of organisingstindturing test artefacts for effective
contract-based component test design. Our tesgrlésiundertaken in conjunction with test
sequence design based on test models, in whiclkdgsences are mainly mapped and derived
from related scenario-based test models. For tpstia CPS systenkigure 6.3illustrates a
typical overall test sequencihat is designed and derived from the correspgn@®TM (as
shown earlier irFigure 5.4 and forms the foundation of contract-based corapbtest design
to examine the CPS TUCL1 integration testing scendris test sequence incorporates logi-
cally-ordered relevant test contracts and testaijmers, and special test states and test events to
conduct CIT for the CPS system. Test contractdyweglevant component/object artefacts (e.qg.
operation, state, or event) in the associatedseggience by using appropriate testable assertions

in terms of preconditions, postconditions or ingats (as described Bection 6.3.2

Basic
tes 1.1 TO 1.2T0 2.1TO 22TO 2.3TO 24TC25TO 3.1TO 3.2TO
artefacts ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
Test Sequence >
Specia ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
tes 1.11TC 1.2 1ITC 2.1ETC 2.3 ETC 25 ETC 3.1ETC 3.21TC
artefacts

Figure 6.3 Test Sequence = test contracts + test operations (CPS TUC1 Test Scenario)

Note that when a test contract (e.g. test con&cETC shown inFigure 6.3 is posi-
tioned between two consecutive operations underrtestest sequence (e.g. test operatibhs
TO and3.1 TO shown inFigure 6.3, this test contract actually plagisal testing rolesit works
as a postcondition assertion of the last operggan test operatiop.5 TO), and also as a pre-
condition assertion of the next operation (e.gt tggeration3.1 TO). In principle, such dual
testing roles of well-designed test contracts appliwo sequential operations, if any software
artefact between them does not affect the posttondif the first operation and the precondi-
tion of the second operation. This is one of thedgcharacteristics of the TbhC technique, which

demonstrates that test contracts are a useful pbfoetesting-support artefacts that can im-

142 Chapter 6 Test by Contract for UML-Based SCT

prove component testability efficiently. Based bis fTbC feature, most test contracts designed
in the above CPS TUC1 test sequence functionally puch dual testing roles (as shown in
Figure 6.3, which supports low-overhead test contract udagelesired testing efficiency. In
addition, when a test contract is added to a semuehtest artefacts for improving testability, it
does not affect or change the sequencing attributee test sequence (as indicatedsacttion
6.3.29). For example, when test contrach ETC is added to the above CPS TUC1 test sequence
(as shown irFigure 6.3, test operation8.5 TO is still verified as expected before test operatio
3.1 TO and the related logical order or sequencing aitiilof this test sequence remains un-

changed.

6.5.1.2 Optimising Test Sequences

This subsection further explores how to optimise structural organisation of test sequences
for effective contract-based component test desitne. above CPS TUC1 test sequence is de-
signed based on the corresponding CPS TUC1 integrégsting scenario, which is actually
composed of three sub test scenarios (as showeraarFigure 5.4. Accordingly, the overall
CPS TUCL test sequence can be decomposed intostiveest sequences (as illustratedioy

ure 6.4:

(1) Sub test sequence #1 examines sub test scenatiestihg whether the stopping bar is in
the expected state 06B_DOWN” and the traffic light device is in the expectddts of
“TL_GREEN" (which are the CPS TUC1 preconditions as desdrigarlier inSection

5.4.3. If so, the test car is allowed to enter andtstecess to the PAL.

(2) Sub test sequence #2 examines sub test scenatiesttg whether the test car correctly

enters and passes through the PAL entry poing, lfree test car has entered the PAL.

(3) Sub test sequence #3 examines sub test scenariestiBg the traffic light device is in
the expected state oft_RED” (which is the CPS TUC1 precondition as describad
lier in Section 5.4.3 If so, the testing of the CPS TUCL1 test scenaai® completed.

Basic
tes [1.1TO 12TO 2170 22TO 23TO 24TC25TO 3170 3270
anefactsl 3 4 g g 1 g g g g
Test Sequence >
tes 1.11TC 1.21TC 2.1ETC 23 ETC 25ETC 3.1ETC 3.21TC
artefacts
sub test sequence #1 sub test sequence #2 sub test sequence #3

Figure 6.4 Structured Test Sequence = a series of sub test sequences (CPS TUCL1 Test Scenario)

Chapter 6 Test by Contract for UML-Based SCT 143

In other words, when a test scenario is logicatiinposed of several sub test scenarios,
we can optimise the corresponding test sequenceaistructured test sequencensisting of a
series of sub test sequences (as showfigare 6.4, and each sub test sequence is designed
based on its corresponding sub test scenario. Taahyn to reduce and control testing com-
plexity with test sequences, it is necessary tbopartest sequence optimisation on a complex
test sequence that is a long compound sequencstwog®f many test artefacts, which may be
derived from a complex test scenario captured dyreesponding test model. One effective way
of optimising a complex test sequence is to appatgdy decompose it into a sequence of logi-
cally-related test groups. #&st group(TG) refers to a small or minimal test sequencemmsed
of closely-related test artefacts for a particuksting objective. All constituent test groups
should jointly function in an equivalent mannethe original test sequence to uphold the over-
all testing requirement and integrity. In the samag, a test group may further be divided into
smaller test groups as needed.

For the overall CPS TUCL1 test sequence showigare 6.3 we can conduct further test
sequence optimisation. We can divide it into a seqa of seven basic test groups to create the
structured test sequence (as illustrate&igure 6.9, where sub test sequence #1 contains the
first two basic test groups, sub test sequenceo#itains the middle three basic test groups and
sub test sequence #3 contains the last two bastigteups. Eacbasic test grougontains at
least one specifigerifiable test contractor a particular testing objective, and may be hared
with its main test contract’s number. For exampkhesic test grouf.2 TG contains test contract
1.2 ITC, and verifies whether the traffic light deviceisthe expected state ot GREEN"
beforethe test car enters the PAL entry point. Basicdestip3.2 TG contains test contragt2
ITC, and verifies whether the traffic light deviceansthe expected state of._RED” after the
test car has entered the PAL entry poiie can also combine two or more basic test groups
into a newjoint test groupfor a particular joint testing purpose (whichasbe further discussed
in Section 6.5.3

test group 1.1 test group 1.2 testgroup 2.1 testgroup 2.3 test group 2.5 test group 3.1 test group 3.2
Basic == 9 9l T I -1l = T

tes I 1.1TO I I 1.2TO I I 21TO I i2.2 TO 2.3TO I i2.4 TC25TO I I 3.1TO I I 3.2TO I

aefects| . 3 Q) g =g g8 0 0 g g
! i T Test T T Sequence 1| 3 >

specia [l O T Ht ot Tl rHroott T

tes |[! 11ImC Il 12ITCI|I 21ETCI| 2.3ETCI | 25ETCI || 3.1ETClII 32ITCI

artefaCtS —_— e e = i — = —_ e e = e — s ——— — e — = — —_— e = e — e — —_
sub test sequence #1 sub test sequence #2 sub test sequence #3

Figure 6.5 Structured Test Sequence = a sequence of test groups (CPS TUC1 Test Scenario)

144 Chapter 6 Test by Contract for UML-Based SCT

6.5.2 Test Design for Verifying Component Interactions wih Test

States
This section discusses how to undertake contrasgebaomponent test design to examine com-
ponent/object interactions by verifying particutast operations, test contracts and associated
test states for CIT, including inter-object intdgra testing and inter-component integration
testing. For the CIT purpose, we apply the ThCniespre and TbC test contract criteria, and use
well-designed test contracts (including ITCs andCE)'to trace and examine dynamic changes
of interacting object states against certain exgubtest statesThe test states are used as the
testing basis fortest oracledesign for test evaluation (e.g. evaluating whethecompo-
nent/object retains the expected state when igdeeloperation is performed), and are incorpo-
rated into contract-based component test desigxamine whether one or more related inter-
acting object operations are performed correcthilie corresponding object interactidrable
6.3 shows the relationship between test contractdesicbperations (with specified signatures)
as well as test states, which are used for coAba@s®d component test design for conducting
CIT in the CPS TUCL1 integration testing scenargodlaown earlier ifrigure 5.4.

As an essential requirement for the CIT purpos#,design needs to cover sufficient test-
ing-required component/object operations partiongain SCI, which is based on effective test
model development that bridges the “test gap” (esflg Test-Gap #)Lin model-based testing
(as described earlier Bections 5.2.4.2and5.5.2. For the CPS TUCL1 integration testing sce-
nario, Table 6.3comprises all associated parking control operatioiithe related CPS control
devices (i.e. the traffic light and in-PhotoCelhser devices) and car movements along the PAL
(i.e. making a total of 9 test operations shownhia “Test Operation” column). This ensures
that our test design can exercise the necessargaant/object operations participating in the
CPS TUCL integration testing scenario.

On the above the basis, contract-based comporstritdsign needs to cover adequate test
contracts that are applied to all testing-requcechponent/object operations for effective CIT,
which is based on effective test model developrtigatt bridges the “test gap” (especiallgst-
Gap #2 in model-based testing (as described earli&dations 5.2.3.2.4.2 5.4.3and5.5.3.

For the CPS TUC1 integration testing scenafehle 6.3(in the “Test Contract” column) com-
prises the necessary test contracts that are dgpli@l parking control operations for providing
parking control services, in order to verify theanges in the related control states (which are
the test states for the CPS system, as showabfe 6.3'Test State” column).

In the following, by using some selected testingregles in the CPS TUC1 integration
testing scenario, we illustrate how a specific IEDC is identified and created for contract-
based component test design, and used to condoitacbbased CIT with test states. The test-
ing shows that component test design is actualtiettaken based on test sequence design (e.g.

designing the structured test sequence with testog; as described Bection 6.5.1

Chapter 6 Test by Contract for UML-Based SCT 145

Table 6.3 Contract-Based Component Test Design (CPS TUC1 Test Scenario):
test sequences, test groups, test operations, test contracts and test states

Test Test Test Operation Test Contract Test State
Sequence Group
enter PAL ent er AccessLane()
0.1ITC: checkState(| SB_DOWN
st oppi ngBar,
“SB_DOWN")
Sub Test 1TS:
Sequence turnTrafficLi ght ToG een()
#1
1.1 1.1 TO: wai t Event (1.1 ITC: checkEvent (| SB_DOWN
turn TG st oppi ngBar , “SB_DOWN") st oppi ngBar,
Traffic “SB_DOWN")
Light to . .
GREEN 1.2 1.2 TO: set G een() 1.2 ITC: checkState(| TL_GREEN
TG trafficLight,
“TL_GREEN")
Sub Test 2TS: enterAccesslLan()
Sequence -
#2 2.1 2.1 TO: wai t Event (2.1 ETC: checkEvent (| TL_GREEN
TG trafficLight,“TL_GREEN") | trafficLight,
enter the “TL_GREEN")
PA'-OETW 23 | 2.2T0: goTo(
P TG gopace-cross-i nPC,int)
2.3 TO: occupy() 2.3 ETC: checkState(| IN_PC_OCCUPIED
i nPhot oCel |,

“IN_PC_OCCUPIED")

25 2.4 TO: goTo(
TG gopace- crossover - i nPC,

int)
25TO:cl ear () 2.5 ETC: checkState(| IN_PC_CLEARED
i nPhot oCel |,
“IN_PC_CLEARED")
Sub Test SANSH
Sequence turnTraf ficLi ght ToRed()
#3
3.1 3.1 TO: wai t Event (3.1 ETC: checkEvent (| IN_PC_CLEARED
turn TG i nPhot oCel |, i nPhot oCel |,
Traffic “IN_PC_CLEARED") “IN_PC_CLEARED")
Lightto |55 132 T0: setRed() 3.2 ITC: checkState(| TL_RED
RED o
TG trafficLight,

“TL_RED”)

(1) ITC Example
Test design constructs test grodp2 TG composed of test operatioh.2 TO
set Green() and test contract.2 ITC checkState(trafficLi ght, “TL_GREEN"),

which works as follows:

146 Chapter 6 Test by Contract for UML-Based SCT

(@) This test contract checks whether the traffic lighin the correct state 6TL_GREEN”"
as expected, after test operatioh TO set G- een() is performed.

(b) This test contract is applied to operatiwat G- een() in objectt raf fi cLi ght and
verified in objectdevi ceCont r ol | er. As both objects are within the same scope of
the device control component, test contract 1r2fesrred to as an ITC.

(c) This ITC examines a typical object interaction witthe scope of a single component.

(d) This ITC by design is side-effect free (as indidaite Section 6.3.2and Section 6.3.3 4
Specifically, this ITC only checks whether the fi@aflight is in the expected state of
“TL_GREEN?", and does not affect or change the current state ofréfic light and any

other test artefacts (or testing-related data/&lue

Note that we refer to this test contract B2 an ITC in terms of the strict general
component context (i.e. within the scope of theiceeontrol component), not an individual
class context that is only a partial component scdpan individual class scope (i.e. class
Traf ficLight) is regarded relatively as a basic context foeaffal contract scope, test
contract 1.2 may also be referred to as an ETCestrexamines an object interaction for inter-
class integration testing between two classes (Cless TrafficLi ght and class
Devi ceControl | er), but these classes are all within the scope ef shme single

component (i.e. the device control component).

(2) ETC Example
Test design can construct test groR@ TG composed of test operatiah3 TO
occupy() and test contra@.3 ETC checkSt at e(i nPhot oCel |, “IN_PC_OCCUPIED”

), which works as follows:

(@) This test contract checks whether the in-Photo@ellice is in the correct state of
“IN_PC_OCCUPIED” as expected, after test operatiB TO occupy() is performed.

(b) This test contract is applied to operatmocupy() in objecti nPhot oCel | in the de-
vice control component, but is verified in objé&st Car Contr ol | er in the car con-
trol component. So test contract 2.3 is referreastan ETC.

(c) This ETC examines a typical component interactmmiriter-component integration test-
ing between the two CPS collaboration components.

(d) This ETC by design is side-effect free (as indiddateSection 6.3.2andSection 6.3.3 4
Specifically, this ETC only checks whether the e Cell device is in the expected
state of IN_PC_OCCUPIED”, and does not affect or change the current state oirthe
PhotoCell device and any other test artefactse@ig-related data/values).

Chapter 6 Test by Contract for UML-Based SCT 147

6.5.3 Test Design for Verifying Component Interactions wih Test
Events

In this section, we explore another important aspe€IT: we design contract-based tests with
test events to verify particular object interacidiy checking certain communication messages
(or event communicatiopsghat realise the object interactions betweerabaolfating objects. We
illustrate this type of contract-based componest tkesign by retesting the Observer pattern-
based componeiidvent Communi cat i on that is reused in the CPS TUC1 integration testing
context, after this base component has been testsl unit testing context. To carry out this
CIT task, we conduct test design with special tesitracts to examine and verify certain event
communications by checking particuli@st eventsin order to ensure that the specific event
communication is correctly performed in the SClteah For example, test design is required to
be able to verify whether the registered eveneiist receives the correct event notification
from the correct event notifier as described in@server patterr6p]. For the CPS TUCL in-
tegration testing scenario, this testing is espigdiaportant when system control shifts from
the device control component to the car control poment at the control switchover point, and
vice versa.

In the following, we illustrate how test design strncts and applies a spediaint test
group of related test contracts and test operationsi{@a/n inFigure 6.6 to examine a particu-
lar test evento ensure that system control is shifted correbdyween (1) the device control
component and (2) the car control component attimérol switchover pointThis special joint
test group actually combines two basic test grotgst:group 1.2 TG in sub test sequences #1
and test group 2.1 TG in sub test sequences #2 that these sub test sequences and test
groups were designed 8ection 6.5.las shown irfrigure 6.5. Also this special joint test group
crosses over from sub test sequences #1 to subetpstnce #2 to cover the control switchover

point in the CPS TUC1 integration testing scenario.

(1) In sub test sequence #1 of the CPS TUCL1 integraésting scenario, system control
commences with the device control component padhé control switchover point. The
component controls parking operations approactiagontrol switchover point:

(@) Test operatiorLl.2 TO set G een() (from the basic test grouh2 TG) runs on object
trafficLi ght to set the traffic light to the new state dfL* GREEN” for the next
car's access to the PAL.

(b) The execution of this test operation causes thectibjstate change, which results in a
new event being generated. Then by conducting @ntegommunication with the
Observer pattern-based compon&aent Conmuni cat i on, the event notifier object
trafficLi ght needs to notify the new event to all of its wajtevent listener objects

t est Car Control | er anddevi ceContr ol | er for the control switchover.

148

Chapter 6 Test by Contract for UML-Based SCT

(c)

Like test design with test states (as describe&ention 6.5.), test contractl.2 ITC
checkState(trafficLight, “TL_GREEN") (from the basic test group2 TG) is
constructed as an ITC to check whether the tréifflt device is now in the correct state
of “TL_GREEN" as expected in the scope of the device contraipmment, before the

system control is switched over.

Joint Test Group control switchover point
= — 1

test group 1.1 test group 1.2| test group 2.1 test group 2.3 test group 2.5 test group 3.1 test group 3.2

Bas|(. == _|||_ Q== —III_ - === == T T

tes |[: 1.1 TO]: 1.2TO ©]1:21T0 1]:22TO 23TO ::24TC25TO :|:31TO ©:3.2TO :

artefacts||! ! 2! "Wp g "o oo H'g 'y !
! T T Test T T Sequence ! ! ! >

I i Nl M I I Il i

Specia ||: ﬂ) ﬂ : ﬂ) ﬂ s ﬂ S ﬂ D ﬂ :

tes ||| L1TC LI 12ITC 1|1 21ETCl| 2.3 ETCII 25ETCI || 31ETCI| 32ITC|

artefaCtS ____I:_____: _____:__J_ e — e — e — . — —_— e = e — e — —_
sub test sequence #1 sub test sequence #2 sub test sequence #3

Figure 6.6 Contract-Based Component Test Design: joint test group for CIT (CPS TUC1 Test Scenario)

(2)

(@)

(b)

(c)

Then, system control shifts to the car control congmt (accordingly, the testing shifts
from sub test sequence #1 to sub test sequence #2):

The waiting car (as the event listener objeest Car Cont r ol | er) waits for an in-
coming event naotification as a parking instructiorassess the PAL. This is conducted by
test operatior2.1 TO wai t Event (traf fi cLi ght, “TL_GREEN") (from the basic
test grou®.1 TG) running on object est Car Control | er.

When the event communication is fulfilled with thébase component
Event Conmuni cat i on, the car needs to take some action accordingeadbeived
event notification. However, before the car enthies PAL, it is necessary to recheck
whether the event reception is correct on the evdidtener object
testCarControl |l er. Test contract2.1 ETC checkEvent (trafficLight,
“TL_GREEN") (from the basic test group.1 TG) is constructed as an ETC to check
whether the waiting car (i.e. the event listengeaoit est Car Cont r ol | er in the car
control component) receives the correct event igatibn (i.e. the traffic light is in the
correct state of TL_GREEN?"; the car is allowed to enter the PAL) from theregt event
notifier objectt r af f i cLi ght in the device control component.

When the completion of this event communicatioomieein the two CPS components is
checked to be correct, the system control switchmveorrect. Then, the car starts enter-
ing and accessing the PAL with a sequence of klpégking operations controlled by

the car control component.

Chapter 6 Test by Contract for UML-Based SCT 149

6.6 Related Work and Discussion

This section reviews and discusses research waoticyarly related to contract-based testing in
line with the DbC principle. This serves as an edtal literature review specific to the TbhC
technique, which is based on the foundation litgeateview as described earlier@mapter 2
andChapter 3

Beugnard et al.Z2] define a general model of software contractat fevels: basic or
syntactic contracts, behavioural contracts, syntibadion contracts and quality-of-service con-
tracts. Because behavioural contracts are morseettto the DbC principle in component de-
sign and testing practice, our ThC technique presetell-designed test contracts particularly
as behavioural contracts for UML-based CIT. Briaha@l. 31] investigate analysis contracts to
improve the testability at the level of object-otied code. Their contract definition rules mainly
apply to the class unit context, and analysis eatsrare expressed in OCL5[). They also use
contract-related instrumentation tools to instrutmemntracts for their testing example of the
ATM system, and evaluate relevant testability fesgubenefits and limitations. Edwards et al.
[56] present a contract wrapper approach to enhanogaoent testing capabilities for compo-
nent functional testing, without access to the lewel details inside component code. This ap-
proach is more flexible for improving design-basedhponent testability, and offers good test-
ing benefits for both component developers andsugddowever, developing companion test
wrappers for all components under test may athigtt workloads and costs in testing. Nebut et
al. [107 present a use case driven approach to systemgeshey build on UML use cases
enhanced with contracts based on use case preoahdgnditions. System test cases are gener-
ated in two steps: use case orderings are deducsduse case contracts, and then use case

scenarios are substituted for each use case toge@ystem test cases.

By comparison, our research with the TbC technlipgeits own particular characteristics
different from other related work, which contribsit® the following important aspects:

(1) The ThC technique develops a set of important estitrased test concepts (e.g. test con-
tract, Contract for Testability, effectual contrattope, internal/external test contract),
and useful TbC test contract criteria for effectigstability improvement at the modeling
level (seeSections 6.2and6.3).

(2) The TbC technique bridges the “test gaps” and inggsaomodel-based component test-
ability for test model construction, and support UNMhodel-based approaches to SCT
(seeSection 6.4andSections 5.2.%.2.4.2 5.3, 5.4.3and5.5.3.

(3) The developed ThC working process guides contraseth testing activities (s&ection
6.2), and we have illustrated how to put them intccpice for contract-based test design

with a case study (sé&ections 6.p

150 Chapter 6 Test by Contract for UML-Based SCT

(4) The TbC technique is a direct extension of the Bb@cept (which was developed origi-
nally for object-oriented design) to the new dom@nSCT, and becomes a useful self-
contained contract-based approach to SCT $seéions 6..and6.2).

6.7 Summary

This research has extended the DbC concept to@ieddmain, and developed the TbC tech-
nique as a new contract-based SCT technique witfingary aim to bridge the “test gaps” be-
tween ordinary UML models (non-testable) and targst models (testable) and improve
model-based component testability for effective Ublsed SCT. In this chapter, we intro-
duced the new test contract concept as the kapgestipport mechanism, and the new concept
of Contract for Testability as the principal goétlee TbhC technique. We described the test con-
tract concept based on basic component contrdassified test contracts into internal and ex-
ternal test contracts for effective contract-batesting based on the new concept of effectual
contract scope, and developed a set of useful €bCcbntract criteria to realise testability im-
provement for achieving the CfT goals. Then, follogvthe developed ThC working process,
we showed how to apply the TbC technique to testraot design for test model construction
and contract-based component test design by ubimgdllustrative testing examples selected
from the CPS case study. The testing examples den®nstrated that the ThC technique is
capable of bridging the identified “test gaps” @splly Test-Gap #§, improving model-based
component testability and supporting effective congnt test design. These are some of the
major contributions of the ThC technique.

Therefore, this chapter has shown that componettdevelopment with the MBSCT
methodology is not only model-based, process-baset scenario-based, but also contract-
based (note that the relevant MBSCT methodolodeaiures will be further justified iGec-
tions 8.2and8.5). At the same time, this chapter has employedTti@ technique to demon-
strate and validate the MBSCT testing applicabgity capabilities particularly for component
test design, adequate test artefact coverage, anganent testability improvement (which are
the core MBSCT testing capabilities #2, #4 and #8lescribed earlier iBection 4.5 A more
comprehensive validation and evaluation of the MBS@ethodology will be presented in
Chapter 9

This chapter has mainly covered the TbC foundatimese (including Steps TbC1, TbhC2
and TbC3) in the stepwise TbC working process (@asva inFigure 6.). The ThC advanced
phase (including Steps TbhC4 and TbC5) will be dised in the subsequent chapters of this the-
sis. Chapter 7will describe component fault detection and diagigavith the TbC technique
(i.e. Step ThC4). Contract-based test generatien$tep ThC5) will be discussedGhapter 8

Chapter 7 Component Fault Detection, Diagnosisma Localisation 151

Chapter 7
Component Fault Detection, Diagnosis and
Localisation

7.1 Introduction

Component test design aims to detect and diagrmspanent faults for the goal of enhancing
and assessing component reliability and qualitg &ection 7.2 At the same time, component
fault detection and diagnosis (FDD) is a useful mset improve and evaluate the effectiveness
of component test design with a testing approach.utliertake component fault detection and
diagnosis as an integral part of component tesgdes the Phase #2 of the MBSCT frame-
work. With the MBSCT methodology, FDD is model-bésehich means that FDD is under-
taken with test models and model-based componetg. tEDD is also scenario-based, which
means that test scenarios are used as the baktetd and diagnose target component faults in
the related component functional scenario. MoredvBD is contract-based, which means that
the ThC technique plays a key role in the procésomponent fault detection, diagnosis and
localisation, and this process is undertaken jpintth our contract-based component test de-
sign (CBCTD) approach (as described earlie®éation 6.5.

Chapter 6presented the foundation principles of the TbQwégue, and described the
foundation phase (including Steps ThC1 to TbhC3jhim stepwise TbhC working process (as
shown earlier irFigure 6.1in Section 6.2 This chapter moves on to the advanced phadeein t
stepwise TbC working process, and focuses on #imgeprogression from Step TbC3 to Step
ThC4 with the TbC technique. In particular, we fe@amponent test design on component fault
detection and diagnosis with the TbC technique.thisr purpose, we develop a neantract-
based fault detection and diagno$8BFDD) method 173 [175 [17€], which further extends
the TbC technique to support effective SCT andbéistees a key technical foundation for com-

ponent test evaluation (s€&apter .

This chapter presents component fault detecti@agrdisis and localisation with the TbC
technique to achieve effective component test desigst, Section 7.2describes some impor-
tant fault-related terms and their relationshipg] presents an extended fault causality chain to
guide SCT activities in FDD and effective componkst designSection 7.3ntroduces a new
important notion ofContract for DiagnosabilityCfD) to be a key objective of our CBFDD
method, and this notion particularly satisfies tingher-level goals of th€ontract for Testabil-
ity concept with the ThC technique (as describedegariSection 6.3 In Section 7.4we de-

velop a practical CBFDD process for fault detectidiagnosis and localisation, which is a ma-

152 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

jor technical component of the CBFDD methodSkections 7.5.10 7.5.4 we analyse and ex-
plore certain critical inter-relationships betweest contracts and fault diagnosis properties in
terms ofeffectual contract scopéault propagation scopeandfault diagnosis scopevhich are
new testing notions we introduce to support the BBFmethod. InSection 7.5.5we develop
the stepwise upper/lower-boundary scope reductitegies and processes, and provide the
useful CBFDD guidelines for effective fault diagrsand localisation. The CBFDD guidelines
are another major technical component of the CBFdhod. Then irBection 7.6 we apply
the CBFDD method, and employ the CPS case studifusirate how to put the CBFDD
method into practice to undertake component faetedion, diagnosis and localisation. We
develop the two useful diagnostic solutions with @BFDD method in the two major possible
testing contexts (seBections 7.6.2.2and7.6.2.3. Section 7.7discusses some important open
issues and defines a set of new useful notionsecklto the ThC technique (especially the

CBFDD method)Section 7.&ummarises this chapter.

7.2 Fault Causality Chain: Fault - Error - Failure

A primary reason why software testing is requirethiat any activity during the software devel-
opment process may introduce or produce certaitwaoé defects or imperfections in the de-
veloped software. This contributes to a princidgkotive of software testing that aims to detect
and uncover such software defects and imperfectiotie software/system under test (SUT) as
much as possible, in order to improve and evalsatvare reliability and quality. For use in
the testing process, it is important to clarify ex@b important terms and their relationships:
fault, error, and failuref7].

Failure refers to a manifested incapacity to function erf@rm satisfactorily. It means
some undesired behaviour observed during the ewracof the SUT, which unsuccessfully
meets the expected objective, e.g. there is soomract output or inability of fulfilling the ex-
pected functional requirement.

Fault refers to a defect or imperfection in the SUT.aAillt may be a malfunction, imper-
fect data or operational definition, incorrect ext@n or operating step/process, etc. It is created
by certain incorrect activities during the softwdesselopment and/or operation process. A fault
may also remain inactive and undetected, and tfayshrave no impact on the SUT or other re-
lated interacting software or systems even fong kime.

Once a fault is encountered and activated by softwaecution, it can negatively impact
on the SUT to produce a certain undesirable statecorrect operational manifestation, which
is called arerror (or a corrupted state). As the error develops @ogagates to an incorrect
output, it may result in a subsequent failure dfveare execution. An error is an intermediate

corrupted or incorrect state between the origiaaltfand the resulting failure, and may occur

Chapter 7 Component Fault Detection, Diagnosisma Localisation 153

internally in the SUT.

Accordingly, we can develop the followinggtilt causality chaihto illustrate a causality
relationship among these three defect counteraartshown inFigure 7.1 which is a further
extension from the work by Avizienis et a6] [7] [8]. This fault causality chain describes a
typical cause-effect relation: an activated fautiduces an error, which, by propagation, subse-
guently causes a failure. Faults are the originatees of failures, and failures are the negative
outcomes resulting from faults. Note that the chiyseelationship can also iterate recursively
with the dashed line between failure and faultsfamvn inFigure 7.). In particular, a fault may

be subsequently caused by the failures of othata@linteracting software or systeri|[

activation propagation) negative
mistake Fault ———— > Error —— > Failure consequenc

Software A 1 User
Developer =—> | [— Organisation

causation

Figure 7.1 An Extended Fault Causality Chain

From this extended fault causality chain, we cam tbat both software developer and
user organisation are the external stakeholdeféwv&® activities by software developers may
make possible mistakes, which is a source inpirtitialising the fault causality chain. The user
organisation receives the possible negative corsegs, which is the ultimate output resulting

from the fault causality chain.

Furthermore, we can analyse and explore the fofigviinportant implications from the

extended fault causality chain:

(1) Itis the software activity by the software devapfhat incorrectly creates software faults

during software development;
(2) Itis the execution of the software fault that esuactual software failures;

(3) Itis the software failure resulting from softwdeellts that damages software system op-

erations and organisation business operations.

(4) A single fault can cause multiple failures, althbwsgpme faults may never turn into fail-
ures. On the other hand, the same failure may bsedaby different faults with different

software execution patterns at different times.

(5) The primary concern with faults is that faults ckavelop into failures and produce nega-
tive impacts, whenever a fault is active and theansoe segment that contains the fault is

executed.

154 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

The above extended fault causality chain and mlatgortant implications are particu-
larly useful to guide SCT activities in FDD andesffive component test design. In testing prac-
tice, the tester needs to design effective comptaiesis that are able to activate a certain com-
ponent fault to cause some observable manifestafidailure. From the observed component
failure, the tester needs to track down and anglgssible component errors, and identify and
reveal the original component fault, in order tareot the fault. Therefore, a central task of
SCT is to design and generate component testsématetect and diagnose component faults

effectively and efficiently. This is one of the peiple goals of our research on SCT.

7.3 Contract for Diagnosability

The TbC technique employs the test contract meshaand test contract criteria to achieve the
CfT goals in two important aspects: not only cansing adequate test contracts festability
specification and improvemendut also conducting effective component testgrefortestabil-

ity verification and evaluatioffas described earlier Bection 6.3 The second CfT aspect par-
ticularly supports the goal @@ontract for Diagnosability (CfD): the TbC technique aims to
undertake CBCTD (as described earlieSiction 6.5 that can effectively detect and diagnose
component faults, and evaluate and demonstrateetigred level of component correctness
and quality. Therefore, our CBCTD aims to not otsign and generate component tests with
fault detection capability, but also diagnose arwhte the detected faults for correction and re-
moval, which is a primary goal of our CBFDD method.

According to the test contract principle (as ddmatti earlier inSection 6.3.), violating
the required contracts of the mutual responsieditbtound by both component partners (compo-
nent service supplier/contractor and client) intlisahe presence of possible component faults,
which often results from incorrect component desagual specification (e.g. incorrect UML-
based model specification). On the other hand,dasehe principle of the fault causality chain
(fault-error-failure) (as described Bection 7.2, it is acomponent faulthat produces an inter-
mediatecomponent errgrwhich, by propagation, subsequently causemmponent failurge
which could finally result in an incorrect and utisi@ctory component integration in a compo-
nent-based system.

From the above analysis based on the test comriaxciple and the fault causality chain,
we can see that it is not adequate to conduct plsioomponent fault detection that only re-
veals and shows some faults present during tedfinige detected fault is not located and cor-
rected, the same fault or its variants will stitist and continuously cause the same or similar
software failures during software execution oritgstAn effective SCT technique should have

effective fault-diagnosis capabilities that areeatd diagnose and locate the detected fault for

Chapter 7 Component Fault Detection, Diagnosisma Localisation 155

correction and removal. Technicalfigult diagnosisdenotes the testing process that analyses
fault cases and causes, and identifies and lotdagedetected fault in the associated faulty part
of the component under test (CUT), when a failsrebserved due to the detected fault during
testing. In the ThC context, tl@@ontract for Diagnosabilityfeature denotes the testing capabil-
ity for identifying and locating the detected fawlth well-designed test contracts for the goal
of effective fault diagnosis and localisation. Aykmeasure of a good CBCTD is that it should
be able to support and realise the CfD goal effesti Our CBFDD method particularly focuses
on fault diagnosis that bridges fault detection fndt localisation. In other words, our CBFDD
method covers not only the basic capability fortfaletection and diagnosis, but also the ad-
vanced capability for fault diagnosis and localmat

Based on test models constructed with the TbC tgaknour CBCTD can combine rele-
vant adequately-designed test contracts and testatipns together into particuldest se-
quencer test groupqas described earlier Bection 6.5to detect and diagnose possible com-
ponent faults in the CIT context. In particulartlie assertion of a test contract in the current
CBCTD returndalse a component fault has probably occurred and sdban detected during
testing, and the fault is most likely related te #tssociated operation under test that is involved
in the testing scope of the current CBCTD. Furthgetthis key strategy of CBCTD, we focus

our CBFDD method on the following important tectatiaspects to realise the CfD goal:

(a) Developing a systematic process to effectively guidmponent fault detection, diagnosis
and localisation, which we call the CBFDD procdsst becomes a major technical com-
ponent of the CBFDD method (s8ection 7.3

(b) Exploring and analysing certain intrinsic relatibips between test contracts and fault

diagnosis properties to improve test design quédiegSections 7.5.10 7.5.9; and then

(c) Developing the related scope reduction strategnes @ocesses, and providing useful
technical guidelines for effective fault diagnosied localisation, which we call the
CBFDD guidelines that become another major technicanponent of the CBFDD
method (se&ection 7.5.h

7.4 Contract-Based Fault Detection and Diagnosis Procss

With the TbC technique, we develop a practical CBRDocess that involves five main steps in
conjunction with fault case analysis, which isstated inFigure 7.2 A major purpose of the
CBFDD process aims to systematically guide fautedkion, diagnosis and localisation effec-
tively with CBCTD (as described earlier 8ection 6.5 This process establishes the primary
foundation of our CBFDD method to realise the Cfialg

156 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

\rContract—Based
/k Test Design

test contract ?

[TRUE: more contracts ?]

[FALSE]

Gault Case Scenario

C Fault Cause
(Fault Location
Gault—Related Test Level)

CFault Consequence)

FDD: Component FDD: Component
Integration Testing Unit Testing

[NO]

FDD Complete?

[YES]

Figure 7.2 Contract-Based Fault Detection and Diagnosis Process

The following describes the main technical aspettthe CBFDD process for the CIT

purpose:

(1) Fault case scenario

When the test contract returfadse (i.e. a contract violation occurs), a componenuitfa
has been detected during testing with the curré€TD. We need to analyse the observed
failure scenario and diagnose what has happen#teteelated failure output in order to diag-

nose and locate the detected fault.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 157

(2) Fault consequence

We need to analyse what consequence might havéeegdtom the contract-violated
failure output. The relevant consequence includlesossible direct and indirect negative im-
pacts on the CUT in the CIT context.

For example, suppose the current component operatider test fails the completion of
an expected component function, then this negaiiteome may further cause some subse-
quent operations not to be executed as neede iexibected sequence of software operations,
or potentially the entire CBS execution could b&dthunexpectedly at this failure point in the

CIT context.

(3) Fault causes and analysis
Based on the analysis of the fault case scenadacansequence, we need to further de-
termine possible causes according to the prinogbléhe fault causality chain (fault-error-
failure) (as described i8ection 7.2 In particular, we analyse and uncover what fbssrrors
are made during the fault propagation process ws\vie failure point.
Typically, possible fault causes may include:
(i) Fault cause #1: the incorrect invocation/usage spexific operation that is being exer-
cised and examined by the current CBCTD; or
(i) Fault cause #2: the incorrect definition/impleméntaof this operation in its home class

unit.

(4) Fault location
When the possible fault cause is determined, wetter able to identify the possible

software location of the fault under diagnosis:

(a) Fault location for incorrect invocation/usage: Hu above fault cause #1, the fault under
diagnosis is most likely located in the caller comgnt class (e.g. it may be an integra-
tion control class for component integration pug@nd serves as the current integration
context), which incorrectly invokes and uses tipatcific operation under test.

(b) Fault location for incorrect definition: For theme fault cause #2, the related fault is
most likely located in its home class unit, whene bperation is incorrectly defined

and/or implemented.

(5) Fault-related test level

The two possible fault locations as described albroag be in the same home compo-
nent/class or possibly across multiple differenhponents/classes, depending on the nature of
the fault under diagnosis. The two different fdattations by their nature indicate that the pos-

sible fault occurrence is pertinent to the twoetint levels of SCT:

158 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

(a) Ifthe fault is located in the integration clag®ern this fault occurrence is clearly related to
inter-classor inter-component integration testingecause the fault occurs when conduct-
ing component integration via operation invocatiforsobject interactions and collabora-
tions in the SCI context.

(b) If the fault is located in the home class unitntligis fault occurrence is clearly related to
class unit testingbecause the fault occurs when defining the clagqe.g. defining class
operations and attributes). If so, this indicatest the previous component unit testing
has not been sufficiently adequate before theniggtioceeds to CIT.

(c) Itis observed that, because the failure outpatiissed by this detected and located fault,
the related test contract eventually retufiase in the above fault case scenario (as de-

scribed in (1) above).

By effectively applying the CBFDD process, the Thhnique can aid our CIT ap-
proach to achieve two testing benefits: we can @xarand detect possible component faults
that are related to not only certain integrationtegts as the central focus of CIT, but also to
certain component class units as a secondary fufcG$T. Any component faults uncovered in
class units require undertaking more component testing for the purpose of effective CIT
performance. All detected/located component fandisd to be corrected and removed, and nec-
essary regression testing needs to repeat thedeiategration/unit testing activities after the

software modification for fault correction and rerab

The CBFDD process provides an overall FDD proceasis @BCTD. A key focus of the
CBFDD process is on how to design and apply app@atgptest contracts for effective fault di-
agnosis and localisation, which is further discdsseSection 7.5elow. The CBFDD process

is an iterative and incremental testing procesd bes the following characteristics:

(1) The CBFDD process starts with CBCTD, and when stese contract with the current
CBCTD detects a component fault occurrence thrabghcontract-violated failure out-
put, the steps of the CBFDD process are appliedidgnose and locate this detected

component fault with the current CBCTD.

(2) The CBFDD process can be used to detect and diagreys potential component faults
when additional test contracts amecrementally designed and added to the current
CBCTD to meet a new testing objective. This paltidy accommodates and supports
the perspectives and needs of the component tegter must identify and uncover as

many potential component faults as possible.

(3) The current CBCTD may need additional test congrétwt are constructedcrementally

Chapter 7 Component Fault Detection, Diagnosisma Localisation 159

in the CBFDD process, in order to detect and diagraospecific target component fault.

(4) The CBFDD process should be re-condudtechtively with the required regression test-
ing, after a fault is identified and fixed with ti@BFDD process undertaken previously,

in order to ensure that the previously detectell fawltimately corrected and removed.

(5) The CBFDD process starts with CBCTD, and wadtksatively and incrementally until
all FDD tasks have been completed to fulfil theyértesting requirements (e.g. meeting

the required level of component correctness antitgua

7.5 Fault Detection, Diagnosis and Localisation

The effectiveness and efficiency of CBFDD mainlyeieds on the quality of CBCTD, which is
determined typically by the quality of test contsadeveloped with the ThC technique for
CBCTD. Clearly, a good CBCTD is required to be afoledetect and diagnose certain target
component faults with adequately-designed testraotst. To improve the CBCTD quality for
the CfD goal, we need to further explore certaiticad relationships between test contracts and
fault diagnosis properties. With the TbhC technigwe, focus on three important notions and
their intrinsic relationships for supporting our method: fault propagation scope, fault
diagnosis scope, and effectual contract scopeh@asrsin Figure 7.3. A key purpose of the
CBFDD method is to examine how to discover andthese key notions and their relationships
to guide test contract design effectively to faatk fault detection, diagnosis and localisation,
which is a major focus of the CBFDD process (astilesd inSection 7.3 The following sub-
sections discuss relevant concepts, technical esspad guidelines for fault diagnosis and local-

isation with test contracts.

Overall Effectual Contract Scope
e S — |
I Fault Diagnosis Scope

[—— > |

| : Fault Propagation Scope :

: > I
| TC TC I TC TC TC TC TC TC | TC TC :)
Executior ﬁ o » » > * n [| Execution
starti < T {}/' 203 RV <] V\ T . process
! Failure :

Fault
: Lower home output Upper |
! boundary locatior poini boundary

Figure 7.3 CBFDD: Test Contracts and Fault Diagnosis Properties

160 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

7.5.1 Fault Propagation Scope

During testing, a possible component fault occureemay not be noticed until the main or final
system outputs produce a failure. Because the fmofiagation process (fault-error-failure) (as
described inSection 7.2 usually spans a space from its start to its #meke exists a certain
software artefact range from the fault's originahte location to the actual failure output point,
which becomes tault propagation scope

The notion of fault propagation scope has an impactault diagnosis and localisation,
which needs to undertake the following important-OB activities for the purpose of effective
FDD (as illustrated ifrigure 7.3:

(@) Delimitthe possible (maximum) boundary of the relevaalt faropagation scope;
(b) Constrainthe fault propagation scope within the delimitedibdary;
(c) Reducethe range of the relevant fault propagation sdoparder to facilitate fault diag-

nosis and localisation.

At the initial stage, the maximum scope of fauthgagation would range from the execu-
tion start point to the final failure output poiltepending on the actual software execution sce-
narios, the actual fault propagation scope may eagn for the same fault, and could extend
across different classes, different componentsftarent SCI scenarios. It is observed that such
uncertainty in the fault propagation scope is ohéhe key reasons why it is very difficult to
exactly identify, diagnose and locate a specifidtfan testing practice. Moreover, because the
exact failure output point may actually be unknote, possible final failure output point could
be just at the last execution point of the SUTha worst-case situation. This means that the
maximum fault propagation scopeay range from the first execution point to thet kexecution

point.

7.5.2 Fault Diagnosis Scope

A test case can be regarded as successful ifecteain as-yet undiscovered error/failure of a
system or component (). This accordingly indicates that there existsoagible new compo-
nent fault that has not been detected before,esethtill exists a previous component fault that
has not been corrected and removed yet. Howevecheter fault type occurs, it could lead to
a new failure. An ordinary test case usually héessting range where it exercises and examines
the possible fault, although it may not be ablddtermine the exact location of the fault. Such a
testing range encloses a software artefact cofgegt a component context or modeling con-

text) where the fault most likely exists, which bewes dault diagnosis scope

Chapter 7 Component Fault Detection, Diagnosisma Localisation 161

The notion of fault diagnosis scope also impactsfanit diagnosis and localisation,

which requires similar CBFDD activities for the pase of effective FDD (as illustrated king-

ure 7.3 as follows:

(@)

(b)

A basic requirement for fault diagnosis and loedlen is that the fault diagnosis scope
mustcoverthe relevant fault propagation scope to finallgritify and locate a specific re-

lated fault.

A further requirement for fault diagnosis and ligation is that it should be able de-
limit andconstrainthe possible boundary of the relevant fault diajg;macope, and then
reducethe relevant fault diagnosis scope, and thusifaigl diagnosing and locating a

specific component fault in the FDD process.

The notion of fault diagnosis scope is a very usefechanism to control and deal with

the relevant fault propagation scope. There arerakgituations of fault diagnosis scope that

can be applied to actual fault diagnosis and leatibn:

(1)

(2)

®3)

(4)

®)

At the initial stage, thenitial scopeof fault detection and diagnosis ranges from tkee e
cution start point to the final failure output pobifo deal with the maximum fault propa-
gation scope in the worst-case situation (as desdinSection 7.5.), themaximum fault

diagnosis scopeeeds to cover the range from the first execyioint to the last execu-

tion point.

The fault diagnosis scope may be a partictéat scenaridhat delimits and constrains
the possible range for fault propagation scopet 3@&narios are a useful means to isolate
a possible fault-related testing range from theeoffarts of the SUT outside the current
testing context, so that FDD can focus on a pdaidiest scenario that covers the fault-

related testing range.

The fault diagnosis scope may be a particattmponenunder test, in which the fault
under diagnosis originally occurs and propagatéss & a fault diagnosis scope at the

component level.

The fault diagnosis scope may be a spedfimponent uni{e.g. a class of the CUT),
which is the home location of the fault under diegjs. This is a fault diagnosis scope at

the component unit level.

The fault diagnosis scope may be related to a Speomponent/classperationwhose

definition and/implementation contains the fauldandiagnosis. This is a fault diagnosis

162 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

scope at the component operation level, which wbeldhe minimum scope of fault de-

tection and diagnosis for component functionalingst

7.5.3 TbC Test Contract Criteria and Fault Diagnosis

The TbC technique provides useful test contracthraeisms and test contract criteria to enable
CBCTD to support and facilitate CBFDD. FollowingetibC test contract criteria for the CfD
goal, CBCTD can design and construct appropriaiecentracts to trace execution information
of possible component operations and elementsywds@d control certain possible failure in-
formation and testing points (as described eairi€dection 6.3.p, in order to detect and diag-
nose possible component faults. If necessary, CB€aiDalso use test contracts to raise appro-
priate warnings or exceptions at certain key tgsgiaints to prevent and stop fault propagation
development. Using this typical ThC test contraiteda based FDD approach, component test
design developed with adequate test contractsléstakdelimit, constrain and reduce the rele-
vant fault propagation scope. Accordingly, the vatd fault diagnosis scope is also delimited,

constrained and reduced.

Technically, the above component test design appréa FDD employs the TbC test
contract criteria for adequate test contract cayeravhich promotes and supports a high level
of coverage of adequate test contracts that argedpp all possible component operations and
elements under test (as described earli€deation 6.3.) This strategy seems straightforward
and works to detect and diagnose possible compdaahs. However, this approach also has
some deficiencies. As discussed earlierSiection 6.3.4.8this test design approach would
probably lead to higher testing overheads and attainable level of test contract coverage,
and thus become impractical for higher-complexibftvgare components and systems under
test. In addition, this approach has low testindgsmance and efficiency for uncovering a spe-
cific component fault currently associated withaatigular testing objective. This is because not
all test contracts or related test artefacts agptiased on the TbC test contract criteria are
equally effective in reducing the relevant faulaghosis scope and locating a specific target
component fault. Only some of the closely relatest tontracts contribute to actual diagnosis
and localisation of the specific target componewdtf Therefore, a balanced trade-off between
test contracts and FDD requires that the numbéestfcontracts needed for CBCTD should be
as minimal and as adequate as possible to detéaiagnose a specific target component fault

effectively and efficiently. This is one of the kimatures of good CfD practice.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 163

7.5.4 Effectual Contract Scope and Fault Diagnosis

A major goal of our CBFDD method aims to provide aternative useful approach to over-
come some deficiencies of the above TbC test ctintmdteria based FDD approach (as de-
scribed inSection 7.5.3above), and to achieve low-overhead test cont@aetrage/usage and
acceptable testing effectiveness and efficiency tltis purpose, let us further explore the inter-
relationship between test contracts and fault cdan Based on the important concepgfbéc-
tual contract scopelefined in the TbC technique (as described eari&ection 6.3.3 we can
further refine and optimise component test desimgreffective FDD by developing appropriate
types of ITCs and ETCs. In principle, tbeerall effectual contract scop# all types of test
contracts (ITCs and ETCs) in CBCTD maustverthe relevant fault diagnosis scope, which also
mustcoverthe relevant fault propagation scope (as illusttah Figure 7.3. Furthermore, our
CBFDD method is to employ the notion of effectuahttact scope toontrol both fault diagno-
sis properties (i.e. the relevant fault diagnospge and fault propagation scope), in conjunction
with well-developed ITCs and ETCs.

In our CBFDD method, for a particular testing oltijee, we may only need to diagnose
and locate a specific target component fault witticlv we are currently concerned. For exam-
ple, in certain situations, when a specific compfi@ult is the primary cause of the occurrence
of other associated side-effect errors or failutls, correction and removal of this specific
component fault can lead to the correction and xenaf these side-effect errors or failures that
are closely associated with this specific comporiault before it is fixed. Accordingly, it is
important to use a small number of well-designet ¢entracts (ITCs and ETCs) that are effec-
tive and efficient in diagnosing and locating tipedfic target component fault to support the
CfD goal.

7.5.5 Guidelines for Fault Diagnosis and Localisation

Based on the above analysis of test contractsautidiagnosis properties, we can see that the
TbC technique enhances the basic SCT towardsdatéttion and diagnosis, and further to lo-
calisation for fault correction and removal. Instisiection, to put our CBFDD method into prac-
tice, we develop and provide the following useédhnical guidelines for effective fault diagno-
sis and localisation to realise the CfD goal. TH&FOD guidelines refine and detail the fault
diagnosis and localisation activities in the CBFpiDcess (as described$ection 7.4 In par-
ticular, the CBFDD guidelines provide the serieseahnical steps for fault diagnosis and local-
isation, based on the three important testing netwf fault propagation scope (as described in
Section 7.5.), fault diagnosis scope (as describe®attion 7.5.2 and effectual contract scope
(as described isection 7.5./andSection 6.3.3 An additional key part of the CBFDD guide-

lines is to apply the twetepwise upper/lower-boundary scope reduction atfiasand the as-

164 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

sociatedstepwise upper/lower-boundary scope reduction @seg which are developed to
support the CBFDD method. One major objective aionsffectively and efficiently detect and
diagnose a specific target fault for a particuésting objective, by applying a smaller number
of well-designed test contracts (ITCs and ETCs}kitmming them at certaiselected testing
points and covering certaiselected component artefaaiader test, along with the stepwise
scope reduction process.

The CBFDD guidelines for fault diagnosis and logation are outlined in the six main

steps shown ifable 7.1 which are further described as follows:

Table 7.1 The CBFDD Guidelines: an Outline

Step # Step Description

Step #1 Determining test levels: integration testing ortuesting
Step #2 Determining the fault propagation direction for geaeduction
Step #3 Stepwise scope reduction process for reducingathi propagation scope and

the fault diagnosis scope

Step #3.1 | The upper-boundary scope reduction process

Step #3.2 | The lower-boundary scope reduction process

Step #4 Reducing the fault diagnosis scope to class/operatope
Step #5 Locating the target fault that has been detectehgltesting
Step #6 Correcting and removing the detected fault

(1) Step #1Determining test levels: integration testing ortueisting

First, we need to design appropriate ETCs to descahether the overall effectual con-
tract scope crosses over certain integration cdass@ponent boundaries. If so, these ETCs
needed for CBCTD are essentially used to do Clfiemtise, they are used to do unit testing.
The overall effectual contract scope of these EiEGke basis for the determination of the ini-
tial overall fault diagnosis scope. As describedsettions 7.5.Jand 7.5.2 the initial (maxi-
mum) fault diagnosis scope would range from thecetien starting point to the final failure

output point, which properly covers the initial (xmaum) fault propagation scope.

(2) Step #2:Determining the fault propagation direction forope reduction

Around the final failure output point, insertingpaippriate test contracts at certain testing
points in the relevant (sequential) execution ath ascertain the direction of fault propagation
development. Our approach is as follows: we applyr@priate test contracts to raise related
warnings or exceptions at certain crucial testioms, which is a useful way giopthe devel-
opment of fault propagation. If a test contract stop fault propagation development in the
relevant execution path before the final failurépow point, such an observed outcome indicates

the direction of fault propagation. When the farbpagation direction is determined, the rele-

Chapter 7 Component Fault Detection, Diagnosisma Localisation 165

vant test contracts must be inserted at certatm¢epoints that are opposite to the direction of
fault propagation development, between the execwtiart point and the final failure output
point, in order to reduce the relevant fault prauam scope and fault diagnosis scope for fault

diagnosis and localisation.

(3) Step #3:Stepwise scope reduction process for reducindabk propagation scope and

the fault diagnosis scope

Because the possible fault location should exighiwithe relevant fault diagnosis scope
that covers the relevant fault propagation scogedéscribed irSection 7.5.% our major ap-
proach to scope reduction for the purpose of fdislgnosis and localisation is to reduce the
relevant fault propagation scope and then redueedievant fault diagnosis scope. We develop
a usefulstepwise scope reduction procésseduce the relevant scope from both boundary di
rections towards the intermediate location of #rget fault under diagnosis. We introduce the

following two testing strategies for stepwise scopguction:

(@) Theupper-boundary scope reduction strategy

This stepwise scope reduction strategy aims tonssepeduce the upper boundaof the
relevant fault propagation scope and fault diaghesbpe from the upper boundary point to-
wards the possible location of the target faultarrdiagnosis. Aey testing guidelinéor effec-
tive fault diagnosis and localisation is to insgspropriate test contracts at certain selected test
ing points before the last upper boundary pointianthe reverse direction of fault propagation

in the relevant (sequential) execution path (astithted irFigure 7.3.

(b) Thelower-boundary scope reduction strategy

Similarly, this stepwise scope reduction strategysato stepwisdncrease the lower
boundary of the relevant fault propagation scope and faidignosis scope from the lower
boundary point towards the possible location of tHrget fault under diagnosis. ey testing
guidelineis to insert appropriate test contracts at cersallected testing points after the last
lower boundary point and in the same directionaniltf propagation in the relevant (sequential)

execution path (as illustrated fingure 7.3.

(c) Guide to the use of the stepwise scope reductrategies

These two testing strategies enable stepwise segjuetion from both upper and lower
boundary directions towards the intermediate locatf the fault under diagnosis. In practice,
the tester can first apply the upper-boundary reolistrategy to conduct thgper-boundary
scope reduction procesand then apply the lower-boundary reduction sthatto conduct the
lower-boundary scope reduction processconduct jointual-direction boundary scope reduc-

tion alternatively, depending on the actual testingusitstances and/or needs.

166 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

The stepwise scope reduction process is a majooptre CBFDD guidelines, and plays
a key role in actual fault diagnosis and localmatiWe can now further detail the main steps
and associated technical aspects to illustrate thcapply the above two stepwise scope reduc-

tion processes for fault diagnosis and localisation
(3.1) Step 3.1The upper-boundary scope reductjpmocess

Step 3.1.1: To realise the upper-boundary scopéctiemh strategy, we can insert an appropri-
ate test contract to raise related warnings or piares at a selected testing point
before the last upper boundary point (which matjatty be at the final failure out-
put point) to stop the development of fault propiga If the inserted test contract
can stop the fault propagation development at éhected testing point, this test

contract is regarded as effective for scope redncti

Step 3.1.2: The stopping point of the fault propiagadevelopment is where the inserted test
contract isviolated This indicates that the relevant scope reduatam be carried
out by reducing the relevant upper boundary tortee contract-violated point,
which becomes the newly-reduced upper boundarythAgesult of scope reduc-
tion, the new fault propagation scope now rangdg foam the execution starting
point to the new upper boundary point, and thusmsller than the initial (maxi-
mum) fault propagation scope ranging from the etienistarting point to the final

failure output point.

Step 3.1.3: Accordingly, this new localised scopethie basis for producing the relevant
newly-reduced fault diagnosis scope, which coveraraye from the execution
starting point to the new contract-violated poimhich becomes the newly-reduced
upper boundary). Therefore, the new fault diagnssigpe covers the relevant new
fault propagation scope, and is reduced as theaeieew fault propagation scope

becomes smaller.

Step 3.1.4: Following a similar stepwise procesed$ 3.1.1 to 3.1.3 as above) for further
scope reduction, we can insert the same or a n&woatract at a newly selected
testing point in the reverse direction of fault pagation in the execution path be-
fore the last upper boundary point (i.e. before ldmt contract-violated point).
Consequently, we can further reduce the fault pyapian scope to a smaller scope
ranging from the execution starting point to thevre@ntract-violated point (which
becomes the newly-reduced upper boundary). Accghgithe relevant new fault

diagnosis scope can also be reduced to a furticatided scope and covers the

Chapter 7 Component Fault Detection, Diagnosisma Localisation 167

relevant newly-reduced fault propagation scope. dpger-boundary scope reduc-
tion process can be undertaken iteratively andementally as described above for

further stepwise scope reduction.

(3.2) Step 3.2The lower-boundary scope reductiprocess

The lower-boundary scope reduction process is ainitd the above upper-boundary
scope reduction process, but reduces the releeapesby increasing the lower boundary to-
wards the possible location of the target faultarndiagnosis. A major difference is that we
conduct stepwise scope reduction by inserting nest tontracts at certain selected testing
points towards the same direction of fault propagain the execution path and after the last
lower boundary point. The lower-boundary scope cédn process can be also undertaken it-

eratively and incrementally for further stepwisese reduction.

(3.3) Main advantages of the stepwise scope reductioogs®

We can observe that the reduction of the relevauit propagation scope and fault diag-
nosis scope can optimise fault diagnosis and lsai@tin. One major advantage is that we now
need to focus fault diagnosis and localisation amythe software execution part in the newly-
reduced fault diagnosis scope, where there is fa frigbability of occurrence of the target fault
under diagnosis. On the other hand, it is genenadly necessary to examine the diagnosis-
irrelevant range that is outside the newly-redufzedt diagnosis scope, where it has a low or
almost no possibility of the fault occurring. Sughliagnosis-irrelevant range may be the soft-
ware execution part between the newly-reduced uppendary point and the initial upper
boundary point (which may initially be at the firfallure output point) in the case of the upper-
boundary scope reduction. Or, such a diagnosikiraat range may be the software execution
part between the initial lower boundary point (Whimay initially be at the execution start
point) and the newly-increased lower point in tlasec of the lower-boundary scope reduction.
Therefore, the use of the stepwise scope reduptiocess can significantly improve fault diag-

nosis efficiency and reduce testing costs.

(4) Step #4Reducing the fault diagnosis scope to class/oparacope

When the relevant fault diagnosis scope is comstthand reduced to a specific compo-
nent unit (e.g. a class of the CUT), the complegrityault diagnosis and localisation has also
been reduced. Then, in the smaller scope of theoonent class, we can further apply a similar
stepwise scope reduction process to fault diagrersislocalisation. By inserting appropriate
test contracts in the component unit, it is posstbl further reduce the relevant fault diagnosis
scope to the much smaller scope of some closedyeiclass operation(s), which would be the

minimum possible fault diagnosis scope.

168 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

(5) Step #5Locating the target fault that has been detectaung testing
When CBFDD reaches the above Step #4, it becomeh sasier to diagnose and locate
the actual position of the target fault for cori@etand removal to meet the particular testing

objective.

(6) Step #6:Correcting and removing the detected fault

It is not always an easy task to correct and reme\specific component fault even
though the fault has been detected and locatedvrI¢ld¢ault correction and removal must fol-
low component requirements and specifications. Algh there is no general method or solu-
tion, we can still develop certain useful guidediribat can be applied to some particular situa-
tions for fault correction and removal.

For example, when the detected fault is locatethiwithe localised scope of a relevant
operation, we can carry out fault correction antioeal based on the following four possible

fault cases:

(@) If the relevant operation is present, but the ClW@Esinot actually execute the relevant
operation as required, we need to change the rdglexacution scenario by putting this
operation in its correct execution path, so thest dperation is executed at its correct exe-

cution point in the execution path of this CUT.

(b) If the relevant operation is present and is exetatets correct execution point, but its
execution is incorrect or fails, for example, daesdme incorrect invocation/usage of this
operation (e.g. incorrect operation name use, recbioperation parameters passing). In

this case, we need to correctly invoke and useofiesation at its correct execution point.

(c) If the relevant operation is present and is exetateits correct execution point, but its
execution is incorrect or fails, for example, dagtte incorrect definition/implementation
of this operation in its home class (which consetjyecauses the incorrect operation
execution return/result). In this case, we neechinge its home class to correct the defi-

nition and/or implementation of this operation.

(d) If the relevant operation is not present or the Qld€s not actually contain the relevant
operation as required, we need to define this dijperan its home class and/or include

this operation at its correct execution point iis BUT.

(7) Guidelines remarkgnteractive/incremental fault diagnosis and locatisn
With the CBFDD guidelines, Steps #1 to #6 can beediaken iteratively and incremen-
tally in actual fault diagnosis and localisation.garticular, the stepwise scope reduction proc-

ess (e.g. Steps 3.1.1 to 3.1.4) needs to followteaative process to gradually reduce the rele-

Chapter 7 Component Fault Detection, Diagnosisma Localisation 169

vant fault propagation scope and fault diagnosipecFault diagnosis and localisation need to
follow an incremental process when additional testtracts are needed with CBCTD to diag-

nose and locate a specific target component faslillustrated ifFigure 7.2.

7.6 Applying the CBFDD Method

As described irSections 7.30 7.5 the CBFDD method enhances the ThC techniquealsee

the CfD goal for effective fault diagnosis and llesztion by using a number of useful technical
components, including the CBFDD process, the tfme# diagnosis properties, the two step-
wise upper/lower-boundary scope reduction strasegiel the two associated processes, and the
CBFDD guidelines. This section moves on to appy @BFDD method. We employ the CPS
case study to illustrate how to put the CBFDD mdthto practice to detect, diagnose and lo-

cate component faults.

7.6.1 Applying the CBFDD Process

As described earlier iBection 6.5 CBCTD can create a test group composed of relatstd
operations and test contracts to examine a posfihle case scenario and uncover potential
component faults. In this section, to undertake fofTthe CPS system, we follow the CBFDD
process (as described Bection 7.3 to illustrate how to detect and diagnose possible
component faults in the context of the CPS TUCg&drdtion testing scenario (as illustrated
earlier in Figure 5.4 and as described earlier 8ection 5.5.2and Section 6.5 We use a
particular CBCTD involving a basic test grog8 TG that consists of test operatiod2 TO
goTo(gopace-cross-inPC, int) and2.3 TO occupy(), and test contrac2.3 ETC
checkSt at e(i nPhot oCel |, “IN_PC_OCCUPIED”) in the CPS TUCL test sequence (as
shown inFigure 7.4, in order to examine a fault case scenario ofriiighotoCell sensor device
in the CBFDD process.

test group 2.3 TG
Basic Mo -
tes 1.1TO 1.2TO 21T0O 2 2T0 23TO : 24TC25TO 3.1TO 3.2TO
arefactsl 3 4 g Jl Jl g 1 g g
Test : Sequence >
Specia] T I Faule/' T |) i) T
tes 1.11TC 1.21TC 2.1 ETC I Iocatlor 2.3 ETCI 25ETC 3.1ETC 3.2ITC
artefactsf | === -

sub test sequence #1

sub test sequence #2

sub test sequence #3

Figure 7.4 CBFDD: Fault Detection and Diagnosis (CPS TUCL1 Test Sequence)

170 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

(1) Fault case scenario

If test contracR.3 ETC in the current CBCTD returrfalse a fault case scenario occurs:
the in-PhotoCell sensor device is not in the carstate of IN_PC_OCCUPIED” as expected,
after test operatio@.3 TO has been performed. This means that this devite tfaisense that
the PAL entry point has been occupied by the emgecar (i.e. this device fails to sense that the
test car is accessing the PAL entry point). Thiaf@ioutput may show that this device still re-

mains in the incorrect state dN' PC_CLEARED” or another unexpected state.

(2) Fault consequence

This fault case scenario may cause the PAL entiyt pot to be occupied as expected,
and some subsequent operation (e.g. test operagonO cl ear ()) may not be executed as
needed in the expected execution sequence of gackintrol operations, which may further

lead to the entire CPS operation being haltedigfaflure output point.

(3) Fault causes and analysis

This fault case scenario indicates that the exeeudf test operatiof.3 TO fails in the
CPS TUC1 integration testing context possibly witb main causes:
() Fault cause #1: the incorrect invocation/usagesifaperatior2.3 TO; or

(i) Fault cause #2: the incorrect definition/impleméntaof test operatiod.3 TO.

Note that either of these fault causes is relabe gt operatio2.3 TO and is examined
with the current CBCTD in the current CPS TUC1 gnégion testing context.

(4) Fault location
Based on the above examination of fault causesangdentify possible locations of the

fault under diagnosis as follows:

(&) For the above fault cause #1, the fault most likelgcurs in the caller class
Car Cont rol | er in the car control component, where this integratilass incorrectly
invokes and/or uses test operatiod TO in the integration context.

(b) For the above fault cause #2, the fault most likegdgurs in its home claghot oCel | ,

where test operation3 TO is incorrectly defined and/or implemented.

(5) Fault-related test level
The above two different fault locations by theitura indicate that the possible fault oc-
currence is related to the following two differenimponent test levels:
(@) The fault location in (4) (a) above (which is reldtto the above fault cause #1) indicates
that the fault occurrence is clearly pertineninter-component integration testinghis is

because the fault is produced when the integratiassCar Control | er in the car

Chapter 7 Component Fault Detection, Diagnosisma Localisation 171

control component incorrectly invokes and/or uspsrationoccupy() of device class
Phot oCel | in the device control component, and the invocaitoa typical object in-
teraction to realise a component collaboration betwthe two CPS components. Accord-
ingly, the above CBFDD activity shows that the entrCBCTD (which involves a basic
test grou2.3 TG) is able to examine and uncover a possible comypdaelt related to
CIT in the SCI context of the CPS system.

(b) The fault location in (4) (b) above (which is reldtto the above fault cause #2) indicates
that the fault occurrence is clearly pertinenthass unit testingThis is because the fault
is produced when operationccupy() is incorrectly defined/implemented inside its
home clashot oCel | , which means that there may be an actual phybkiaalware
fault of the in-PhotoCell sensor device. Accordingdhe above CBFDD activity shows
the current CBCTD (which involves a basic test gr2i3 TG) can examine and uncover
a possible component fault related to the componamt context of device class
Phot oCel | . This further indicates that the previous unititesof this CPS device class
might not turn out to be sufficiently adequate whkee testing proceeds to the higher-
level CIT of the CPS system.

The above illustrative example shows how the CBRiBcess is applied to detect and
diagnose actual component faults that are relatebmponent integration testing and/or com-
ponent unit testing. Following the CBFDD methodeathe detected/located component fault
(e.g. the above fault related to operatimtupy()) is corrected and removed, we then need to

conduct the appropriate integration/unit-level esgion testing.

7.6.2 Diagnosing and Locating Target Component Faults

A key objective of the CBFDD method aims to applgraaller number of well-designed test
contracts (ITCs and ETCs) that can diagnose aratdag specific target component fault for a
particular testing objective, in terms of low-oveald test contract coverage and desired testing
effectiveness and efficiency (as describe@aations 7.5.4nd7.5.5. To realise the above CfD
goal, the CBFDD method provides a set of useful FjDidlelines, which are supported with the
relevant fault diagnosis properties, the stepwisgps reduction strategies and processes (as de-
scribed inSection 7.5 In this section, we employ some selected exasrnfptan the CPS case
study to illustrate how to apply the CBFDD guidebnto diagnose and locate a specific target
fault against the particular testing objective akofvs: the CPS system must conform to the
CPS special testing requirement #1 for the mangatarking access safety rule effe access

at a timé (as described isection B.2n Appendix B.

172 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

7.6.2.1 A Specific Target Fault

Suppose that the CPS system encounters the fotloagtualmajor fault/failure scenario of the
CPS safety rule: while the current car enters thke €ntry point and is accessing the PAL but
has not finished its complete PAL access yet, @arathauthorised car illegally enters and ac-
cesses the PAL at the same time. This resultimgréais a safety violation of thehe access at

a timé rule against the CPS special testing requirer#éntlf the related fault is not corrected
and removed immediately, a worse case scenariodnmilthat two or more cars might access
the PAL simultaneously, which could lead to hazasloollisions between cars in the CPS sys-

tem.

7.6.2.2 Diagnosing and Locating the Specific Target Fault

Our FDD task is to diagnose and locate the spetfafiget fault that causes the occurrence of
this CPS operation failure and safety violationgd &@BFDD activities start with analysing the
above actual CPS safety rule failure scenario é& s@d develop certain useful fault diagnostic
solutions. Due to the nature of the occurrencénefdctual CPS safety rule failure scenario, we
need to apply the CBFDD method to diagnose anddadtés specific target fault in two major
possible testing contexts. In particular, we uradextCBFDD in the CPS system development
environment as the current testing context (see fdfiewing sub Sections 7.6.2.2.Jand
7.6.2.2.2, and we also undertake CBFDD in the CPS useratipeal environment as the cur-

rent testing context (see the n&«dction 7.6.2.3

7.6.2.2.1 A Direct Fault Diagnosis Scenario Analysis

In this section, we undertake CBFDD based on th& Giistem’s requirements and design
specifications, and examine the CPS safety ruleréascenario by conducting a direct fault di-

agnosis scenario analysis in the CPS system dawelupenvironment as the current testing
context. According to the CPS design, the traffibtl device in the CPS system is responsible
for authorising and controlling a car to enter aedess the PAL, by using its two main control
operationsset Gr een() andset Red() of classTraf fi cLi ght in the CPS system’s device

control component. The traffic light device withette two operations functions in the CPS sys-

tem as follows:

(1) Operationset G een() sets the traffic light device to the controltetaf “TL_GREEN"
(i.e. the traffic light device turns to tli&REEN signal), so that the next waiting car is al-
lowed to enter the PAL.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 173

(2) Operationset Red() sets the traffic light device to the controltstaf “TL_RED” (i.e.
the traffic light device turns to tHRED signal), so that the next waiting car is not akow
to enter the PAL and must wait for access permis§i@. the car waits for the traffic

light device to change to t@REEN signal).

(3) The traffic light device by design should maintaimasic CP®ontrol state consistency
feature as follows:

(@) The traffic light device should consistently remainthe control state ofTL_GREEN”
after the successful execution of operas@t G een() and before the next execution of
operationset Red().

(b) Similarly, the traffic light device should consistly remain in the control state of
“TL_RED” after the successful execution of operateet Red() and before the next
execution of operatioget G- een().

(c) The traffic light device should shift its controtate only from TL_GREEN" to
“TL_RED” and vice versa, and there should be no any othkd control state for the
traffic light device at any time in the CPS system.

(d) Any other CPS operations should have no effecthencontrol state of the traffic light

device at any time.

(Note that, for simplicity in the CPS system, hame do not consider the intermediate
transitional signal oAMBER, when the traffic light device changes from GBREEN signal to
theRED signal.)

The CPS safety rule failure scenario indicates, thfiér the current test car enters the
PAL entry point, the traffic light device is notrcectly set to the required control state of
“TL_RED”, which then causes the CPS system to fail in gméng another test car unexpect-
edly entering the PAL while the current test castil accessing the PAL. When this failure
scenario occurs, we can infer how the CPS operataxpectedly fails in the CPS TUCL1 inte-
gration context, in terms of the following possiQIES fault casefor the purpose of fault diag-
nosis and correction (which corresponds to Stejin#te CBFDD guidelines as described in
Section 7.5.5

(@) The current CPS program may not actually executratipnset Red(), e.g. due to
some incorrect execution path; or

(b) The execution of this operation is incorrect olsfae.g. due to the incorrect invoca-
tion/usage of this operation; or

(c) The execution of this operation is incorrect olsfae.g. due to the incorrect defini-

tion/implementation of this operation.

174 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

(d) The current CPS program may not actually contagraponset Red() in the execution

path.

With any of these specific fault cases, a faultm{@ly FAULT_TL_RED) related to
operationset Red() of the traffic light device is mistakenly proded; and because it is
activated in the CPS TUC1 integration context, thidt eventually causes the occurrence of the
actual CPS safety rule failure scenario. Therefote,FDD task is to diagnose and locate this
specific targetFAULT_TL_RED fault, which is a component fault related to ofiera

set Red() of classTr af fi cLi ght inthe CPS system’s device control component.

7.6.2.2.2 A Direct Fault Diagnostic Solution

The above direct fault diagnosis scenario analgsgsdescribed iSection 7.6.2.2)1can aid in
developing certain useful testing solutions to amidault diagnosis and localisation. In the
CPS system, the correct operation and use of #ffictlight device is critical to support and
realise the “one access at a time” rule. Accorgindie CPS TUCL1 test scenario needs to cor-
rectly use test operatidn2 TO set G- een() to authorise a car to enter the PAL. When thre ca
has just entered the PAL, the CPS TUCL needs teatty use test operatid2 TO set Red()
to promptly disallow the next waiting car from enirtg the PAL while the current test car is
accessing the PAL. Therefore, the above fault seemaclosely related to the traffic light de-
vice, especially to its control operatiert Red() in the CPS TUC1 integration testing context.

According to the CPS design, the other two testates CPS TUC2 and CPS TUC3 by
their nature are not functionally responsible fontcolling any operation of the traffic light de-
vice. This implies that the concealedULT_TL_ RED fault, when it is activated in the CPS
TUCL, could propagate from the CPS TUCL to the CBE2 and even to the CPS TUQB.
the exact failure output point is unknown, the lkastcution point of the CPS TUC3 may be-
come thdfinal failure output poinin the worst-case situation (e.g. the entire sydasls just at
its last execution point), as describedSiaction 7.5.1Consequently, the fault propagation de-
velopment may extend across the entire parkingecgobcess covering all the three CPS test
scenarios, which forms a typical (maximum) faulogmgation scope for the specific target
FAULT_TL_RED fault under diagnosis. Eventually, this concedbadt causes the occurrence
of the CPS operation failure and safety violatias described iGection 7.6.21

Based on the above discussions, we can developlaath a direct fault diagnostic solu-
tion to identify and uncover this specif®ULT_TL_RED fault. The relevant CBCTD for the
CPS TUCL1 test scenario must correctly incorporagetivo test operationset G een() and
set Red() of classTr af fi cLi ght, and their associated test contracts to examided&ay-

nose their execution, invocation/usage, and/ondefn.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 175

test group 1.2 TG test group 3.2 TG
Basic o 1 o T
tes 1170 I 1.2TO I 21TO 22TO 23TO 24TC25TO 3.1TO I 3.2TO I
arefacts g | 0 g 1 g g g R VN
! ! Test Sequence o >
. I | | |
Specia : T : Fault /) :
tes | 1.21TC | home | 3.21TC |
artefacts e = location —--—--—-- =
sub test sequence #1 sub test sequence #2 sub test sequence #3

Figure 7.5 CBFDD: Fault Diagnosis and Localisation (CPS TUC1 Test Sequence)

In particular, the relevant CBCTD must correctlgarporate the following two basic test
groups in the CPS TUCL test sequence (as shoWwigime 7.5, which has the following diag-

nostic functions for the CIT purpose:

(1) One basic test group2 TG contains test operatidn2 TO set G een() and its associ-
ated test contradt2 ITC checkSt at e(traf fi cLi ght, “TL_GREEN").

This test contract is positioned at the selectsting point just after this test operation in
the CPS TUC1 test sequence. This test group ha®llbeving diagnostic function: this test
contract examines whether the traffic light device in the correct control state of
“TL_GREEN" as expected, just after test operatiod TO set Gr een() is performed. If and

only if this test contract returrisue, the next waiting car is allowed to enter the PAL.

(2) Another basic test group2 TG contains test operatid2 TO set Red() and its associ-
ated test contra®& 2 ITC checkSt at e(traf fi cLi ght, “TL_RED").

This test contract is positioned at the selectsting point just after this test operation in
the CPS TUC1 test sequence. This test group ha®llbeving diagnostic function: this test
contract examines whether the traffic light dev&e the correct control state ofX_RED” as
expected, just after test operati®2 TO set Red() is performed. If and only if this test con-
tract returndrue, the next waiting car is disallowed from enterthg PAL and must wait for

access permission.

(3) Applying the basic CPS control state consistencgtuie (as described iBection
7.6.2.2.)
In addition, our FDD makes use of the related b&§& control state consistency feature
for effective fault diagnosis. When test contra@ ITC in basic test grouf.2 TG returnstrue
(i.e. test operation.2 TO set G een() is executed correctly), the traffic light deviedl re-

main in the control state offt_GREEN” until the next execution point of test operati®2

176 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

TO set Red(). Any other CPS operations (e.g. test operat®ohg O, 2.2 TO, 2.3 TO, 2.4 TO,

2.5 TO and3.1 TO, as shown irFigure 7.5 should have no effect on the control state of the
traffic light device at any time (as describedSection 7.6.2.2)1 Accordingly, this can bring
out an important testing advantage that it is regded to check the state of the traffic light de-
vice between the successful execution of opera@nG een() and the next execution of op-
erationset Red(), which can reduce the requirement for a numipéesi contracts that can im-

prove testing efficiency and performance.

(4) Dual testing roles (also as described earlie3antion 6.5.1.)1

Based on the related basic CPS control state ¢ensisfeature, test contrat ITC ac-
tually acts indual testing rolego facilitate fault diagnosis. This test contracirks as a post-
condition assertion of test operatidr2 TO set Gr een() in basic test group.2 TG, and also
as an additional precondition assertion of tesratm 3.2 TO set Red() in basic test group
3.2 TG, even though this test contract is not positiojustd before test operatidh2 TO. One
testing advantage of such an additional precomdiittribute is to ensure that the traffic light
device shifts its control state only fromil GREEN” to “TL_RED” and vice versa, and there
is no third valid control state for the traffic ligdevice at any time in the CPS system (as de-
scribed inSection 7.6.2.2)1

Accordingly, we can see that component tests wi¢ghabove CBCTD are able to detect,
diagnose and locate the speci#aULT_TL_RED fault in the CPS TUCL integration testing
context. Moreover, this CBCTD only needs fewer tesitracts (e.g. two selected test contracts
at two selected testing points in this situatianjuifil this specific fault diagnosis task. The il
lustrative example above demonstrates that our @BFiethod is capable of achieving the CfD
goal in terms of low-overhead test contract coveragd desired testing efficiency and perform-
ance, compared with the ThC test contract critesised FDD approach (as describe&dation
7.5.3.

Note that the above direct fault diagnostic sohlutimplicitly depends on somtesting-

relatedassumptionsis follows:

(@) The tester is able to access component requireraadter design specifications.

(b) The tester is able to undertake critical fault diagjs scenario analysis, such as the direct
fault diagnosis scenario analysis undertaken irCiR& system development environment
as the current testing context (as describeskiction 7.6.2.2.Above).

(c) The tester is able to obtain and make use of cetésting-support features, such as the
basic CPS control state consistency feature desitpnahe traffic light device in the CPS
system (as described 8ection 7.6.2.2.above).

Chapter 7 Component Fault Detection, Diagnosisma Localisation 177

The above testing-related assumptions are typiegipficable to the testers on the com-
ponent development/production side, who have cetesting advantages compared with the
testers on the component user side (as describlegl @aSection 2.3 1 Technically, this direct
fault diagnostic solution can significantly simplithe steps from the CBFDD guidelines ap-
plied to diagnose and locate the specific taFe)LT_TL_RED fault, which are outlined as

follows:

(1) The actual CPS safety rule failure scenario ocoutbe CPS user operational environ-
ment, which is a system integration context. Acowly, the testing is at the level of in-

tegration testing, which also covers Step #1 inGB&DD guidelines.

(2) The direct fault diagnosis scenario analysis indisahat the testing can be conducted in
the CPS TUCL test scenario context (as describ&ation 7.6.2.2)1 Accordingly, we
can use the CPS TUCI1 test scenario as the basidiagnosis scope to delimit and con-
strain the relevant fault propagation scope. Theams that we only need to conduct
CBFDD within the range of the CPS TUC1 test scenaven though the relevant fault
propagation scope may spread out to the entireiqgpidycle process covering all the
three CPS test scenarios (as described above) sithdifies the stepwise scope reduc-
tion, and also covers Step #2 and Step #3 in thieBIBguidelines.

(3) The direct fault diagnosis scenario analysis indi€dhat the specifiEAULT_TL_RED
fault is related to operatiopet Red() of the traffic light device (as describedSection
7.6.2.2.). This simplifies the fault diagnosis process, als covers Step #4 and Step #5
in the CBFDD guidelines.

(4) The CPS fault cases identified with the direct ffalihgnosis scenario analysis (as de-
scribed in Section 7.6.2.2)1 facilitate correcting and removing the specific
FAULT_TL_RED fault. This covers Step #6 in the CBFDD guidelines

7.6.2.3 Stepwise Diagnosis and Localisation of the Specifiarget Fault

The direct fault diagnostic solution (as describe&ection 7.6.2.2.2above) is not always at-
tainable or available in testing practice, duehi® tincertain complexity of software component
and systems under test. On the other hand, thesaiesting-related assumptions (as described
in Section 7.6.2.2.2bove) are not applicable in all testing situatidfor example, most testers
on the component user side usually would not hbgeptivilege of accessing the full informa-
tion of component requirements and design spetiica (as described earlier $ection 2.3.%

On the other hand, the actual fault diagnosis nayaiways be able to obtain and/or make use

178 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

of certain testing-support features (e.g. the b&RS control state consistency feature as de-
scribed inSection 7.6.2.2)1

The CBFDD guidelines (as describedSaction 7.5.pare particularly applicable to the
above situations, by applying all steps for stepwailt diagnosis and localisation. This section
illustrates all the steps with the CBFDD guidelitiest are applied to develop and attain a step-
wise fault diagnostic solution to diagnose and tedhe specific targdtAULT_TL_RED fault.
A primary objective is to show how the CBFDD guidek work and demonstrate the applica-
bility of our CBFDD method.

7.6.2.3.1 Fault Diagnosis Scenario Analysis

To apply the CBFDD guidelines effectively, it issti necessary to conduct the relevant fault
diagnosis scenario analysis. From the user peispeat the CPS system under test (e.g. con-
cerning relevant system operational functions mtedifor the users), the tester can analyse the
CPS safety rule failure scenario (as describefidotion 7.6.2)Llthat could occur in the CPS

user operational environment as the current tesimgext as follows:

(1) The CPS system uses the traffic light device td@ige a car to enter and access the
PAL. The safety violation of the “one access atreet rule is due to the operational fail-
ure of the traffic light device, i.e. it fails irhanging to thé&RED signal to prevent the next
car from entering the PAL, while the current castil accessing the PAL. Accordingly,
our major FDD task is to diagnose and locate tleeifip targetFAULT_TL_RED fault
related to the traffic light device, which caudes €PS operation failure and safety viola-
tion (as described iBection 7.6.21

(2) To diagnose and locate the specific tafg®t/LT_TL_RED fault:

(@) The relevant CBCTD needs to examine and diagnaseetated operation of the traffic
light device (namelyTO_TL_RED), which should turn to thRED signal to prevent the
next car from entering the PAL, after the curreat enters the PAL. Test operation
TO_TL_RED functions equivalently to test operatidr2 TO that is included in the CPS
design and is shown in the basic test gre2prG in Figure 7.5

(b) For the fault diagnostic purpose as in (2) (a) &hole relevant CBCTD needs to design
a crucial test contract (hameiC_TL_RED) that can examine and diagnose whether the
traffic light device is currently in the correctrdool state of TL_RED” as expected, after
the current car enters the PAL entry point and wthencurrent car is accessing the PAL.
Test contracTC_TL_RED functions equivalently to test contra&c® ITC in the basic test

group3.2 TG (as shown irrigure 7.9.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 179

(©)

(d)

)

(@)

(b)

Combining (2) (a) and (b) above, the relevant FRBktneeds to apply test contract
TC_TL_RED to examine and diagnose test operaflian TL_RED. With regard to re-
lated diagnostic functions, test contra€ _TL_RED needs to be verified after test opera-
tion TO_TL_RED is executed.

If this test contract returrfalse the execution of this test operation fails, whiebults in
the CPS operation failure and safety violation dascribed inSection 7.6.2.1 In this
case, this test contract needs to raise relevamings or exceptions at its testing point to
stop fault propagation development for the purpmidault diagnosis and localisation.

If this test contract returrisue, the execution of this test operation is correcéegected
to prevent the next car from entering the PAL, wlhiie current car is still accessing the
PAL. However, the current CPS system operation a¢a¢svork correctly in this situa-

tion.

However, it is not exactly known (at least at thiéial testing stages) where test operation
TO_TL_RED is in the CPS system under test. This may be dwertain testing-related
factors in practice, for example, the nature ofuheertain component complexity and/or
the limited information of component requiremenisl alesign specifications. Accord-
ingly, this causes certain practical difficulties delect appropriate testing points and to
apply test contraciC_TL_RED to effectivelyexamine and diagnose the related test op-
erationTO_TL_RED. Therefore, it is necessary to apply the diagonostieps with the
CBFDD guidelines to undertake our FDD task.

To fulfil our major FDD task as described in (1)daf?) above, the relevant CBCTD
needs to be able to conduct some supporting faaghdsis to ensure normal CPS opera-
tion:

The relevant CBCTD needs to examine and diagnaseetated operation of the traffic
light device (namelfTO_TL_GREEN), which should turn to th€REEN signal to allow
the next waiting car to enter the PAL for the ndrr@®S operation. Test operation
TO_TL_GREEN functions equivalently to test operati@r?2 TO that is included in the
CPS design and is shown in the basic test gta2pG in Figure 7.5

For the fault diagnostic purpose as in (3) (a) abtke relevant CBCTD needs to design
another necessary test contract (narfié@ly TL_GREEN) that can examine and diagnose
whether the traffic light device is currently ireticorrect control state off. GREEN”"

as expected, which allows the next waiting carrteethe PAL for the normal CPS op-
eration. Test contradiC_TL_GREEN functions equivalently to test contrac® ITC in
the basic test group2 TG (as shown irFigure 7.9.

180 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

(c) Combining (3) (a) and (b) above, the supporting F2Bk needs to apply test contract
TC_TL_GREEN to examine and diagnose test operafian TL_GREEN. With regard
to related diagnostic functions, test contr€t TL_GREEN needs to be verified after
test operatiomO_TL_GREEN is executed.

. If this test contract returrtsue, the execution of this test operation is correcéxpected.
This means that the traffic light device corredctiyns to theGREEN signal to allow the
next waiting car to enter the PAL for normal CP®mpion. The current CPS system op-
eration works correctly in this situation.

. If this test contract returrfalse the execution of this test operation fails toalthe next
waiting car to enter the PAL for the normal CPSrapen. In this case, this test contract
needs to raise relevant warnings or exceptiors &sting point to stop fault propagation

development for the purpose of fault diagnosislandlisation.

(d) However, it is not exactly known (at least at thigial testing stages) where test operation
TO_TL_GREEN is in the CPS system under test, for example,tdube nature of the
uncertain component complexity and/or the limitatbimation of component require-
ments and design specifications. Accordingly, tt@ases certain practical difficulties to
select appropriate testing points and to applydestractTC_TL_GREEN to effectively
examine and diagnose the related test operatmL_GREEN. Therefore, it is neces-
sary to apply the diagnostic steps with the CBFDRiRIglines to conduct the above sup-
porting FDD task.

7.6.2.3.2 Stepwise Fault Diagnosis and Localisation

Based on the above fault diagnosis scenario asalgsidescribed iSection 7.6.2.3)] the fol-
lowing illustrates how to stepwise diagnose anatethe specific targ&AULT_TL_RED fault

(as illustrated inFigure 7., by using the two main test contract TL_RED and
TC_TL_GREEN identified above. We apply the main technical stepd stepwise scope reduc-
tion process described in the CBFDD guidelinesnmentake stepwise fault diagnosis and local-
isation, in conjunction with the features of théevant fault diagnosis properties, the stepwise
upper/lower-boundary scope reduction strategies @odesses, which all were described in
Section 7.5

Note that inFigure 7.6 TC1 (TC2,, TC3,) denotes théirst test contracit the first test-
ing point that is just before the first executiarirg in the CPS TUC1 (TUC2, TUC3) test sce-
nario. Similarly, TC, (TC,,, TCs,) denotes théast test contracat the last testing point that is
just after the last execution point in the CPS TYTDUWC2, TUC3) test scenario.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 181

Stepwise
scope

TC_TL_GREEN reduction

TC_TL_RED

Parking
process

|
1 TuCt | home | TuC2 TuC3

Minimum Fault
Diagnosis Scope

Maximum Fault Diagnosis/Propagation Scope

Figure 7.6 CBFDD: Stepwise Fault Diagnosis and Localisation

(1) Step #1Determining test levels: integration testing

We first need to find the initial fault diagnosisope to determine the relevant test level.
Because the exact failure output point may actuslyinknown, we need to consider the worst-
case situation for the actual fault propagatiorpscand the actual fault diagnosis scope (as de-
scribed inSections 7.5.and7.5.2. In the case of the CPS system under test, tagmthat the
maximum fault propagation scope may range fromfitlse execution point of the CPS TUC1
range to the last execution point of the CPS TU&®je. Accordingly, thenaximum fault diag-
nosis scopanay range from the first testing point (at thé,, position) just before the first
execution point of the CPS TUC1 range to the lastirig point (at th&@Cs;, position) just after
the last execution point of the CPS TUC3 rangéli{@asrated inFigure 7.9. This would be the
worst-case situation for all possible faults in @RS system.

For the specific targetAULT_TL_RED fault under diagnosis, we initially insert tesheo
tract TC_TL_GREEN at the TC,; position in the CPS TUC1 range, and test contract
TC_TL_RED at theTCj3, position in the CPS TUC3 range. Thnitial fault diagnosis scope
ranges from th&C, ; position in the CPS TUC1 range to thés, position in the CPS TUC3
range (as illustrated iRigure 7.§. Accordingly, we need to diagnose and locateftidt in the
CPS integration context, which, in this case, cevbe CPS TUC1, TUC2 and TUC3 range.
Therefore, the task of diagnosing and locating #piecific target fault is typically related to
component integration testing. (Note that Ti@ , position is the firsvalid testing poinfor test
contractTC_TL_GREEN and theTCjz, position is the last valid testing point for tesintract
TC_TL_RED. However, theTC,, position is not a valid testing point for test trawt
TC_TL_GREEN, which is to be explained in Step 3.2 below.)

Because the actual CPS safety rule failure sceoagars after the current test car enters

182 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

the PAL entry point, test contratC_TL_RED at the last testing point (at tA€;, position)
incorrectly returndalse The violation of this test contract indicatestttiee traffic light device

is currently NOT in the expected control state Tf “RED”, and so fails to prevent another car
entering the PAL when the current test car is aingshe PAL. This means that the traffic light
device currently has theAULT_TL_RED fault, which occurs at some execution point before
the last testing point at theC; . position in the CPS TUCS3 range, even though, eitiitial

testing stages, we do not exactly know where fegific fault is in the CPS system under test.

(2) Step #2Determining the fault propagation direction for georeduction

By inserting test contradiC_TL_RED at a testing point before the last-diagnosedrtgsti
point (initially at theTC; . position) in the CPS TUC3 range, we can ascettardirection of
fault propagation development related to the spetargetFAULT_TL_RED fault. When the
fault propagation development is stopped by ths$ tentract before the final failure output
point (initially at the last execution point), tdeection of fault propagation development is de-
termined, i.e. this fault propagates from its undi@gnosis home location to the CPS TUCL1
range to the CPS TUC2 range to the CPS TUC3 raawg#l|fstrated irFigure 7.6.

(3) Step #3:Applying the stepwise scope reduction process doae the fault propagation
scope and the fault diagnosis scope
We apply the stepwise scope reduction processagndse and locate the specific target
FAULT_TL_RED fault. The stepwise scope reduction process stattisthe above initial fault
diagnosis scope, where test contra€t TL_GREEN at theTC,; position acts as the lower
boundary, and test contrab€_TL_RED at theTC; position acts as the upper boundary. We
first apply the upper-boundary scope reduction @secand then apply the lower-boundary

scope reduction process (as describeBeiction 7.5.p

(3.1) Step 3.1Applying the upper-boundary scope reductioacess

Following the upper-boundary scope reduction gjsat@s described iection 7.5.p
we apply the followingkey testing guidelingnsert test contradiC_TL_RED at certain testing
points in the CPS TUC3 range, before the last uppendary point (initially it is at the last
testing point at th&C5, position) and towards the reverse direction oftfaropagation devel-
opment. We now conduct the stepwise process foemppundary scope reduction, by using
test contracTC_TL_RED to reduce both the relevant fault propagation scamd the relevant
fault diagnosis scope. Note that, during the follmystepwise scope reduction process, we pro-
visionally leave test contra®iC_TL_GREEN at the lower boundary point unchanged (initially
at theTC, ; position in the CPS TUC1 range).

(3.1.1) Stepwise reduction of the fault propagation scape the fault diagnosis scope related

Chapter 7 Component Fault Detection, Diagnosisma Localisation 183

to the CPS TUC3 range (as illustratedrigure 7.5

With test contractTC_TL_RED being violated at a selected testing point in @RS
TUC3 range, we get the same occurrence of thelgCRf@ safety rule failure scenario related to
the specific targefAULT_TL_RED fault. To diagnose and locate this fault, we dole #0 stop
the fault propagation development by inserting te& contract at a neselected testing point
before the last upper boundary point (initiallytla¢ TC; . position) in the CPS TUCS3 range.
Accordingly, the current upper boundary of the vatg fault propagation scope is constrained
and reduced to the new stopping point of fault pgaion development, that is, the new upper
boundary point is at the new selected testing po@fitre the last upper boundary point in the
CPS TUC3 range. This means that the relevant faaftagation scope is reduced to become a
smaller localised range from the unchanged lowembdary point to the new upper boundary
point. Consequently, the relevant fault diagnosigpe also is reduced and covers the current
fault propagation scope (as illustrated-igure 7.7.

After conducting a similar stepwise scope reducporcess iteratively and incrementally
by using the upper-boundary scope reduction styatgg can obtain the smallest possible fault
diagnosis scope related to the CPS TUC3 range,hwtdoges from the unchanged lower
boundary point (initially at th&C, ; position) to the finally-reduced upper boundarynpat the
TCs;, position (as illustrated iRigure 7.7.

Upper-
Stepwise boundar
scope scope TC_TL_RED
TC_TL_GREEN reduction reduction
g ‘
: TO_TL_RED

| T D o ' B AN o~ o NIM o o Ml Parking
' 4 process

TO_TL_GREEN locatior

Minimum Fault
Diagnosis Scope

Initial Fault Diagnosis/Propagation Scope

Figure 7.7 CBFDD: Stepwise Fault Diagnosis and Localisation (Step 3.1.1)

Within this newly-reduced fault diagnosis scopecéaese thelfCs,o position is the first
testing point before the first execution point ve tCPS TUC3 integration context, we can rea-
sonably exclude the possibility that the speciigetFAULT_TL_RED fault may exist in the
CPS TUCS rangeTherefore, applying this stepwise scope reducti@mtgss can greatly con-

strain the fault propagation scope and reducedtk diagnosis scope to be smaller only within

184 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

the newly-reduced CPS integration context: in t@se, the CPS TUC1 and TUC2 range. As
the result of scope reduction, we can obtain tive stepwise-reduced fault diagnosis scope that
ranges from the unchanged lower boundary pointigllyi at theTC, ; position) to the last test-
ing point at theTC,, position (as the new upper boundary point) in@®S TUC2 range (as
illustrated inFigure 7.§.

(3.1.2) Stepwise reducing the fault propagation scope haddult diagnosis scope related to
the CPS TUC2 range (as illustratedrigure 7.9

In the CPS TUC2 range, applying the upper-boundeope reduction strategy to conduct
a similar upper-boundary scope reduction proceskessribed irStep 3.1.1above, we can fur-
ther reduce the upper boundary point fromTig, position to therC,, position, and obtain a
further localised scope for fault propagation amdtfdiagnosis. Accordingly, we can obtain the
smallest possible fault diagnosis scope relateti¢docCPS TUC2 range, which ranges from the
unchanged lower boundary point (initially at th€,, position) to the finally-reduced upper

boundary point at th€C,, position (as illustrated iRigure 7.8.

Upper
Stepwise boundary
TC TL GREEN scope scope TC_TL_RED
- reduction reduction

Parking
process

Minimum Fault
Diagnosis Scope

Stepwise-Reduced Fault Diagnosis/Propagation Scope

Figure 7.8 CBFDD: Stepwise Fault Diagnosis and Localisation (Step 3.1.2)

Similarly, in this newly-reduced fault diagnosioope, because theC,, position is the
first testing point before the first operation extéan in the CPS TUC2 integration context, we
can reasonably exclude the possibility that theifipgargetFAULT_TL_RED fault may exist
in the CPS TUC2 range. This means that we candukbnstrain the fault propagation scope
and reduce the fault diagnosis scope to be snatlgrwithin the newly-reduced CPS integra-
tion context, i.e. the CPS TUC1 range. Therefosetha result of further scope reduction, we
can obtain the new stepwise-reduced fault diagnesipe that ranges from the unchanged
lower boundary point (initially at theC, ; position) to the last testing point at thé, position

(as the new upper boundary point) in the CPS TWdge (as illustrated iRigure 7.9.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 185

(3.1.3) Stepwise reducing the fault propagation scope haddult diagnosis scope related to
the CPS TUCL1 range (as illustrated-igure 7.9

The fault diagnosis scenario analysis (as desciib&ection 7.6.2.3)lindicates that it is
difficult to select an appropriate testing pointdan apply test contrad@C_TL_RED to effec-
tively examine and diagnose the related test operdi®nTL_RED, because it is not exactly
known where this test operation is in the CPS systader test. A key objective of applying the
stepwise scope reduction process is that redutiagdlevant scope can considerably aid in
finding the possible location of the related tgs¢rationTO_TL_RED in the CPS system, and
an appropriate testing point for effectivedpplying test contraciC_TL_RED. The result of
stepwise scope reduction conducted in Step 3.1d1Saep 3.1.2 above shows that the related
test operatiormO_TL_RED does not exist in the CPS TUC3 and TUC2 rangeg¢hyhin this
case, matches the actual design of the CPS systerordingly, this implies that the relevant
scope reduction must end up at some point witterGRS TUCL1 range.

Now in the CPS TUCL1 range, the current fault diaigmacope covers the relevant fault
propagation scope and ranges from the unchangesr looundary point (initially at th€C, ;
position) to the last testing point at tli€,, position (as the upper boundary point), as illus-
trated inFigure 7.9 To further the upper-boundary scope reductionneed to select a next
contract testing point before the current uppemiglay point. However, selecting a next con-
tract testing point before the current upper boungaint at theTC,, position leads to finding
the location of the related test operatib@_TL_RED used in the CPS TUCL1 test scenario,
which, in this case, matches the actual desigh@fQPS system. This means that, for test con-
tractTC_TL_RED, there is no valid testing point before the currgeper boundary point at the
TC,. position in the CPS TUCL1 range, because thisctsract by its nature must be verified
after this test operation is executed, based on thé dé&adnosis scenario analysis (as described
in Section 7.6.2.3)1 In other words, test contra€C_TL_RED by its nature has no effect on
test operatioiTO_TL_RED if this test contract is positiondaefore this test operation. The
fault-related test operation is now found at thisaaition point in the CPS TUCL1 range. Accord-
ingly, the current upper boundary point at T, position becomes the laglid testing point
for this test contract, and because this testingtp® positioned just after this test operatidn, i
Is the better-selected testing point for this tesitract to effectively examine and diagnose this
test operation.

Therefore, the relevant upper-boundary scope remuptocess would reasonably end up
at this last validesting point in the CPS TUC1 range. The final wiep-reduced fault diagno-
sis scope ranges from the unchanged lower bounmtany (initially at theTC, ; position) to the
last valid testing point at tHEC, | position (which becomes the final upper boundayn) in
the CPS TUCL1 range, as illustrated-igure 7.10

186 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

Upper
. boundary
Siepuse - soope
. reduction
TC_TL_GREEN reductlon/
ﬁ | >1< TC_TL_RED
!_TO_TL_RED -'

L =y & M W Parking
i 4. o process

T TUC1 I home I TUC2
TO_TL_GREEN . locatior

Minimum Fault
Diagnosis Scope

Stepwis-ReducecFault
Diagnosis/Propagation Scope

Figure 7.9 CBFDD: Stepwise Fault Diagnosis and Localisation (Step 3.1.3)

(3.2) Step 3.2Applying the lower-boundary scope reduction process

The result of the upper-boundary scope reductiatgss conducted in Step 3.1 above
(including Step 3.1.1 to Step 3.1.3) shows thatdestractTC_TL_RED needs to be positioned
at theTC, | position as the final upper boundary point, aneeisfied as the postcondition asser-
tion just after the execution of operati®®_TL_RED. For the purpose of rigorously diagnos-
ing and locating the specific targefAULT_TL_RED, it is necessary to identify the final lower
boundary point and obtain the final minimum fauklghosis scope that ranges from the final
lower boundary point to the above final upper barggoint. Moreover, it is also necessary to
obtain the relevant test contract as the precamdssertion for effectively examining and di-
agnosing test operatiofO_TL_RED in the final minimum fault diagnosis scope. Acdagtly,
we need to apply the lower-boundary scope redugiioness.

Following the lower-boundary scope reduction stiatéas described isection 7.5.p
we apply the followingkey testing guidelingnserting test contradiC_TL_GREEN at certain
testing points in the CPS TUCL1 range, after theltager boundary point (initially it may be at
the first testing point at theC, o position) and towards the same direction of fautpagation
development. Note that, during the following steggvgcope reduction process, we maintain test
contractTC_TL_RED at the above final upper boundary point uncharfgetheTC, position)
in the CPS TUCL1 range.

(3.2.1) Identifying the first valid testing point and thdtial fault diagnosis scope
To conduct the lower-boundary scope reduction, @edrto select a contract testing point
after the first testing point at theC, , position in the CPS TUCL1 range. However, selecting

contract testing point after the first testing pahtheTCy, position leads to finding the loca-

Chapter 7 Component Fault Detection, Diagnosisma Localisation 187

tion of the related test operatidi®_TL_GREEN used in the CPS TUCL1 test scenario, which,
in this case, matches the actual design of the §§B®m. This means that th€, , position is
not a valid testing point for test contrad@_TL_GREEN (as indicated in Step #1 above), be-
cause this test contract by its nature must bdiegmfter this test operation is executed, based
on the fault diagnosis scenario analysis (as destrinSection 7.6.2.3)1 In other words, test
contractTC_TL_GREEN by its nature has no effect on test operafiGn TL_GREEN if this
test contract is positiondakeforethis test operation. Accordingly, tHeC, ; position, which is
positioned just after test operati®®_TL_GREEN, becomes the firstalid testing poinfor test
contractTC_TL_GREEN and the starting lower boundary point for stepwisepe reduction.

Therefore, the starting fault diagnosis scope far tower-boundary scope reduction
process is the same as the last stepwise-reduakdifagnosis scope (which is resulted from
Step 3.1 above). It covers the relevant fault pgagian scope and ranges from the starting
lower boundary point (at tHEC, ; position) to the final upper boundary point (s TtC,, posi-
tion) in the CPS TUC1 range (as illustratedrigure 7.10.

Lowel-
boundary)
scope Stepwise

TC TL GREEN reduction Scope
- reduction

| 1 >l< TC_TL_RED
g A

It &9 o o ' o WM A o o NI o o Miraking
proces

TO_TL_GREEN . locatior

Minimum Fault
Diagnosis Scope

Stepwis-ReducecFault
Diagnosis/Propagation Scope

Figure 7.10 CBFDD: Stepwise Fault Diagnosis and Localisation (Step 3.2.1)

(3.2.2) Identifying the valid testing points and the valkdting range

We need to identify the valid testing points anthabthe valid testing range for test con-
tract TC_TL_GREEN. Based on the fault diagnosis scenario analysidéscribed irSection
7.6.2.3.), test contracTC_TL_GREEN by its nature should be positioned at a contrestirig
point after the execution point of operatidfO_TL GREEN. In addition, test contract
TC_TL_GREEN by its nature has no effect on test operalion TL_RED even if this test con-
tract is positionegfter this test operation in the CPS TUC1 range. Accmlgli avalid testing
point for test contract TC_TL_GREEN is after the execution point of operation

TO_TL_GREEN, towards the same direction of fault propagatiemetopment, and before the

188 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

execution point of operationO_TL_RED. In particular, the first valid testing point i$ the
TC, 1 position, and the last valid testing point ist@TC, « position that is just before the exe-
cution point of operatiomO_TL_RED in the CPS TUC1 range. These valid testing pdors
thevalid testing rangdor test contracTC_TL_GREEN, which ranges from the first valid test-
ing point at theTC, ; position to the last valid testing point at th€,« position in the CPS
TUCL1 range (as illustrated irigure 7.10. Therefore, test contradiC_TL_GREEN must be

applied and verified at a valid testing point witliis valid testing range.

(3.2.3) Stepwise reducing the fault diagnosis/propagatoaps

The fault diagnosis scenario analysis (as desciib&ection 7.6.2.3)lindicates that the
traffic light device currently shows th&@REEN signal to allow the current waiting car to enter
the PAL for the normal CPS operation. This meanat tthe execution of operation
TO_TL_GREEN is correct and test contrat€C_TL_GREEN verified at theTC, ; position re-
turnstrue. From the perspective of the CPS operational fanstin the CPS user operational
environment, the CPS system should maintain thisecoCPS operational status in the execu-
tion range from the execution starting point whidse current car starts entering the PAL entry
point to the execution ending point where the auroar finishes entering the PAL entry point.
Then, just after the current car finishes entetimg PAL entry point, the CPS system should
immediately change the traffic light device frone tBREEN signal to theRED signal to pre-
vent the next car from entering the PAL, while therent car is accessing the PAL. In other
words, from the perspective of the CPS operatifuraitions, the CPS system should maintain
this correct CPS operational status for the trdigjlot device in the execution range that is after
the execution point of operatiofO_TL_GREEN and before the execution point of operation
TO_TL_RED. This property of the CPS system is equivalerthéobasic CPS control state con-
sistency feature as describedSection 7.6.2.2.1

The abovementioned CPS operational status can lbeniegd with test contract
TC_TL_GREEN in conjunction with applying the lower-boundarype reduction process. By
inserting test contracfC_TL_GREEN at a new selected testing point after the stadtmger
boundary point (at th&C, ; position) and in the above valid testing range, tésting shows
that this test contract by its nature retums, which, in this case, matches the actual design of
the CPS system. Accordingly, the new lower boungeowt can be increased to this new se-
lected testing point after the starting lower baanydooint (at thelrC, ; position), and the new
fault diagnosis scope is reduced to be a smaliggerdrom this newly-increased lower boundary
point to the above final upper boundary point &TC,, position) in the CPS TUCL1 range.

After conducting a similar stepwise scope reducpiozcess iteratively and incrementally
by using the lower-boundary scope reduction stgateg can obtain the final (and increased)

lower boundary point at th&C;x position just before the execution point of operat

Chapter 7 Component Fault Detection, Diagnosisma Localisation 189

TO_TL_RED in the CPS TUC1 range. Test contraCt TL_GREEN verified at theTC, x posi-

tion returngrue, confirming that the abovementioned CPS operaltistadus is maintained con-
sistently. Because tHEC, ¢ position is the last valid testing point in theoab valid testing
range for this test contract, the relevant loweurltary scope reduction process would reasona-
bly end up at this finally-increased lower boundpoynt at theTC, x position in the CPS TUCL1
range. Accordingly, the final stepwise-reduced tfalihgnosis scope ranges from the testing
point at theTC; « position (which becomes the final lower boundaoynp to the above final
upper boundary point (at tHEC;, position) in the CPS TUCL1 range, as illustratedrigure
7.11

(3.3) Attaining the final fault diagnosiscope

Consequently, at the end of the above two stepsaspe reduction processes being ap-
plied, we attain thé&nal fault diagnosis scop#hat ranges from the final lower boundary point at
the TC,k position to the final upper boundary point at #@,;, position in the CPS TUC1
range (as illustrated irFigure 7.1). In the final fault diagnosis scope, test cortrac
TC_TL_GREEN is verified as the precondition assertion jusbbefthe execution of operation
TO_TL_RED, and test contradiC_TL_RED is verified as the postcondition assertion justraf
the execution of operatiocFO_TL_RED.

Stepwise
scope
reduction

% TC_TL_GREEN }—)1(—‘ TC_TL_RED

Parking
proces

Minimum Fault
Diagnosis Scope

Final Stepwis-Reduce Fault
Diagnosis/Propagation Scope

Figure 7.11 CBFDD: Stepwise Fault Diagnosis and Localisation (Step 3.2.3)

(4) Step #4Reducing the fault diagnosis scope to class/opamagtope

The above final fault diagnosis scope contains tmige test artefacts, including test con-
tract TC_TL_GREEN, test operatioTO_TL_RED and test contracfC_TL_RED, all in the
CPS TUCL1 range (as illustratedRkigure 7.1). The two test contracts are added to the relevant
execution path to diagnose and locate the spdeifgetFAULT _TL _RED fault. This implies

190 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

that the above final fault diagnosis scope is dlstwanstrained and reduced to be only related
to the scope of operatiohO_TL_RED of the traffic light device, and thus, in this eabe-

comes thdinal minimum fault diagnosis scope

(5) Step #5Locating the target fault that has been detectadihg testing
With the above final minimum fault diagnosis scdpat only contains the above three
test artefacts, we can ascertain that the spaaifgetFAULT_TL_RED fault is located in the

execution point of operatioRO_TL_RED, as illustrated by the following points:

(@) The two added test contracts are specially-desi¢gsdartefacts that work as the upper
and lower boundary points, and contribute to theveldwo-sided stepwise scope bound-
ary reduction to identify th&arget execution poirthat is related to the fault under diag-

nosis and to produce the final minimum fault disgjascope.

(b) With respect to relevant diagnostic functions, testtractTC_TL_RED is the postcondi-
tion assertion and is verified just after the exiecuof operationTO_TL_RED. This test
contract examines the relevant test result andiated whether this operation is executed
correctly. In addition, test operatid®_TL_GREEN acts as the special precondition as-
sertion and is verified before the execution ofrapen TO_TL_RED. This test contract
examines and shows that the abovementioned CP&tmma status is maintained con-
sistently for the purpose of rigorous fault diagaaand localisation. Both test contracts
joint support rigorous diagnosis and localisatidérihe specific targeFAULT_TL_RED

fault.

(c) In this case, the only target execution point istteg execution point of operation
TO_TL_RED, which is thefault home locationof the specific targeFAULT_TL_RED

fault.

(6) Step #6:Correcting and removing the detected fa&MULT_TL_RED

As the result of Step #1 to Step #5 above, theifspéarget FAULT_TL_RED fault has
been detected and located in the final minimunt fdialgnosis scope. We can now conduct fault
correction and removal in the following four possifault cases, which follow Step #6 in the
CBFDD guidelines as described $ection 7.5.5and are equivalent to the possible CPS fault

cases as described$ection 7.6.2.2.1

(a) If the target operatiomO_TL_RED is present, but the current CPS execution sce-
nario/path does not actually execute this operadi®rexpected, we need to modify the
relevant CPS execution scenario to put this opmrat its expected execution path, so

that this operation is executed at its correct etten point in the CPS execution path.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 191

(b) If the target operatiomO_TL_RED is present and is executed at its correct exatutio
point, but this operation execution is incorrecfails, for example, due to the incorrect
invocation/usage of this operation (e.g. incormmration name use, incorrect operation
parameters passing). In this case, we need tdhaseotrect invocation/usage of this op-

eration at its correct execution point.

(c) If the target operatiomO_TL_RED is present and is executed at its correct exatutio
point, but this operation execution is incorrecfails, for example, due to the incorrect
definition/implementation of this operation in heme class (which consequently causes
the incorrect operation execution return/result)this case, we need to modify and cor-

rect the definition and/or implementation of thigeaation in its home class.

(d) If the target operatiomO_TL_RED is not present or the current CPS execution sce-
nario/path does not actually contain this operatieeneed to define this operation in the

correct class and/or include this operation atdtsect execution point.

Note that, for the purpose of effective fault cotien and removal, access to more infor-
mation about component requirements and designifigations for the CPS system may be
needed, especially when there is a need to catreatiefinition and/or implementation of this

operation, as described in (c) and (d) above.

7.6.2.3.3 Stepwise Fault Diagnostic Solution

Section 7.6.2.Zincluding subSections 7.6.2.2.&4nd7.6.2.2.2 describes a direct fault diagnos-
tic solution in the system development environm@ttich is used as the current testing con-
text). Section 7.6.2.3including subSections 7.6.2.3.4nd7.6.2.3.2 discusses a stepwise fault
diagnostic solution from the user perspective agiistem user operational environment (which
is used as the current testing context). We caarabghat the stepwise fault diagnostic solution
attained by applying all steps with the CBFDD gliits is equivalent to the direct fault diag-
nostic solution.

With the stepwise fault diagnostic solution, thievant CBCTD needs to correctly incor-
porate the above three test artefacts, which ritdcam a special test group and jointly detect,
diagnose and locate the specific tafgaULT_TL_RED fault in the final minimum fault diag-
nosis scope (as shown kigure 7.1). In particular, test operatioRnO_TL_RED functions
equivalently to test operatiah2 TO in the test grou@.2 TG, which is executed at the above
target execution point to exercise the associate Gperation related to the target fault under

diagnosis. Test contraCC_TL_RED functions equivalently to test contr&® ITC in the basic

192 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

test grouB.2 TG and is the postcondition assertion verified jdtgrahe execution of operation
TO_TL_RED. Test contracTC_TL_GREEN functions equivalently to test contracp ITC in

the basic test group.2 TG and acts as the special precondition assertiofiecebefore the
execution of operatiomO_TL_RED. The above analysis shows that, being equivatenhe
direct fault diagnostic solution, the stepwise fadiagnostic solution developed with the
CBFDD guidelines can accomplish the same diagndstictions and tasks, and achieve the
same CfD goal, in terms of the low-overhead tesitreat coverage/usage and desired testing
effectiveness and efficiency.

The principle of the extended fault causality ch@is described i®ection 7.2 indicates
that effective component test design must be abkrctivate a component fault to cause some
observable manifestation of failure in order togtiese and locate a specific fault. In this sense,
the relevant CBCTD based on the direct fault diatjnsolution and the stepwise fault diagnos-
tic solution has been shown to be effiective component test desidiWhen this relevant
CBCTD is used to test the CPS system, it can detitvee specific targdfAULT_TL_RED fault
in the CPS TUCL1 integration context, which thenseauthe actual CPS safety rule failure sce-
nario as described ifiection 7.6.2.1As described ifsection 7.6.2the CBFDD method is able
to attain this relevant CBCTD that can effectivdlggnose and locate this specific component
fault. Therefore, the relevant CBCTD supported viftt CBFDD method is an effective com-

ponent test design for realising the CfD goal.

7.7 Selection of Test Contracts and Testing Points

This section discusses some important open istamg Aow to effectively apply test contracts
to SCT activities with the ThC technique, such @lecion, positioning and verification of test
contracts and testing points. We introduce andhdedi set of new useful notions (including the
notion of a testing point, a valid testing poinyadid testing range and a consistent valid testing
range), and explore their inter-relationships. Saf#hese notions have been referred to before
(especially inSections 7.5,37.5.5 7.6.2.2.27.6.2.3.1and7.6.2.3.2 and all these notions are

now formally defined here with additional discussio

7.7.1 Selection of Test Contracts

Selection of test contracts is an important opsandador applying test contracts to SCT activi-
ties. The importance of this issue is closely eglab testing effectiveness and efficiency with
the TbC technigue. An essential aspect of testraonselection is that the selected test contract
must perform its testing functions for a speciéisting requirement or a target testing objective,

for example:

Chapter 7 Component Fault Detection, Diagnosisma Localisation 193

(&) Atest contract is selected to verify a particslaftware function;

(b) Atest contract is selected to detect and diagaageecific target fault.

A typical approach is to select test contracts frefavant assertion-based preconditions,
postconditions and invariants that describe ceraintractual relationships for the related com-
ponent artefact under test, which are all prefetestl candidates for test contract selection. On
the other hand, the selected test contract shautelatively simple and easy to design and con-
struct, while it also must perform its testing ftions correctly. In practice, the tester may have
to make some compromises in the selection of tedtacts.

Let us look at a testing example with the CPS cdady. To find the specific target
FAULT_TL_RED fault in the CPS system (as describe®attion 7.6.2 the direct fault diag-
nostic solution uses test contrdc? ITC and test contra@.2 ITC, and equivalently, the step-
wise fault diagnostic solution employs test coritr@€ _TL_GREEN and test contract
TC_TL_RED. For the fault diagnostic purpose, test contra@ ITC (or equivalently,
TC_TL_RED) must be selected and applied just after the dixecof the associated CPS op-
eration (i.e. test operatidh2 TO set Red() or equivalently, TO_TL_RED) that is related to
the target fault under diagnosis. This test conhtogdts nature is verified as the direct, manda-
tory postcondition assertion to evaluate the reievast result of this operation execution.
Therefore, the selection of this test contrace@arded as the best selection.

On the other hand, test contrac ITC by its nature (or equivalentlylC_TL_GREEN) is
actually the direct, mandatory postcondition agzerfor test operatiorl.2 TO set G- een()

(or equivalently, TO_TL_GREEN), and should be positioned and verified just atiés test op-
eration. However with the direct fault diagnostidusion, test contract.2 ITC acts as an addi-
tional, indirect precondition assertion, and it sio®t need to be positioned just before the re-
lated test operatioB.2 TO (as described iSection 7.6.2.2)2 due to the support of the basic
CPS control state consistency feature (as desciib@dction 7.6.2.2)1 With the stepwise fault
diagnostic solution, test contrab€_TL_GREEN acts as the special precondition assertion po-
sitioned before the execution of operatib® TL_RED to demonstrate that the abovemen-
tioned CPS operational status is maintained cargigtfor the traffic light device (as described
in Section 7.6.2.3.5tep 3.2 (3.2.3) and Step #5). This test conimetso used as the lower
boundary point for stepwise scope reduction. Thevalanalysis indicates that the selection of
this test contract is an acceptable selection fagrebsing and locating the specific target
FAULT_TL_RED fault, in terms of simple test contract desigragpical testing effectiveness

and efficiency (as described $ection7.6.2.3.3.

In the case where we use the idea of the ThC tedtact criteria based FDD approach

for the CfD goal (as described $ection 7.5.3 we can examine the entire CPS TUC1 test sce-

194 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

nario (as illustrated earlier iRigure 5.4 or its corresponding overall test sequence (as-il
trated earlier irFigure 6.4 for selecting a better test contract. We can oesthat test contract
2.5 ETC (or3.1 ETC) is better selected and positioned at the tegoigt just before the execu-
tion point of test operatioB.2 TO set Red(), and has some improved features over test con-
tract 1.2 ITC used in the direct fault diagnostic solution (ayuiwalently test contract
TC_TL_GREEN used in the stepwise fault diagnostic solutiomedistinct feature of test con-
tract2.5 ETC (or 3.1 ETC) is that it can effectively ensure that test opena3.2 TO is exe-
cuted in the correct execution context, especktlithe correct execution point in the execution
path conforming to the overall CPS TUCL1 test seqedar achieving the particular testing ob-
jective.In particular, test operatiah2 TO should be executed at its correct execution gosit
after the current car has successfully finisheeramg the PAL entry point. This operation exe-
cution point is controlled by test contr&b ETC (or 3.1 ETC): when and only when this ETC
returnstrue, the current car has successfully passed thrdugPAL entry point controlled by
the in-PhotoCell sensor device; and then test ¢ipard.2 TO can be executed at its correct
execution point to immediately set the traffic ligtevice to the control state 6fl._RED”, in
order to prevent the next car from entering the PRherefore, the above analysis shows that
the selection of test contra2tcs ETC (or 3.1 ETC) is a better test contract selection over test
contractl.2 ITC (or equivalentlyTC_TL_GREEN), which can support fault diagnosis and lo-
calisation in a more adequate manner. Note thattesract2.5 ETC (or 3.1 ETC) by its nature

has no effect on checking the control state otriiéic light device.

7.7.2 Selection of Testing Points and Valid Testing Range

While the proper selection of test contracts ig/veportant, it is still not adequate for the goal
of applying test contracts to SCT activities efifeglly. Another important issue is where is the
right point in the CUT software where the seledtst contract should be positioned and veri-
fied, in order to make it possible to achieve theigkd testing effectiveness and efficiency.
Conceptually, aesting pointrefers to a software point in the CUT software kehe rele-
vant software test (e.g. a test contract) may Is#tipoed and verified for software testing. For
selection of testing points,\alid testing poinof a test contract refers to a testing point where
the test contract can make a valid testing effe@xaected, for example, for the particular test-
ing function or the specific target testing objeeti Certainly, test contracts should be applied
and verified at the selected valid testing poifitge selected test contract would not have a valid
testing effect if it were placed at an incorrecblected testing point or amvalid testing point
For example, to diagnose and locate the specifget& AULT_TL_RED fault as described in
Section 7.6.2test contracTC_TL_GREEN can be positioned at its valid testing point seléc
just after test operatiomO_TL_GREEN. However, this test contract has no effect on tibgs$

Chapter 7 Component Fault Detection, Diagnosisma Localisation 195

operation if this test contract is positioned giravalid) testing point selecteldeforethis test
operation. Similarly, this test contract has alsoeffect on test operationO_TL_RED if this
test contract is positioned at a (invalid) tesiioint selectea@fter this test operation.

One common approach is to select valid testingtpdiom possible software locations
where certain relevant assertion-based preconditipostconditions or invariants should hold
for the component artefact under testvaid testing rangef a test contract refers to a particu-
lar testing range between two selected valid tggpioints, where the test contract can have a
valid testing effect at any intermediate valid tpsint in this testing range. gonsistentalid
testing rangeof a test contract refers to a particular valigtitey range, where the test contract
can make an equivalent valid testing effect atiatgrmediate valid test point in this valid test-
ing range, for example, the test contract shoufil the equivalent testing requirement or target
objective (e.g. obtaining an equivalent state atirtg results).This indicates that any other
software artefacts or tests in the consistent valsting range should have no effect on the re-
lated test contract. For example, as describegention 7.6.2.3.5tep 3.2 (3.2.3), for test con-
tract TC_TL_GREEN, the valid testing range is after the executionnpof operation
TO_TL_GREEN and before the execution point of operafiagd TL_RED in the CPS TUC1
test scenario. In fact, this valid testing rangetést contracTC_TL_GREEN is also a consis-
tent valid testing range, due to the support ofttagic CPS control state consistency feature (as
described irSection 7.6.2.2)1

With respect to the important concept of effectoanhtract scope defined in the ThC
technique (as described earlier $®ction 6.3.3 we can explore certain inter-relationships
among the three important notiorefféctual contract scopealid testing rangeandconsistent

valid testing ranggas follows:

(a) Conceptually, a consistent valid testing range tfsa contract is a valid testing range, but

certainly not vice versa.

(b) In principle, the effectual contract scope of a@ temtract forms a valid testing range, and
possibly vice versa, but they are not exactly #raes all the time. It is very possible that
the entire effectual contract scope of a test emhtmay comprise several valid testing
ranges of the same test contract. In other wordsjid testing range may be just part of

the entire effectual contract scope of a partictdat contract.

(c) However, the same property described in (b) aboay mot always apply to the relation-
ship between the effectual contract scope and aistent valid testing range of a test
contract. In particular, a consistent valid testiagge of a test contract forms part of the

effectual contract scope, but not usually vice &els other words, the effectual contract

196 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

scope may contain a valid testing range that isasmainsistent valid testing range for the

same test contract.

(d) The entire effectual contract scope of a test eshttomprises the set union of all valid

testing ranges of the same test contract.

For the purpose of effective component testing fantt diagnosis, test contracts should
only be applied and verified only at the valid iegtpoints selected in the relevant valid test
range. It is advantageous make use of the feature of a consistent vaitirenge to optimise
testing activities and improve testing effectivene&ccordingly, to effectively apply test con-
tracts to SCT activities with the TbC techniquee amportant testing task is to analyse and
identify all relevant valid testing points, valiésting ranges and/or consistent valid testing

ranges.

7.8 Summary and Discussion

This chapter has applied the TbC technique to uakiercomponent fault detection, diagnosis
and localisation, which covers the crucial Step ZlxCthe advanced phase of the stepwise ThC
working process (as illustrated earlierdigure 6.1in Section 6.2 We developed the extended
fault causality chain to guide FDD activities arfteetive component test design. We intro-
duced the important CfD notion, and developed tB&0@D method that further extends the
ThC technique to realise the CfD goal. The CBFDDhmée comprises the two major technical
components, the CBFDD process and the CBFDD guiegliwhich are further supported with
the three fault diagnosis properties, the two stepwipper/lower-boundary scope reduction
strategies and the two associated processes. TRBQPBrocess establishes the primary foun-
dation of the CBFDD method, and aims to detect diadnose as many component faults as
possible. The CBFDD guidelines provide the serfediagnostic steps, and aim to detect, diag-
nose and locate target component faults. Then weesth how to apply the complete CBFDD
method to fault detection, diagnosis and localisatvith the CPS case study. We developed
and illustrated the two types of useful and eqeinafault diagnostic solutions (i.e. the direct
fault diagnostic solution and the stepwise faudtgtiostic solution) with the CBFDD method in
the two major possible testing contexts (i.e. th&tesn development environment and the sys-
tem user operational environment). The illustrateeamples have demonstrated that the
CBFDD method is capable of supporting effective porrent test design, diagnosing and locat-
ing component faults, and achieving the CfD godleSe are the major contributions of the
CBFDD method together with the ThC technique.

Chapter 7 Component Fault Detection, Diagnosisma Localisation 197

There are two main types of FDD approaches with Th€ technique: the CBFDD
method and the TbC test contract criteria based BPproach. The TbC test contract criteria
based FDD approach supports high-level coveragel@efuate test contracts, and can be applied
particularly in conjunction with the overall CBFDrocess to systematically detect and diag-
nose as many new potential component faults asipesThe CBFDD method (especially the
CBFDD guidelines) aims to overcome some of thectlicies of the TbC test contract criteria
based FDD approach, and achieve low-overhead oestact coverage and acceptable testing

effectiveness and efficiency, which are the maivaathges of the CBFDD method.

Therefore, this chapter has shown the FDD-basadrieaf the MBSCT methodology,
which ensures that component test evaluation igeaahle in the third phase of the MBSCT
framework. At the same time, this chapter has destnated and validated the MBSCT testing
applicability and capabilities particularly for cponent fault detection, diagnosis and localisa-
tion, and adequate component fault coverage angndstic solutions (which are the core
MBSCT testing capabilities #3 and #6 as descrilztee in Section 4.5 A more comprehen-

sive validation and evaluation of the MBSCT metHodg will be presented i€hapter 9

This chapter has described the FDD-related StepdTib@he ThC advanced phase. The
ThC technique (especially the CBFDD method) suppeffective component test design, mak-
ing it possible to generate component tests thatdain the desired FDD capability for realis-
ing the CfD goal. The subsequent contract-basdédjéeeration (i.e. Step TbhC5 in the advanced

phase of the stepwise TbhC working process) willliseussed itChapter 8

198 Chapter 7 Component Fault Detection, Diagnosisnal Localisation

Chapter 8 Component Test Design and Generation 199

Chapter 8
Component Test Design and Generation

8.1 Introduction

Component test design and generation in the sepgbase of the MBSCT framework derives
component test cases for UML-based SCT (as descebdier inSection 4.4 The previous
chapters of this thesi€hapter 4to Chapter ¥ have described the methodological foundation
and technical aspects of component test developménthe MBSCT methodology, including
test model construction (@hapter %, contract-based component test desigiChapter § and
contract-based component fault detection and diigrior improving the effectiveness of com-
ponent test design (i@hapter J. This chapter mainly focuses on component teseigdion,
which is undertaken with the fifth MBSCT methoddlmj component, th&€€omponent Test
Mapping (CTM) technique Chapter 4previously presented a basic introduction to tieMC

technique and this chapter goes into much mordlsletaout the technical aspects of the CTM
technique 167 [169 [171] [17 [173 [174 [179 [179 [179.

In this chapterSection 8.2describes the main tasks and techniques for dagigand
generating component test cases, and reiteratggrabess and summarises the main technical
aspects of component test development with theéeaI®BSCT methodological components
before we move on to component test generationn,T®ection 8.3discusses the CTM tech-
nique, including relevant mapping concepts, prilesipprocess and steps as well as mapping
criteria. Section 8.4describes the derivation of the target CTS tesé cgecificationsSection

8.5 gives a summary of this chapter.

8.2 Main Tasks and Techniques

Component test design and generation refers tmeeps of component test development for

SCT, and the major target tasks include:

(a) Analysing and identifying what software artefacte aeeded to be tested for the target
testing requirements and objectives;

(b) Designing and constructing test sets with testates and test sequences;

(c) Designing and constructing related composite tesfats in test sequences and test sets;

(d) Conducting component test design for fault detectiod diagnosis;

(e) Generating component test cases to evaluate andnsémate component correctness and

quality.

200 Chapter 8 Component Test Design and Generation

The MBSCT methodology employs a set of useful makmgical components to support
component test design and generation, and our hethoomponent test development has its

own particular technical characteristics to fulfie above target tasks, as described as follows:

(1) Component test developmenhimdel-based

Component tests are developed based on relevanthidéd test models constructed in
the first phase of the MBSCT framework. Ghapter 5we discussed how to undertake test
model construction with the related MBSCT methodalal components, including the inte-
grated SCT process, the TCR strategy, the scebaded CIT technique and the ThC technique.
We also described what test artefacts (includirgicii@st artefacts and special test artefacts) are
needed to be identified and designed with test isdde UML-based SCT. Test models capture
necessary testing-related artefacts and estaliesiprimary foundation for component test de-

sign and generation. This featdudfils the target tasks (a) and (c) above.

(2) Component test developmensisenario-based

Component tests are developed based on relevansaesarios that are designed and
constructed with the scenario-based CIT techniguerder to test crucial component functional
scenarios (e.g. behavioural instances or integratt®narios), as described earlierSiection
4.3.2 and Sections 5.2.25.4.2and5.5.2 Test scenarios and associated test sequencéseare
basis for designing and constructing test setsrg@arose and group relevant component test
cases for a particular testing purpose. This fedulfils the target task (b) above. Note that

more than one test set may be designed in a cortgdescenario or test sequence.

(3) Component test developmentisntract-based

Component tests are developed based on relevarbtasacts that are the special test ar-
tefacts designed and constructed with the TbC tqaknin order to bridge the identifietest
gaps and improve component testability for effectivengponent test design and generation (as
described earlier i€hapter §. Test contracts are useful testing-support estefo enable test-
ing-related component/model artefacts to becomaliksas required. This featucan effec-
tively enhance component test development withfiabie test artefacts in relevant test se-

guences and test sets, and further aid in thérhdfit of the target tasks (a) and (c) above.

(4) Component test developmenfHBD-based

Component tests are developed to detect, diagna$déoaate component faults for the
goal of improving and evaluating component qualityChapter 7 we discussed how to apply
the TbC technique (especially the CBFDD method)ridertake FDD to enhance the effective-

ness of component test design, making it possibigeherate component tests that can attain the

Chapter 8 Component Test Design and Generation 201

desired FDD capability. This feature specificalljfifs the target task (d) above.

(5) Component test developmenipiwcess-based

Component tests are developed based on relevdimgtggocesses that are created and
supported with the corresponding MBSCT methodoklalgimomponents. The iterative SCT
process provides a process model for the entire MBfethodology, and enables the iterative
and incremental development of test models and kzske=d component tests (as described
earlier inChapter 4andChapter % With the TbC technique (as described earlieClrapter §
the stepwise ThC working process shows the maitraciibased SCT activities for contract-
based component test design and generation. WatiiBFDD method (as described earlier in
Chapter ¥, the CBFDD process guides the main steps for oompt fault detection and diag-
nosis, and the two upper/lower-boundary scope temuprocesses show the stepwise diagnos-
tic steps to diagnose and locate component fadith the CTM technique (to be described in
the nextSection 8.3 the stepwise CTM process shows a series oftéps $or test mapping and
transformations to generate target component sessc This feature supports the fulfilment of

the target tasks (a) to (e) above.

As discussed above, we can see that our methaohgdanent test development is able to
achieve the above target tasks for component &sgnl and generation. The related MBSCT
methodological components enable component tegirdes produce adequate test artefacts for
effective component test generation. To furtherMiBSCT methodology, we develop the CTM
technique to provide more technical support for ponent test development, enabling it to be-

comemapping-basedThis feature particularly fulfils the target ta@j above.

8.3 Component Test Mapping Technigue

This section describes tl@mponent Test Mapping (CTM) technique, which we develop as
the fifth MBSCT methodological component. We intnod the CTM definition, the stepwise
CTM process with a series of mapping steps, andCifd criteria, which are all developed to
support the CTM technique to become a new mappirsgd approach to component test devel-
opment. At the same time, we employ the CPS cagly gb illustrate how to put the CTM
technique into practice to undertake componentdestlopment, with the focus particularly on

component test generation.

8.3.1 The CTM Definition

The CTM technique is developed to be a new mappaspd technique that explores the fun-

damental relationship between the two domains, $@Bfacts and SCT artefacts with UML

202 Chapter 8 Component Test Design and Generation

models, in order to support effective componeritdesivation and to bridge the identifietest
gaps between these two domains in UML-based SCT practin the context of UML-based
SCD, a model artefact may be a scenario, a sequannessage, an operation, an element, etc.
Because UML-based modeling is conducted for compiodesign and implementation, these
model artefacts will eventually correspond to, dedealised with, one or more component ar-
tefacts in the final component implementation.He tontext of UML-based SCT, model-based
test artefacts will finally correspond to, and lealised with, one or more testing-related com-
ponent artefacts that are used for component &station. Consequently, following this corre-
sponding testing relationship between these testilajed model/component artefacts in the
two domains, developing model-based test artefaatds to developing corresponding testing-
related component artefacts for the SCT purposks. i§tone of the crucial principles of model-
based testing approaches, which is also the pritvasis on which the CTM technique is devel-

oped.

The CTM technique establishesla-{n) test mapping relationship between the two sets
(i.e. the set of model artefacts for UML-based S@Bd the set of testing-related component
artefacts for UML-based SCT), which can be desdriipethe following CTM definition (note
that the test mapping operation is denoted with' th& symbol):

\

/Definition 8-1. Component Test Mapping is a (1 — n) test mapping relationship
between the following two sets:

(1-n)CTM: SCD_Set -> SCT_Set
where SCD_Set = {elements of SCD specifications, e.g. model artefacts for UML-

based SCD}; SCT_Set = {elements of SCT specifications, e.g. testing-related

)

The CTM definition denotes thahe elemenin SCD_Set may be mapped, and thus cor-

component artefacts for UML-based SCT}.

respond topne or more elemenis SCT_Set for deriving and specifying a particular test &or

specific testing objective. This indicates thatéhare two mapping relationships:

(@ (1 - 1) simple mapping relationship (for n = bne elemenin SCD_Set is mapped, and
thus correspond tane elemenin SCT_Set;

(b) (1 —n) general mapping relationship (for n > &jre elemenin SCD_Set is mapped, and

thus correspond tanultiple elementg SCT_Set.

The CTM technique employs this definition to unife relevant testing activities in the

Chapter 8 Component Test Design and Generation 203

complex process of model-based component test @@weint under a single testing concept.
An important implication from the CTM definition that component test derivation needs to
focus on how to map and transform relevant modsétdest artefacts into useful test case data

for deriving target component test cases.

8.3.2 The Stepwise CTM Process

Furthermore, the CTM technique provides a usefatesyatic mapping process to realise the
above CTM definition for practical component testidation. The CTM process uses a series
of mapping steps for test transformations and coasons in terms of different model-based
test artefacts towards target component test cegpge 8.lillustrates the stepwise CTM proc-
ess and the main mapping steps as well as thatiae$hips. Among the six main CTM steps,
an earlier “TM” step provides certain test struetuiand constructs, based on which a later
“TM” step derives and complements more specifit desa details for generating target compo-

nent test cases.

TM1: Map Scenarios

TM2: Map Sequences

TM3: Map Messages

Map Test
Artefacts

Generate
Test Cases

TM4: Map Operations

TM5: Map Elements

TM6: Map Contracts

Figure 8.1 The Stepwise CTM Process

Test models are constructed to capture adequatartefacts to provide the SCT founda-
tion for component test design and generation. Thll technique refines the process of com-
ponent test derivation from test models, and pmwigractical test transformation strategies on
how to transform model-based test artefacts taatistest cases and then to concrete test cases

for generating target component test cases. Asisied inSection 1.2Section 4.3.5andAp-

204 Chapter 8 Component Test Design and Generation

pendix A the MBSCT methodology employs the XML-based Cd Sgecify and represent tar-
get component test cases. Accordingly, we derivetanget component test cases to become
CTS test case specifications, which are executédrledynamic testing with the testing-

supported software tools developed by the preV&itis project (as described Appendix A).

The test mapping for deriving the above target comept test cases is actually carried
out in the two main technical mapping phases, whigply typically in each individual step in

the CTM process and are outlined as follows:

(1) CTM Phase #1: The test mapping firstly maps out prodluces adequate test artefacts

and test data for deriving component test cases.

(2) CTM Phase #2: Then, these test artefacts/datauatteef mapped to appropriate CTS

constructs and elements to generate the target€st 8ase specifications.

The first phase described above (i.e. CTM Phaseéstidndertaken mainly with the other
MBSCT methodological components in test model coetibn and model-based component
test design (as described earlieCimapter 4o Chapter 7. In this section, our test mapping par-
ticularly focuses on the second phase (i.e. CTMsPHR) in each step in the CTM process. Ac-
cordingly, the CTM technique undertakes mappinghasomponent test generation, which
maps and transforms relevant UML-based test attefaud test contracts to abstract test arte-
facts/data and then generates the target CTSdsstspecifications for UML-based SCT. The
following subsections describe how each step inQf# process works, and use some exam-
ples selected from the CPS case study to illusthegeelevant test mapping details for compo-

nent test generation. The above two mapping plasebe summarised as showrrigure 8.2

Mapping-Based Component TesGeneration

{ model-based test artefacts with UML models }
CTM Phase #1 - { abstract test artefacts/data for target testchse

CTM Phase #2 - {target CTS test case specifications }

Figure 8.2 CTM: Test Mapping Phases

8.3.2.1 TM1: Mapping Scenarios

For component test derivatioBtepTM1 in the CTM process maps and transforms use case
scenarios that capture component behaviour withgaence of interactions and operations for

CIT. This scenario mapping takes place at two evet. the system level and the object level)

Chapter 8 Component Test Design and Generation 205

in the two CTM phases as shownFigure 8.3 Note thatFigure 8.3(a) shows Step TM1 in the
form of diagrammatic illustration arfeigure 8.3(b) shows Step TM1 in the form of tabular il-
lustration. Both illustrations jointly show the eghnt CTM tasks and activities (e.g. sub steps
TM1.1, TM1.2, etc.) in Step TM1. Similar illustratis are used for describing each CTM step
(Step TM1 to Step TM6).

CTM
CTM Phase #1 Phase 2

» »le >

Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec

Derive
system test
scenarios

TML1: Map
System use case
scenarios

M1: Map I/
Scenarios

™M1.2: Map
Use case
scenarios

. ™L3
Derive test Generate
scenarios <TestSet>

(@) TM1: Mapping Scenarios (Diagrammatic lllustration)

TM1: Mapping Scenarios

Phase #1| TM1.1: system use case scenari = system test scenarios

TM1.2: use case scenarios - test scenarios

Phase #2| TM1.3: test scenarios - test setxTestSet>

(b) TM1: Mapping Scenarios (Tabular lllustration)

Figure 8.3 TM1: Mapping Scenarios

(1) TM1.1: system use case scenamdsystem test scenarios

At the system level, a system use case scenarmildes how system events/operations
interact between the actor and the system, whiohbeaillustrated with system sequence dia-
grams in the UCM (Use Case Model) (as describddeear Section 5.3

The test mapping in Step TM1.1 igla— 1) simple mapping relationship, and mapping a
system use case scenario results in a corresporgatgm test scenario, which is realised and
represented with system test events/operationxdmiee and verify system interactions for
system integration testing. The system test sceran be illustrated with system test sequence
diagrams in the UCTM (Use Case Test Model) (asrideesit earlier inSection 5. For exam-
ple, Figure 5.2in Section 5.4.2ised a system test sequence diagram to illughratgystem test
scenario for the CPS TUCL.

206 Chapter 8 Component Test Design and Generation

(2) TM1.2: use case scenarigstest scenarios

A scenario at the system level is further refingd ia scenario at a SCD level subordinate
to the system level, such as at the object analgs&gn or implementation level. This indicates
that the scenario mapping in Step TM1.2 may takegmore than once. At the object level, a
scenario is a use case instance describing ini@nachmong collaborating objects in the inte-
gration context, which can be illustrated with UMequence diagrams in the object model (as
described earlier iBection 5.5.

The test mapping in Step TM1.2 igla— 1) simple mapping relationship, and mapping a
scenario produces a corresponding test scenarimnftertaking CIT. The test scenario captures
a sequence of test messages/operations to examineedfy whether object interactions cor-
rectly fulfil the required functions by integratetjects in the integration context. The test sce-
nario can be illustrated with test sequence diagrianthe object test model (as described earlier
in Section 5.5 For examplefrigure 5.4in Section 5.5.21sed a design test sequence diagram to

illustrate the test scenario for the CPS TUC1 atahject design level.

(3) TM1.3: test scenario® test setsTestSet>

After scenarios are mapped out in CTM Phase #leasritbed above, a test scenario is
further mapped and transformed to a test set (septed with XML elementTestSet>) for
generating the target CTS test case specificalibis element represents the top level of CTS
test sequences under the root elere@mistSpecification> in the CTS test case specification. In
CTM Phase #2, a complex test scenario may be mappmdre than one test set (i.e., that is a
(1 — n) general mapping relationship), which depends ensthe and complexity of the actual
test scenario. For example, the CPS TUCL1 test doecampriseghreesub test scenario&@s
shown earlier irFigure 5.4in Section 5.5.p which can be mapped to the followitlyee test

sets(as shown irFigure 8.4

(@) The first test set mapped for sub test scenarideétribes a set of tests to examine and
verify that the traffic light turns to the expectstdte of TL_GREEN” before the test car
starts entering the PAL, where the relevant CPSabipas are controlled by the device
control component.

(b) The second test set mapped for sub test scenadesg2ibes a set of tests to examine and
verify that the test car correctly proceeds, endeis passes through the PAL entry point,
where the relevant CPS operations are controllethégar control component.

(c) The third test set mapped for sub test scenaride#8ribes a set of tests to examine and
verify that the traffic light turns to the expectstéte of TL_RED” after the test car has
entered the PAL, where the relevant CPS operaaomsontrolled by the device control

component.

Chapter 8 Component Test Design and Generation 207

<Test Speci fi cati on Name="CPS_TUC1_CTS. xni ">
.. <Desc>CTS test case specification for CPS TUCL: car enters PAL</Desc>

.. <Test Set Name="TUCl_Test Set _turnTLt oG een">
...<Desc>Test Set #1:. this test set examines turning traffic light to the state
of "TL_GREEN'</ Desc>
....<l-- the details of the test set are to be mapped out and constructed -->
. </ Test Set >

. <Test Set Nane="TUCl_Test Set _car Ent er PAL" >

...<Desc>Test Set #2: this test set exami nes car entering the PAL entry point</Desc>
....<l-- the details of the test set are to be napped out and constructed -->

. </ Test Set >

. <Test Set Nane="TUCL_Test Set _turnTLt oRed" >
..<Desc>Test Set #3: this test set examines turning traffic light to the state
of "TL_RED'</ Desc>
....<l-- the details of the test set are to be napped out and constructed -->
. </ Test Set >

</ Test Speci fi cati on>

Figure 8.4 TML1: Overall CTS test sets mapped for the CPS TUCL1 test scenario

Note that certain details of test scenarios (eognposite test sequences, test messages
and/or test operations) are further transformedstacted and complemented in conjunction
with relevant subsequent test mapping steps. Acugisd certain CTS element details (e.g.
XML elements<TestGroup>, <TestOperation>) between the XML elementsTestSet> and
</TestSet> for one test set in the CTS test case specificaiie then produced in conjunction
with the relevant subsequent test mapping stepghése test mapping aspects are further de-

scribed in the subsequent Sections 8.3.2.2 t0.8.3.2

8.3.2.2 TM2: Mapping Sequences

The sequence mapping $tep TM2carries out mapping and transforming the sequeoices
teractions into the sequences of logically orde@uposite test artefacts, which are called test
sequences. Test sequences realise and repredesteearios for undertaking CIT, using a se-
guence of test messages/operations to examineeaaiiy whether object interactions correctly
fulfil the required functions by integrated objettighe integration context. A sequence may be
composed of logically ordered system events, atistnessages or executable object operations,
which all realise interactions occurring at differ&CD levels. Accordingly, the sequence map-
ping may take place to derive test sequences farelit mapping levels as shownHkigure 8.5

(a) andFigure 8.5(b). In particular, Step TM2 results in system tgent sequences mapped
from system event sequences, test message sequegoesd from message sequences, and test

operation sequences mapped from operation sequences

208 Chapter 8 Component Test Design and Generation

CTM
CTM Phase #1 Phase 2

Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec

™2.1: Map
system event
sequences

Derive system
test event
sequences

Derive test
message
sequences

™2.2: Map
message
sequences

™2: Map
Sequences

™24

Generate

<TestSet>
™25

Generate

<TestGroup>

™26

Generate

<TestOperation>

Derive test
operation
sequences

TM2.3: Map
operation
sequences

(&) TM2: Mapping Sequences (Diagrammatic Illustration)

TM2: Mapping Sequences

Phase #1| TM2.1: system event sequence > system test event sequences
TM2.2: message sequences -> test message sequences

TM2.3: operation sequences test operation sequences

N

Phase #2| TM2.4: test sequences - test setxTestSet>

TM2.5: test sequences - test groupsTestGroup>
>

TM2.6: test sequences test operationsTestOperation>

(b) TM2: Mapping Sequences (Tabular lllustration)

Figure 8.5 TM2: Mapping Sequences

(1) TM2.1: system event sequencessystem test event sequences

At the system level, a system event sequence esadind represents a system scenario
where the composite system events/operations attarith the system to fulfil certain target
system functions, which can be illustrated withtsgs sequence diagrams in the UCM (as de-

scribed earlier irsection 5.3

Chapter 8 Component Test Design and Generation 209

The test mapping in Step TM2.1 igla— 1) simple mapping relationship, and mapping a
system event sequence produces a correspondimgrsiest event sequence, which represents a
related system test scenario for system integraésting. Similar to system test scenarios, we
can use system test sequence diagrams in the U@3 iescribed earlier Bection 5.4 to cap-
ture a system test event sequence in the relastdnsytest scenario. For examgtegure 5.2in
Section 5.4.2employed a system test sequence diagram to dbestx system test event se-
guence in the system test scenario for the CPS TWlfEdr the sequence is mapped out, we can
describe this system test sequence with a sequirsyestem test events (initially with abstract
textual descriptions) as shownHigure 8.6 Note that Step TM2.1 works in accordance with the
UCTM that treats the entire system under test hlmek-box entity at the system testing level
(as described earlier fBection 5.4 Accordingly, system test contracts are initiaiyded and
applied only at the start and end of this systeshgequence, but not within this system test se-

guence.

..<Test Contract: stopping bar is in the expected state of "SB _DOM'>
..<test car waits for traffic light to turn to the state of "TL_GREEN'>
..<traffic light turns to the state of "TL_GREEN'>

..<test car crosses and passes through the PAL entry point>

..<traffic light turns to the state of "TL_RED'>

..<Test Contract: traffic light is in the expected state of "TL_RED'>

Figure 8.6 TM2.1: System test event sequences
mapped for the CPS TUC1 test scenario

(2) TM2.2: message sequencestest message sequences

A sequence at the system level is further refimeéd & sequence at a SCD level that is
subordinate to the system level, such as at thecbnalysis, design or implementation level.
For example, at the object analysis level, an amlynessage sequence comprises interacting
messages among collaborating objects in the irtiegraontext, and is illustrated with UML
sequence diagrams.

The test mapping in Step TM2.2 igla— 1) simple mapping relationship, and mapping a
message sequence results in a test message setprentegration testing. We can use test se-
quence diagrams in the object test model (as destarlier inSection 5.5 to capture a test
message sequence in the related test scenariexomle, for the above system test event se-
guence as shown frigure 8.6 after the message sequence is further mappeaveutan use a
system test sequence diagram to illusttatee sub test message sequerioeshe CPS TUC1
test scenario. These three sub test sequenceseraalil represent the three corresponding sub
test scenarios, which are mapped out into the ttestesets as describedSection 8.3.2.1Af-

ter the test mapping in Step TM2.2, we can desdtiese three sub test sequences with the

210 Chapter 8 Component Test Design and Generation

three sequences of test messages (initially wistratt textual descriptions) as showrFigure
8.7.

..<0.1 ITC check stopping bar in the expected state of "SB _DOM'>

<Test Sequence #1: turn traffic light to green>

..<1.1 TO wait for stopping bar to | ower down to the state of "SB _DOM'>
..<1.1 ETC: check the event of "SB DOMW' received from stopping bar>
..<1.2 TO turn traffic light to the state of "TL_GREEN'>

.<1.2 ITC check traffic light in the state of "TL_GREEN'>

Test
Set #1

r| .. <Test Sequence #2: test car is to enter the PAL>

..<2.1 TO test car waits for traffic light to turn to the state of "TL_GREEN'>
..<2.1 ETC. check the event of "TL_GREEN' received fromtraffic light>

..<2.2 TO test car crosses PAL entry point controlled by in-photocell sensor>
..<2.3 TO set in-PhotoCell sensor in the state of "IN _PC OCCUPI ED'>

..<2.3 ETC. check in-PhotoCell sensor in the state of "IN_PC OCCUPI ED'>

..<2.4 TO test car crosses over and passes through the PAL entry point>
....<2.5 TO set in-PhotoCell sensor in the state of "IN _PC CLEARED'>

\|<2.5 ETC. check in-PhotoCell sensor in the state of "IN_PC CLEARED'>

Test
Set #2 <

GO wWWNEPRF

<Test Sequence #3: turn traffic light to red>

..<3.1 TO wait for in-PhotoCell sensor to set to the state of "IN_PC CLEARED'>
..<3.1 ETC. check the event of "IN _PC CLEARED' received fromin-PhotoCell sensor>
..<3.2 TO turn traffic light to the state of "TL_RED'>

.<3.2 ITC: check traffic light in the expected state of "TL_RED'>

Test
Set #3

Figure 8.7 TM2.2: test message sequences
mapped for the CPS TUC1 test scenario

(3) TM2.3: operation sequences test operation sequences

At the object design/implementation level, a messagypically represented with one or
more operations that fulfil the message. Accordingh operation sequence comprises interact-
ing operations among collaborating objects in thtegration context, and is illustrated with
UML sequence diagrams in the object model (as destearlier irSection 5.5

The test mapping in Step TM2.3 igla— 1) simple mapping relationship, and mapping
an operation sequence produces a test operatiaerseas for integration testing. We can use
test sequence diagrams in the object test modelgssibed earlier iBection 5.5 to capture a
test operation sequence in the related test scerféaor exampleFigure 5.4in Section 5.5.2
used a design test sequence diagram to illudtrede sub test operation sequentasthe CPS
TUC1 test scenario. These three sub test sequencespond to the three sub test scenarios,
which are mapped out into the three test sets sxyiled inSection 8.3.2.1After the test map-
ping in Step TM2.3, we can describe these thredestisequences with the three sequences of
concrete test operations and associated test cta shown ifrigure 8.8 We can observe
that a major difference between Step TM2.2 and $td@.3 is that the relevant test sequence
has been further transformed and refined, and eanefiresented with the sequence of concrete

test operations and associated test contractem 2.3, rather than with the sequence of test

Chapter 8 Component Test Design and Generation 211

messages (with abstract textual descriptions)ep $M2.2.

..<0.1 ITC checkState(stoppingBar, "SB DOM')>

<Test Sequence #1: turnTrafficLi ght ToG een()>
....<1.1 TO waitEvent (stoppingBar, "SB DOM')>
....<1.1 ETC checkEvent (stoppi ngBar, "SB_DOM")>
....<1.2 TO setGeen()>
...<1.2 ITC checkState(trafficLight, "TL_GREEN')>

Test
Set #1

rl ..<Test Sequence #2: enterAccessLane()>

....<2.1 TO waitEvent(trafficLight, "TL_GREEN')>
....<2.1 ETC. checkEvent(trafficLight, "TL_GREEN')>
Test ..<2.2 TG goTo(gopace-cross-inPC. int)>
Set#2<<2.3 TO occupy()>
....<2.3 ETC. checkState(inPhotoCell, "IN_PC OCCUPIED") >
....<2.4 TO goTo(gopace-crossover-inPC: int)>
....<2.5 TO clear()>
\|<2.5 ETC. checkState(inPhotoCell, "IN PC CLEARED')>
<Test Sequence #3: turnTrafficLi ght ToRed()>
Test<8.1 TG waitEvent(inPhotoCell, "IN _PC CLEARED")>
Set #3 ...<3.1 ETC:. checkEvent (i nPhotoCell, "IN_PC CLEARED") >

...<3.2 TO setRed()>
....<3.2 ITC checkState(trafficLight, "TL_RED')>

Figure 8.8 TM2.3: test operation sequences
mapped for the CPS TUC1 test scenario

In practice, a sequence may cover all messagestopes of the full scenario, or some
messages/operations from a partial scenario. Acagiyd a mapped test sequence may be made
up of any number of different types of test constiits or units, or the same type of test ele-
ments. To deal with these different sequencingsitns, our XML-based CTS provides several
useful structural elements to construct and reptewst sequences at different levels of test
granularity to streamline the structure of CTS tede specifications (as describedsiction
A.2 in Appendix A). After sequences are mapped out in CTM Phases#lescribed above, a
test sequence, which is typically composed of iplgtiest operations and test contracts, needs
to be further mapped and transformed to one ofXR8 structural elements. Accordingly, this
test mapping phase in CTM Phase #2 is requirecet@rgte the hierarchical structure of the
target CTS test case specification. In the follgviub-steps (4) — (6), we show how test se-

guences are mapped to different types of the Cii6tstal elements.

(4) TM2.4: test sequence3 test setsTestSet>

As described irSection 8.3.2.1a test set (represented with XML elememestSet>),
which is typically mapped for a test scenario, espnts a sequence of test messages/operations
from that test scenario. This CTS structural elednmay comprise a sequence of subordinate

CTS structural elements, such as test groups ateooperations.

212 Chapter 8 Component Test Design and Generation

(5) TM2.5: test sequence?® test groupsTestGroup>

A test group (represented with XML elemerTiestGroup>) organises certain related test
artefacts together into a special test sequencealelsribed earlier isection 6.5a basic test
group is mapped from a pair made up of a test tiperand its associated test contract to exer-
cise and verify a particular object interactiorOR . Several test operations and their associated
test contracts may be mapped to one test grohpyfwork closely together for the same testing
objective, (e.g. they jointly examine and verifg tkame complex component interaction). The
details of specific test artefacts included inst group are provided with composite test opera-
tions and basic test elements (which are to bédurdiscussed in the subsequent Step TM3 to
Step TM6).

(6) TM2.6: test sequence? test operationsTestOperation>

A test operation (represented with XML elemefiestOperation>) is the lowest level of
the CTS test sequence. Test operations contairfisgegsic test elements and are used to con-
struct relevant test sequences of test groupssoséts. The test mapping of test operations re-
lates to mapping messages/operations, which i tiuther discussed in the subsequent Step
TM3 to Step TM4.

We now illustrate by example how to use the diffiértypes of CTS structural elements
described above to represent test sequences int€3t $ase specifications. Taking the CPS
TUC1 test scenario as an illustrative example dfte test mapping in Step TM2, we can map
out and group relevant test artefacts into a temigthat is included in a test set of the CTS test
case specificatiorfFigure 8.9shows three basic test groups selected from tiee tiest sets of
the CTS test case specification for the CPS TUGt deenario, as described as follows (note
that the details of composite test operations asickiest elements are produced in the subse-

guent test mapping steps):

(a) A basic test groufi.2 TG in the first test set consists of test operafichTO and its as-
sociated test contradt2 ITC, which exercises and examines turning the trdifjict to
the state of TL_GREEN".

(b) Atest grou®.3 TG in the second test set consists of test operatmO, test operation
2.3 TO and its associated test contra@® ETC, which exercises and examines setting the
in-PhotoCell sensor device to the state Ibf ‘PC_OCCUPIED” (i.e. this device senses
that the PAL entry point is occupied by the tesj.ca

(c) A test group3.2 TG in the third test set consists of test operaB@TO and its associ-
ated test contra@.2 ITC, which exercises and examines turning the trdifjict to the
state of TL_RED".

Chapter 8 Component Test Design and Generation 213

.. <Test Set Nanme="TUCl_Test Set _turnTLt oG een">
....<Desc>Test Set #1: this test set examines turning traffic light to the state
of "TL_GREEN'</Desc>

.. <Test G oup Name="set G een_gr oupedt est s">
...... <Desc>1.2 TG grouped tests exanmne turning traffic light to the state
of "TL_GREEN'</ Desc>
...... <Test Operati on Nane="set G een_tests">
........ <Desc>1.2 TGO examine turning traffic light to the state of "TL_GREEN'</Desc>

........ <Test Met hod Nane="setGeen">
.......... <Desc>1.2 TQ turn traffic light to the state of "TL_GREEN'</Desc>
.......... <l-- the details of the test operation/nmethod are to be mapped out

and constructed -->

........ </ Test Met hod>

........ <Test Met hod Nane="checkState">

.......... <Desc>1.2 ITC. check traffic light in the resulted correct state

of "TL_GREEN'</Desc>

.......... <l-- the details of the test operation/nethod are to be mapped out
and constructed -->

........ </ Test Met hod>

...... </ Test Operati on>

....<lTest G oup>

.. </ Test Set >

.. <Test Set Name="TUCl_Test Set _car Ent er PAL" >
....<Desc>Test Set #2: this test set exami nes car entering the PAL entry point</Desc>

....<Test G oup Nane="occupy_groupedtests">
...... <Desc>2.3 TG grouped tests exam ne setting in-PhotoCell sensor in
the state of "IN_PC _OCCUPI ED'</ Desc>
...... <Test Operati on Nane="goTo_tests">
........ <Desc>2.2 TO exanmi ne the test car crossing the PAL entry point</Desc>
........ <Test Met hod Nanme="goTo">
.......... <Desc>2.2 TO the test car crosses the PAL entry point controlled by
i n- Phot oCel I sensor </ Desc>
.......... <l-- the details of the test operation/nmethod are to be mapped out
and constructed -->
........ </ Test Met hod>
...... </ Test Operati on>
...... <Test Operati on Nanme="occupy_tests">
........ <Desc>2.3 TO exam ne setting in-PhotoCell sensor to the state
of "I N_PC_OCCUPI ED' </ Desc>
........ <Test Met hod Nane="occupy">
.......... <Desc>2.3 TG set in-PhotoCell sensor in the state
of "I N_PC_OCCUPI ED' </ Desc>
.......... <l-- the details of the test operation/nethod are to be mapped out
and constructed -->
........ </ Test Met hod>
........ <Test Met hod Nane="checkState">
.......... <Desc>2. 3 ETC. check in-PhotoCell sensor in the resulted correct
state of "I N_PC OCCUPI ED'</ Desc>
.......... <l-- the details of the test operation/nethod are to be mapped out
and constructed -->
........ </ Test Met hod>
...... </ Test Operati on>
.. </ Test G oup>

.. </ Test Set >
.. <Test Set Nane="TUCl_Test Set _turnTLt oRed" >

..<Desc>Test Set #3: this test set examines turning traffic light to the state
of "TL_RED'</ Desc>

214 Chapter 8 Component Test Design and Generation

.. <Test G oup Nanme="set Red_groupedtests">
...... <Desc>3.2 TG grouped tests examne turning traffic light to the state
of "TL_RED'</ Desc>
...... <Test Operati on Nanme="set Red_tests">
........ <Desc>3.2 TO examine turning traffic light to the state of "TL_RED'</Desc>

........ <Test Met hod Name="setRed">
.......... <Desc>3.2 TO turn traffic light to the state of "TL_RED'</Desc>
.......... <l-- the details of the test operation/nmethod are to be mapped out

and constructed -->

........ </ Test Met hod>

........ <Test Met hod Nanme="checkState">

.......... <Desc>3.2 ITC. check traffic light in the resulted correct state

of "TL_RED'</ Desc>

.......... <I-- the details of the test operation/nmethod are to be mapped out
and constructed -->

........ </ Test Met hod>

...... </ Test Qper ati on>

.. </ Test G oup>

.. </ Test Set >

Figure 8.9 TM2: CTS test sequences (test sets/groups/operations)
mapped for the CPS TUC1 test scenario

8.3.2.3 TM3: Mapping Messages

StepTM3 maps and transforms interacting messages intartessages to exercise and verify
interactions for CIT. Messages may occur in thenfaf system events, abstract messages, or
object operations, and the last form of messagesoi® useful for realising executable mes-
sages. Accordingly, the message mapping may takee b derive test messages at different
mapping levels as shown Fgure 8.10(a) andFigure 8.10(b). In particular, Step TM3 results

in system test messages mapped from system interanessages, component test messages
mapped from component interaction messages, arattotgst messages mapped from object

interaction messages.

(1) TM3.1: system interaction messagessystem test messages

At the system level, a system interaction messageesents and fulfils a system interac-
tion as part of a system scenario/sequence. Ma@ps8ygtem interaction message produces one
or more corresponding system test messages asopdhe mapped system test scenario

/sequence.

(2) TM3.2: component interaction messagesomponent test messages

At the component level, a component interactionsags represents and fulfils a compo-
nent interaction as part of a component scenagofsece. Mapping a component interaction
message produces one or more corresponding conipmstmessages as part of the mapped

component test scenario/sequence.

Chapter 8 Component Test Design and Generation 215

(3) TMB3.3: object interaction messagesobject test messages
At the object level, an object interaction messagresents and fulfils an object interac-
tion as part of an object scenario/sequence. Mapgobject interaction message produces one

or more corresponding object test messages asfihie mapped object test scenario/sequence.

CTM
CTM Phase #1 Phase 2
Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec

T™3.1: Map
system
interaction
messages

Derive
system test
messages

T™3.2: Map Derive ™34
TM3: Map component component Generate
Messages interaction test <TestGroup>
kmessages messages

™3.3: Map
object

interaction

messages

Derive
object test
messages

™35
Generate
<TestOperation>

(&) TM3: Mapping Messages (Diagrammatic lllustration)

TM3: Mapping Messages

Phase #1| TM3.1: system interaction messages -> system test messages
TM3.2: component interaction messac = component test messages

TM3.3: object interaction messages > object test messages

Phase #2; TM3.4: test messages - test groupsTestGroup>
TM3.5: test messages - test operations
<TestOperation>

(b) TM3: Mapping Messages (Tabular lllustration)

Figure 8.10 TM3: Mapping Messages

With UML modeling, a message is a specificatiorma@ommunication or interaction be-
tween participating objects, which conveys collaton information with certain expected ac-
tivity. A message sent from one object A (called thessage’s sender object) usually invokes

the execution of an operation on another objeatdlldd the message’s receiver object); and if

216 Chapter 8 Component Test Design and Generation

applicable, the operation execution on object B meyrn some value as a response to the op-
eration-invocation request made by object A (alalbed the operation’s caller or invocator).
The class operation, which realises its correspanliteraction message, is statically defined in
the UML class diagram and is dynamically instaetiain the UML interaction diagram (e.qg.
UML sequence diagram). The dynamic information eisgéed with the interaction message
usually includes the actual values bound to theadjma parameters, and if applicable, the ac-
tual result returned from the operation executiBnch dynamic information and binding
mechanisms are useful for mapping and constructmgesponding test messages to examine
and verify how the class operation realises therattion message and works collaboratively
with other messages in the corresponding scenagoénce. For examplEigure 8.6shows test
messages in the form of system test events foC#® TUC1 test scenaribigure 8.7shows
test messages in the form of object test messagesatine component/object messages for the
CPS TUCL test scenaribigure 8.8shows test messages in the form of concrete pesations
and associated test contracts to examine compobgtt operations for the CPS TUCL1 test
scenario. These three figures (Fegure 8.6 Figure 8.7andFigure 8.8 actually show the three
main forms of abstract test cases derived fronréfevant model-based test artefacts towards

the target component test cases for the CPS TWsE $¢enario.

After messages are mapped out in CTM Phase #1sasiloled above, a test message, de-
pending on its complexity, needs to be further nealptm one or more CTS elements to create
the related test sequences, which is undertak@ThM Phases #2 as described below. Figure

8.9 shows some relevant mapping examples selectedtfie CPS TUCL1 test scenario.

(4) TM3.4: test message? test groupsTestGroup>
A complex test message is mapped to a test grbap ¢ontains a number of test opera-
tions), which examines and verifies the test mesg¢ag. test group.2 TG, test grou®.3 TG

and test group.2 TG as shown irfFigure 8.9.

(5) TM3.5: test message3 test operationsTestOperation>

A simple test message is mapped to a test operatieramine and verify the test mes-
sage (e.g. test operatiar2 TO, test operatioR.2 TO, test operatio2.3 TO and test operation
3.2 TO as shown irrigure 8.9. Test operations mapped from component/classatipas are a

crucial focus of component test mapping, whichuihfer discussed in the next subsection.

8.3.2.4 TM4: Mapping Operations

Step TMd4is an essential and most useful test mappingistépe CTM process. An operation

usually represents and realises a function or bebeal responsibility of a software module

Chapter 8 Component Test Design and Generation 217

(e.g. a class or component). The operation mapganges out mapping and transforming func-
tional operations to test operations to exercise \&@rify whether a particular operation cor-

rectly fulfils its target function. Operations magcur at different SCD levels, named as system
operations, component operations, object operatimnspecific class constructors or methods.
Accordingly, the operation mapping may take placeldérive test operations at different map-
ping levels as shown iRigure 8.11(a) andFigure 8.11(b). In particular, Step TM4 results in

system test operations mapped from system opesattomponent test operations mapped from
component operations, object test operations mafrped object operations, and specific con-

structor test operations mapped from class constsior specific method test operations

mapped from class methods.

(1) TMA4.1: system operation® system test operations
At the system level, a system operation represamddulfils the full, or a partial, system
function. Mapping a system operation may produce @anmore corresponding system test op-

erations to verify the related system function.

CT™M
CTM Phase #1 Phase 2
Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec
TM4.L: Map Derive TM4.4
system system test Generate
operations operations <TestGroup>

. Derive
TH4: Mep TUA.2: Map component
Operations component =
operations i
operations

TM4.5
Generate

<TestOperation>

Derive
object test
operations

™4.3: Map
object
operations

Derive
constructor
test
operations

Generate
<TestConstructor>

Derive
method test
operations

Generate
<TestMethod>

operations

(@) TM4: Mapping Operations (Diagrammatic lllustration)

218 Chapter 8 Component Test Design and Generation

TM4: Mapping Operations

Phase #1:| TM4.1: system operations system test operations

TM4.2: component operations component test operations
TM4.3: object operations object test operations
TM4.3.1: class operations constructor test operations

TM4.3.2: class operations method test operations

Phase #2:| TM4.4: test operations test groupsTestGroup>

N 20 2 IR 2N N ZN N 2

TM4.5: test operations test operations

<TestOperation>

TM4.6.1: constructor test operation: - atomic test operations
<TestConstructor>

TM4.6.2: method test operations - atomic test operations
<TestMethod>

(b) TM4: Mapping Operations (Tabular lllustration)

Figure 8.11 TM4: Mapping Operations

(2) TMA4.2: component operatior® component test operations
At the component level, a component operation sspres and fulfils the full, or a partial,
component function. Mapping a component operatiay produce one or more corresponding

component test operations to verify the relatedgmmant function.

(3) TMA4.3: object operation® object test operations
At the object level, an object operation represanis fulfils the full, or a partial, object
function. Mapping an object operation may produee or more corresponding object test op-

erations to verify the related object function.

Usually, an object operation is an instance ofdteesponding class operation. Accord-
ingly, at the class level, a class operation é.elass constructor or class method) represents and
fulfils the full, or a partial, class function imgshented with the class. Mapping a class operation
may produce one or more corresponding class tesabpns to verify the related class function,

which is described as follows:

(3.1) TM4.3.1: class constructor® constructor test operations
Mapping a class constructor may produce a singleesponding constructor test opera-

tion.

Chapter 8 Component Test Design and Generation 219

(3.2) TM4.3.2: class method® method test operations
Mapping a class method may produce one or moregoonding method test operations,

depending on the complexity of the class methodutebt.

In practice, how Step TM4 works to produce eacte tgptest operation depends on the
types (e.g. operation level) and complexity of tpeerations under test. After operations are
mapped out in CTM Phase #1 as described abovet ageration needs to be further mapped to
one or more CTS atomic test operations and theocated elements to produce the target CTS
test case specification. Following the defined Ciiglationship, we need to consider the follow-

ing mapping cases in CTM Phase #2:

(@) (1-1) simple mapping relationship

One operation i8CD_Set is mapped and corresponds to one atomic test tipelaep-
resented with XML elementTestMethod> or <TestConstructor>) in SCT_Set. In this case,
one operation is examined with a test specifieth wite CTS test operation element. This case
often occurs when the operation under test is alsiwbject operation (e.g. a class method). For
example in the CPS TUCL1 test scenario, after Siég.3.2 and Step TM4.6.2 are carried out,
atomic test operatio@.2 TO <TestMethod> (as shown irFigure 8.12 examines class/object

operationgoTo() for car moving.

(b) (1 —n) general mapping relationship

One operation iBCD_Set is mapped and corresponds to several atomic pesations
(represented with XML elemenrtTestMethod> or <TestConstructor>) in SCT_Set. In this
case, one operation is examined with several s=tsified with several CTS test elements.
These generated tests are then structured andisedanto certain test sequences made up of
related structural elememtS estGroup> or <TestOperation> as necessary. This case may oc-
cur when the operation under test is a complex oompt operation or integration interaction.
For example, after Step TM4.2 and Step TM4.4 areezhout, test group.3 TG <TestGroup>
(as shown inFigure 8.12 is generated and composed of three atomic temtatpns, which
jointly exercise and examine the composite opemétiat the in-PhotoCell sensor device senses
that the PAL entry point is occupied by the testr @nd is set to the state of
“IN_PC_OCCUPIED".

(4) TMA4.4: test operation® test groupsTestGroup>
In accordance with th@ — n) general mapping relationship, a test operationapped to
a CTS test elementTestGroup>, which may further enclose several basic CTSdkshents,

such as atomic test operations.

220 Chapter 8 Component Test Design and Generation

.. <Test Set Nanme="TUCl_Test Set _car Ent er PAL" >
....<Desc>Test Set #2: this test set exanmines car entering the PAL entry point </Desc>

....<Test G oup Nane="occupy_groupedtests">
...... <Desc>2.3 TG grouped tests exam ne setting in-PhotoCell sensor in
the state of "I N_PC_OCCUPI ED'</ Desc>
...... <Test Operati on Nanme="goTo_tests">
........ <Desc>2.2 TO examne the test car crossing the PAL entry point</Desc>
........ <Test Met hod Nanme="goTo" Target="testCar">
.......... <Desc>2.2 TO the test car crosses the PAL entry point controlled by
i n- Phot oCel | sensor </ Desc>
.......... <Arg Name="gopace" Source="gopace-cross-i nPC' DataType="int" />
........ </ Test Met hod>
...... </ Test Oper ati on>
...... <Test Operati on Name="occupy_tests">
........ <Desc>2.3 TO exanmine setting in-PhotoCell sensor in the state
of "I N_PC_OCCUPI ED' </ Desc>
........ <Test Met hod Name="occupy" Target="i nPhot oCel | ">
.......... <Desc>2.3 TO set in-PhotoCell sensor in the state
of "I N_PC_OCCUPI ED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Target="i nPhotoCel | ">
.......... <Desc>2.3 ETC. check in-PhotoCell sensor in the resulted correct
state of "I N_PC_OCCUPI ED'</ Desc>
.......... <Arg Name="abservabl e" Source="i nPhotoCel | "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aState" Source="IN_PC OCCUPI ED' Dat aType="j ava.l ang. Qbject" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. </ Test Set >

Figure 8.12 TM4: CTS test groups, test operations, test contracts
and basic test elements mapped for the CPS TUCL test scenario

(5) TMA4.5: test operation® test operationsTestOperation>
In accordance with th@ — 1) simple mapping relationship, a test operation épped to
a CTS test elementTestOperation>, which may further enclose one or more basic G3s5 t

elements, such as atomic test operations.

(6.1) TM4.6.1: constructor test operatioffsatomic test operationsTestConstructor>
In accordance with th@ — 1) simple mapping relationship, a constructor testrafon is

mapped to a CTS test elemeftiestConstructor>.

(6.2) TM4.6.2: method test operatiors atomic test operationsTestMethod>
In accordance with thEl — 1) simple mapping relationship, a method test opamait
mapped to a CTS test elemefiestMethod>.

Chapter 8 Component Test Design and Generation 221

8.3.2.5 TM5: Mapping Elements

Elements represent atomic constituents of soft@arfacts. An element often holds some spe-
cific data that may determine the representatiah @artain behaviour or functions of the soft-
ware artefact (e.g. the operation under test). dallyi, such specific element data may corre-
spond to an operation’s identification (operati@me), actual parameter values (acting as test
inputs), and/or expected return results (acting>xqeected test outputs), which are the lowest-
level test data used for test generation.

StepTM5 is at the lowest level of test mapping in the ren€TM process. This means
that all CTM steps would, in one way or anothegraually reach this final test mapping step in
order to complete the mapping activity and derimalftest data for generating the target com-
ponent test cases. As any level of software atefaay comprise elements that will be useful
for software testing, the element mapping may falleee to derive test elements at different
mapping levels as shown Kigure 8.13(a) andFigure 8.13(b). Specifically, Step TM5 may
produce system test elements mapped from systamerte, component test elements mapped
from component elements, object test elements ntbfppe object elements, and operation test

elements mapped from operation elements.

(1) TM5.1: system element® system test elements

At the system level, system elements are basictibomsts to compose (part of) system
artefacts, such as system scenarios, system segieystem events/operations, system con-
tracts, etc. Mapping a system element may prodneeoo more system test elements to exam-
ine and verify the related system artefact.

System test elements are basic test constituersngtruct (part of) a particular system

test artefact, which works in the following ways:

(a) A system test event/operation is composed of omeore mapped test elements.

(b) A system test contract is composed of one or meletad special test operations, which
are further composed of the mapped test elements.

(c) A system test sequence is composed of one or noonpasite test operations and associ-
ated test contracts, which are further composéddeomapped test elements.

(d) A system test scenario is composed of one or nadated test sequences and test opera-

tions/contracts, which are further composed ofrtia@ped test elements.

(2) TMb5.2: component element® component test elements

At the component level, component elements areclwasistituents to compose (part of)
component artefacts, such as component scenanioganent messages/operations, component
contracts, etc. Mapping a component element maglyme® one or more component test ele-

ments to examine and verify the related componeetaat.

222 Chapter 8 Component Test Design and Generation

Component test elements are basic test constituentenstruct (part of) a particular

component test artefact, which works in the follogvivays:

(@) A component test operation is composed of one semmpped test elements.

(b) A component test contract is composed of one oremmelated special test operations,
which are further composed of the mapped test elesne

(c) A component test scenario is composed of one oemelated test sequences and test

operations/contracts, which are further composatiemapped test elements.

CT™M
CTM Phase #1 Phase 2
Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec

TM5.1: Map
system
elements

Derive
system test
elements

Derive
component
test
elements

T™5.2: Map
component
elements

TM5.6.2

Generate
<ResuIt>'s
sub-element
<Exp>

. T™5.3: Map Derive
E‘fs' sz object object test
Enisr elements elements

M5.4: Map Derive
operation operation test

elements elements

Generate
<TestMethod>'s
attribute <Name>

Derive test
operation's
name

TM5.4.1: Map
operation's
name

TM5.4.2: Map Derive test : Gveﬂfqatg ,
operation's operation's S esbt Ie od>'s
parameter list parameter list sub-glement

<Arg>

Generate
<Result>’s
attribute
<DataType>

Derive test
operation’s
refum type

T™5.4.3: Map
operation's
refum type

(@) TM5: Mapping Elements (Diagrammatic lllustration)

Chapter 8 Component Test Design and Generation 223

TM5: Mapping Elements

Phase #1] TM5.1: system elements system test elements

TM5.2: component elements component test elements
TM5.3: object elements object test elements
TM5.4: operation elements operation test elements

TM5.4.1: operation’s name test operation’s name

—

TM5.4.2: operation’s parameter lis test operation’s parameter lis

TM5.4.3: operation’s return type test operation’s return type

vViv v v v Vv VY

<TestMethod>'s attributes
and sub-elements

Phase #2] TM5.5: test operation elements

TM5.5.1 test operation’s name - <TestMethod>'s attribute

<Name>
TM5.5.2 test operation’s - <TestMethod>s
parameter list sub-elementArg>

TM5.6: test operation elements > <Result>’s attributes and
sub-elements

TM5.6.1: test operation’s - <Result>’s attribute
return type <DataType>

TM5.6.2: test operation’s expectec - <Result>’s sub-element
return result <Exp>

(b) TM5: Mapping Elements (Tabular Illustration)

Figure 8.13 TM5: Mapping Elements

(3) TM5.3: object elements> object test elements

At the object level, object elements are basic tituents to compose (part of) object arte-
facts, such as object variables (state/event) cobjeerations, object contracts, etc. Mapping an
object element may produce one or more objectelestents to examine and verify the related
object artefact.

Object test elements are basic test constituentsrstruct (part of) a particular object

test artefact, which works in the following ways:

(@) An object test state/event is composed of one oem@pped test elements.

(b) An object test operation is composed of one or muapped test elements.

224 Chapter 8 Component Test Design and Generation

(c) An object test contract is composed of one or melaed special test operations, which

are further composed of the mapped test elements.

(4) TMb5.4: operation element® operation test elements

At the operation level, operation elements are aauonstituents to compose a specific
operation. Mapping an operation element may pro@mceperation test element to examine and
verify the operation under test.

Operation test elements are atomic test constguertonstruct basic test data, which are

further used to produce the corresponding testatiperfor verifying the operation under test.

(4.1) TM5.4.1: operation’s name test operation’s name

The element for the operation’s name is mappelddadst operation’s name.

(4.2) TM5.4.2: operation’s parameter list test operation’s parameter list

The element for the operation’s parameter listagpped to the test operation’s parameter
list. The test mapping should maintain the logisalguential order of parameters in the list, so
that each actual parameter value is correctly bdarits corresponding formal parameter for

dynamic testing.

(4.3) TM5.4.3: operation’s return type test operation’s return type

The element for the operation’s return type is neabip the test operation’s return type.
An operation may have the explicit return type witemeeds to return an actual execution re-
sult, or has no return value when its return typddfined asoid. Checking return type is part

of the verification of the result of the operatis@xecution.

Operation test elements are at the lowest levétgifartefacts that are used as basic test
data to construct certain useful test cases. Thasnsithat all sub-steps of the element mapping
eventually arrive at Step TM5.4 (i.e. mapping ofileraelements as described in (4) above) so
as to complete the mapping activity and derivelfieat data for generating target component
test cases. After operation elements are mappeih @IEM Phase #1 as described above, a test
element needs to be further mapped to one or nastituents of a specific XML-based CTS
element (especially to the atomic test operati@meht<TestMethod> and associated sub-
elements), in order to generate the target CTS#sst specification. This is undertaken in CTM
Phases #2 as described beldwgure 8.12shows some relevant mapping examples selected
from the CPS TUC1 test scenario.

(5) TMb5.5: test operation elements <TestMethod>'s attributes and sub-elements
The mapped elements for a test operation are funia@ped to the attributes and sub-

elements of the atomic test operation elers@istMethod> in the target CTS test case specifi-

Chapter 8 Component Test Design and Generation 225

cation.

(5.1) TM5.5.1: test operation’s nam# <TestMethod>'s attribute<Name>
The test operation’s name is mapped to the at&ikttame> of the <TestMethod>

element.

(5.2) TM5.5.2: test operation’s parameter l3t<TestMethod>'s sub-elementArg>

The test operation’s parameter list is mapped te $b-element<Arg> of the
<TestMethod> element. Each parameter in the parameter listapped to one sub-element
<Arg>. All <Arg> sub-elements are mapped and arranged in accordéthcihe same sequence

of the corresponding parameters in the parameter li

(6) TM5.6: test operation elements <Result>'s attributes and sub-elements

Verifying operations are required to check the alcéxecution result and compare it with
the expected result. This testing is specified @nmtlucted with th&Result> element’s attrib-
utes and sub-elements. Note that #Result> element is a sub-element of CTS elements

<TestMethod> and<TestConstructor>.

(6.1) TM5.6.1: test operation’s return typ® <Result>’s attribute<DataType>
The test operation’s return type is mapped to ttribate <DataType> of the <Result>
element. When the attributsSave> of the<Result> element is set toY”, the actual returned

value is recorded for test evaluation.

(6.2) TM5.6.2: test operation’s expected return resukResult>'s sub-elementExp>
The sub-elementExp> of the <Result> element is used to record and specify the ex-
pected return result of the test operation. Thippiay is assisted with test contracts that are

constructed and applied to the operation under test

8.3.2.6 TM6: Mapping Contracts

The contract mapping iBtepTM6 maps and transforms contract artefacts to tedtaxts and
then to test operations. This fulfils the final SELCS in the TbC advanced phase of the step-
wise TbC working process (as shown earliefFigure 6.). With the TbC technique (as de-
scribed earlier irChapter GandChapter ¥, test contracts are identified and constructedess
essary test constraints to examine and verify ¢tetad software artefacts for component cor-
rectness. Test contracts are typically realisedrapdesented with special assertion-based test
operations. Since contract artefacts may occurifigrent SCD levels, the contract mapping
may also take place to derive test contracts &rdifit mapping levels shown kigure 8.14(a)

and Figure 8.14(b). Accordingly, Step TM6 results in system teshtracts, component test

226 Chapter 8 Component Test Design and Generation

contracts, object test contracts, and operatidrcte¥racts.

CT™M
CTM Phase #1 Phase 2
Test Mapping Use-Case Model Use-Case Test Model Object Model Object Test Model Test Case Spec

T™6.1: Map
system
contracts

Derive

TM6.5
Generate
system test <TestGroup>
contracts
Derive l TME.6

T™6.2: Map
component component Generate
i test <TestOperation>

; Derive M6.7
TMG?. o i Generate
object object test
<TestMethod>

contracts contracts

contracts
contracts
Derive

operation
test
contracts

T™6: Map
Contracts

T™6.4: Map
operation
contracts

(@) TM6: Mapping Contracts (Diagrammatic lllustration)

TMG6: Mapping Contracts

Phase #1:| TM6.1: system contracts - system test contracts
TM6.2: component contracts = component test contracts
TM6.3: object contracts - object test contracts

TM6.4: operation contracts —> operation test contracts

Phase #2:| TM6.5: test contracts - test groupsTestGroup>

TM6.6: test contracts - test operationsTestOperation>
TM6.7: test contracts >

atomic test operationsTestMethod>

(b) TM6: Mapping Contracts (Tabular lllustration)

Figure 8.14 TM6: Mapping Contracts

(1) TM6.1: system contract® system test contracts
At the system level, a system contract may be epgh the system-level artefact under

test, such as a system scenario, event, messagg@tion. Mapping a system contract may

Chapter 8 Component Test Design and Generation 227

produce one or more system test contracts to vereyelated system artefact.

(2) TM6.2: component contract® component test contracts
At the component level, a system contract may Ipdieghto the component-level artefact
under test, such as a component scenario, messageration. Mapping a component contract

may produce one or more component test contractsrify the related component artefact.

(3) TM6.3: object contract® object test contracts
At the object level, an object contract may be iobto the object-level artefact under
test, such as an object message or operation. K@@ object contract may produce one or

more object test contracts to verify the relatejgctartefact.

(4) TM6.4: operation contract® operation test contracts
At the operation level, an operation contract mayabplied to the operation under test.
Mapping an operation contract may produce one aerperation test contracts to verify the

related operation.

Realised with special test operations, test cotgmnaay be additional to the original CUT
and are added to constitute relevant test clasmbdest artefacts. Accordingly, after contracts
are mapped out in CTM Phase #1 as described ahdgst contract, depending on its complex-
ity, needs to be further mapped to one or moredggstations. Following the defined CTM rela-

tionship, we need to consider the following mappiages in CTM Phase #2:

(@) (1-1) simple mapping relationship

One test contract is mapped and corresponds taatumic test operation (represented
with XML element<TestMethod> or <TestConstructor>) in SCT_Set. This case often occurs
when the test contract is realised and represemithda simple test operation. For example, af-
ter we conduct Step TM4.6.4 and Step TM6.7, atorr@st operation<TestMethod
Name="checkState” ...> (as shown irFigure 8.12 represents test contr&zB8 ETC being di-
rected to examine the in-PhotoCell sensor device the expected state of
“IN_PC_OCCUPIED". The test contract also requires checking the@agd<Result> of the
test operatiorTestMethod> to detect whether the related state is correekpected (as shown
in Figure 8.12.

(b) (1 —n) general mapping relationship

One test contract is mapped and corresponds toateatomic test operations (repre-
sented with XML elementTestMethod> or <TestConstructor>) in SCT_Set. In this case, one
test contract is realised and represented withraktests specified with several test elements.

These generated tests are then structured andisedanto certain test sequences made up of

228 Chapter 8 Component Test Design and Generation

related structural elememntestOperation> or <TestGroup> as necessary. This case may oc-
cur when the operation under test causes changesliiple states, or the corresponding object
interaction involves the communication of multigheents. In these situations, multiple test op-
erations are needed to realise and specify a cangde contract in order to examine and verify
a complex operation or object interaction, as tiated with Steps TM6.2 to TM6.5/TM6.6 in
Figure 8.14(a) andrigure 8.14(b).

(5) TMG6.5: test contract® test groupsTestGroup>

In accordance with thél — n) general mapping relationship, a test contractclvhs
realised and represented with several test opemtie mapped to a CTS test element
<TestGroup>, which may further enclose several basic CTSdkshents, such as atomic test

operations.

(6) TM6.6: test contract® test operationsTestOperation>

In accordance with thél — 1) simple mapping relationship, a test contract, Whic
realised and represented with a simple test operais mapped to a CTS test element
<TestOperation>, which may further enclose one or more basic Cd$$ ¢élements, such as

atomic test operations

(7) TMG6.7: test contract® atomic test operationslestMethod>

In accordance with th@ — 1) simple mapping relationship, a test contract, widcreal-
ised and represented with a simple test operatsomapped to a CTS atomic test operation
<TestMethod>.

8.3.3 Setting and Applying CTM Ciriteria

A proven test derivation with any testing technig®uld conform to certain testing rules or
criteria that are able to not only carry out bugoategulate component test derivation for the
purposes of testing correctness and effectivedas®nsure the test mapping correctness and
guality, we develop certain CTM criteria for effiset test mapping and transformation to derive
target component test cases. We focus on idergifgimd designing two main types of CTM

criteria: CTM correctness criteria and CTM optimgicriteria.

8.3.3.1 CTM Correctness Criteria

The CTM correctness criteria focus on dynamic ngstules, and aim to ensure that component
test cases are correctly derived with the CTM taglen One important issue is about test se-
guences, which organise and structure test argeféibie sequencing logic is a central focus of

sequence mapping because it describes the workirnggure and logic of related test artefacts.

Chapter 8 Component Test Design and Generation 229

At this point, it is useful to be reminded that sdiftware programs on a single processor are
executed sequentially, no matter how they are dedigind tested. This sequencing execution
characteristic is also expressed with UML modeliwhich is used for both SCD and SCT in
our MBSCT methodology), where UML sequence diagraesrly illustrate how logically
time-ordering interactions (messages/operationsk Wwetween participating objects in scenar-
ios for CIT. Therefore, to ensure the sequence mgpgmrrectness, we introduce and define a

useful CTM correctness criterion as follows:

(-)

CTM Correctness Criteria : sequence consistency matching criterion
The sequence of test messages/operations that contain test elements for
constructing component test cases should consistently match (e.g. in the same

sequential logical order) the sequence of corresponding interacting messages

Based on this CTM criterion, when some individwesting-related software artefacts are

/operations that are used as the basis to derive the test messages/operations.

_

mapped and transformed to become test artefaetdogfic of sequencing order should remain
unchanged, that is, the sequencing logic of thesexguence in the SCT context should be con-
sistent with the sequencing logic of the correspananessage/operation sequence in the SCD
context. Any mismatch may change the sequencing kgd lead to incompatible or incorrect
test derivation, which may contradict test requieats and/or the functional logic of the CUT.
Test contracts that are constructed and addeddstsequences are also required to be consis-
tent in following the relevant sequencing logicr lexample, test group.3 TG as shown in
Figure 8.12s a test sequence composed of (i) test operatmO, and (ii) test operatiod.3

TO. This test sequence matches with the sequentat as illustrated with the related sequence
diagram inFigure 5.4in Section 5.5Test contrack.3 ETC is constructed and added into this
test sequence, whose consistent sequence ordentains unchanged.

The CTM correctness criteria described above canslee as a type of test correctness
checking mechanism to examine the relevant rulesoostraints applying to test mapping and
transformation. Checking test mapping correctnesglires conformance to mapping consis-
tency, compliance and compatibility for correct wsrivation. During the CTM process, apply-
ing the CTM correctness criteria could uncover taapping problems, and identify possible
adjustments needed to regulate the test derivatiotess. If this occurs, this situation indicates
that the prior test design may contain some defacis test improvement is required to prevent
incorrect test cases being derived. This is a Ugedy that the CTM correctness criteria can aid
in identifying test design problems to ensure teapping correctness for effective test deriva-

tion.

230 Chapter 8 Component Test Design and Generation

8.3.3.2 CTM Optimising Criteria

The CTM optimising criteria focus on static testangd structural rules, and aim to optimise the
test mapping and derivation to achieve betterdfettiveness. We introduce and define a use-

ful CTM optimising criterion as follows:

/CTM Optimising Criteria : sequence formatting/struct uring criterion \
Test messages/operations and underlying test elements can be structured and

optimised to maintain the consistent hierarchical structure and format (e.g. recursive,

nested indentation rules at the same logical level) of corresponding interacting

messages/operations that occur over time in related sequence diagrams and/or

kproqrams for the CUT. /

The consistent and uniform structure between teefazts and component/model arte-
facts can aid in producing a well-formed structanel format of the target CTS test case speci-
fication. A consistent structure also indicated tiedated test operations work closely together
for a specific common testing objective and thus lba organised in the same structured test
sequence at the same level. For example, a colteofi consecutive test operationsFigure
8.12 jointly work to achieve a common testing objectiegamining the composite operation
that the in-PhotoCell sensor device senses tha®P#&ileentry point is occupied by the test car
and is set to the state dN' PC_OCCUPIED". So these test operations and associated test con
tracts are organised into the same structuredytesip. In addition, following this CTM crite-
rion, we use leading dot points positioned befaeheline inFigure 8.12to highlight certain
appropriate structural indentations among the diffe CTS elements, which emphasises the

hierarchical format of the target CTS test caseifipation.

8.4 Deriving CTS Test Case Specifications

As described irBection 8.2andSection 8.3based on test artefacts using UML-based test mod-
els and model-based component test design witiiB8CT methodology as shown earlier in
Chapter 5and Chapter §we are able to apply the CTM technique to detarget component
test cases. Taking the CPS TUCL1 test scenario élisistrative example, the following descrip-
tion summarises how the target CTS test case sm@h was generated with the MBSCT
methodology:

Chapter 8 Component Test Design and Generation 231

(1) Figure 5.2showed the developed use case test model andrsietescenario.

(2) Figure 5.4showed the developed design object test modesandest scenarios.

(3) Figure 6.3showed the developed overall test sequence witipoaent test design.

(4) Figure 6.4andFigure 6.5showed the structured test sequences and tegiggimeompo-
nent test design.

(5) Table 6.3showed all developed test artefacts with compotesitdesign, including test
sequences, test groups, test operations, testctsand test states.

(6) Figure 8.6showed the derived abstract test cases in the dbime sequences of system
test events.

(7) Figure 8.7showed the derived abstract test cases in the dértine sequences of object
test messages.

(8) Figure 8.8showed the derived abstract test cases in the dbtite sequences of concrete
test operations and associated test contracts.

(9) Figure 8.4showed the derived overall CTS test sets.

(10) Figure 8.9showed the derived CTS test sequences (testreeigsgjoperations).

(11) Figure 8.12showed the derived CTS test groups, test opesttest contracts and basic

test elements.

Finally, we are able to obtain the full target C{ESt case specification generated for the

CPS TUC1 test scenario, which is showifrigure B.5in Appendix B

8.5 Summary and Discussion

This chapter has introduced the CTM technique agva mapping-based test derivation ap-
proach and applied it to derive target componesttdases in the second phase of the MBSCT
framework. We introduced the CTM definition as afied testing concept for each of the steps
of test mapping and transformations that are engaldyy the CTM technique for model-based
component test derivation. We developed the step®@iBEM process with a series of mapping
steps to provide practical test transformationtsti@s and guidance on how to transform
model-based test artefacts into abstract test Gasdso generate target component test cases.
We also developed the useful CTM criteria to engast mapping correctness, effectiveness
and quality. At the same time, we showed how tdyafipe CTM technique to component test
derivation with the CPS case study. The illustexamples have demonstrated that, based on
test artefacts with UML-based test models and mbdsed component test design with the
MBSCT methodology, the CTM technique is capablgaferating target component test cases,

such as CTS test case specifications. Therefdeechiapter has demonstrated and validated the

232 Chapter 8 Component Test Design and Generation

MBSCT testing applicability and capability partiadl for component test design and genera-
tion (which is the core MBSCT testing capability #2 described iGection 4.5 This is a ma-
jor contribution of the CTM technique.

The MBSCT methodology presented in the previoupiera Chapter 4to Chapter Y
has showed that our method of component test dewelot holds the five technical characteris-
tics; that is, component test development is mbdskd, process-based, scenario-based, con-
tract-based and FDD-based. The CTM technique preden this chapter further enhances our
method of component test development, enabling tiave the sixth technical characteristic;
that is, component test development is also mapipasgd. This is a major feature of the CTM

technique.

After showing the MBSCT methodology and its framekvim Chapter 4o Chapter 8we

will undertake more comprehensive methodology aiah and evaluation i€@hapter 9

Chapter 9 Methodology Validation and Evaluation 233

Chapter 9
Methodology Validation and Evaluation

9.1 Introduction

A software testing approach needs to be properliatad and evaluated before it can be
adopted in the testing practice. The previous @rapdf this thesisGhapter 4to Chapter $
have presented the MBSCT methodology and its frasrieweveloped by this research. At the
same time, many illustrative examples have beed ttsdemonstrate how to apply the MBSCT
methodology and its framework to undertake UML-lBSET, particularly test model construc-
tion, model-based component test design and gémeraind component fault detection, diag-
nosis and localisation. Based on this, this chagpecifically undertakes further methodology
validation by evaluating the MBSCT testing capaileli with more comprehensive case studies.
This chapter reports a series of two full caseissudndertaken in this resear&ection
9.2 describes an overview of case study design amgh.sgtction 9.3resents the first core case
study, the Car Parking Syste8ection 9.4resents the second major case study, the Autdmate
Teller Machine systenSection 9.5conducts evaluation comparison and discussionsase

studies Section 9.6summarises this chapter.

9.2 Case Study Design

We employ case studies to carry out methodologgaabn and evaluation, because case study
research is known as an effective empirical stuéyhod in software engineeringd] [111]

[79] [12€ [16]]. This section describes an overview of case stlabjgn and setup.

The major objectives of our case studies are tolate and evaluate the six core MBSCT
testing capabilities of principal interest (as diw earlier inSection 4.5. Our objectives are

described as follows:

(1) Evaluating theesting applicabilityof the MBSCT methodology

We carry out case studies to demonstrate and walitlat the MBSCT methodology and
its framework can be practically applied to UML-bd<CIT (Component Integration Testing).
This is measured in terms of primary MBSCT capteédiin the following three aspects:
(@) MBSCT Capability #1: test model construction
(b) MBSCT Capability #2: component test design and giomn
(c) MBSCT Capability #3: component fault detectiongiiasis and localisation

234 Chapter 9 Methodology Validation and Evaluation

(2) Evaluating theestingeffectivenessf the MBSCT methodology

We carry out case studies to validate and evaltleMBSCT testing effectiveness,
which is measured in terms of the following impattIBSCT testing capabilities:
(@) MBSCT Capability #4: adequate test artefact cowerag

We validate and evaluate the MBSCT methodology ithaaipable of achieving adequate
test artefact coverage of testing-related compdmentel artefacts and associated test contracts

for the purpose of effective model-based compotesting.

(b) MBSCT Capability #5: component testability improvemh
We validate and evaluate the MBSCT methodology ithaapable of bridging the identi-
fied “test gaps” and improving component testapigtfectively for fulfilling testing require-

ments.

(c) MBSCT Capability #6: adequate component fault cagerand diagnostic solutions
Validation and evaluation of the FDD capabilityégarded as a major method for assess-

ing the effectiveness of software testing approad@g] [37]. We validate and evaluate the

MBSCT methodology that is capable of achieving a@¢e component fault coverage and di-

agnostic solutions for the purpose of effective Fayd fulfilling testing requirements.

Our case studies are designed following the gelgeaakepted structure of empirical
study methods in software engineering (as refaweabove). Thebjectof each case study is
the MBSCT methodology and its framework. Tduelity focusof each case study is the appli-
cability and effectiveness of the MBSCT methodolegyl its framework for UML-based SCT.
The perspectiveof each case study is from the viewpoint of sofemesting researchers. The
contextof each case study is this research project. siligectof each case study is the re-
searcher. Each case study was performed off-lineniracademic research environment (i.e.
non-industry software development). The scope &mhecase study was limited to a single-
object study by a single subject because of thetcaint of available research resources and
time.

Two full case studies have been carried out. Eask study was conducted in the follow-

ing six main steps:

(1) Step #1: Constructing test models (Capability #1)

(2) Step #2: Designing and generating component t€stsability #2)

(3) Step #3: Evaluating test artefact coverage andustsg Capability #4)

(4) Step #4: Evaluating component testability improvet{€apability #5)

(5) Step #5: Detecting, diagnosing and locating compbfailts (Capability #3)

Chapter 9 Methodology Validation and Evaluation 235

(6) Step #6: Evaluating component fault coverage aagdrdistic solutions (Capability #6)

Our case study description is structured in terfthe important tasks of testing and
evaluation undertaken in the above main steps.dBygunany test evaluation examples selected
from the CPS TUCL test scenario, the previous enagChapter 4o Chapter 8 have system-
atically illustrated and demonstrated how to agpl MBSCT methodology and its framework
to UML-based SCT activities, with a specific empbas the validation of the MBSCT testing
applicability (including the core MBSCT testing edytities #1 to #3). On this basis, the two
case studies presented in this chapter particuliadys on validating and evaluating the

MBSCT testing effectiveness (including the core MBS esting capabilities #4 to #6).

9.3 Case Study: Car Parking System

The first core case study is the testing of the Ranking System (CPS) undertaken in this re-
search. In order to further validate and evaluatedore MBSCT testing capabilities, the full
CPS case study has been undertaken to exercisexandne all three CPS TUC core test sce-
narios (including TUC1, TUC2 and TUC3 in the threejor parking phases), which constitute
an overall test scenario/sequence of one full pgriiccess process cycle for any parking car.
This section reports important testing aspectsesmatuation results of the CPS case study, with
respect to adequate test artefact coverag8dation9.3.2, component testability improvement
(in Section9.3.3, fault case scenario analysis and diagnostidisolalesign (inSection9.3.9),
adequate component fault coverage and fault didignedutions and results (fBection9.3.5.
Other relevant testing aspects (such as test namlalopment, model-based component test
design and generation, etc.) and evaluation reanétsncluded imAppendix B The full CPS
case study has been described earliet&&[[1707.

9.3.1 Special Testing Requirements

This section describes important special testigglirements for testing the CPS system. In ad-
dition to the usual system operations and functiomguirements as describedAppendix B

we have identified and examined a set of specialityuwrequirements for supporting secure and
reliable parking services, which are the princifealus of testing and evaluation conducted in
the CPS case study. By using a series of threstriitive test evaluation examples (#1, #2, and
#3), the CPS case study was undertaken to pariclamonstrate and evaluate how the core
MBSCT testing capabilities can be effectively apglto test the CPS system to fulfil the three
most important CPS special testing requirements#&land #3).

236 Chapter 9 Methodology Validation and Evaluation

In this chapter, we describe one selected CPSapesiting requirement #1 iBection
9.3.1, and relevant testing aspects and evaluationtsesith the evaluation example #1 particu-
larly in association with this special testing regment in subsequer@ections 9.3.20 9.3.5.
Appendix Bincludes all three CPS special testing requireméint Section B.2, and shows
relevant testing aspects and evaluation results thi# evaluation examples #2 and #3 (espe-

cially in Sections B.Go B.8) for the other two CPS special testing requiremé2tand #3.

As an illustrative example, we select “Special TegsRequirement #1: Parking Access

Safety Rule”, which is specified as follows:

(1) Special Testing Requirement #1: Parking Accessty&iale
In the CPS system, all parking cars must abidehbyparking access safety rule ené
access at a tinfewith the following specific mandatory public &ss requirements:
(@) Only one car can access the PAL (Parking Accesg)Laha time. This means that it is
not allowed that two or more cars access the PAlngtsame time.
(b) The next car is allowed to access the PAL onlyrdfte last car has finished its full PAL

access.

This CPS safety rule is jointly supported by therect control operations of the Traffic
Light device and the In-PhotoCell Sensor deviceatgel at the PAL entry point. This rule can
prevent the occurrences of unsafe scenarios, esgiljje car collisions due to multiple concur-

rent car accesses.

9.3.2 Evaluating Test Artefact Coverage and Adequacy

This section analyses test artefacts derived with MBSCT methodology in the CPS case
study, and evaluates how they are able to achidegquate test artefact coverage for the CIT
purpose. This test evaluation aspect is also fudiecussed with the testability evaluation in
the nextSection 9.3.3

In Appendix Bfor the CPS case stud$gection B.4shows that the constructed CPS test
models cover sufficient testing-required model fadss and corresponding component/object
operations that participate in SCI in test scemaas illustrated ifFigure B.2, Table B.&And
Figure B.3. Section B.5shows that the CPS test sequence design covetsstiig-required
parking control operations of the associated CR#robdevices and car movements along the
PAL (as illustrated ifFigure B.4, and that the CPS component test design provigedefined
test data for all the covered test artefacts (astihted inTable B.2. Adequate test artefact

coverage is technically supported by the ThC testract criteria of the ThC technique.

Chapter 9 Methodology Validation and Evaluation 237

In the CPS case study, the evaluation of testantebverage and adequacy can be meas-
ured in terms of the number of different types edttartefacts used for the CPS test design,
which is shown inTable 9.1 We can observe that there were a total of ti3gengin test sce-
narios/sequences, a total of eight (8) sub testesmes/sequences, a total of eighteen (18) test
groups, a total of twenty-three (23) test operati@ntotal of eighteen (18) test contracts, and a
total of ten (10) (different) test states in theSGf®@mponent test design.

Table 9.1 Measurement of Test Artefact Coverage (CPS Case Study)

Test No. of Test No. of Test No. of Test No. of Test No. of Test

Scenario = Sequences Groups Operations = Contracts States
CPS 3 7 9 7 4+1 (6)
TUC1
CPS 2 4 5 4 2+1(4)
TUC2
CPS 3 7 9 7 4+1(7)
TUC3
Total 3 8 18 23 18 10+ 3 (17)

Note that, among the seventeen (17) test statag ised in component test design, there
were only ten (10) different test states, whichregpond to ten (10) individual CPS control
states. There were three (3) special test statesluding ‘SB_DOWN", “TL_RED”,
“TD_WITHDRAWN?") that are repeatedly used in the preconditiorstmnditions between the
boundaries of the three CPS TUC test scenariogctsply as follows:

(@) The special test state ofL_RED” is used in the postcondition of the current CRECT
test scenario and also in the precondition of e €PS TUC2 test scenario;

(b) The special test state ofD_WITHDRAWN?"” is used in the postcondition of the current
CPS TUC2 test scenario and also in the preconditidhe next CPS TUC3 test scenario;

(c) The special test state 08B _DOWN?” is used in the postcondition of the current CPS
TUCS test scenario and also in the preconditiothefnext CPS TUCL1 test scenario.

9.3.3 Evaluating Component Testability Improvement

Adequate test artefact coverage creates a solidd&dion for achieving good model-based
component testability improvement. The testabiiihprovement is fulfilled by applying the
MBSCT methodology (especially the two MBSCT methodaal components: the ThC tech-
niqgue and the TCR strategy) to test model constnu@nd contract-based test design, as de-
scribed earlier ilChapter 4o Chapter 7 These chapters have demonstrated the MBSCT destin

238 Chapter 9 Methodology Validation and Evaluation

capabilities to improve component testability byame of bridging the previously identified
“test gaps” (including botiest-Gap #land Test-Gap #2as described irSection 5.2.4p
These chapters have illustrated and discussed resting examples in detail for the CPS

TUCL1 test scenario, which technically paves the feaypur further evaluation in this section.

We further examine and evaluate the effectivenésseoMBSCT testing capabilities #4
and #5 (as described Bection 9.2 across all three CPS TUC core test scenarioRdrCPS
case study. In particular, we illustrate the timedevant evaluation examples with the CPS com-
ponent test design, and evaluate how adequatartegict coverage and component testability
improvement can be achieved to fulfil the three Gp&cial testing requirements. As an illustra-
tive evaluation example, the nexection 9.3.3.presents “Evaluation Example #1: Parking Ac-
cess Safety Rule” (for the first CPS special tgstequirement). Another two evaluation exam-
ples #2 and #3 (for the two CPS special testingirements #2 and #3) are includedSaction
B.6in Appendix B Then,Section 9.3.3.presents an evaluation summary with the threauaval

tion examples.

9.3.3.1 Evaluation Example #1: Parking Access Safety Rule

This section presents the first evaluation examptach is about the CPS special testing re-
quirement #1 (Parking Access Safety Rule) andl#&ae to the testing of the traffic light device
in the CPS TUCL test scenario. Because the compexations of the traffic light device are ex-
ercised and examined in the CPS TUCL1 integratistinge context, the testing is CIT-related.
The CPS system has a special testing requiremehedbne access at a tiheule for
the mandatory public access safety purpose (asibeddn Section 9.3.L The testing of this
CPS safety rule requires sufficient test coverageeikercising and examining the testing-
required control operations of the traffic lightvaee, and the main test operations include
TO set Geen() and3.2 TO set Red() in the CPS TUC1 test scenario. As described in
Section B.5in Appendix B and Section 9.3.2above, the CPS test sequence design and
component test design undertaken in the CPS cadg bave provided adequate test artefact
coverage for this testing requirement, which briddest-Gap #1 In addition, the CPS
component test design constructs and applies apat®pest contracts to each of these testing-
required control operations for testing the trafiight device. The main test contracts comprise
1.2 ITC checkState(trafficLight, “TL_GREEN”) and 3.2 ITC checkSt at e(
trafficLight, “TL_RED”), which improve component testability by enablitesting to
evaluate relevant test results and so bridiest-Gap #2 Therefore, the CPS component test
design can effectively improve component testabibind fulfii the CPS special testing

requirement #1.

Chapter 9 Methodology Validation and Evaluation 239

9.3.3.2 Evaluation Summary: Adequate Test Artefact Coverageand Component
Testability Improvement
Based on the three evaluation examples and releNseussions for the MBSCT evaluation (as
described inSection 9.3.2and Section 9.3.3.Jabove, andSection B.6.1and Section B.6.2n
Appendix B, the evaluation of adequate test artefact coeermyl component testability im-
provement with the CPS case study can be summaassesthown as iffable 9.2 This table
shows three main evaluation result sets (in thogesy that are assessed in terms of test scenar-
ios, adequate test artefact coverage, testabitiprovement (i.e. bridging the “test gaps”, in-

cluding bothTest-Gap #hndTest-Gap #§, and testing requirement fulfilment.

Table 9.2 Evaluation Summary: Adequate Test Artefact Coverage
and Component Testability Improvement (CPS Case Study)

Special Testing Test Adequate Testability Improvement Testing
Requirement Scenario Test Requirement
Artefact Bridging Bridging Fulfilment
Coverage Test-Gap #1 Test-Gap #2
#1. Parking Access| CPS Yes Yes Yes Yes
Safety Rule TUC1
#2. Parking Pay- CPS Yes Yes Yes Yes
Service Rule TUC2
#3. Parking Service| CPS Yes Yes Yes Yes
Security Rule TUC3

Our evaluation has concluded the following impotrfamints:

(1) Based on the relevant evaluation as describ&kation 9.3.2andSection 9.3.3.-above,
the first evaluation result set has drawn the amich that the CPS component test de-
sign in the CPS TUCL test scenario is capable loieging adequate test artefact cover-
age, improving component testability and fulfillitige CPS special testing requirement

#1: Parking Access Safety Rule.

(2) Based on the relevant evaluatiorSection 9.3.2bove an@&ection B.6.1in Appendix B
the second evaluation result set has drawn thdwgion that the CPS component test de-
sign in the CPS TUC2 test scenario is capable lieging adequate test artefact cover-
age, improving component testability and fulfillitige CPS special testing requirement

#2: Parking Pay-Service Rule.

(3) Based on the relevant evaluatiorSection 9.3.2bove an@&ection B.6.4n Appendix B

240 Chapter 9 Methodology Validation and Evaluation

the third evaluation result set has drawn the amieh that the CPS component test de-
sign in the CPS TUCS3 test scenario is capable loeging adequate test artefact cover-
age, improving component testability and fulfillitige CPS special testing requirement

#3: Parking Service Security Rule.

(4) Finally, our evaluation concludes that the CPS camept test design with the MBSCT
methodology can fulfil the three CPS special testequirements for effective testing of
the CPS system, and the effectiveness of the MB®6IIng capabilities #4 and #5 (for
adequate test artefact coverage and componenbitggtanprovement) can be achieved

as required.

9.3.4 Detecting, Diagnosing and Locating Component Faults

Validating and evaluating fault diagnosis capapilit commonly used as a key approach to the
assessment of the effectiveness of SCT methodsdasated earlier irSection 9.2(2) (c)).
Adequate test artefact coverage and testabilityérgiment jointly create a solid foundation for
component fault detection, diagnosis and locabsatThis is accomplished effectively by ap-
plying the ThC technique (especially, the CBFDD moet) to FDD activities, as described ear-
lier in Chapter 7 where we have demonstrated the MBSCT testingbilitgeof not only fault
detection, but also fault diagnosis to locate comemb faults for correction or remova&hapter
7 also described many relevant illustrative FDD epla® for the CPS TUCL test scenario.

On this basis, we further examine and evaluatdtBECT testing capabilities #3 and #6
(as described isection 9.2 for fault detection, diagnosis and localisatioithvihe CPS case
study. Consistent with the FDD activities as disegsearlier irChapter 7 we examine the ac-
tual CPS integration-level faults (e.g. which caaeetain major CPS integration fault/failure
scenarios) to fulfil the three CPS special testiagquirements. Specifically, we demonstrate
three illustrative FDD evaluation examples for fazdse scenario analysis and fault diagnostic
solution design: the first evaluation example f@véaluation Example #1: Parking Access
Safety Rule” (for the first CPS special testinguiegment) is presented Bection 9.3.4.be-
low, and two other evaluation examples #2 and é8tffe two CPS special testing requirements
#2 and #3) are described$ection B.74n Appendix B

Each FDD example is described in the followingreiain parts:

(1) Fault Case Scenario and Analysis: describing wihatfault is about (especially major
fault/failure scenarios) against a specific CPSspeesting requirement in the CPS sys-
tem. The fault is to be detected, diagnosed anatdédcwith the two types of fault diag-

nostic solutions that are described below.

Chapter 9 Methodology Validation and Evaluation 241

(2) Fault-Related Test Scenario: indicating which CRECTtest scenario is related to the

fault under diagnosis, and this related test se@mawst cover the fault case scenario.

(3) Fault-Related Control Point: indicating which maPS control point (e.g. the entry
point, the ticket point or the exit point in the PAs related to the fault under diagnosis,

and this control point is where the fault occurs.

(4) Fault-Related Control Device: indicating which C&&trol device is related to the fault
under diagnosis, and this control device operadintdpe fault-related control point is the

cause of the fault.

(5) Direct Diagnostic Solution: A fault diagnostic sttun that is obtained with the CBFDD
method, based on the relevant information of corepbmlesign and/or certain testing-

support features (especially as described eanli8ection 7.6.2.2

(6) Stepwise Diagnostic Solution: A fault diagnostidusion that is obtained with the
CBFDD method, especially by applying the stepwi®FDOD guidelines (as described
earlier inSection 7.5.5andSection 7.6.23 Note that these two types of fault diagnostic
solutions are equivalent for diagnosing and locgtire same fault, as discussed earlier in
Section 7.6.2.3.3In the following (especially irfBection 9.3.50nwards), our FDD de-

scriptions mainly focus on direct diagnostic sans.

9.3.4.1 Evaluation Example #1: Parking Access Safety Rule

(1) Fault Case Scenario And Analysis

For the major fault/failure scenario of the CPSsafule: while the current car enters the
PAL entry point but has not finished its full PAcaess yet, another unauthorised car illegally
enters and accesses the PAL at the same time.eshktimg failure is a safety violation of the

“one access at a tirheule against the CPS special testing requireriént

(2) Fault-Related Test Scenario
This fault is related to the CPS TUCL1 test scenaricere the fault diagnosis is CIT-

related.

(3) Fault-Related Control Point
This fault is related to the CPS control point e é&mtry point in the PAL.

(4) Fault-Related Control Device

This fault is related to the CPS control devicde-traffic light device, which is operated

242 Chapter 9 Methodology Validation and Evaluation

at the PAL entry point.

(5) Direct Diagnostic Solution
The fault diagnostic solution for the CPS test giess to incorporate the following test

groups in the CPS TUCL test scenario:

(&) Testgroupl.2 TG contains test operatian2 TO set G een() and its associated (post-
condition) test contract.2 ITC checkState(traffi cLi ght, “TL_GREEN"), and
test state TL_ GREEN".

(b) Test groum.2 TG contains test operatid2 TO set Red() and its associated (postcon-
dition) test contracB.2 ITC checkState(trafficLi ght, “TL_RED”), and test
state TL_RED".

(6) Stepwise Diagnostic Solution
The fault diagnostic solution for the CPS TUCL tsdign is to incorporate the following

equivalent test artefacts as a special test group:

(@) Precondition: test contra@®C_TL_GREEN, which functions equivalently to test contract
1.2 ITCin test groufd.2 TG in the CPS TUC1 test scenario.

(b) Test operatiolTO_TL_RED, which functions equivalently to test operati@® TO in
test grouB.2 TG in the CPS TUC1 test scenario.

(c) Postcondition: test contradC_TL_RED, which functions equivalently to test contract
3.2ITC in test grou.2 TG in the CPS TUCL1 test scenario.

9.3.5 Evaluating Adequate Component Fault Coverage and
Diagnostic Solutions

Based on the relevant discussions about the MBS$S€&sament irsection 9.3.20 Section
9.3.4andSection B.4to Section B.7in Appendix B(especially for fault case scenario analysis
and diagnostic solution design), we undertake &rxamination and evaluation of the effec-
tiveness of the MBSCT testing capability #6 for gute component fault coverage @action

9.3.5.2, fault diagnostic solutions and results §ection 9.3.5.2

9.3.5.1 Adequate Component Fault Coverage

The MBSCT methodology employs test groups as timagey mechanism to achieve adequate
component fault coverage. In particular, at leas lmasic test grougusually consisting of at
least a test operation and its associated testambrds well as relevant test states) is used to
cover and diagnose a possible fault related tactimponent/object operation under test. Such

basic test groups can be regarded as basic tesdt, calsich form the primary testing basis for

Chapter 9 Methodology Validation and Evaluation 243

developingbasic fault diagnostic solutiong&onsisting of one or more basic test groups) and

component integration test cases.

In the following, we analyse and evaluate adeqoateponent fault coverage for fault di-

agnosis of the CPS system:

(1) The CPS system comprises the five (5) main indafidntrol devices (including traffic
light, in-PhotoCell sensor, ticket dispenser, sitogpbar, and out-PhotoCell sensor),
which are located at the three (3) main controh{®ofi.e. entry point, ticket point and exit

point) along the PAL.

(2) Based on the contractual rules and relationshipghi® normal CPS operation, a CPS
control device works only in the two (2) main catreontrol states.

For example, the traffic light device functions i the two (2) main correct control
states: TL_GREEN”" and “TL_RED”, which areorthogonaland occur alternatively. These two
correct control states of the traffic light deveme independent of other CPS control device op-
erations, i.e. their occurrences are not affeciethb operation of another CPS control device.
Except for these two correct control states, tisti@uld be no any other valid control state for

the traffic light device at any time in the CPSteys.

(3) There are only two (2) possible values relatedrte mdividual control state of a CPS
control device.
For example, for the CPS control state ©f “GREEN" of the traffic light device, there

are only two (2) possible control state valuesoliews:

(@) The correct state with the valid state value foe ttorrect control operation, e.g.
TL_GREEN.

(b) The incorrect state with some invalid state vahrethie faulty/incorrect control operation,

e.g. its opposite/orthogonal state valueTt “RED” or any other invalid state value.

(4) Accordingly, a CPS control device can have a totdibur (i.e. 2 * 2) possibly-combined
control state values. Then, the number of the plssombined incorrect control state
values

= (the number of the total combinations of all gassible control state values)

— (the only two correct combinations of the tworeat control state values)

=4-2=2

In other words, a CPS control device may haveastlavo (2) primary faults. The
primary faultsof a CPS control device are independent of othH$ Control device op-

erations. These primary faults may occur both ettt level and at the integration level.

244 Chapter 9 Methodology Validation and Evaluation

(5) Therefore, the CPS system may contain a maximutOgdrimary faults (i.e. 2 primary
faults/device * 5 devices). These 10 CPS primanjt$acould occur independently of

each other, possibly at both the unit level andrtegration level.

(6) Note that these 10 CPS primary faults may alsonberrelated, which means that one
fault may have resulted from the occurrence of lagrotault. For example, a typical case
is that a preceding fault may cause a violatedgr@ition and then lead to the occurrence
of a related succeeding fault in certain execugiaths. This indicates that it is necessary
to diagnose relevant interrelated faults in ordefintd all possibly-combined faults (such

relevant fault diagnosis is further discussed erbxtSection 9.3.52

Based on the above fault coverage analysis anddlesant MBSCT validation and
evaluation as discussed $ection 9.3.20 Section 9.3.4and Section B.4to Section B.7in Ap-
pendix B we can describe a comprehensive analysis andaiai by usingrable 9.3 This
table is structured in terms of primary faults,|faase scenario and analysis, and fault coverage
with appropriate fault diagnostic solutions, andwss that each primary fault can be adequately
covered and diagnosed by at least a basic faujndgtic solution to fulfil a relevant specific
CPS special testing requirement.usual (or commonly-usedfault diagnostic solutiorcan
combine the two test groups related to the same coRBol device, or some more test groups
related to the different CPS control devices, wtese test groups and their associated test ar-
tefacts are related to the particular CPS primangjtfunder diagnosis. Therefore, the MBSCT
methodology can develop effective test groups andt fdiagnostic solutions to adequately
cover and diagnose all 10 primary faults in the Giz8em to fulfil the three CPS special testing

requirements.

Chapter 9 Methodology Validation and Evaluation

245

Table 9.3 Analysis and Evaluation of Adequate Component Fault Coverage and Diagnostic Solutions (CPS Case Study)

Primary Fault

Fault Case Scenario and Analysis

Control
Device

Control
Point

Test
Scenario

Fault Diagnostic Solution:
Test Group Coverage

Special Testing Requirement #1: Parking Access SafeRule

operation for the current car, or a failure tha @PS entry
point becomes inaccessible.

1.1FAULT_TL_GREEN Scenario #1The next waiting car could not enter the PAL,The The The CPS CPS TUC1 Test Design:
The traffic light device is NOT in |even after the last car has finished its full PAtess or Traffic |CPS TUC1 |Testgroupd.2 TG contains test
the correct control state of even though no car is accessing the PAL. This faay Light entry |[test operationl.2 TO set G een() and its
“TL_GREEN" as expected. cause that the CPS services could become inacleessib |device |point |scenario |associated (postcondition) test contra
Scenario #2The test car illegally enters the PAL entry 1.2 ITC checkSt at e(
point, even though the test car is not allowedaforess trafficLi ght,“TL_GREEN").
permission. This fault may cause a violated preitmmdfor
the related succeeding CPS operation for the cucaan
1.2FAULT_TL _RED While the current car enters the PAL entry poirthmas not | The The The CPS CPS TUC1 Test Design:
The traffic light device is NOT in |finished its full PAL access yet, another unautbedicar |Traffic |CPS TUC1 |Test grouB.2 TG contains test
the correct control state of illegally enters and accesses the PAL at the sanee The |Light entry |test operatior3.2 TO set Red() and its
“TL_RED” as expected. resulting failure is a safety violation of therfe access at a|device |point |scenario|associated (postcondition) test contra
time’ rule against the CPS special testing requireniént 3.2 ETC checkSt at e(
trafficLight, “TL_RED").
2.1FAULT_IN_PC_OCCUPIED The in-PhotoCell sensor device fails to sensettit@PAL | The In- |The The CPS CPS TUC1 Test Design:
The in-PhotoCell sensor device is| entry point has been occupied by the enteringicarthe testPhotoCell CPS TUC1 |Test grou®.3 TG contains test
NOT in the correct control state of car is accessing the PAL entry point). This faudtyncause g Sensor |entry |test operatior2.2 TO goTo(gopace-
“IN_PC_OCCUPIED" as expected] violated precondition for the related succeedingCP device point scenario |cr oss-i nPC, i nt), test operation

2.3 TO occupy() and its associated
(postcondition) test contragt3 ETC
checkSt at e(i nPhot oCel I,

“IN_PC_OCCUPIED").

246

Chapter 9 Methodology Validation and Evaluation

Primary Fault

Fault Case Scenario and Analysis

Control
Device

Control
Point

Test
Scenario

Fault Diagnostic Solution:
Test Group Coverage

parking’ rule against the CPS special testing requireri&n

t

2.2FAULT_IN_PC_CLEARED The in-PhotoCell sensor device fails to sensettif@PAL |The In— |The The CPS CPS TUC1 Test Design:
The in-PhotoCell sensor device is| entry point has been cleared by the entering aartfie test | PhotoCell CPS TUC1 |Test grou®.5 TG contains test
NOT in the correct control state of car has finished accessing the PAL entry point)s Tdult |Sensor |entry |test operatiorn2.4 TO goTo(gopace-
“IN_PC_CLEARED” as expected. | could lead to a violated precondition for the retat device |point |scenario|crossover-inPC,int), test
succeeding CPS operation for the current car fail@e that operation2.5 TO cl ear () and its
the C_PS entry point is not to be assessable byekie associated (postcondition) test contra
entering car. 2.5 ETC checkSt at e(
i nPhot oCel | , “IN_PC_CLEARED”
).
Special Testing Requirement #2: Parking Pay-ServicRule
3.1FAULT_TD_DELIVERED The ticket dispenser fails to deliver a ticket eovlithdrawn | The The The CPS CPS TUC?2 Test Design:
The ticket dispenser device is NOJby the test driver. This fault may cause that #st driver | Ticket CPS TUC2 |Test groud.2 TG contains test
in the correct control state of could not withdraw the ticket for paying parkingdaas Dispensefticket |test operationl.2 TO del i ver () and its
“TD_DELIVERED” as expected. |expected. The resulting failure could further caaugpay- device |point |scenario|associated (postcondition) test contra
service violation of therfo pay, no parkingrule. 1.2 ITC checkSt at e(
ti cket D spenser,
“TD_DELIVERED").
3.2FAULT_TD WITHDRAWN The test car crosses over the ticket point to nfomeard The The The CPS CPS TUC2 Test Design:
The ticket dispenser device is NOJfowards the PAL exit point, even though the testatrhas | Ticket CPS TUC2 |Test grou®.3 TG contain2.2 TO
in the correct control state of not withdrawn the ticket for paying parking faréner Dispensefticket |test goTo(gopace-got o- TD,i nt), test]
“TD_WITHDRAWN” as expected. | resulting failure is a pay-service violation of tlve pay, no |device [point |scenario|operatior2.3 TO wi t hdr aw() and its

associated (postcondition) test contra
2.3 ETC checkSt at e(

ti cket D spenser,
“TD_WITHDRAWN").

Chapter 9 Methodology Validation and Evaluation

247

Primary Fault

Fault Case Scenario and Analysis

Control
Device

Control
Point

Test
Scenario

Fault Diagnostic Solution:
Test Group Coverage

Special Testing Requirement #3: Parking Service Sedty Rule

expected.

CPS operation for the current car, or a failure¢ tha CPS
exit point is not to be accessible by the next ssice car.

4.1FAULT_SB_UP The test car cannot go to cross over the PAL eiittgo The The The CPS CPS TUC3 Test Design:
The stopping bar device is NOT incomplete its full access to the PAL. This fault ncayise a | Stopping |CPS TUC3 |Test groufl.2 TG contains test
the correct control state of violated precondition for the related succeedingCP Bar exit test operationl.2 TOr ai se() and its
“SB_UP” as expected. operation for the current car, or a failure that BPAL exit |device |point |scenario|associated (postcondition) test contra
point could become inaccessible (i.e. the currantould 1.2 ITC checkSt at e(
not exit the PAL). st oppi ngBar , “SB_UP").
4.2FAULT_SB_DOWN The stopping bar remains un-lowered (e.g. the stogpipar | The The The CPS CPS TUC3 Test Design:
The stopping bar device is NOT inis still raised to up), even after the currentltas finished itg Stopping | CPS TUC3 |Test grouB.2 TG contains test
the correct control state of full access to the PAL (which means that the curcan has | Bar exit test operation3.2 TO | ower () and its
“SB_DOWN" as expected. already finished accessing the PAL exit point)ewen if no |device |point |scenario |associated (postcondition) test contra
car is accessing the PAL. The resulting failure gecurity 3.2 ITC checkSt at e(
violation of the public security protection and st oppi ngBar , “SB_DOWN").
maintenanceérule against the CPS special testing
requirement #3.
5.1FAULT_OUT_PC_OCCUPIED |The out-PhotoCell sensor device fails to sensetti@aPAL | The Out- | The The CPS CPS TUC3 Test Design:
The out-PhotoCell sensor device i®xit point has been occupied by the test carttieetest car isPhotoCell CPS TUC3 | Test grou®.3 TG contains test
NOT in the correct control state of accessing the PAL exit point). This fault may caase Sensor | exit test operatior2.2 TO goTo(gopace-
“OUT_PC_OCCUPIED"” as violated precondition for the related succeedingCP device |point |scenario|cross-out PC,int), test operation
expected. operation for the current car, or a failure that @PS exit 2.3 TO occupy() and its associated
point becomes inaccessible. (postcondition) test contra2t3 ETC
checkSt at e(out Phot oCel |,
“OUT_PC_OCCUPIED").
5.2FAULT_OUT _PC_CLEARED |The out-PhotoCell sensor device fails to sensetti@aPAL | The Out- | The The CPS CPS TUC3 Test Design:
The out-PhotoCell sensor device i®xit point has been cleared by the exiting car {he test caif PhotoCell CPS TUC3 | Test grou®.5 TG contains test
NOT in the correct control state of has finished accessing the PAL exit point). Thidtfaould |Sensor |exit test operatior2.4 TO goTo(gopace-
“OUT_PC_CLEARED” as lead to a violated precondition for the relatedcseding device |point |scenario|crossover - out PC,i nt), test

operatior2.5 TO cl ear () and its
associated (postcondition) test contra
2.5 ETC checkSt at e(
out Phot oCel I,
“IN_PC_CLEARED").

248 Chapter 9 Methodology Validation and Evaluation

9.3.5.2 Fault Diagnostic Solutions: Diagnosis Results andmalysis

Section 9.3.4andSection 9.3.5.have assessed the effectiveness of the MBSCThgestipabil-
ity for fault case scenario analysis and diagnasilation design, and adequate component fault
coverage. On this basis, this section conducts i@ momprehensive examination of our fault
diagnostic solutions and their results to furthezleate the MBSCT fault diagnosis capability.

With the MBSCT methodology, test sequences arera jgart of component test design
(as described ifection 6.5.JandSection B.5.1in Appendix B to develop fault diagnostic so-
lutions. A test sequence comprises an expectediB@rcsequence of component/object opera-
tions, where a typical case of interrelated famitg/ exist: a fault of a preceding operation may
trigger and/or produce a violated precondition &odirectly/indirectly succeeding operation.
Accordingly, this violated precondition could caubke related succeeding operation to be pre-
vented from executing or its execution to fail. §i8 a useful fault diagnostic feature that can
facilitate diagnosing possible interrelated faults.

In particular, based on this feature, we can agiyfollowingfault diagnostic strategto
develop useful fault diagnostic solutions for urexwg faults that may cause the same

fault/failure case scenario:

(@) When diagnosing the possible faults related tocimeent operation, it is necessary to
exercise and examine its preceding operationsatieatiosely related to its preconditions.
The faults of these preceding operations (if thagtgmay produce an intermediate error,
which, by propagation, could subsequently resulthm execution failure of the current
operation under diagnosis. This fault diagnostiategy conforms to the principle of the

“fault causality chaihas described earlier iBection 7.2

(b) Accordingly, when developing possible fault diagmosolutions for diagnosing the pos-
sible faults related to the current operation urdiagnosis, we can apply this fault diag-
nosis strategy to conduct fault diagnosis of itscpding operations. Note that such pre-
ceding operations include the immediately precedipgration just before the current op-
eration and other non-immediately preceding opematiand these preceding operations’

execution may affect some precondition of the efienwof the current operation.

(c) To diagnose the possible faults causing the saoigfédlure case scenario, a fault with
the current operation isdirectly-related faultcausing this fault/failure case scenario. In
addition, a fault with a preceding operation isirdhirectly-related faulthat could result
in the occurrence of the same fault/failure cagmaco. Usually for the same fault/failure
case scenario, there may be more than one ingiedtited faults, but there is only one

directly-related primary fault that is associateathwhe current operation under diagnosis.

Chapter 9 Methodology Validation and Evaluation 249

Effective fault diagnostic solutions must be aldecover and diagnose all possible di-
rectly and indirectly related faults to achieve tlessired fault diagnosis capability. In the CPS
case study, we describe the three illustrative [ED&luation examples using our fault diagnosis
strategy (as described above) and our fault digigneslutions (as illustrated ifable 9.3 to
detect, diagnose and locate the possible directty indirectly related faults that violate the
three CPS special testing requirements. The &egtion 9.3.5.2. flescribes “Evaluation Exam-
ple #1: Parking Access Safety Rule” (for the flE8lS special testing requirement). Another two
evaluation examples #2 and #3 (for the two CPSiap#gsting requirements #2 and #3) are
shown inSection B.8n Appendix B Then,Section 9.3.5.presents a FDD evaluation summary

with the three evaluation examples.

9.3.5.2.1 Evaluation Example #1: Parking Access Safety Rule

This subsection diagnoses the possible directlyiadidectly related faults causing the major
failure scenario of the CPS safety rule againstGR& special testing requirement #1. In the
CPS case study, we developed and applied threeidndi fault diagnostic solutions (as de-
scribed inSection 9.3.4..andTable 9.3above). Each fault diagnostic solution incorporétesl
relevant test groups in the CPS TUCL1 test scefarithe CPS test design (as illustratedrig-

ure 9.1below).

test group 1.2 test group 2.5 test group 3.2
Basic o 1 o= = o
tes 0 1.2TO : ©24TC25TO0 13270 :
artefacts ! il ! [! [[il [
Test @ 4 ! Sequence ! # ! L ! >
| | | | | |
Specia Fauli:/ ﬂ : : Fault / ﬂ : Fault :/ ﬂ :
tes 111 |121TC | | 22 25ETCI 121 |[32ITCl|
artefacts —_ - = —_ —_— e — e — J— —_ = —_
I "

CPS safety rule failure scenario

Figure 9.1 Evaluation Example #1: Parking Access Safety Rule
(Fault Diagnostic Solutions with the CPS TUC1 Test Design)

Our FDD evaluation for this major fault/failure segio is described as follows:

(1) Primary Fault 1.ZAULT_TL_RED (as described imable 9.3

For diagnosing the directly-related primary fathe first fault diagnostic solution we de-
veloped is that the CPS TUC1 test design emplastsgi®up3.2 TG to exercise test operation
3.2 TO set Red(), which is verified by its associated (postcomah} test contracB.2 ITC

250 Chapter 9 Methodology Validation and Evaluation

checkState(trafficLi ght,“TL_RED”) and test stateTL_RED” in the CPS TUC1 test
scenario.

If the test contract returrfalse the fault diagnostic solution has revealed tHWong
fault: the fault is related to the traffic light\dee operated at the PAL entry point, where this
CPS device fails in the execution of operats@t Red(), causing the traffic light device NOT
to be in the correct control state of ' RED” as expected. This is Primary Fault 1.2
FAULT_TL_RED as described ifiable 9.3 which leads to a failure to maintain the CPStyafe
rule (“one access at a tirfjeagainst the CPS special testing requirement #1.

Therefore, Primary Fault 1.BAULT_TL_RED directly causes the major fault/failure
scenario of the CPS safety rule as describ&erntion 9.3.4.1The first fault diagnostic solution
is able to diagnose this directly-related primaaylf. Following Step #6 of the CBFDD guide-
lines (as described earlier $ection 7.5.) the diagnosed fault can be corrected and remioved
the fault-related operatioset Red() of the traffic light device (as illustrated earlin Step #6
in Section 7.6.2.3)2

(2) Primary Fault 1. FAULT_TL_GREEN (as described ifiable 9.3

To diagnose an indirectly-related primary faule tecond fault diagnostic solution we
developed is that the CPS TUCL1 test design usegitespl.2 TG to exercise test operation
1.2 TO set G een(), which is verified by its associated (postcoiod} test contracl.2 ITC
checkState(trafficLight, “TL_GREEN”") and test stateTL_GREEN” in the CPS
TUCL test scenario.

If the test contract returralse the fault diagnostic solution has revealed atfalé fault
is related to the traffic light device operatedhat PAL entry point, where the traffic light de-
vice fails in the execution of operatiset G een(), causing the traffic light device NOT to be
in the correct control state ofTE_GREEN" as expected. This is Primary Fault 1.1
FAULT _TL_GREEN as described imable 9.3 The occurrence of this fault indicates a violated
precondition resulted from the preceding operasienGreen(); this violated precondition could
cause the related succeeding operatienRed() in the expected operation execution sequence
NOT to be executed correctly, i.e. the traffic tiglevice's operatioset Red() cannot be exe-
cuted as expected or its execution fails.

Hence, Primary Fault 1.EAULT _TL_GREEN could indirectly result in the occurrence
of the major fault/failure scenario of the CPS safelle as described iBection 9.3.4.1The
second fault diagnostic solution is able to diagnthss indirectly-related primary fault. In the
same manner, following the CBFDD guidelines (axudesd earlier irSection 7.5.h the diag-
nosed fault that is related to the traffic lighvide’'s operatiorset G een() can be corrected

and removed.

Chapter 9 Methodology Validation and Evaluation 251

(3) Primary Fault 2. ZZAULT_IN_PC_CLEARED (as described ifiable 9.3

For diagnosing an indirectly-related primary fadtitte third fault diagnostic solution we
developed with the CPS TUC1 test design uses tegap@.5 TG to exercise test operati@b
TO cl ear (), which is verified by its associated (postcoiudi} test contrac2.5 ETC check-
St at e(i nPhot oCel |, “IN_PC_CLEARED"”) and test stateIN_PC_CLEARED” in the
CPS TUC1 test scenario.

If the test contract returralse the fault diagnostic solution has revealed atfalik fault
is related to the in-PhotoCell sensimvice operated at the PAL entry point, where @IS
device fails in the execution of operatiohear (), causing the in-PhotoCell senst@mvice NOT
to be in the correct control state dl“ PC_CLEARED” as expected. This is Primary Fault 2.2
FAULT IN_PC _CLEARED as described ifable 9.3 The occurrence of this fault indicates
that the current car might have not finished itseas to the PAL entry point. Consequently, this
fault could lead to a violated precondition resigtfrom the preceding operatioh ear (); this
violated precondition could cause the related sediog operatiorset Red() in the expected
operation execution sequence NOT to be executeckatly, i.e. the traffic light device’s
operationset Red() cannot be executed as expected or its execfatien

Thus, Primary Fault 2.EAULT _IN_PC_CLEARED could indirectly result in the occur-
rence of the major fault/failure scenario of theSC#afety rule as described $ection 9.3.4.1
The third fault diagnostic solution is able to diage this indirectly-related primary fault. In the
same way, following the CBFDD guidelines (as ddmadiearlier inSection 7.5.5 the diag-
nosed fault can be corrected and removed in thi-riglated operatiorcl ear () of the in-

PhotoCell sensadevice.

(4) Combined faults of the above three individual CRBary faults

To diagnose the combined faults related to thdidréight device and the in-PhotoCell
sensordevice, the fault diagnostic solution needs to domlthe above three individual fault
diagnostic solutions. Based on the above (1) tot(i8) combined diagnostic solution can detect
and diagnose the possible combinations of thes= tBPS primary faults, and the combined

faults can be corrected and removed in the follgWault-related operations:

(&) the traffic light device’s operatioset Red(), and/or

(b) the traffic light device's operatiapet G een(), and/or

(c) thein-PhotoCell sensdevice’s operatioel ear ().

252 Chapter 9 Methodology Validation and Evaluation

9.3.5.3 Evaluation Summary: Adequate Component Fault Coverge and

Diagnostic Solutions and Results
Based on the three evaluation examples and relaliaatissions for the MBSCT evaluation
with the CPS case study (especiallySaction 9.3.4Section 9.3.5.1Table 9.3and Section
9.3.5.2;Section B.7and Section B.8in Appendix B, the evaluation of adequate component
fault coverage and diagnostic solutions can be samsed as shown ifable 9.4 This table
shows three main evaluation result sets (in ttst fiwree rows) that are assessed in terms of the
number of different test scenarios, directly-redafgimary faults, indirectly-related primary

faults and fault diagnostic solutions for the th&®S special testing requirements.

Table 9.4 Evaluation Summary: Adequate Component Fault Coverage
and Diagnostic Solutions and Results (CPS Case Study)

Special Test No. of No. of No. of No. of Adequate Adequate Testing
Testing Scenario Directly Indirectly Directly/ Fault Component Fault Requirement
Requirement -Related -Related Indirectly Diagnostic Fault Diagnostic Fulfilment
Faults Faults Related Solutions Coverage Solutions
Faults
#1: Parking | CPS 1 3 4 4 Yes Yes Yes
Access TUC1
Safety Rule
#2 Parking | CPS 1 1 2 2 Yes Yes Yes
Pay-Service| TUC2
Rule
#3 Parking | CPS 1 3 4 4 Yes Yes Yes
Service TUCS3
Security
Rule
Total 3 3 3 7 10 10 Yes Yes Yes

These evaluation result sets have drawn the fatigwbnclusions:

(1) Based on the relevant FDD evaluation (as describheétkbction 9.3.4.1Section 9.3.5.1
Table 9.3and Section 9.3.5.2.4bove), the first evaluation result set {iable 9.4 con-
cludes that the CPS TUCL test design can employotire(4) fault diagnostic solutions
we developed to adequately cover and diagnose ahwbioed faults of four (4) di-
rectly/indirectly-related primary faults. Accordigg this achieves adequate component
fault coverage and adequate fault diagnostic swiatiand fulfils the first CPS special

testing requirement #1: Parking Access Safety Rule.

(2) Based on the relevant FDD evaluation $iection 9.3.5.5andTable 9.3above;Section

B.7.1 and Section B.8.1in Appendix B, the second evaluation result set Tiable 9.4)

Chapter 9 Methodology Validation and Evaluation 253

concludes that the CPS TUC2 test design can entpywo (2) fault diagnostic solu-
tions we have developed to adequately cover arghdse the combined faults of two (2)
directly/indirectly-related primary faults. Accondjly, this achieves adequate component
fault coverage and adequate fault diagnostic swigfiand fulfils the second CPS special

testing requirement #2: Parking Pay-Service Rule.

(3) Based on the relevant FDD evaluation @ection 9.3.5.-andTable 9.3above;Section
B.7.2andSection B.8.2n Appendix B, the third evaluation result set (imble 9.4 con-
cludes that the CPS TUCS test design can employotlre(4) fault diagnostic solutions
we developed to adequately cover and diagnose dh@ioed faults of four (4) di-
rectly/indirectly-related primary faults. Accordiyg this achieves adequate component
fault coverage and adequate fault diagnostic swigtiand fulfils the third CPS special

testing requirement #3: Parking Service SecuritieRu

(4) Finally (in the last row inrable 9.4, our FDD evaluation concludes that the CPS test d
sign can employ the ten (10) fault diagnostic sohg developed in the three (3) core test
scenarios to adequately cover and diagnose the inethbfaults of ten (10) di-
rectly/indirectly-related primary faults to fulfall the three (3) CPS special testing re-
quirements. As the result of FDD evaluation, weatode that the effectiveness of the
MBSCT testing capability #6 (for adequate comporfantt coverage and diagnostic so-

lutions) can be achieved as required.

9.4 Case Study: Automated Teller Machine System

The testing of the Automated Teller Machine (ATM¥®&m is the second major case study un-
dertaken in this research, with the purpose ohgrrivalidating and evaluating the core charac-
teristic testing capabilities of the MBSCT methampt and its framework (as describedSec-
tion 9.2). This section reports important testing aspents evaluation results of the ATM case
study in terms of adequate test artefact covermg8éction 9.4.§, component testability im-
provement (inSection 9.4.8 and FDD evaluation (for fault case scenario niesis and diag-
nostic solution design, adequate component fawlerage, fault diagnostic solutions and re-
sults) (inSection 9.4.1 Other relevant testing aspects (such as tesehwmohstruction, model-
based component test development, etc.) and ei@iuasults are included ippendix C The
ATM system in our case study is described much nsomaprehensively and rigorously than a
prototype in 124 [78]. The full ATM case study has been described exaiti [L79].

254 Chapter 9 Methodology Validation and Evaluation

9.4.1 Special Testing Requirements

An overview of the ATM system is describedAppendix G including the main ATM opera-
tions and requirements, and core ATM transactidhs section describes the main special test-
ing requirements to assure high quality ATM-basadking services. In particular, we have
identified a set of special quality requirements sapporting secure and reliable banking ser-
vices for the core ATM transactions in the ATM gyst Accordingly, these special quality re-
guirements become the central focus of testing eraluation undertaken in the ATM case
study.

Section C.2in AppendixC describes a set of eight important ATM speciatirtgsre-
guirements we have identified particularly with aedy to the first two core ATM transactions
“Inquire Balance” and “Withdraw Cash” in the ATMstgm. By demonstrating a series of three
illustrative test evaluation examples (#1, #2, #8)iselected from the ATM case study, we spe-
cifically aim to validate and evaluate how the cMBSCT testing capabilities can be effec-
tively applied to test the ATM system to fulfil thberee most important ATM special testing
requirements (#3, #7 and #8). For the evaluati@mge #3 shown in this chapter, we describe
the selected ATM special testing requirement #&dation 9.4.1and relevant testing aspects
and evaluation results about this special testaglirement specifically in subsequégctions
9.4.2t0 9.4.4. Appendix (presents relevant testing aspects and evaluaguits in association
with the other two ATM special testing requireme#t8sand #7 using the evaluation examples
#1 and #2 (especially iBections C.@o C.8).

The selected “Special Testing Requirement #8: Ast®alance Validation” is specified

as follows:

(1) Special Testing Requirement #8: Account Balanceddtibn — validating the available
credit balance of the customer-selected accountcdia be transacted correctly in the
ATM system
In the ATM system, the customer-selected accourstrave a sufficient credit balance

available for correctly performing certain ATM tsactions, such as “Withdraw Cash” or

“Transfer Money”. Account balance validation has fbllowing specific requirements:

(@) The customer-selected account must have previdusin validated correctly as de-

scribed in the above “Special Testing Requirem&nicount Selection Validation”.

(b) The available credit balance of the customer-seteeiccount must be sufficient, and
must be greater than or equal to the transactioouai(i.e. the customer-requested
amount of money that can be transacted correctiigarcustomer-selected ATM transac-

tion).

Chapter 9 Methodology Validation and Evaluation 255

9.4.2 Evaluating Test Artefact Coverage and Adequacy

This section evaluates test artefact coverage deguacy for testing the ATM system, which is
based on the test models and component test desdgrtaken for the ATM case study (as de-
scribed inSection C.4to Section C.5n Appendix Q. Adequate test artefact coverage can be
assessed in terms of sufficiently-covered testaiesisequences, sub test scenarios/sequences,
test groups, test operations, test contracts andtates for the CIT purpose.

In the ATM case study, the evaluation of test adefcoverage and adequacy can be
measured as shown irable 9.5 With regard to the measurement of the numberiféérant
types of test artefacts used for the ATM comporiest design, there are a total of three (3)
main test scenarios/sequences, ten (10) sub wsarsas/sequences, thirty-one (31) test groups,
thirty-three (33) test operations, twenty-nine (83t contracts, and twenty-nine (29) test states.

Among the total of twenty-nine (29) test statesdusethe ATM component test design,
there are twenty-one (21) different test statesl uisehe ATM Session, ATM TUC1 and ATM
TUC2 test scenarios, but the other eight (8) tiegés are repeatedly used for examining differ-
ent ATM transactions in the ATM TUC1 and ATM TUC&st scenarios. In addition, as indi-
cated inSection C.5.2n Appendix G there are three (3) other special test stategjbepeat-
edly used as the overall preconditions/postconutiof the test scenarios of the ATM Session,
ATM TUC1 and ATM TUC2.

In the ATM case study, we employ these sufficientiyered test artefacts with the com-
ponent test design to test the ATM system. Adedqugsteartefact coverage can effectively aid in

improving component testability, which is furtherakiated inSection 9.4.3elow.

Table 9.5 Measurement of Test Artefact Coverage (ATM Case Study)

Test No. of Test No. of Test No. of Test No. of Test No. of Test

Scenario Sequences Groups Operations Contracts States
ATM 4 8 9 7 7+1(8)
Session
ATM 3 9 10 8 8+1(9
TUC1
ATM 3 14 14 14 14 + 1 (15)
TUC2

Total 3 10 31 33 29 29 +3(32)

9.4.3 Evaluating Component Testability Improvement

Among the five main MBSCT methodological componetite ThC technique and the TCR

strategy effectively contribute to model-based congmt testability improvementhapter 4to

256 Chapter 9 Methodology Validation and Evaluation

Chapter 7have previouslyescribed how to apply the MBSCT methodological ponents to
achieve component testability improvement, esplgciaidging the identified “test gaps” (in-
cluding bothTest-Gap #lndTest-Gap #2as described iBection 5.2.4.2

Based on the ATM component test design (as destciib8ection C.5n Appendix G,
adequate test artefact coverage (as describ8ddtion 9.4.Zabove) establishes the foundation
for achieving good component testability improvemdrhis section conducts further analysis
and evaluation to show adequate test artefact ageeand component testability improvement
for the CIT purpose, with regard to the effectivenef the MBSCT testing capabilities #4 and
#5. By showing the three relevant evaluation exasgklected from the ATM case study, we
discuss how the ATM component test design and adedast artefact coverage can bridge the
identified “test gaps” to improve component tedigbiand to fulfil the three most important
ATM special testing requirements. As indicatedsiection 9.4.1the nextSection 9.4.3.1llus-
trates “Evaluation Example #3: Account Balance datiion” for the ATM special testing re-
guirements #8Section C.aGn Appendix Cdescribes two other evaluation examples #1 and #2
for the two ATM special testing requirements #3 &Y Section 9.4.3.2hen provides an

evaluation summary for the three evaluation example

9.4.3.1 Evaluation Example #3: Account Balance Validation

The ATM special testing requirement #8 (AccountaBake Validation) is important in a certain
test scenario of a relevant ATM TUC, e.g. the ATMQ2 core test scenario. Account balance
validation requires adequate test artefact coveeagk testability for validating the available
credit balance of the customer-selected accouttctrabe transacted correctly in the ATM sys-
tem. Specifically, the available credit balancetw customer-selected account (e.g. “Savings”
account linked to the ATM card) must be sufficiamtd must be greater than or equal to the
transaction amount, so that the customer-requestaslint can be transacted correctly in the
customer-selected ATM transaction.

Based orSection C.5n Appendix CandSection 9.4.above, the component test design
for the ATM TUC2 core test scenario creates a sphextib test sequence #2 that can exercise
and examine all three testing-required control apens of account balance, includiag TO,

2.5 TO and2.6 TO. These test operations are adequate and can BraekieGap #1Further-
more, the special sub test sequence #2 comprisesad appropriately-designed test contracts,
including2.4 ETC, 2.5 ETC and2.6 ETC. These testing-support artefacts can adequately ve
each of the three testing-required control openatifmr account balance validation, which can
bridge Test-Gap #2Adequate testing artefact coverage improves caompiotestability, ena-
bling testing to evaluate the relevant test resplitaccount balance validation. Therefore, the

ATM component test design can improve componenalbdiy and accomplish the ATM spe-

Chapter 9 Methodology Validation and Evaluation 257

cial testing requirement #8: Account Balance Vdlma

9.4.3.2 Evaluation Summary: Adequate Test Artefact Coverageand Component
Testability Improvement
Based on the three evaluation examples and releNseussions for the MBSCT evaluation (as
described inSection 9.4.2and Section 9.4.3.Jabove, andSection C.6in Appendix Q, the
evaluation of adequate test artefact coverage antgpanent testability improvement with the
ATM case study can be summarised as shown dalie 9.6 This table shows three main
evaluation result sets (in three rows) that aresssd in terms of test scenarios, adequate test
artefact coverage, testability improvement (i.édding the “test gaps”, including bothest-

Gap #landTest-Gap #2, and testing requirement fulfilment.

Table 9.6 Evaluation Summary: Adequate Test Artefact Coverage
and Component Testability Improvement (ATM Case Study)

Special Testing Test Adequate Testability Improvement Testing
Requirement Scenario Test Requirement
Artefact Bridging Bridging Fulfilment
Coverage Test-Gap #1 Test-Gap #2
#3: Customer ATM Yes Yes Yes Yes
Validation Session
#7. Account Selectionp ATM Yes Yes Yes Yes
Validation TUC1
#8: Account Balance | ATM Yes Yes Yes Yes
Validation TUC2

Our evaluation has concluded the following impotrfamints:

(1) Based on the relevant evaluation as describ&kation 9.4.2bove andection C.6.1n
Appendix G the first evaluation result set has drawn theckmion that the ATM com-
ponent test design in the ATM Session test scefaidapable of achieving adequate test
artefact coverage, improving component testabdlitgl fulfilling the ATM special testing
requirement #3: Customer Validation.

(2) Based on the relevaataluation inSection 9.4.2above and&ection C.6.2n Appendix G
the second evaluation result set has drawn thelusion that the ATM component test
design in the ATM TUCL test scenario is capabladalfieving adequate test artefact cov-
erage, improving component testability and fulfifi the ATM special testing require-
ment #7: Account Selection Validation.

258 Chapter 9 Methodology Validation and Evaluation

(3) Based on the relevaetaluation inSection 9.4.2and Section 9.4.3..bove, the second
evaluation result set has drawn the conclusionttteeATM component test design in the
ATM TUC2 test scenario is capable of achieving adee test artefact coverage, improv-
ing component testability and fulfilling the ATM spial testing requirement #8: Account

Balance Validation.

(4) Finally, our evaluation concludes that the ATM cament test design with the MBSCT
methodology can fulfil the three most important ABjecial testing requirements for ef-
fective testing of the ATM system, and the effeetigss of the MBSCT testing capabili-
ties #4 and #5 (for adequate test artefact coveaagecomponent testability improve-

ment) can be achieved as required.

9.4.4 Evaluating Component Fault Detection, Diagnosis and
Localisation

Among the five main MBSCT methodological componetite ThC technique (especially, the
CBFDD method) effectively contributes to componéailt detection, diagnosis and localisa-
tion. Chapter 7has previously demonstrated how to apply the MB®&@&Tthodological compo-
nents to detect, diagnose and locate componens faul

Based on the ATM component test design (as destiib8ection C.5n Appendix G,
adequate test artefact coverage (as describ&kdtion 9.4.2 and component testability im-
provement (as described $ection 9.4.Bjointly create a solid foundation to undertakenpo-
nent fault detection, diagnosis and localisatiohisTsection undertakes a further examination
and evaluationfor component fault detection, diagnosis and Isasibn for the CIT purpose,
with regard to the MBSCT testing capabilities #3l &6. By demonstrating a series of three
FDD evaluation examples selected from the ATM cgdy, we discuss how the ATM compo-
nent test design can effectively detect, diagnogklacate component faults to fulfil the three
most important special testing requirements inAf& system. Our evaluation focuses on ana-
lysing fault case scenarios to design fault diagoa®lutions (inSection 9.4.4) evaluating
adequate component fault coverage ection9.4.4.9, and evaluating fault diagnostic solu-

tions and results (iBection 9.4.4 Bfor the CIT purpose.

9.4.4.1 Analysing Fault Case Scenarios to Design Fault Diagstic Solutions

For the FDD evaluation, this section analyses thi#&Antegration-related faults that cause cer-
tain major ATM failure scenarios that violate tieee most important ATM special testing re-

guirements. At the same time, we design relevauit thagnostic solutions that can detect, di-

Chapter 9 Methodology Validation and Evaluation 259

agnose and locate possible component faults tib thef three most important ATM special test-
ing requirements. In particular, we present thedmelevant FDD evaluation examples selected
from the ATM case study for fault case scenaridyaig and fault diagnostic solution design.
The nextSection 9.4.4.1.8lescribes “Evaluation Example #3: Account Balaviagdation” for

the ATM special testing requirements &&ction C.74n Appendix Cpresents two other evalua-

tion examples #1 and #2 for the two ATM specialitgsrequirements #3 and #7.
Each FDD evaluation example is described in thieviehg four main parts:

(1) Fault Case Scenario and Analysis: This part analyise major ATM failure scenario
caused by the major requirement-violating fault] aescribes the impact of this major
fault/failure in the ATM system, which is our maiDD focus. The fault is to be de-

tected, diagnosed and located with the ATM compbtest design.

(2) Fault-Related Test Scenario: This part identifidsclv ATM test scenario is related to the

fault under diagnosis. The ATM test scenario mosec the fault case scenario.

(3) Fault-Related ATM Device (or Fault-Related Bank @pien): This part analyses which
ATM device (or which Bank operation) is relatedthe fault under diagnosis. Some
faulty operation of the ATM device is one sourcetted fault (e.g. the incorrect invoca-
tion or definition of the component/class operatidrthe ATM device). Similarly, some
faulty operation of the Bank is another sourceheffault under diagnosis. Note that here
the “Bank” represents the Bank ATM Server, whichmainly responsible for ATM-
based banking operations in the Bank system (agided inSection C.4.1in Appendix
Q).

(4) Fault Diagnostic Solution: This part describes dlesign of a contract-based diagnostic
solution to detect and diagnose the target faultftilling the relevant ATM special
testing requirement. Based on the ATM componentdesign, fault diagnostic solutions
are obtained with the CBFDD method (as describéieean Chapter 7J.

As discussed earlier iBhapter 7a major testing strategy for developing faultgdiastic
solutions with the MBSCT methodology is to desigul apply appropriate basic test groups as
basic test cases in fault detection, diagnosislacalisation. Abasic test groupsually com-
prises at least a test operation and its assodieseédontract, which verifies the execution of the
test operation to diagnose a possible fault relaigtle component/class operation under test. A
basic test group is also applied in conjunctiorhwvgibme associated test states that are used as a
basis for test oracle design for test verificationl fault diagnosis. Aasic fault diagnostic solu-

tion contains at least one basic test group, and the deagnostic solution for diagnosing the

260 Chapter 9 Methodology Validation and Evaluation

major ATM fault/failure scenario can incorporate Itiple related basic fault diagnostic solu-

tions.

9.4.4.1.1 Evaluation Example #3: Account Balance Validation

(1) Fault Case Scenario and Analysis

For the major fault/failure scenario of Account &ate Validation: The ATM/Bank sys-
tem fails to validate the available credit balantéhe customer-selected account, and/or fails to
reject the customer’s access to the selected atedule this validation is NOT fulfilled. The
correct validation requires that the available trédlance of the customer-selected account
must be sufficient, and must be greater than orletu the customer-requested amount of
money to be transacted in the customer-selected A@hkaction. A validation failure would
allow the customer to perform transactions on #lected account that is balance-insufficient
(e.g. in the "Withdraw Cash” transaction, the custo could impermissibly overdraw the se-
lected account that has the insufficient availa@ipdalit balance), which violates the ATM special

testing requirement #8: Account Balance Validation.

(2) Fault-Related Test Scenario
This fault is covered by a related ATM TUC testrsa#o, e.g., the ATM TUC2 core test

scenario.

(3) Fault-Related ATM Device (or Fault-Related Bank @pien)
This fault is related to the Customer Console (Kelypdevice, the Customer, and/or the
Bank.

(4) Fault Diagnostic Solution
The fault diagnosis is CIT-related in the ATM TUC@re test scenario. The fault diag-

nostic solution with the ATM TUC2 test design mirgtorporate certain basic fault diagnostic

solutions with the following one or more relatedttgroups (as described $ection C.5.4n

Appendix Q:

(@) Test grou®.4 TG comprises test operati@¥ TO ent er MoneyAnount () and its as-
sociated test contract 24 ETC checkState(custoner Consol e,
“MONEY_AMOUNT_ENTERED”) (as postcondition), and test state
“MONEY_AMOUNT_ENTERED".

(b) Test grouR.5 TG comprises test operati@b TO r eadMbneyAnmount () and its asso-
ciated test contract 2.5 ETC checkSt at e(cust oner Consol e,
“MONEY_AMOUNT_READ”) (as postcondition), and test state
“MONEY_AMOUNT_READ".

Chapter 9 Methodology Validation and Evaluation 261

(c) Test group2.6 TG comprises test operatidh6é TO val i dat eAccount Bal ance(
sel ect edAccount Type, ent er edMbneyAnount) and its associated test contract
2.6 ETC checkSt at e(bank, “ACCOUNT_BALANCE_VALIDATED”) (as postcon-
dition), and test stateACCOUNT_BALANCE_VALIDATED".

9.4.4.2 Evaluating Adequate Component Fault Coverage

Using the MBSCT methodology, adequate componetit éauerage can be achieved by apply-
ing sufficient test groups to develop fault diagimsolutions to adequately cover and diagnose
possible faults. At the same time, such adequatgoaent fault coverage can be also evaluated
by sufficiently-covered test groups and associfedt diagnostic solutions that are applied to
fault diagnosis. Based on the fault case scenaitysis and fault diagnostic solution design as
described irSection 9.4.4.1we further analyse and evaluate adequate compdegih cover-
age in the ATM case study, with regard to the threxst important ATM special testing re-
quirements.

Table 9.7describes a comprehensive analysis and evaluattiadequate component fault
coverage and diagnostic solutions for the threetnmportant ATM special testing require-
ments, in terms of basic fault, fault case scenamid analysis, fault-related ATM device (or the
bank), fault-related test scenario, fault diagrosblution and test group coverage. Most table
items for fault diagnosis analysis and evaluatiom explained inSection 9.4.4.1This table
shows that themajor requirement-violating faulti.e. the major fault/failure scenario as de-
scribed inSection 9.4.4 1which violates the related ATM special testinguieement) is due to
the occurrence of one of the several requiremeniatimg basic faults (which are associated
with the Boolean operationot ”). A basic fault which could subsequently cause the major
fault/failure scenario, is covered adequately by telated basic fault diagnostic solution that
contains at least one basic test group to diagtiheséult related to the component/class opera-
tion under test. In many situationspaual (or commonly-used) fault diagnostic solutadran
intermediate level needs to incorporate one or rhasgc fault diagnostic solutions (consisting
of one or more basic test groups) to cover andndisg one or more correlated basic faults for
the joint testing objective. Bomprehensive fault diagnostic solutitmcover and diagnose the
major requirement-violating fault must combine @fuirement-related basic fault diagnostic
solutions consisting of all requirement-relatedibasst groups. Following this fault diagnosis
strategy, the ATM component test design with theS@B methodology can develop fault di-
agnostic solutions to adequately cover and diagtiesenajor requirement-violating faults and

their correlated basic faults for the purpose tdaive fault diagnosis in the ATM system.

262

Chapter 9 Methodology Validation and Evaluation

Table 9.7 Analysis and Evaluation of Adequate Component Fault Coverage and Diagnostic Solutions (ATM Case Study)

Fault Case Scenario and Analysis

ATM Bank

Device

Test

Scenario

Fault Diagnostic Solution:
Test Group Coverage

Special Testing Requirement #3: Customer Validation

expected.

unreadable/unacceptable card). This fault may cawselated
precondition for the succeeding ATM operation (¢hgs fault
causes that the operation of customer validatiomagbe
performed correctly), or that the customer coultireeattempt to
use a readable/acceptable card for accessing thve AT

3.FAULT_CUSTOMER = FAULT_CARD Or FAULT_PIN Or The
FAULT _CUSTOMER_VALIDATED ATM
Session
3.1FAULT_CARD = FAULT_CARD_INSERTED O FAULT_CARD_READ The
ATM
Session
3.1.1FAULT_CARD The Card Reader device fails to eject the ATM ¢had is inserted| The The ATM Session Test Design:
_INSERTED incorrectly into the card slot by the customer,/anthe ATM fails | Card ATM Test groupl.1 TG comprises test operation
The Card Reader device is|to be ready for the customer to re-insert a card foew ATM Reader Session |1.1 TOi nsert Car d() and its associated
NOT in the correct control |session. This fault may cause a violated precawdfor the device test contracl.1 ETC checkSt at e(
state of CARD_ succeeding ATM operation (e.g. this fault causas tte Card car dReader , “CARD_INSERTED”) (as
INSERTED” as expected. |Reader device cannot correctly read in the caatinétion), or that postcondition), and test state
the customer could not attempt to re-insert the AJavtl correctly “CARD INSERTED".
for accessing the ATM. B
3.1.2FAULT_CARD_READ |The ATM fails to read in the card information (ecgrd number) |The The ATM Session Test Design:
The Card Reader device is|encoded on the customer-inserted ATM card, anaity to reject | Card ATM Test groupl.2 TG comprises test operation
NOT in the correct control |the unreadable/unacceptable card being insert@atirthe Card | Reader Session | 1.2 TO r eadCar d() and its associated tes
state of CARD_READ” as |Reader device fails to eject the inserted but device contractl.2 ETC checkSt at e(

car dReader , “CARD_READ") (as
postcondition), and test state
“CARD_READ".

t

Chapter 9 Methodology Validation and Evaluation

263

[

the correct control state of
“CUSTOMER
_VALIDATED” as expected.

fulfilled. The correct validation requires that timserted-card
number must be valid, the entered PIN must be yalid the
ATM-input customer information must be correct aaehtical to
the customer information stored in the Bank syst&malidation
failure would allow the customer to access the AWMle the
customer-inserted card is invalid and/or the custeemtered PIN
is invalid, which violates the ATM special testirgguirement #3:
Customer Validation.

Fault Case Scenario and Analysis ATM Bank Test Fault Diagnostic Solution:
Device Scenario Test Group Coverage
3.2FAULT_PIN = FAULT_PIN_ENTERED Of FAULT_PIN_READ ATM
Session

3.2.1FAULT_PIN The ATM fails to reject the customer’s PIN thaeigered The The ATM Session Test Design:
_ENTERED incorrectly by the customer from the Customer Ctegideypad) |Keypad ATM Test groupl.3 TG comprises test operation
The Keypad device is NOT | device, and/or fails to allow the three entrieshef customer’s PIN.device Session | 1.3 TO ent er PI N() and its associated tes
in the correct control state gfThis fault may cause a violated precondition fa& shicceeding contractl.3 ETC checkSt at e(
“PIN_ENTERED” as ex- ATM operation (e.g. this fault causes that the ATamhnot cust oner Consol e, “PIN_ENTERED")
pected. correctly read in the customer’s PIN), or that¢hstomer could (as postcondition), and test state

not attempt to re-enter another PIN correctly (imithhe permitted “pIN ENTERED".

three entries) for accessing the ATM. -
3.2.2FAULT_PIN_READ The ATM fails to read in the customer’s PIN entefienn the The The ATM Session Test Design:
The Keypad device is NOT | Customer Console (Keypad) device, and/or fail®jeat the Keypad ATM Test groupl.4 TG comprises test operation
in the correct control state gentered but unreadable/unacceptable customer’sdpitMor fails to device Session | 1.4 TO r eadPI N() and its associated test
“PIN_READ” as expected. |allow the three entries of a readable/acceptaldtomer’s PIN. contractl.4 ETC checkSt at e(

This fault may cause a violated precondition f@ shicceeding cust oner Consol e, “PIN_READ”) (as

ATM operation (e.g. this fault causes that the apjen of customef postcondition), and test statelN_READ”.

validation cannot be performed correctly), or tifwet customer

could not attempt to re-enter a readable/accepRINgwithin the

permitted three entries) for accessing the ATM.
3.3FAULT_CUSTOMER The ATM/Bank system fails to validate the ATM-inpustomer Bank | The ATM Session Test Design:
_VALIDATED information (e.g. card number and PIN), and/oisftol reject the ATM Test groupl.5 TG comprises test operation
The Bank system is NOT in| customer’s access to the ATM while this validati@NOT Session |1.5 TO val i dat eCust oner (

i nsertedCard, enteredPl N)and its
associated test contracb ETC

checkSt at e(bank,
“CUSTOMER_VALIDATED") (as
postcondition), and test state
“CUSTOMER_VALIDATED".

264

Chapter 9 Methodology Validation and Evaluation

Fault Case Scenario and Analysis

ALY
Device

Bank

Test
Scenario

Fault Diagnostic Solution:
Test Group Coverage

Special Testing Requirement #7: Account Selectionaldation

the correct control state of
“ACCOUNT_VALIDATED”
as expected.

validation requires that the customer-selected @ttcmust be valig
for the customer’s account in the Bank system, rhadinked to
the inserted ATM card, and can be accessed byustermer to
perform the customer-selected ATM transaction. hdation
failure would allow the customer to perform trargats on the
selected account, which violates the ATM specistitig
requirement #7: Account Selection Validation.

7.FAULT_ACCOUNT_SELECTION = FAULT_ACCOUNT_TYPE_SELECTED Or ATM
FAULT_ACCOUNT_TYPE_READ Of FAULT_ACCOUNT_VALIDATED TUC1
7.1FAULT_ACCOUNT The ATM fails to reject the account type that ikested incorrectly| The The ATM TUC1 Test Design:
_TYPE_SELECTED by the customer from the Customer Console (Disflagen) Display ATM Test grouR.1 TG comprises test operation
The Display/Screen device [iglevice, and/or fails to allow re-selecting anothank account. This/Screen TUC1 |2.1TOsel ect Account Type() and its
NOT in the correct control |fault may cause a violated precondition for theceeding ATM | device associated test contre&tt ETC
state of ACCOUNT_TYPE |operation (e.g. this fault causes that the ATM camorrectly read checkSt at e(cust oner Consol e,
_SELECTED” as expected. | in/faccept a bank account type), or that the cust@mald not “ACCOUNT_TYPE_SELECTED") (as

attempt to re-select a bank account correctly éoeasing the postcondition), and test state

ATM. “ACCOUNT_TYPE_SELECTED".
7.2FAULT_ACCOUNT The ATM fails to read in the account type seledtedh the The The ATM TUC1 Test Design:
_TYPE_READ Customer Console (Display/Screen) device, andisrtiareject | Display ATM Test grouR.2 TG comprises test operation
The Display/Screen device fithe selected but unreadable/unacceptable accodigrdails to | /Screen TUC1 |2.2TOreadAccount Type() and its
NOT in the correct control |allow re-selecting a readable/acceptable accoums. fault may | device associated test contra&z ETC
state of ACCOUNT_TYPE |cause a violated precondition for the succeedintyl/Aperation checkSt at e(cust oner Consol e,
_READ"” as expected. (e.g. this fault causes that the operation of asteelection “ACCOUNT_TYPE_READ") (as

validation cannot be performed correctly), or et customer postcondition), and test state

could not attempt to re-select a readable/acceptddount for “ACCOUNT TYPE READ”.

accessing the ATM. - B
7.3FAULT_ACCOUNT The ATM/Bank system fails to validate the custorselected Bank | The ATM TUC1 Test Design:
_VALIDATED account, and/or fails to reject the customer’s sgte the selected ATM Test grouR.3 TG comprises test operation
The Bank system is NOT in account while this validation is NOT fulfilled. Th®rrect TUC1 |2.3TOval i dateAccount (

i nsertedCard, ent eredPI N,
sel ect edAccount Type) and its
associated test contre&B8 ETC
checkSt at e(bank,
“ACCOUNT_VALIDATED") (as
postcondition), and test state
“ACCOUNT_VALIDATED".

Chapter 9 Methodology Validation and Evaluation

265

Fault Case Scenario and Analysis ATM Bank Test Fault Diagnostic Solution:
Device Scenario Test Group Coverage

Special Testing Requirement #8: Account Balance Viaiation
8. FAULT_ACCOUNT_BALANCE = FAULT_MONEY_AMOUNT_ENTERED Ofr ATM
FAULT _MONEY_AMOUNT_READ OI FAULT _ACCOUNT_BALANCE_VALIDATED Tuc2
8.1FAULT_MONEY The ATM fails to reject the money amount that iseeed The The ATM TUC2 Test Design:
_AMOUNT_ENTERED incorrectly by the customer from the Customer Ctegdeypad) |Keypad ATM Test groupR.4 TG comprises test operation
The Keypad device is NOT | device, and/or fails to allow re-entering anoth@oant of money | device TUC2 |2.4TOent er MoneyAnount () and its
in the correct control state gto be transacted. This fault may cause a violatedgmdition for associated test contrattt ETC
“MONEY_AMOUNT the succeeding ATM operation (e.g. this fault caubkat the ATM checkSt at e(cust oner Consol e,
_ENTERED” as expected. |cannot correctly read in the money amount), or tiatcustomer “MONEY_AMOUNT_ENTERED”) (as

could not attempt to re-enter a money amount ctiyréar postcondition), and test state

accessing the ATM. “MONEY_AMOUNT_ENTERED".
8.2FAULT_MONEY The ATM fails to read in the money amount correethyered from| The The ATM TUC2 Test Design:
_AMOUNT_READ the Customer Console (Keypad) device, and/or faitgject the |Keypad ATM Test grou®R.5 TG comprises test operation
The Keypad device is NOT | entered but unreadable/unacceptable money amadigrdails to | device TUC2 |2.5TOreadMoneyAnmount () and its
in the correct control state gfllow re-entering a readable/acceptable amountasfanto be associated test contrab ETC
“MONEY_AMOUNT transacted. This fault may cause a violated preitiondor the checkSt at e(cust oner Consol e,
_READ” as expected. succeeding ATM operation (e.qg. this fault causestthe operation “MONEY_AMOUNT_READ”) (as

of account balance validation cannot be perfornwedectly), or postcondition), and test state

that the customer could not attempt to re-enter a “MONEY AMOUNT READ".

readable/acceptable money amount for accessingTive B a
8.3FAULT_ACCOUNT The ATM/Bank system fails to validate the availabledit balance Bank | The ATM TUC2 Test Design:
_BALANCE_VALIDATED |of the customer-selected account, and/or failgject the ATM Test groupR.6 TG comprises test operation
The Bank system is NOT in customer’s access to the selected account whievgiidation is TUC2 |2.6 TOvalidateAccount Bal ance(
the correct control state of |NOT fulfilled. The correct validation requires ttthe available sel ect edAccount Type,
“ACCOUNT_BALANCE credit balance of the customer-selected account beusufficient, ent er edMoneyAnmount) and its
_VALIDATED"” as expected.| and must be greater than or equal to the custoesgressted amount associated test contra&&b ETC

of money to be transacted in the customer-selekiad checksSt at e(bank,

transaction. A validation failure would allow thestomer to “ACCOUNT BALANCE VALIDATED”)

perform transactions on the selected account sHadlance- (as postconaition), and test state

insufficient (e.g. in the “Withdraw Cash” transaxctj the customer| “ACCOUNT BALANCE VALIDATED".

could impermissibly overdraw the selected accolat has the - -

insufficient available credit balance), which vigla the ATM

special testing requirement #8: Account Balancedésibn.

266 Chapter 9 Methodology Validation and Evaluation

9.4.4.3 Evaluating Fault Diagnostic Solutions and Results

Based on the relevant FDD assessmerfidntion 9.4.4.10 Section 9.4.4.Zincluding Table
9.7) above andsection C.7n Appendix G this section further analyses and evaluates thult
agnostic solutions and results in more detail, wittpard to the MBSCT testing capability #6.
Further analysing possible component faults thelaté the ATM special testing requirements,
we can observe that the major requirement-violdfidt is due to the occurrence of one of sev-
eral relevant requirement-violating basic faultdi@h are associated with the Boolean opera-
tion “or). For example, the major requirement-violatinglf&cFAULT_ACCOUNT_BALANCE
(which violates the ATM special testing requiremg8ét Account Balance Validation) is due to
the occurrence of the requirement-violating basic aulté
FAULT_ACCOUNT_BALANCE_VALIDATED or FAULT_MONEY_AMOUNT_READ or
FAULT_MONEY_AMOUNT_ENTERED, which all subsequently violate the same ATM spe-

cial testing requirement #8.

As indicated inSection 9.3.5.2we can further classify these requirement-viotatbasic

faults into the following two main categories:

(1) Directly-related fault This type of basic fault is associated with therent operation that
could directly result in the major requirement-aiihg fault against the related ATM
special testing requirement. For example, the basicfault
FAULT_ACCOUNT_BALANCE_VALIDATED is the directly-related fault for the major
requirement-violating faulFAULT_ACCOUNT_BALANCE, which directly violates the
ATM special testing requirement #8: Account Balanedidation Section 9.4.4.3.pre-

sents more detailed discussions about diagnosisglitiectly-related fault).

(2) Indirectly-related fautt This type of basic fault is associated with ated preceding op-
eration that could result in an intermediate faula violated precondition, and thus indi-
rectly cause the same major requirement-violatmgt fagainst the related ATM special
testing requirement. For example, the basic fBAWLT _MONEY_AMOUNT_READ is
an indirectly-related fault for the same major liegment-violating fault
FAULT_ACCOUNT_BALANCE, which subsequently violates the same ATM special
testing requirement #8: Account Balance Validaii8ection 9.4.4.3.presents more de-

tailed discussions about diagnosing these indirgethted faults).

For the same major requirement-violating fault,alisuthere might be more than one in-
directly-related fault, while there is one direettated fault in the ATM case study. Effective

fault diagnostic solutions must cover and diagnadahese directly/indirectly related faults

Chapter 9 Methodology Validation and Evaluation 267

against the same ATM special testing requirement.ilBstrating the three relevant FDD
evaluation examples selected from the ATM caseystwe conduct a comprehensive analysis
and evaluation of fault diagnostic solutions ansules that adequately cover and diagnose all
the major requirement-violating faults and theiredtly/indirectly related faults against the
three most important ATM special testing requiretaeRollowing our fault diagnosis strategy
as described i®ection 9.3.5.2our fault diagnosis analysis and evaluation starth first diag-
nosing the directly-related fault and then diagngghe indirectly-related faults that are associ-
ated with the same major requirement-violatingtfatthe description of fault diagnosis analysis
and evaluation in each FDD evaluation examplenslai in principal as the result of applying
the same FDD method with the MBSCT methodology, differs in certain specific technical
details when diagnosing different faults. Our majbjective here is to evaluate the effective-

ness of the fault diagnostic solutions developet thie MBSCT methodology.

For the three relevant FDD evaluation examplescssdefrom the ATM case study, the
nextSection 9.4.4.3.1llustrates “Evaluation Example #3: Account Balantalidation” for the
ATM special testing requirements #Bection C.8n Appendix Cdescribes two other evaluation
examples #1 and #2 for the two ATM special testiaguirements #3 and #7. The®ection

9.4.4.4provides a FDD evaluation summary for the thresduation examples.

9.4.4.3.1 Evaluation Example #3: Account Balance Validation

This subsection evaluates the fault diagnostictewsia and results for diagnosing the possible
faults that result in the same major requiremealating faultFAULT_ACCOUNT_BALANCE
against the ATM special testing requirement #8:cMrt Balance Validation. As described in
Section 9.4.4.1.AndTable 9.7above, we develop and apply the three individualdfault di-
agnostic solutions in the ATM case study. Eachdilt diagnostic solution uses a basic test
group to diagnose a directly/indirectly relatedlfan the ATM TUC2 test scenario (as illus-

trated inFigure 9.2.

_ 247G 25TG 26 TG
Bas|§ e — =y | | |
artef;ecsts 12470 . 12.5TO 12670 i
: ﬂ Do ﬂ Dol ﬂ

! # Test ' ' E ¥ ' ' *Sequence ' >
Specia I I I t T ! I t i) I
tes | Faull 5 4 prcl | Fault 5 5 g1l 1 Faull 5 6 gl
contracts|| .81 T 7 .82 T T ;.83 T T .

major fault/failure scenario

Figure 9.2 Evaluation Example #3: Account Balance Validation
(Fault Diagnostic Solutions with the ATM TUC2 Test Design)

268 Chapter 9 Methodology Validation and Evaluation

The FDD evaluation for this major requirement-vig fault is described as follows:

(1) Basic Fault 8. FAULT_ACCOUNT_BALANCE_VALIDATED (as shown ifTable 9.7

To diagnose the directly-related fault in the ATNUQ?2 test scenario, the ATM TUC2
test design contains the first fault diagnostiaigoh that uses test gro@® TG to exercise test
operation 2.6 TO validateAccountBal ance(sel ect edAccount Type,
ent er edMbneyAnount), which is verified by its associated test cocttra.6 ETC
checksSt at e(bank, “ACCOUNT_BALANCE_VALIDATED”) (as postcondition) and test
state ACCOUNT_BALANCE_VALIDATED".

If the test contract returrfalse this fault diagnostic solution has detected aiagrbsed
the following fault: the execution of operatigmal i dat eAccount Bal ance() fails, causing
the Bank system NOT to be in the correct control atest of
“ACCOUNT_BALANCE_VALIDATED” as expected. This means that the ATM/Bank system
fails to validate the available credit balanceh® tustomer-selected account, and/or the ATM
fails to reject the customer’s access to the sedeatcount while this validation is NOT ful-
filled. In this fault case scenario, the availatiedit balance of the customer-selected account is
insufficient to transact the customer-requested eyioamount in doing a certain customer-
selected ATM transaction (e.g. permitting an exeaeney withdrawal in the “Withdraw Cash”
transaction). This accords with the basic fault 8.3
FAULT _ACCOUNT_BALANCE_VALIDATED as described iffable 9.7 and the account bal-
ance validation failure directly violates the ATMegial testing requirement #8: Account Bal-

ance Validation.

Therefore, the basic fault 8.BAULT_ACCOUNT_ BALANCE_VALIDATED is the
directly-related fault that causes the major regaegnt-violating fault
FAULT_ACCOUNT_BALANCE, which directly results in the major fault/failuszenario of
Account Balance Validation as describedigction 9.4.4.1.1The first fault diagnostic solution
can diagnose this directly-related fault. Followihng CBFDD guidelines (as described earlier
in Section 7.5.p the diagnosed fault can be corrected and removéte fault-related Bank'’s

operatiorval i dat eAccount Bal ance().

(2) Basic Fault 8. FAULT_MONEY_AMOUNT_READ (as shown iTable 9.7

To diagnose an indirectly-related fault in the ATNJIC2 test scenario, the ATM TUC2
test design incorporates the second fault diagnestution that uses test gro2 TG to exer-
cise test operatioR.5 TO r eadMbneyArrount (), which is verified by its associated test con-

tract2.5 ETC checkSt at e(cust oner Consol e, “MONEY_AMOUNT_READ") (as post-

Chapter 9 Methodology Validation and Evaluation 269

condition) and test statd/ONEY_AMOUNT_READ".

If the test contract returrfalse this fault diagnostic solution has detected alagdrmbsed
the following fault: the Customer Console (Keypdeéyice fails in the execution of operation
r eadMbneyAnount (), causing the Customer Console (Keypad) devicel N® be in the
correct control state ofMONEY_AMOUNT_READ” as expected. This means that the ATM
fails to read in the money amount entered fromG@hstomer Console (Keypad) device, and/or
fails to reject the entered but unreadable/unaebéptmoney amount, and/or fails to allow the
customer to re-enter a readable/acceptable améumbrmey to be transacted. This accords with
the basic fault 8.2FAULT_MONEY_AMOUNT_READ as described inTable 9.7 The
occurrence of this fault indicates a violated pretiton, causing the related succeeding
operationval i dat eAccount Bal ance() in the expected ATM TUC2 test sequence NOT to
be executed correctly, i.e. this validation opermatcannot be executed as expected or its

execution fails in the expected operation executiEguence.

Thus, the basic fault 8.ZAULT_MONEY_AMOUNT_READ is an indirectly-related
fault that causes the directly-related fault E8ULT_ACCOUNT_BALANCE_VALIDATED,
and then indirectly results in the same major negpent-violating fault
FAULT_ACCOUNT_BALANCE. The second fault diagnostic solution can diagndse
indirectly-related fault. Following the CBFDD guides (as described earlier 8ection 7.5.5
the diagnosed fault that is associated with thetd@@osr Console device's operation

r eadMoneyAnount () can be corrected and removed.

(3) Basic Fault 8. FAULT_MONEY_AMOUNT_ENTERED (as shown ifable 9.7

To diagnose an indirectly-related fault in the ATINJIC2 test scenario, the ATM TUC2
test design incorporates the third fault diagnostiction that uses test grogpt TG to exercise
test operatior2.4 TO ent er MoneyAnount (), which is verified by its associated test cocitra
2.4 ETC checkSt at e(cust oner Consol e, “MONEY_AMOUNT_ENTERED") (as post-
condition) and test statd/ONEY_AMOUNT_ENTERED".

If the test contract returrfalse this fault diagnostic solution has detected aiagrbsed
the following fault: the execution of operatiemt er MoneyAnrount () fails, causing the Cus-
tomer Console (Keypad) device NOT to be in the axirr control state of
“MONEY_AMOUNT_ENTERED” as expected. This means that the money amoumttered
incorrectly by the customer from the Customer Cnglieypad) device. While this fault oc-
curs, the ATM fails to reject the money amount tkagntered incorrectly by the customer from
the Customer Console (Keypad) device, and/or tailallow the customer to re-enter another

amount of money to be transacted. This accords wille basic fault 8.1

270 Chapter 9 Methodology Validation and Evaluation

FAULT_MONEY_AMOUNT_ENTERED as described iffable 9.7 The occurrence of this fault
indicates a violated precondition, causing the seding operatiom eadMoneyAnount () in
the expected ATM TUC2 test sequence NOT to be dézdatorrectly, i.e. this operation can not

be executed as expected or its execution failsérekpected operation execution sequence.

Hence, the basic fault 8.EAULT_MONEY_AMOUNT_ENTERED is an indirectly-
related fault that causes the indirectly-relateditf8.2 FAULT _MONEY_AMOUNT_READ,
and then indirectly results in the same major nexpent-violating fault
FAULT_ACCOUNT_BALANCE. The third fault diagnostic solution can diagndkis indi-
rectly-related fault. Following the CBFDD guidelmés described earlier 8ection 7.5.h the
diagnosed fault that is associated with the Custaand Customer Console device related op-

erationent er MoneyAnount () can be corrected and removed.

(4) Combined faults of the above three individual disgmdirectly related faults

Based on the FDD evaluation in (1) to (3) abovegmprehensive fault diagnostic solu-
tion needs to incorporate the abovementioned timaigidual fault diagnostic solutions to de-
tect and diagnose the combined faults of the altoree individual directly/indirectly related
faults against the same ATM special testing requingt #8: Account Balance Validation. The

combined faults can be corrected and removed ifolleving fault-related operations:
(@) the Bank’s operatiomal i dat eAccount Bal ance(), and/or
(b) in the Customer Console device’s operati@adMoneyAnmount (), and/or

(c) the Customer and Customer Console device relatectipnent er Money Anount ().

9.4.4.4 Evaluation Summary: Adequate Component Fault Coverge and

Diagnostic Solutions and Results
Based on the three FDD evaluation examples andarfeliscussions for the MBSCT evalua-
tion with the ATM case study (especially 8ection 9.4.4.1Section 9.4.4.2Table 9.13and
Section 9.4.4.&above;Section C.7andSection C.8n Appendix G, the evaluation of adequate
component fault coverage and diagnostic solutionsrasults can be summarised as shown in
Table 9.8 This table shows three main evaluation resulf §etthe first three rows) that are
assessed in terms of the number of different tesharios, directly-related requirement-
violating faults, indirectly-related requirementlating faults and fault diagnostic solutions for

the three most important ATM special testing regmients.

Chapter 9 Methodology Validation and Evaluation 271

Table 9.8 Evaluation Summary: Adequate Component Fault Coverage
and Diagnostic Solutions and Results (ATM Case Study)

Special Test No. of No. of No. of No. of Adequate Adequate Testing

Testing Scenario Directly Indirectly Directly/ Fault Component Fault Requirement
Requirement -Related -Related Indirectly Diagnostic Fault Diagnostic Fulfilment

Faults Faults Related Solutions Coverage Solutions
Faults
#3: Customer| ATM 1 4 5 5 Yes Yes Yes
Validation | Session
#7: Account | ATM 1 2 3 3 Yes Yes Yes
Selection TUC1
Validation
#8 Account | ATM 1 2 3 3 Yes Yes Yes
Balance TUC2
Validation
Total 3 3 3 8 11 11 Yes Yes Yes

These evaluation result sets have drawn the fatigwobnclusions:

(1) Based on the relevant FDD evaluation (as desciitb&kction 9.4.4.10 Section 9.4.4.3
andTable 9.7above;Section C.7.JandSection C.8.1n Appendix Q, the first evaluation
result set (inTable 9.8 concludes that the ATM Session test design cgpl@mnthe five
(5) fault diagnostic solutions we have develope@dequately cover and diagnose the
combined faults of five (5) directly/indirectly-agked requirement-violating faults. Ac-
cordingly, this achieves adequate component faMéage and adequate fault diagnostic
solutions, and fulfils the ATM special testing ré@gment #3: Customer Validation.

(2) Based on the relevant FDD evaluation$iection 9.4.4.10 Section 9.4.4.&ndTable 9.7
above;Section C.7.2and Section C.8.2n Appendix Q, the second evaluation result set
(in Table 9.8 concludes that the ATM TUC1 test design can emfihe three (3) fault
diagnostic solutions we have developed to adequateler and diagnose the combined
faults of three (3) directly/indirectly-related régement-violating faults. Accordingly,
this achieves adequate component fault coveragedeguate fault diagnostic solutions,
and fulfils the ATM special testing requirement #¢count Selection Validation.

(3) Based on the relevant FDD evaluation$iection 9.4.4.10 Section 9.4.4.ZandTable 9.7
above), the third evaluation result set Tiable 9.8 concludes that the ATM TUC2 test
design can employ the three (3) fault diagnostiateams we have developed to ade-
guately cover and diagnose the combined fault&irefet (3) directly/indirectly-related re-
quirement-violating faults. Accordingly, this achés adequate component fault coverage

272 Chapter 9 Methodology Validation and Evaluation

and adequate fault diagnostic solutions, and futfile ATM special testing requirement

#8: Account Balance Validation.

(4) Finally (in the last row inrable 9.8, our FDD evaluation concludes that the ATM test
design can employ the eleven (11) fault diagnospictions developed in the three (3)
core test scenarios to adequately cover and diagiescombined faults of eleven (11)
directly/indirectly-related requirement-violatinguits to fulfil all the three (3) most im-
portant ATM special testing requirements. As theulteof FDD evaluation, we can con-
clude that the effectiveness of the MBSCT testiagability #6 (for adequate component

fault coverage and diagnostic solutions) can bésael as required.

9.5 Evaluation Comparison and Discussions

As the principal focus of testing and evaluatioachte of our case studies has validated and
evaluated specifically how the MBSCT testing calitids can be effectively applied to fulfil
the most important special testing requirements.tke purpose of comparison of evaluation

results, we can compare the two case studies ifollogving three main evaluation aspects:

(1) A comparison for the evaluation of test artefacterage measurement (as showrT &
ble 9.9

For adequate test artefact coverage, the CPS c@npoest design employs a total of
three (3) main test scenarios/sequences, eigu(8jest scenarios/sequences, eighteen (18) test
groups, twenty-three (23) test operations, eigh{d8) test contracts, and ten (10) (different)
test states in the CPS case study. In the ATM sagby/, the ATM component test design em-
ploys a total of three (3) main test scenarios/srges, ten (10) sub test scenarios/sequences,
thirty-one (31) test groups, thirty-three (33) teptrations, twenty-nine (29) test contracts, and

twenty-nine (29) test states.

This evaluation comparison is shownTiable 9.9 which is a joint summary dfable 9.1
andTable 9.51t can be observed that the ATM case study uses test artefacts than the CPS
case study does, because the ATM system is morplerrthan the CPS system. In particular,
the ATM system has more operations under testilfamgineeds more test contracts to examine

these operations.

Chapter 9 Methodology Validation and Evaluation

Table 9.9 Evaluation Comparison: Test Artefacts Coverage Measurement
(CPS Case Study vs. ATM Case Study)

Case No. of Test No. of Test No. of Test No. of Test No. of Test No. of Test
Study Scenarios Sequences Groups Operations Contracts States
CPS 3 8 18 23 18 10
ATM 3 10 31 33 29 29

(2) A comparison for the evaluation of adequtest artefact coverage and component test-

ability improvement (as shown ifeble 9.10

This evaluation comparison is shownTiable 9.10 which summarises bothable 9.2
andTable 9.6 Our evaluation from the presented case studiesbiacluded that the effective-
ness of the MBSCT testing capabilities #4 and #5 dflequate test artefact coverage and com-
ponent testability improvement) can be achievedeasired by fulfilling the most important
special testing requirements.

Table 9.10 Evaluation Comparison: Adequate Test Artefact Coverage
and Component Testability Improvement (CPS Case Study vs. ATM Case Study)

Case
Study

No. of Special No.of Adequate
Testing Test Test
Requirements Scenarios Artefact Bridging Bridging
Coverage Test-Gap #1 Test-Gap #2

Testability Improvement

Testing
Requirement
Fulfilment

CPS 3 3 Yes Yes Yes Yes
ATM 3 3 Yes Yes Yes Yes

(3) A comparison for the evaluation of adequate compbifeult coverage and diagnostic

solutions (as shown ifiable 9.1}

In the CPS case study, the CPS test design catih@igen (10) fault diagnostic solutions
developed in the three (3) core test scenarioglégeately cover and diagnose the combined
faults of ten (10) directly/indirectly-related pramy faults to fulfil all the three (3) CPS special
testing requirements. In the ATM case study, thé/A€st design can use the eleven (11) fault
diagnostic solutions developed in the three (3§ dest scenarios to adequately cover and diag-
nose the combined faults of eleven (11) directtifiectly-related requirement-violating faults
to fulfil all the three (3) most important ATM spaktesting requirements.

This evaluation comparison is shownTiable 9.11 which is a joint summary ofable
9.4andTable 9.8 As the result of FDD evaluation, our evaluatioonf the presented case stud-
ies has concluded that the effectiveness of the ®Bsting capability #6 (for adequate com-
ponent fault coverage and diagnostic solutions) lmarachieved as required by fulfilling the

274 Chapter 9 Methodology Validation and Evaluation

most important special testing requirements.

Table 9.11 Evaluation Comparison: Adequate Component Fault Coverage
and Diagnostic Solutions and Results (CPS Case Study vs. ATM Case Study)

Case No. of Special No.of No. of No. of No. of No. of Adequate Adequate Testing
Study Testing Test Directly Indirectly Directly/ Fault Component Fault Requirement

Requirements Scenarios -Related -Related Indirectly Diagnostic Fault Diagnostic Fulfilment
Faults Faults Related Solutions Coverage Solutions

Faults
CPS 3 3 3 7 10 10 Yes Yes Yes
ATM 3 3 3 8 11 11 Yes Yes Yes
9.6 Summary

This chapter has reported two full case studieséonprehensive validation and evaluation of
the six core characteristic testing capabilitieshaf MBSCT methodology and its framework.
While the two case studies were selected from mdiffe component-based system application
areas, they were undertaken in this research foostfne common goal of methodology valida-
tion and evaluation. This chapter conducted theG&IS case study that examines all the core
CPS test scenarios for a more comprehensive mdtwpadealidation and evaluation. The ATM
case study was an additional case study undertlkefurther methodology validation and
evaluation.

As the result of the comprehensive methodologydedilon and evaluation presented with
the full case studies, we have demonstrated andaved the MBSCT testing applicability for
test model construction, model-based componentdiesgn and generation, component fault
detection, diagnosis and localisation in the SCdcfice (including the core MBSCT testing
capabilities #1 to #3). More importantly, we havemined and evaluated the MBSCT testing
effectiveness for adequate component artefact ageercomponent testability improvement,
adequate component fault coverage and diagnostit®ts (including the core MBSCT testing
capabilities #4 to #6). Our validation and evaloathave demonstrated and confirmed that the
core MBSCT testing capabilities are effective thiage the required level of component cor-
rectness and quality by fulfilling the most impartapecial testing requirements. Therefore, our
two diverse case studies have achieved the intemdgar objectives of the methodology vali-

dation and evaluation as described®attion 9.2

For the MBSCT methodology developed by this redealere are some important issues
concerning areas of methodology improvements, whidlhoe further discussed in conjunction

with future work inChapter 10

Chapter 10 Conclusions and Future Work 275

Chapter 10
Conclusions and Future Work

This chapter concludes this thesis by revisiting dhiginal research contributions with further
discussions, and exploring important open issuesarming areas for methodology improve-

ment and research directions for future work.

10.1 Oiriginal Contributions

Sectionl.3 presented an overview of the original contribusiarf this research. This section
provides a more detailed account of the originakagch contributions based on the research
presented ilChapter 2o Chapter 9

This thesis has achieved substantial and origioalributions to the Software Engineer-
ing scholarly body of knowledge in the main reskareas of principal interest, including soft-
ware components, software component testing, muoakstd testing, UML-based testing, con-
tract-based testing, scenario-based testing, mggyared testing, and fault detection, diagnosis
and localisation. The original contributions hawwanced the state of the art in these research
areas, and comprise two major parts: the subskéitei@ture review to provide a firm research
foundation and the comprehensive MBSCT methodokbgyeloped as the result of this re-

search.
Each of the individual original contributions ofghhesis is further discussed below:

1. The original contributions arising from the literature review for the research foun-

dation (as described inChapter 2 and Chapter 3)

This thesis comprehensively reviews important cptgeprinciples, characteristics and
techniques of the abovementioned main researcls amethe current literature. This literature
review is substantial and comprehensive, and hbagwed a number of research results and
findings (including new concepts and definitionshich constitute the first major part of the
original contributions of this thesis. The compnesige literature review and research outcomes
have created a solid conceptual and methodologataidation for the development of the

MBSCT methodology by this research.
1.1 Inthe research areas of software components and software component testing

(1) A new comprehensive taxonomy of software componkatacteristics (isection 2.2.2

This new taxonomy contains twenty-two (22) softwapenponent properties in the four

276 Chapter 10 Conclusions and Future Work

(4) main classified categories at different computisation levels, with seven (7) new compo-
nent characteristics identified and added to emipbdsgh-level component properties. As far
as we know, our proposed taxonomy is much moranmitive and comprehensive than the ex-
isting component characteristic classificationgha current literature (as reviewed Section
2.2.1andSection 2.2.2 This new taxonomy has provided a conceptualsbasithe new soft-

ware component definition introduced by this reskgsee (2) below).

(2) A new software component definition @ection 2.2.8

We found that there was no single formal compomlefinition in the current literature
(as reviewed irSection 2.2.JandSection 2.2.8 Compared with other component definitions in
the current literature, this new component defmitwas based on the abovementioned new tax-
onomy and comprised new added component qualityepties in terms of testability and reli-
ability, which are crucial to assure important coment attributes (e.g. component functionality
and reusability) in CBSE. The MBSCT methodology imiegrated this new component defini-

tion to effectively improve component testabilitydaquality.

(3) A new definition of software component testing fiection 2.3

We found that there was no single formal SCT dediniin the current literature (as re-
viewed inSection 2.3 Our proposed SCT definition describes a gertesting process and the
key testing tasks in six major testing phases. @asethis new SCT definition, this research
analyses important SCT characteristics, test casgspecification concepts, and different test-
ing perspectives and needs. The MBSCT methodolagyificorporated this new SCT defini-

tion.

(4) A useful taxonomy of software component testindgpiégques (inSection 2.5

This useful taxonomy, which was based on compodewtlopment information used for
component test design and generation, illustrates¢lationship between the classification of
testing technigues and test levels. With suppornfthis taxonomy, this research has focused

on model-based testing for the goal of compondegnation and system testing.

(5) A practical taxonomy of component testability impement approaches (Bection 2.%

This practical taxonomy was developed based omgaative study of component test-
ability concepts, characteristics, and improvernegroaches from different stakeholder per-
spectives. This research emphasised componenbitiégtas a key property to support compo-
nent quality and achieve component testing effeatss. The MBSCT methodology was

shown to be capable of improving component testalaihd quality.

1.2 Inthe research areas of model-based testing and UML-based testing

Chapter 10 Conclusions and Future Work 277

(1) A study of model-based tests @ection 3.2.%

This thesis studied model-based tests derived festnmodels in two main steps in terms
of abstract test cases and executable test cagsed Bn this study, the CTM technique devel-
oped with the MBSCT methodology has supportedttasisformation from abstract test cases

to concrete test cases suitable for test exec(ticbhapter 4andChapter §.

(2) A new definition of model-based testing @ection 3.2.b

We found that there was no single formal MBT deiim in the current literature (as re-
viewed inSection 3.2.L In addition to covering the main MBT tasks arwhlg, our proposed
MBT definition had a distinguishing characteridtiat the new MBT definition addressed some
of the main outstanding issues in current MBT pecacfas reviewed iibection 3.2.5Section
3.2.6and Section 3.} and clearly emphasised the integration of MB@ 8BD activities to
allow both to work together as part of the SDLCisTiew MBT definition created a conceptual
foundation for the model-based integrated SCT m®e@and the TCR strategy developed in the
MBSCT methodology (itChapter 4andChapter %.

(3) A new test model definition (iBection 3.2.%

We found that there was no single formal test madeéhition in the current literature (as
reviewed inSection 3.2.% Being conceptually consistent with the new MB@&fidition as
above, our proposed test model definition indicédtest good test models for effective MBT
must be developed from transformed and improvecldpment models, must be reasonably
simple and more abstract than the concrete impleahen of the SUT, and must be adequately
precise for target testing objectives. This redeaqplied these insights as a guide to develop
test models with the MBSCT methodology.

(4) A new definition of UML-based testing (Bection 3.3.1

Our proposed UBT definition was based on the newlMBfinition as mentioned above,
where UBT was the major type of MBT approach useithis research. Based on this UBT defi-
nition, we have shown that the MBSCT methodologg isew UBT approach to SCT, which
has benefited from the advantages of the UML stahdad enables the utilisation of a consis-

tent UML-based approach and specification for effeccomponent development and testing.

(5) A core UML subset for SCT (iSection 3.3.2

This core UML subset was selected to provide a gnynmodeling foundation for effec-
tive UML-based component development and testingcgss/techniques developed in the
MBSCT methodology. This research has demonstrdtatithe core UML subset selected is
adequate and effective to support UML-based SCT.

278 Chapter 10 Conclusions and Future Work

(6) A study and review of use case driven testing ar@hario-based testing (iBections
3.3.2 to 3.3.3andSections 3.4.203.4.9
This thesis studied the main concepts and reviawkaded work of use case driven test-
ing and scenario-based testing in MBT/UBT practiBased on this study, the scenario-based
CIT technique developed with the MBSCT methodolbgyg aided in deriving test scenarios
and test sequences for UML-based component integresting (inChapter 4o Chapter §.

2. The principal original contributions of the MBSCT methodology (as described from

Chapter 4 to Chapter 9)

As the principal original contributions of this #ig this research has introduced a novel
hybrid SCT methodology Model-Based Software Component Testing (MBSCT), devel-
oped a set of five major supporting methodologmahponents, and created the three-phase
testing framework to enable the MBSCT methodolagpassess six main methodological fea-

tures and six core testing capabilities in SCT fcac

2.1 The five major MBSCT methodological components are as follows:

(1) Model-Based Integrated SCT ProcessGhapter aandChapter %

Our proposed SCT process integrates software coempalevelopment and testing into a
unified UML-based software process as part of theS and enables using a consistent UML-
based approach and specification for systematialyeloping test models and model-based
component tests with UML. Based on the proposed MBBT definition, this SCT process ad-
dressed some of the main outstanding issues ieruMBT practice (as reviewed Bection
3.2.5 Section 3.2.andSection 3.5 As a base methodological component, the prop8¢&d
process provided a useful process model for theeemBSCT methodology, thus enabling

MBSCT to be model-based and process-based.

(2) Scenario-Based Component Integration Testing TectenfinChapter 4andChapter %

Our proposed CIT technique focused testing priavityidentifying and constructing ap-
propriate test scenarios and test sequences toisxemd examine crucial deliverable compo-
nent functions with the associated operationaloase scenarios (e.g. behavioural instances and
integration scenarios). This CIT technique enaltlel MBSCT methodology to be scenario-
based, which specifically supports component iratgn testing that bridges component unit

testing and component system testing.

(3) Test by Contract (TbC) Technique @mapter 4o Chapter
As a primary MBSCT methodological component, ouwpased ThC technique intro-

Chapter 10 Conclusions and Future Work 279

duced a new notion of a test contract as a keingestipport mechanism and associated con-
tract-based concepts, and designed a set of sixactiased test criteria in order to improve
component testability and bridge the identifigdst gapsin MBT/UBT (as reviewed inSec-

tion 3.2.5andSection 3.5 Based on the proposed stepwise TbhC processThtstechnique
was shown to enhance test model construction, rimadd component test design and genera-
tion, which enabled the MBSCT methodology to bet@mt-based (irChapter 4o Chapter §.

In addition, by further extending this TbC techrega new contract-based fault detection and
diagnosis (CBFDD) method was developed to supgdtettive component fault diagnosis and
localisation, which established the major technicaindation for component test evaluation,
thus enabling the MBSCT methodology to be FDD-bdse@hapter 7.

(4) Testing-Centric Remodeling (TCR) Strategy @hapter 4andChapter %

Our proposed TCR strategy provided a practical guadassist test model construction
and model-based test derivation by means of tegticenodel refinement, model-based test-
ability improvement and test-centric model optirtima This TCR strategy worked collabora-
tively with the corresponding MBSCT methodologicaimponents, especially the ThC tech-

nique and the scenario-based CIT technique.

(5) Component Test Mapping (CTM) Technique @hapter 4andChapter §

Our proposed CTM technique is a new mapping-bassdderivation approach, which
focused on mapping and transforming testing-relatedel artefacts and associated test con-
tracts into useful test data for generating tacgetponent test cases, thus enabling the MBSCT

methodology to be mapping-based.
2.2 The MBSCT framework has three main phases for undertaking UML-based SCT:

(1) Test Model Construction (iEhapter /andChapter %
The MBSCT framework in Phase #1 applies the fost MBSCT methodological com-
ponents (as described in the list of 2.1 (1) toaf@dve) to build UML-based test models, which

creates a solid foundation for UML-based SCT.

(2) Component Test Design and GeneratiorQfivapter 4o Chapter $

Based on relevant UML-based test models and tésfiaats, the MBSCT framework in
Phase #2 undertakes component test design to affastive FDD. The designed model-based
(abstract) test cases are then mapped and traresfanto concrete test cases for generating tar-
get component test cases. Component test developsnsmpported by all five MBSCT meth-

odological components.

(3) Component Test Evaluation (@hapter 7andChapter 9

280 Chapter 10 Conclusions and Future Work

The MBSCT framework in Phase #3 undertakes comgdashevaluation in conjunction
with the validation and evaluation of the core MBSt@sting capabilities (as described in the
list of 2.4 (1) — (6) below).

2.3 The MBSCT methodology and its framework have six main methodological fea-
tures.

Supported by the above five major methodologicahponents, the MBSCT methodol-
ogy and its framework have six main methodologfeatures that enables SCT to be model-
based, process-based, scenario-based, contrad-daB8B-based, and mapping-based in the
SCT practice (as described in the list of 2.1 ({§)above).

2.4 The MBSCT methodology and its framework have six core testing capabilities.

The six core MBSCT testing capabilities, which bseed below, were built on the five
major methodological components and the six maithouological features of the MBSCT
methodology. The first three MBSCT testing capébsi were classified into the category of
testing applicability, and the remaining three welassified into the category of testing effec-
tiveness. This thesis has undertaken a compretensthodology validation and evaluation (in
Chapter 9, which has demonstrated and confirmed that tihe BIBBSCT testing capabilities are
effective in achieving the required level of componhcorrectness and quality:

(1) MBSCT Capability #1: test model construction

(2) MBSCT Capability #2: model-based component tesipdesnd generation

(3) MBSCT Capability #3: component fault detectiongiasis and localisation

(4) MBSCT Capability #4: adequate test artefact cowerag

(5) MBSCT Capability #5: component testability improwamh

(6) MBSCT Capability #6: adequate component fault cagerand diagnostic solutions

25 The MBSCT methodology has integrated the six new SCT/MBT con-
cepts/definitions.

The MBSCT methodology has integrated the six neW/SIBT concepts/definitions de-
veloped in this research, including a taxonomy affvgare component characteristics, a soft-
ware component definition, a SCT definition, a MBe&finition, a UBT definition, and a test
model definition (as described in the lists of arfd 1.2 above). The MBSCT methodology has
been rigorously developed based on the conceptualdiation created by these six new
SCT/MBT concepts/definitions. This demonstrates this research has made an original con-
tribution that achieves the seamless integratioa pfactical testing methodology with theoreti-

cal testing concepts and principles.

Chapter 10 Conclusions and Future Work 281

10.1.1 Methodology Comparison

This section presents a methodology comparison detwthe MBSCT methodology and a
number of representative SCT/MBT (including UBT, UMased SCT) approaches reported in
the literature (as reviewed earlier @hapter 2and Chapter 3. Because these representative
SCT/MBT approaches have been highly cited by masgarch papers/work reported in the
literature, it is appropriate to select them fag tomparison, although admittedly it is impracti-
cal to obtain an all-inclusive or complete listRCT/MBT approaches for the comparison. Our
comparison concludes that the MBSCT methodologyvsry comprehensive UML-based SCT
methodology that has been developed with effeatie¢hodological components (testing tech-
niques and processes) and testing framework, asgepses unique methodological features and
testing capabilities, which all have significantvadtages over the most cited representative

SCT/MBT approaches reported in the literature.

Table 10.1shows a summary of our comparison in terms ofrtiportant methodological
features and testing capabilities. In this tabde,a SCT/MBT approach (as reported in the re-
lated work/paper) under comparison, tk€ ‘symbol denotes that the approach has (or paytiall
has) the feature/capability in the correspondirigron, and the NA” denotes that the approach
has no feature/capability in the corresponding moluthus making the comparison “not appli-
cable”. Table 10.1 clearly shows that the MBSCThuadblogy has morev”” symbols than the
ones having by any of the most cited represent@&WV&/MBT approaches. The primary objec-
tive of Table 10.1is to demonstrate the main MBSCT advantages dfefelices with a group
of the most cited representative SCT/MBT approacépsrted in the literature.

282

Chapter 10 Conclusions and Future Work

Table 10.1 Comparison Summary: the MBSCT Methodology vs. Representative SCT/MBT Approaches

Testing TestLevel UML- Testing Model- Fault Test Adequate Testability Adequate Tool- Test Conceptual
Approach Models Process Based Tesi Diagnosis Criteria Test Improvement Fault Support Evaluation Foundation
Derivation Artefact Coverage Test
Coverage Automation
MBSCT |component v’ v v v v v v v future work | two full v
integration future work case studies,
testing future work

Approach by | system v NA v NA v v NA NA v testing partial
Offutt & y testing partial, partial, examples,
,[Altggjrazn future work future work | future work
Approach by | integration| v/ NA v NA NA partial NA NA v testing NA
Hartmann et | testing examples
al. [72]
Approach by | system v v v NA NA NA v NA v testing NA
B”;‘_”ﬂ & testing partial, partial, partial, | examples,
Labiche [30] future work future work future work | future work
Approach by | component v/ NA NA NA v v NA NA future work testing NA
Wu et al. integration examples,
(163 testing future work
Approach by | system v v v partial v v NA NA partial, one case NA
Offutt et al. testing future work | study,
[109 future work
Approach by | system v v v NA v v NA NA v three small NA
Nebut et al. testing case studiep
(102

Chapter 10 Conclusions and Future Work 283

Based on this table, we analyse and examine th@adson further in the following five
main aspects:

(1) We found that there was no single SCT/MBT appraagorted in the literature that is
developed with all of the five major MBSCT methaalgical components introduced by
this research.

Our comparison has shown that most reported SCT/MBiroaches are developed with
only some (but not all) of the five major MBSCT imedlological components (as illustrated in
Table 10.). While different testing approaches may use iffé techniques, these major
MBSCT methodological components represent the ingsbrtant testing techniques and proc-
esses that a very comprehensive SCT/MBT should, laaethus significantly contribute to the

development of an effective model-based comporsstitig approach in practice.

(2) We found that there was no single SCT/MBT appra&giorted in the literature having
all of the six main methodological features that MBSCT methodology possesses.
Our comparison has shown that most reported SCT/MBproaches only have some
(but not all) of the six main MBSCT methodologi¢ehtures (as illustrated ifiable 10.} that
are supported by the five major MBSCT methodoldgazanponents. While different testing
approaches may have different characteristics,etmeain MBSCT methodological features
characterise an effective model-based componetmdespproach, and thus significantly con-

tribute to the development of an effective modeddzshcomponent testing approach in practice.

(3) We found that there was no single SCT/MBT appraagorted in the literature having

all of the six core testing capabilities that thB&CT methodology possesses.

Our comparison has shown that most reported SCT/MBfroaches only have some
(but not all) of the six core MBSCT testing captigi$ (as illustrated imable 10.) that are
supported by the five major MBSCT methodologicainponents. These core MBSCT testing
capabilities have covered the most important tgstimctionalities that an effective model-
based component testing approach should have tinggzractice, and thus enable a model-
based component testing approach to be much mtwetieé to achieve the required level of

component correctness and quality.

(4) There is little work reported in the literature tthas validated and evaluated a SCT/MBT
approach comprehensively with a series of full cigdies as undertaken by this research
for the assessment of the MBSCT methodology.

Our comparison has shown that most reported SCT/MBdroaches are examined only

with some individual testing examples or a paraafase study in the reported work, but not

284 Chapter 10 Conclusions and Future Work

with one or more full case studies or “experimerfes illustrated inrable 10.). Because case
study research is regarded as an effective empsiody method in software engineering, this
thesis has undertaken two full case studies forctmprehensive validation and evaluation of
all of the MBSCT methodological components, tesfinagnework, methodological features and
testing capabilities. This provides observable asdful evidence on the effectiveness of the
MBSCT methodology in SCT/MBT practice.

(5 We found that there was no single SCT/MBT appraagorted in the literature having
integrated all of the six new SCT/MBT concepts/digifons introduced by this research
for the rigorous development of the MBSCT methodglo
Our comparison has shown that most reported SCT/M@droaches have incorporated

less theoretical SCT/MBT concepts and principleprvide the necessary conceptual founda-

tion to support their approaches (as illustratedable 10.). There is also little work that pre-
sents its own unique testing concepts and prirgiptean established methodological basis for
the development of a testing approach. The six 8&T/MBT concepts/definitions introduced
by this research are essential SCT/MBT conceptscagate a solid conceptual foundation for
the rigorous development of an effective model-dasemponent testing approach. The

MBSCT methodology has integrated them together wih its unique methodological con-

cepts and techniques to become a comprehensive hidded SCT methodology.

However, there are notable exceptions to the Vestfindings (as described in (4) and (5)
above) worth mentioning. For example, for the firgdidescribed in (4above, the work by
[107 (as shown ifTable 10.1and as reviewed earlier 8ection 3.4 Xpresented and evaluated
their approach empirically with three case studiaso other examples of exceptions are the
work by [34] (as reviewed earlier isection 3.4.1that conducted three experiments in con-
trolled experiment settings, and the work b] that presented a full experimental case study
in an industrial context. Note however that the kmaported for these two examples of excep-
tions focused on the experiments and empiricalysfad evaluating existing MBT approaches
that have been developed by others, and thus ocedtanore case studies or experiments, in
comparison with a research paper that concentmatethe development of a new SCT/MBT
approach (plus relevant testing examples). Witlamdo the finding described in (5) above,
three examples of exceptions at&(] [70] [21]: they all focused on a literature review with a
discussion of a range of testing concepts and iptex; but did not engage in the development
of a new software testing approach. Note that thlese papers have been also highly cited by

many research papers reported in the literatutiearsoftware testing domain.

Chapter 10 Conclusions and Future Work 285

10.2 Future Work

For the MBSCT methodology introduced by this reseathis section discusses several impor-
tant areas of methodology improvement and resadirehtions for future work beyond the cur-

rent scope of this thesis.

1. Test Automation

One important area of methodology improvement iddwelop a toolset system to sup-
port test automation of the MBSCT methodology, whieould automate current manual test-
ing. Test automation is very useful because angsipproach cannot be adopted in practice
without the support of effective testing tools. fTastomation also helps to effectively produce
and evaluate a large number of test cases to detwet software faults. As a major part of the
future development of the MBSCT methodology, owesch plan on the development of a

toolset system for test automation is summarizeadlbsvs:

(1) A model reader todhat reads and retrieves the test information fedvil models.

A crucial step for automated UBT is to read, amalgsed retrieve the test information
from UML-based test models that are representedMi; diagrams constructed by UML mod-
eling tools. Model-based test artefacts producethisytool are the basis for automated test case

derivation. There are two main solutions to be mmred for designing a model reader tool:

(@) One design solution is, when the APIs of a UML nlimdetool are accessible, to employ
the provided APIs to read and retrieve the testrinfition from UML diagrams drawn by
this UML modeling tool. But this design solution ynlae limited to a specific UML mod-
eling tool, which could cause some problems when_lidgrams are drawn with differ-

ent UML modeling tools.

(b) Another design solution is to read, parse andewrihe test information from the UML
diagrams’ XMl representation file4 (9, which are exported from recent advanced UML
modelling tools. Because the XMI (XML Metadata hotgange) is regarded as an OMG
standard for an interchange format for UML modetswh by different UML modeling
tools, this design solution is UML tools indepentdand thus is applicable when using
different UML modeling tools to build UML-based tesiodels. This design solution
needs the support of XML/XMI parsers.

(2) A test contract generataool that derives verifiable test contracts for compurerte-
facts under test, which is based on contract-btestdartefacts that are designed with the
ThC technique in test models and are retrieved fresh models by the abovementioned

model reader tool.

286 Chapter 10 Conclusions and Future Work

(3) A test case mapper totthat maps and transforms different levels of mdideled test ar-
tefacts to produce specific test case elements;hnisi mainly based on the CTM tech-
nique, where an investigation of more concrete tesgbping procedures and test trans-

formation algorithms may be required.

(4) A test specification generator totthat compiles and integrates related test case tdat

generate the target CTS test case specifications.

(5) A test specification verifier todhat verifies test case specifications during dyicatest
execution. This would be a much improved versiothef TPV tool used in the previous
SCL project (sed\ppendix Afor an overview and review of the SCL project)nfréow-

level unit testing to high-level integration/systéeasting.

2. OCL Expressions for Test Contracts and Test Models

Currently with the MBSCT methodology, our stratdgytest contract representation and
implementation is to use special test operatiorsatulle test contracts for verifying component
artefacts. The special test operations for testraots are realised to be similar to the usual op-
erations of components or classes, and thus aeetalile executable directly with component
programs to support dynamic testing. This straisgyery practical and can facilitate test auto-
mation. This is a primary reason why we currendlg this strategy.

It is suggested that in a future methodology deymlent stage, OCL expressioris(j
could be used for the precise specification of ¢estracts and test models. Because the OCL is
not intended to be a programming language for mgitictions or executable code, most OCL
expressions are not directly executable, just ast models are not yet executable. Therefore, it
would be necessary to investigate techniques aold to transform OCL expressions into ex-
ecutable forms to support dynamic testing and degbmation, beyond the basic use of OCL

expressions for static specification and analysis.

3. More Test Criteria

Currently with the MBSCT methodology, we have idiioed a set of contract-based test
criteria to support adequate test artefact covermagk testability improvement with the ThC
technique, and several test mapping criteria fet ¢@ase derivation with the CTM technique.
Further research into additional test criteriafisnberest for the purposes of effective compo-

nent test development and fault diagnosis.

4. More Comprehensive Methodology Evaluations
The MBSCT methodology and its framework have bemnahstrated with many illustra-

tive testing examples, and furthermore, have bedmated and evaluated comprehensively

Chapter 10 Conclusions and Future Work 287

with two full case studies. One limitation of therent methodology evaluation is that we were
unable to conduct an appropriate statistical angirtral analysis, because there was limited
data produced from this evaluation (as shown edri&ection 9.3.2Section 9.3.3.2Section
9.3.5.3 Section 9.4.2Section 9.4.3.2Section 9.4.4.4ndSection 9.5 Note that the evaluation
was limited to a single-object study by a singlbjsat in an academic research context, due to
the constraint of available research resourcesiam] as described iBection 9.2

Thus, more comprehensive evaluations are needeohttuct empirical and comparative
studies concerning the applicability and effectasn of the MBSCT methodology with other
testing approaches. More test experiments also toeleel undertaken with complex component-
based systems and industrial case studies.

In addition, further research into the evaluatibresting costs of the MBSCT methodol-
ogy is also of interest. For example, one areavafuation is to examine the testing costs over
the number of test contracts used for test casela@went. Another area of evaluation is to as-
sess the fault diagnosis costs over the numbexutif diagnostic solutions used for FDD and the

number of component faults revealed by the faalgdostic solutions.

10.3 Concluding Remarks

Based on our comprehensive literature review,ttigsis has identified a set of the most impor-
tant challenging research problems that hamper refiegtive utilisation of SCT/MBT. This
thesis has introduced the MBSCT methodology asresearch resolution to these problems.
The MBSCT methodology is a comprehensive UML-baSE&T methodology that possesses
five major methodological components, a three-phasdng framework, six main methodo-
logical features and six core testing capabiliti€sis thesis has undertaken comprehensive
methodology validation and evaluation, which hasnodestrated and confirmed that the
MBSCT methodology is effective in achieving theuiegd level of component correctness and
quality. The methodology comparison has conclutietl the MBSCT methodology has signifi-
cant advantages over the most-cited represent@@®MBT approaches reported in the litera-
ture. The significance of this research is thathaee achieved substantial and original contribu-
tions to the Software Engineering scholarly bodkmdwledge in terms of the substantial litera-
ture review and the comprehensive MBSCT methodoinglje main research areas of software
components, software component testing, model-btssithg, UML-based testing, contract-
based testing, scenario-based testing, mappingitiastng, and fault detection, diagnosis and
localisation. The methodology, techniques, procedsamework, literature reviews and associ-
ated research results presented in this thesis dltngether created a solid foundation for fur-
ther research into SCT/MBT, which can help to britgger the ultimate goal of achieving ef-

fective model-based component testing and producirsged quality software components.

288 Chapter 10 Conclusions and Future Work

References 289

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Aynur Abdurazik and Jeff Offutt, “Using UML Collabation Diagrams for Static
Checking and Test GeneratiorPtoc. 3rd International Conference on the Unified
Modeling Language: Advancing the Standard (UML,00prk, UK, Oct 2000. Lec-
ture Notes in Computer Science, vol. 1939, pp. 383-Springer, 2000.

Aynur Abdurazik, Jeff Offutt, and Andrea BaldiniA“Controlled Experimental
Evaluation of Test Cases Generated from UML Diagrarechnical Report ISE—
TR-04-03 Information and Software Engineering Departmergp@e Mason Uni-
versity, USA, May 2004, 6 pages. [TR online] htigs/gmu.edu/~tr-
admin/papers/ISE-TR-04-03.pdf, 6 pages, Accessed 28éNov 2008.

Aynur Abdurazik, Jeff Offutt, and Andrea BaldiniA“Comparative Evaluation of
Tests Generated from Different UML Diagrams: Diagsaand Data,” Technical Re-
port ISE-TR-05-04Information and Software Engineering Departmergo@e Ma-
son University, USA, April 2005, 113 pages. [TR iog] http://cs.gmu.edu/~tr-
admin/papers/ISE-TR-05-04.pdf, 113 pages, Accelstat23 Feb 2009.

Shaukat Ali, Lionel C. Briand, Muhammad Jaffar-uehgan, Hajra Asghar, Mu-

hammad Zohaib Z. Igbal, and Aamer Nadeem, “A Stateed Approach to Integra-
tion Testing Based on UML ModelsJournal of Information and Software Technol-
ogy, vol. 49, no. 11-12, pp. 1087-1106, Nov 2007, \Eése

Anneliese Andrews, Robert France, Studipo GhosthGerald Craig, “Test adequacy
criteria for UML design models, Journal of Software Testing, Verification and Reli-
ability, vol. 13, no. 2, pp. 95-127, April-June 2003, Jdfiley & Sons.

Algirdas Avizienis, Jean-Claude Laprie, and BriaanBell, “Fundamental Concepts
of Dependability,” InProc. 3rd IEEE Information Survivability Worksho{S{V—
2000) Boston, MA, USA, 24-26 Oct 2000, pp. 7-12.

Algirdas Avizienis, Jean-Claude Laprie, and BriaanRell, “Fundamental Concepts
of Dependability,” LAAS Technical Report No. 01-14%&boratory for Analysis and
Architecture of Systems, LAAS—-CNRS, France, Ap€i02.

Algirdas Avizienis, Jean-Claude Laprie, Brian Rdhdend Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure @omgy IEEE Transactions
on Dependable and Secure Computivg. 1, no. 1, pp. 11-33, January—March 2004.

Andrea Baldini, Alfredo Benso, and Paolo Prinet®ystem-level functional testing
from UML specifications in end-of-production indrat environments,International
Journal on Software Tools for Technology Transtel. 7, no. 4, pp. 326-340, Aug
2005, Springer.

Aritra Bandyopadhyay and Sudipto Ghosh, “Using Ukequence Diagrams and
State Machines for Test Input Generation,” stugepyer,Proc. 19th IEEE Interna-
tional Symposium on Software Reliability EnginegrfiSSRE 2008)Seattle, Wash-
ington, USA, 10-14 Nov 2008. IEEE Computer Socketgss, 2008, pp. 309-310.

Aritra Bandyopadhyay and Sudipto Ghosh, “Test In@eheration using UML Se-
guence and State Machines Models,” Piand IEEE International Conference on
Software Testing, Verification, and Validation (TC3009) Denver, Colorado, USA,
1-4 April 2009. IEEE Computer Society Press, 2@@9,121-130.

290

References

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Franck Barbier, “COTS Component Testing throughltBai Test,” book chapter, in
Sami Beydeda and Volker Gruhn (EdSlgsting Commercial-off-the-Shelf Compo-
nents and Systemgp. 5570, Springer, 2005.

Francesca Basanieri and Antonia Bertolino, “A RcattApproach to UML-Based
Derivation of Integration TestsProc. 4th Intl Software Quality Week Europe (QWE
2000) Brussels, Belgium, 20—24 Nov 2000.

Francesca Basanieri, Antonia Bertolino, and Edachtti, “The Cow_Suite Ap-
proach to Planning and Deriving Test Suites in UMNRkojects,” In Jean-Marc
J'ez’equel, Heinrich Hussmann, and Stephen CootgrgdProc. 5th International
Conference on The Unified Modeling Language: MoHgebineering, Languages,
Concepts, and Tools (UML 200Dresden, Germany, 30 Sept — 04 Oct 2002. Lecture
Notes in Computer Science, vol. 2460, pages 383-3%hger, 2002.

Kent Beck,Test-Driven Development: By Examplaidison-Wesley, 2003.

Boris Beizer Software Testing Techniquesd Edition, Van Nostrand Reinhold, New
York, USA, 1990.

Antonia Bertolino and Andrea Polini, “WCT: A Wrapp®r Component Testing,”
International Workshop on Scientific Engineering Bistributed Java Applications
FIDJI 2002 Luxembourg-Kirchberg, Luxembourg, 28-29 NovemB602. Lecture
Notes in Computer Science, vol. 2604, pp. 165-$pdinger, 2002.

Antonia Bertolino, “Software Testing Research amdcBce,” Invited presentation at
10th International Workshop on Abstract State MaeB(ASM 2003), Taormina, It-

aly, March 3-7, 2003, Lecture Notes in ComputereSoe, vol. 2589, pp. 1-21,
Springer 2003.

Antonia Bertolino and Andrea Polini, “A FrameworkrfComponent Deployment
Testing,”Proc. 25th Intl Conference on Software Engineei@SE 2003) Portland,
Oregon USA, 3-10 May 2003. IEEE Computer Sociegs®r2003, pp. 221-231.

Antonia Bertolino, Eda Marchetti, and Andrea Pglitintegration of “Components”

to Test Software Component®toc. Intl Workshop on Test and Analysis of Compo-
nent Based Systems (TACoS 2(@2}ellite Event of ETAPS 2003), Warsaw, Poland,
13 Apr 2003.Electronic Notes in Theoretical Computer Sciengd. 82, no. 6, pp.
44-54, Sept 2003, Elsevier Science.

Antonia Bertolino, “Software Testing Research: Aslments, Challenges, Dreams,”
in Proc. Future of Software Engineering (FOSE 2003)-located with 29th ICSE
2007, Minneapolis, Minnesota, USA, 23-25 May 20(HEE Computer Society
Press, 2007, pp. 85-103.

A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and DtkWg “Making Components
Contract Aware,IEEE Computervol. 32, no. 7, July 1999, pp. 38-45.

Robert V. Binder, “Design for testability in objeatiented systems Communication
of ACM vol. 37, no. 9, pp. 87-101, Sep 1994, ACM Press.

Robert V. BinderTesting Object-Oriented Systems: Models, Patteand, Tools Ad-
dison-Wesley, 2000.

Mark Blackburn, Robert Busser, and Aaron Naumarfti@oe Productivity Consor-
tium, NFP), “Why model based test automation ifedéint and what you should know
to get started,” in International Conference onciecal Software Quality and Testing
(PSQT/PSTT 2004 East), Washington, D. C. USA, 2B March 2004.

References 291

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Jonas Boberg (Erlang Training and Consulting Litdndon, UK), “Early Fault De-
tection with Model-Based TestingProceedings of the 7th ACM SIGPLAN Workshop
on ERLANG (ERLANG 20Q8Yictoria, BC, Canada, 27-27 September 2008, pp. 9
20, ACM Press.

Grady BoochSoftware Components with Ada: structures, tools, subsystemsrd
Edition, Addison-Wesley, 1993.

Grady Booch, James Rumbaugh and Ivar Jacoliden Unified Modeling Language
User Guide 2nd Edition, Addison-Wesley, May 2005.

Borland Together, http://www.borland.com/us/progitoigether/, Accessed Tue 14
Apr 20009.

Lionel C. Briand and Yvan Labiche, “A UML-Based Appch to System Testing,”
Journal of Software and Systems Modelingl. 1, no. 1, pp. 10-42, Springer, Sept
2002.

Lionel C. Briand, Yvan Labiche, and H. Sun, “Invgating the Use of Analysis Con-
tracts to Improve the Testability of Object Oriahtéode,”Software Practice and Ex-
perience (Wiley)vol. 33, no. 7, pp. 637-672, 05 May 2003, JohfeY\& Sons.

Lionel C. Briand, Jim Cui, and Yvan Labiche, “TowarAutomated Support for De-
riving Test Data from UML Statechart$roc. ACM/IEEE 6th Int. Conference on the
Unified Modeling Language: Modeling Languages ampliations (UML'03) 20—
24 Oct 2003, San Francisco, California, USA. LextiMotes in Computer Science,
vol. 2863, pp. 249-264, Springer, October 2003.

Lionel C. Briand, and Yvan Labiche, “Empirical Siesl of Software Testing Tech-
niques: Challenges, Practical Strategies, and &WReasearch,Workshop on Empiri-
cal Research in Software Testjrap-located with IEEE/ACM 26th ICSE 2004, Edin-
burgh, Scotland, United Kingdom, 23-28 May 2004.

Lionel C. Briand, Massimiliano Di Penta, and Yvaabliche, “Assessing and Improv-
ing State-Based Class Testing: A Series of ExperisjelEEE Transactions on Soft-
ware Engineeringvol. 30, no. 11, pp. 770-793, Nov 2004.

Lionel C. Briand, Jim Cui, and Yvan Labiche, “Autatad support for deriving test
requirements from UML statecharts,” Special Isstidaurnal of Software and Sys-
tems Modelingvol. 4, no. 4, pp. 399-423, Nov 2005, Springer.

Lionel C. Briand, Yvan Labiche, and Q. Lin, “Impiog State-Based Coverage Crite-
ria Using Data Flow Information,Proc. 16th IEEE International Conference on
Software Reliability Engineering (ISSRE 2Q0&hicago, USA, 08-11 Nov 2005.
IEEE Computer Society Press, 2005, pp. 95-104.

Lionel C. Briand, “A Critical Analysis of EmpiricaResearch in Software Testing,”
keynote addresd;st ACM/IEEE International Symposium on Empiricaft®are En-
gineering and Measurement (ESEM 2Q0¥ladrid, Spain, 20-21 Sept 2007. IEEE
Computer Society Press, 2007, pp. 1-8.

Alan W. Brown and Kurt C. Wallnau, “The Current &taf CBSE,”"IEEE Software
vol. 15, no. 5, pp. 37-46, Sept/Oct 1998.

Manfred Broy, Anton Deimel, Juergen Henn, Kai Kosids, Frantisek Plasil, Gustav
Pomberger, Wolfgang Pree, Michael Stal, and ClenSayperski, “What Character-
izes a (Software) Component®urnal of Software — Concepts and Toeotdl. 19, no.
1, pp. 49-56, June 1998, Springer.

292

References

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Gary Bundell, Gareth Lee, John Morris, Kris Parked Peng Lam, “A Software
Component Verification Tool,Proc. International Conference on Software Method
and Tools (SMT'2000Wollongong, NSW, Australia, 06—09 November, 20HEE
Computer Society Press, 2000, pp. 137-146.

Alessandra Cavarra, Charles Crichton, and Jim Bavie method for the automatic
generation of test suites from object modelsférmation and Software Technolqgy
vol. 46, no. 5, pp. 309-314, 15 April 2004, Elsevie

Alejandra Cechich, Mario Piattini and Antonio Vaiiko (Eds.), Component-Based
Software Quality: Methods and Techniquescture Notes in Computer Science, vol.
2693, Springer-Verlag, June 2003.

John Cheesman and John DanielsiL Components — A Simple Process for Specify-
ing Component-Based Softwaradison-Wesley, October 2001.

Ivica Crnkovic and Magnus Larsson (EdsBuilding Reliable Component-Based
Software Systemartech House Inc., 2002.

Ole-Johan Dahl, Edsger Wybe Dijkstra, and C. AHRare,Structured Programming
Academic Press, London/New York,1972.

S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leat@h,M. Lott, G. C. Patton, and B. M.
Horowitz, “Model-Based Testing in Practicdtoc. Intl Conference on Software En-
gineering (ICSE 1999).0s Angeles, CA, USA, 16-22 May 1999. ACM Pre€99,
pp. 285-294.

Arilo Claudio Dias Neto, Rajesh Subramanyan, MaNteira, and Guilherme Horta
Travassos, “Characterization of Model-based So#wiesting Approaches,” Techni-
cal Report ES-713/07, PESC-COPPE/UFRJ, Universiéaderal do Rio de Janeiro,
Brazil, Aug 2007, 114 pages. [TR online]
http://www.cos.ufrj.br/uploadfiles/1188491168.pdifLl4 pages, Accessed Mon 05 Jan
20009.

Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Mgand Guilherme H. Travas-
sos, “A Survey on Model-based Testing ApproacheSystematic Review,Proc. 1st
ACM International Workshop on Empirical Assessnadroftware Engineering Lan-
guages and Technologies (WEASELTech’®®Id in conjunction with the 22nd
IEEE/ACM International Conference on Automated @afe Engineering (ASE
2007), Atlanta Georgia, USA, 05 Nov 2007. ACM Pred¥07, pp. 31-36.

Arilo Claudio Dias Neto and Guilherme Horta Trawass'Supporting the Selection of
Model-based Testing Approaches for Software Prsjed®roc. 3rd International

Workshop on Automation of Software Test (AST 2008)located with 30th
IEEE/ACM ICSE 2008, Leipzig, Germany, 10-18 May 208CM Press, 2008, pp.
21-24.

Arilo Claudio Dias Neto, Rajesh Subramanyan, MarMieira, Guilherme Horta
Travassos, and Forrest Shull, “Improving Evidenbeua Software Technologies: A
Look at Model-Based Testing|EEE Softwarevol. 25, no. 3, pp. 10-13, May/June
2008.

Arilo Claudio Dias Neto and Guilherme Horta Trawess Surveying model based
testing approaches characterization attribut®sgc. 2nd ACM-IEEE International
Symposium on Empirical Software Engineering and $dssmment (ESEM 2008)
Kaiserslautern, Germany, 09—10 Oct 2008. ACM Pr2388, pp. 324-326.

Arilo Claudio Dias Neto and Guilherme Horta Travass'Porantim: An Approach to

References 293

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Support the Combination and Selection of Model-Ba$esting TechniquesProc.
4th International Workshop on Automation of Sofevdiest (AST 2009ko-located
with 31st IEEE ICSE 2009, Vancouver, BC, Canada198Viay 2009.

Arilo Claudio Dias Neto and Guilherme Horta Trawess‘Model-based testing ap-
proaches selection for software projecteformation and Software Technolggsol.
51, no. 11, pp. 1487-1504, Nov 2009, Elsevier. gpecial section of Third IEEE In-
ternational Workshop on Automation of Software T@s$T 2008); 8th International
Conference on Quality Software (QSIC 2008).

Trung Dinh-Trong, Sudipo Ghosh, and Robert B. Feartd Systematic Approach to
Generate Inputs to Test UML Design Model$7th IEEE International Symposium
on Software Reliability Engineering (ISSRE 20@®&leigh, North Carolina, USA, 6—
10 Nov 2006. IEEE Computer Society Press, 200695p104.

Brian Dobing and Jeffrey Parsons, “How UML is Use@ommunications of the
ACM, vol. 49, no. 5, pp. 109-113, May 2006.

Stephen H. Edwards, Murali Sitaraman, Bruce W. Weahd Joseph Hollingsworth,
“Contract-Checking Wrappers for C++ Classd&EE Transactions on Software En-
gineering vol. 30, no. 11, pp. 794-810, Nov 2004.

Ibranhim K. El-Far and James A. Whittaker, “Modelkskd Software Testing,” in John
J. Marciniak (Ed)Encyclopedia of Software Engineering (2 volume, >)l Edition,
Wiley, Dec 2001.

Thomas ErlService-Oriented Architecture: Concepts, Technolagg Design Pren-
tice Hall, 2005.

Roy S. Freedman, “Testability of Software CompoagnEEE Transactions on Soft-
ware Engineeringvol. 17, no. 6, pp. 553-564, June 1991.

Martin Fowler,UML Distilled: A Brief Guide to the Standard Object Modeling Lan
guage 3rd Edition, Addison-Wesley, April 2004.

Falk Fraikin and Thomas Leonhardt, “SeDiTeC — TeptBased on Sequence Dia-
grams,”Proc. 17th IEEE International Conference on AutosdaBoftware Engineer-
ing (ASE 2002) Edinburgh, UK, 23-27 Sept 2002. IEEE Computeri&gpcPress,
2002, pp. 261-266.

Lars Frantzen and Jan Tretmans, “Model-Based TgestfnEnvironmental Confor-

mance of Components,” In F. S. de Boer et al. jEBsoc. 5th International sympo-
sium onFormal Methods of Components and Objects (FMCO p08@isterdam, The

Netherlands, 07—-10 Nov 2006. Lecture Notes in CderpBcience, vol. 4709, pp. 1-
25, Springer, 2007.

Erich Gamma, Richard Helm, Ralph Johnson and Jdissidfes,Design Patterns:
Elements of Reusable Object-Oriented Softwadglison-Wesley, 1995.

Jerry Gao, Eugene Y. Zhu, Simon Shim, and Lee Chégnitoring software com-
ponents and component-based softwaRegdc. 24th Annual International Computer
Software and Applications Conference (COMPSAC 20D&pei, Taiwan, 25-27 Oct
2000. IEEE Computer Society Press, 2000, pp. 403-41

Jerry Gao, Kamal Gupta, Shalini Gupta, and SimoimSHOn Building Testable
Software ComponentsProceeding of 1st International Conference on C@BSed
Software Systems (ICCBS®)rlando, FL, USA. 4-6 Feb 2002. Lecture Notes in
Computer Science, vol. 2255, pp. 108-121, Springer.

294

References

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Jerry Zeyu Gao, H.-S. Jacob Tsao, and Ye Wasting and Quality Assurance for
Component-Based Softwarkrtech House Inc., September 2003.

Jerry Gao and Ming-Chih Shih, “A Component TestgbModel for Verification and
Measurement,Proc. 29th Annual Intl on Computer Software and ligagtions Conf
(COMPSAC 2005)Edinburgh, Scotland, 26—28 July 2005, IEEE Comp&ociety
Press, 2005, pp. 211-218.

Studipo Ghosh, Robert France, Conrad Braganza,Niledh Kawane, “Test Ade-
quacy Assessment for UML Design Model Testingroc. 14th Intl Symposium on
Software Reliability Engineering (ISSTA 200Benver, Colorado, USA, Nov 17-20,
2003. IEEE Computer Society Press, 2003, pp. 332-34

Hans-Gerhard Gros§,omponent-Based Software Testing with UBpringer-Verlag,
2005.

Mary Jean Harrold, “Testing: A RoadmajRfoc. of the Conf on the Future of Soft-
ware Engineering (at 22nd ICSE 200Qjmerick, Ireland, 04-11 June 2000, ACM
Press, 2000, pp. 61-72.

Alan Hartman, Mika Katara, and Sergey Olvovsky, 66sing a Test Modeling Lan-
guage: a Survey,2nd International Haifa Verification Conference (BV2006)
Haifa, Israel, 23-26 October 2006. Revised SelePtmgers. Lecture Notes in Com-
puter Science, vol. 4383, Springer, 2007, pp. 208-2

Jean Hartmann, Claudio Imoberdorf, and Michael Mgir, “UML-Based Integra-
tion Testing,”Proc. 2000 ACM SIGSOFT International Symposiunsoftware Test-
ing and Analysis (ISSTA 200®ortland, Oregon, USA, 21-24 Aug 2000, pp. 60-70.

Jean Hartmann, Marlon Vieira, Herb Foster, and ARabler, “A UML-Based Ap-
proach to System Testingifinovations in Systems and Software Engineerng 1,
no. 1, pp. 12—-24, April 2005, Springer.

George T. Heineman and William T. Councill (Ed&pmponent-Based Software En-
gineering: putting the pieces togethé&ddison-Wesley, May 2001.

Martin Host and Per Runeson, “Checklists for Sofevangineering Case Study Re-
search,”Proc. First International Symposium on Empiricaft@re Engineering and
Measurement (ESEM 20QMadrid, Spain, 20-21 Sept 2007. IEEE Computeli-Soc
ety Press, 2007, pp. 479-481.

IBM Rational Software, http://www-01.ibm.com/softkeéational/, Accessed Wed 13
May 2009.

IEEE Std 610.12-1990, IEEE Standard Glossary ofwgoé Engineering Terminol-
ogy, IEEE Standards Board, 28 Sept 1990.

Ivar Jacobson, Grady Booch and James Rumbalig,Unified Software Develop-
ment ProcessAddison-Wesley, 1999.

David Janzen and Hossein Saiedian, “Test-Drivereld@ment Concepts, Taxonomy,
and Future Direction,|JEEE Computervol. 38, no. 9, pp. 43-50, Sept 2005.

Abu Zafer Javed, Paul Anthony Strooper, and Gepffiiearman Watson, “Automated
Generation of Test Cases Using Model-Driven Arattitee,” Proc. 2nd International
Workshop on Automation of Software Test (AST 200@)located with 29th
IEEE/ACM International Conference on Software Eeginng (ICSE 2007), Minnea-
polis, USA, 20-26 May 2007. IEEE Computer SocietysB, 2008, pp. 3.

References 295

[81] JUnit, http://www.junit.org/, Accessed Tue 14 AfX0B.

[82] Supaporn Kansomkeat and Wanchai Rivepiboon, “Autedigenerating test case
using UML statechart diagramd?toceedings of the 2003 annual research conference
of the South African Institute of Computer Sci¢ntsd Information Technologists on
Enablement through technology (SAICSIT 2003}-19 Sept 2003, pp. 296-300,
SAICSIT, 2003.

[83] Supaporn Kansomkeat, Jeff Offutt, Aynur Abdurazahkd Andrea Baldini, “A Com-
parative Evaluation of Tests Generated from Diffierd ML Diagrams,” Proc. 9th
ACIS International Conference on Software EngimegriArtificial Intelligence, Net-
working and Parallel/Distributed Computing (SNPDO3&) Phuket Thailand, Wed 06
— Fri 08 August 2008. IEEE Computer Society Pr2e88, pp. 867-872.

[84] Stuart Kent, “Model Driven EngineeringProc. 3rd International Conference on In-
tegrated Formal Methods (IFM 20Q2Yurku, Finland, 15-18 May 2002. Lecture
Notes in Computer Science, vol. 2335, pp. 286-3@8inger, 2002.

[85] Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, andd5Cha, “Test Cases Generation
from UML State Diagrams,IEE Proceedings — Softwargol. 146, no. 4, pp. 187-
192, August 1999, UK.

[86] Barbara Kitchenham, Lesley Pickard and Shari LavgdPfleeger, “Case Studies for
Method and Tool Evaluation|EEE Softwarevol. 12, no. 4, pp. 52—62, July 1995.

[87] Kung-Kiu Lau and Zheng Wang, “Software Componentls,” IEEE Transactions
on Software Engineeringol. 33, no. 10, pp. 709-724, Oct 2007.

[88] Gareth Lee, John Morris, Kris Parker, Gary A Buhdeld Peng Lam, “Using Sym-
bolic Execution to Guide Test Generatiodgurnal of Software Testing, Verification
and Reliability vol. 15, no. 1, pp. 41-61, March 2005, John W&eSons.

[89] Li Bao-Lin, Li Zhi-shu, Li Qing, and Chen Yan Honfj,est Case Automate Genera-
tion from UML Sequence Diagram and OCL Expressi@®07 International Confer-
ence on Computational Intelligence and SecurityS(@D07) Harbin, Heilongjiang,
China, 15-19 December 2007. IEEE Computer Societgs? 2007, pp. 1048—-1052.

[90] Malcolm Douglas Mcllroy, “Mass Produced Softwaren@mnents,” In Peter Naur
and Brian Randell (Eds.Proc. NATO Software Engineering ConferenGarmisch,
Germany, 7-11 Oct 1968. NATO Science Committee, NABrussels, Belgium, pp.
88-98, Jan 1969.

[91] Bertrand Meyer, “Applying Design by ContractEEE Computervol. 25, no. 10, pp.
40-51, Oct 1992.

[92] Bertrand MeyerQObject-Oriented Software ConstructioPnd Edition, Prentice Hall,
1997.

[93] Bertrand Meyer, Christine Mingins, and Heinz Schimit@roviding Trusted Compo-
nents to the IndustryJEEE Computervol. 31, no. 5, pp. 104-105, May 1998.

[94] Bertrand Meyer, “The Grand Challenge of Trusted @Gonents,”Proc. 25th Intl
Conf on Software Engineering (ICSE 2Q0Bprtland, Oregon, USA, 03-10 May
2003. IEEE Computer Society Press, 2003, pp. 660—66

[95] MOFScript, http://www.eclipse.org/gmt/mofscript/céessed Tue 14 Apr 20009.

[96] John Morris, Gareth Lee, Kris Parker, Gary Bundelll Chiou Peng Lam, “Software
Component Certification, IEEE Computer vol. 34, no. 9, pp. 30-36, September

296

References

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

2001.

John Morris, Chiou Peng Lam, Gareth Lee, Kris Parkad Gary A. Bundell, “De-

termining Component Reliability Using a Testing éngd’ Proc. Australasian Com-

puter Science Conference (ACSC 204%). 167-176, Melbourne, VIC, Australia,
February 2002.

John Morris, Peng Lam, Gary Bundell, Gareth Lee &m Parker, “Setting a
Framework for Trusted Component Trading,” In A. Bieb, M. Piattini and A.
Vallecillo (Eds.),Component-Based Software Quality: Methods and Tiqabg Lec-

ture Notes in Computer Science, vol. 2693, pp. 188;-Springer, June 2003.

Samar Mouchawrab, Lionel C. Briand, and Yvan LabjctAssessing, Comparing,
and Combining Statechart-based Testing and Stalct@sting: An Experiment,1st
ACM/IEEE International Symposium on Empirical SefevEngineering and Meas-
urement (ESEM 2007Madrid, Spain, 20-21 Sept 2007. IEEE Computeriedpc
Press, 2007, pp. 41-50.

Glenford J. Myers;The Art of Software Testin@nd Edition, John Wiley & Sons,
2004.

Clementine Nebut, Frank Fleurey, Yves Le Traon, dadn-Marc Jezequel, “Re-
quirements by Contracts allow Automated Systemifig@stProc. 14th International

Symposium on Software Reliability Engineering (EESR03) Denver, Colorado,

USA, 17-20 Nov 2003. IEEE Computer Society Pre8832pp. 85-96.

Clementine Nebut, Frank Fleurey, Yves Le Traon, daan-Marc Jezequel, “Auto-
matic Test Generation: A Use Case Driven ApproatBEE Transactions on Soft-
ware Engineeringvol. 32, no. 3, pp. 140-155, March 2006.

Jeff Offutt and Aynur Abdurazik, “Generating Tedtsom UML Specifications,”
Proc. 2nd International Conference on the Unifiedddling Language: Beyond the
Standard (UML’99) Fort Collins, CO, USA, 28-30 Oct 1999. Lecturetdéoin Com-
puter Science, vol. 1723, pp. 416-429, Springey919

Jeff Offutt, Yiwei Xiong and Shaoying Liu, “Critexifor Generating Specification-
based Tests,Proc. Fifth IEEE International Conference on Enggriag of Complex
Computer Systems (ICECCS '9Bas Vegas, NV, USA, 18-21 October 1999. IEEE
Computer Society Press, 1999, pp. 119-129.

Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Padmmann, “Generating Test
Data from State-based Specificationdgurnal of Software Testing, Verification and
Reliability, vol. 13, no. 1, pp. 25-53, Jan—Mar 2003, Johrey\8l Sons.

Object Management Group, “Model Driven Architectltetp://www.omg.org/mda/,
Accessed Fri 13 Mar 2009, Fri 25 Feb 2011.

Object Management Group (OMG), “OMG Unified Modelihanguage Specifica-
tion,” Version 1.5, OMG, March 2003. [online] httyww.omg.org/cgi-
bin/doc?formal/03-03-01. Accessed: Feb 2004.

Object Management Group, “The Unified Modeling Laage,”
http://www.omg.org/uml/, http://www.uml.org/, Accesd Fri 06 Mar 2009, Fri 25 Feb
2011.

Object Management Group, “XML Metadata Interchan{€MI),” [online]
http://www.omg.org/technology/xml/index.htm, htipanvw.omg.org/spec/XMl/. Ac-
cessed: Wed 16 Mar 2011.

References 297

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Thomas J. Ostrand and Marc J. Balcer, “The categariition method for specifying
and generating functional test€ommunications of the ACMol. 31, no. 6, pp. 676—
686, June 1988.

Dewayne E. Perry, Susan Elliott Sim and Steve Bastek, “Case Studies for Soft-
ware Engineers,” Tutorial F28th International Conference on Software Enginegri
(ICSE 2006) Shanghai, China, 20-28 May 2006. IEEE ComputeieBpPress, 2006,
pp. 1045-1046.

Mauro Pezze and Michal Youn§pftware Testing and Analysis: Process, Principles,
and Techniqueslohn Wiley & Sons, 13 April 2007.

Simon Pickin, Claude Jard, Thierry Heuillard, J&arc Jézéquel, and Philippe Des-
fray, “A UML-Integrated Test Description Languager fComponent Testing,” In
Andy Evans, Robert France, Ana Moreira, and BemhiRumpe, editorsPractical
UML-Based Rigorous Development Methods — Countarinigtegrating the eXtrem-
ists. Workshop of the pUML-Group held together wiih UML 2001, Toronto, Can-
ada, 01 October 2001. Lecture Notes in Informatidél) vol. 7, pp. 208-223. Ger-
man Informatics (GI) Society, 2001.

Orest Pilskalns, Anneliese Andrews, Sudipo Ghosid, Robert France, “Rigorous
Testing by Merging Structural and Behavioral UMLpResentations,6th Interna-
tional Conference on the Unified Modeling LanguggdiL 2003) San Francisco,
CA, USA, 20-24 Oct 2003. Lecture Notes in Comp@&eience, vol. 2863, pp. 234—
248, Springer, 2003.

Orest Pilskalns, Anneliese Andrews, Andrew KnigBtidipto Ghosh, and Robert
France, “Testing UML DesignsJhformation and Software Technolggyol. 49, no.
8, pp. 892-912, Aug 2007, Elsevier.

Wolfgang Prenninger and Alexander Pretschner, “raosions for Model-Based Test-
ing,” Proc. the International Workshop on Test and Arialgs Component Based Sys-
tems (TACoS 2004klectronic Notes in Theoretical Computer Sciengd. 116, no.
19, pp. 59-71, Jan 2005, Elsevier.

Roger S. Pressma®oftware Engineering: A Practitioner’'s Approactth Edition,
McGraw-Hill, 2010.

Alexander Pretschner, O. Slotosch, E. Aiglstoréerd S. Kriebel, “Model-based test-
ing for real — The inhouse card case studigtérnational Journal on Software Tools
for Technology Transfewol. 5, no. 2-3, pp. 140-157, Mar 2004, Springer.

Alexander Pretschner, “Model-Based Testing in React Proc. Intl. Symposium of
Formal Methods Europe (FM 2009)lewcastle, UK, 18-22 July 2005, Lecture Notes
in Computer Science, vol. 3582, pp. 537-541, Spring005.

Alexander Pretschner and Jan Philipps, “Methodcokigissues in Model-Based Test-
ing,” Chapter 10 in M. Broy, B. Jonsson, J. P. katoM. Leucker, A. Pretschner
(Eds),Model-Based Testing of Reactive Systems (Advaroteres),Lecture Notes in
Computer Science, vol. 3472, pp. 281-291, Sprinlyere 2005.

Alexander Pretschner, W. Prenninger, S. WagnerKi@nel, M. Baumgartner, B.
Sostawa, R. Zdélch, and T. Stauner, “One Evaluatiohlodel-Based Testing and its
Automation,” Proceedings of the 27th international conferenceSoftware engineer-
ing (ICSE 2005)St. Louis, MO, USA, 15-21 May 2005. ACM PressQ20pp. 392—

401.

M. Wapas Raza, “Comparison of Class Test Integna@odering Strategies/EEE

298

References

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

International Conference on Emerging Technologl€&ET 2005) Islamabad, Paki-
stan, 17-18 Sept. 2005. IEEE Computer Society P25, pp. 440-444.

David S. Rosenblum, “A Practical Approach to Progmgng with Assertions,1IEEE
Transactions on Software Engineeringl. 21, no. 1, pp. 19-31, Jan 1995.

James Rumbaugh, Michael Blaha, William Premerlaréderick Eddy, and William
LorensenQbject-Oriented Modeling and DesigArentice Hall, 1991.

James Rumbaugh, Ivar Jacobson and Grady Bddwh Unified Modeling Language
Reference ManuaPnd Edition, Addison-Wesley Object Technologyi&srAddison-
Wesley, 2005 (July 2004).

Per Runeson and Martin Host, “Guidelines for cotidigcand reporting case study
research in software engineeringmpirical Software Engineeringol. 14, no. 2, pp.
131-164, April 2009, Springer.

Nilesh Sampat, “Components and Component-Ware Dpwadnt: A Collection of
Component Definitions”. [online] http://www.softwer
components.net/components/definitions/, AccessedZbhiul 2004.

Philip Samuel, Rajib Mall, and Sandeep Sahoo, “UB#quence Diagram Based Test-
ing Using Slicing,”IEEE INDICON 2005 Conference on Control, Commurtises
and Automation Chennai, India, 11-13 Dec. 2005. IEEE Computeriedp Press,
2005, pp. 176-178.

Philip Samuel, Rajib Mall, and A.K. Bothra, “AutotiaTest Case Generation Using
Unified Modeling Language (UML) State Diagram#ET Softwarevol. 2, no. 2, pp.
79-93, April 2008.

Philip Samuel and Anju Teresa Joseph, “Test Semp&eneration from UML Se-
quence Diagrams,Proc. 9th ACIS International Conference on Software Eegin
ing, Artificial Intelligence, Networking and ParallDistributed Computing (SNPD
2008) Phuket Thailand, Wed 06 — Fri 08 August 2008.EEEomputer Society Press,
2008, pp. 879-887.

Monalisa Sarma, Debasish Kundu, and Rajib Mall,tthoatic Test Case Generation

from UML Sequence DiagramsProc. 15th International Conference on Advanced
Computing and Communications (ADCOM 2Q03uwahati, India, 18-21 Dec 2007.

IEEE Computer Society Press, 2007, pp. 60—67.

Monalisa Sarma and Rajib Mall, “Automatic genenatas test specifications for cov-
erage of system state transitionsiformation and Software Technolggyol. 51, no.
2, pp. 418-432, February 2009, Elsevier.

Michael Scheetz, Anneliese von Mayrhauser, and Rdb&ance, “Generating test
cases from an OO model with an Al planning systePngc. 10th Intl Symposium on
Software Reliability Eng (ISSRE 1998pca Raton, Florida, USA, 01-04 Nov 1999.
IEEE Computer Society Press, 1999, pp. 250-259.

Douglas C. Schmidt, “Guest Editor's Introductionodl-Driven Engineering,lEEE
Computervol. 39, no. 2, pp. 25-31, Feb 2006.

Dehla Sokenou, “Generating Test Sequences from Béguence Diagrams and
State Diagrams,Model-Based Testing (MOTES 2006), WorksimofgRahmen der 36.
Jahrestagung der Gesellschaft fir Informatik (Gliyfdrmatik 2006,” Dresden,
6.10.2006, INFORMATIK 2006: Informatik fir Menschen Band 2, GI-Edition:
Lecture Notes in Informatics (LNI), P-94, S. 23662&esellschaft fur Informatik,

References 299

[136]
[137]
[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

2006.
lan SommervilleSoftware Engineeringth Edition, Addison-Wesley, 2007.
lan SommervilleSoftware Engineeringth Edition, Addison-Wesley, March 2010.

“SWEBOK: Guide to the Software Engineering BodyKafowledge,” 2004 Edition,
IEEE. [online] http://www.swebok.org, Accessed T281Jun 2007.

Clemens SzyperskiComponent Software: Beyond Object-Oriented Prograogm
2nd Edition, Addison-Wesley, November 2002.

Tefkat — The EMF Transformation Engine, http://egfkourceforge.net/, Accessed
Tue 14 Apr 2009.

Jan Tretmans, “Model-Based Testing with LabelledriBition Systems,” in Robert M.
Hierons, Jonathan P. Bowen, and Mark Harman (EBisryjnal Methods and Testing:
An Outcome of the FORTEST NetwoRevised Selected Papers. Lecture Notes in
Computer Science, vol. 4949, pp. 1-38, SpringeB8200

Wei-Tek Tsai, Xiaoying Bai, Ray J. Paul and Lian, Y8cenario-Based Functional
Regression Testing,Proc. 25th Annual Intl Computer Software and Apgliens
Conference (COMPSAC 200 hicago, IL, USA, 8-12 Oct 2001. IEEE Computer
Society Press, 2001, pp. 496-501.

Wei-Tek Tsai, Yinghui Na, Ray J. Paul, F. Lu, ankibdro Saimi, “Adaptive Sce-
nario-Based Object-Oriented Test Frameworks fotiig€Embedded SystemsProc.
26th Annual Intl Computer Software and Applicati@mnference (COMPSAC 2002)
Oxford, UK, 26—-29 Aug 2002. IEEE Computer Societgd?, 2002, pp. 321-326.

Wei-Tek Tsai, Lian Yu and Akihiro Saimi, “Scenam@sed Object-Oriented Test
Frameworks for Testing Distributed SystemiBroc. 9th Workshop on Future Trends
of Distributed Computing Systems (FTDCS 20@8)-30 May 2003. IEEE Computer
Society Press, 2003, pp. 288-294.

Wei-Tek Tsai, Ray Paul, and Lian Yu, Akihiro Saimid Zhibin Cao, “Scenario-
Based Web Service Testing with Distributed AgentS|CE Transaction on Informa-
tion and Systenvol. E86-D, no. 10, pp. 2130-2144, Oct 2003, Elfapan.

Wei-Tek Tsai, Akihiro Saimi, Lian Yu and Ray PauEcenario-Based Object-
Oriented Test FrameworksProc. 2003 Third International Conference on Qualit
Software (QSIC 2003PDallas, Texas, USA, 6—7 Nov 2003. IEEE Computeci&y
Press, 2003, pp. 410-417.

Wei-Tek Tsai, Ray Paul, Lian Yu and Xiao Wei, “Raéattern-Oriented Scenario-
Based Testing for Embedded Systems,” book chaptBrity Hongji Yang (Eds.),
Software Evolution with UML and XMlpp. 222-262, Idea Group Publishing, Lon-
don, 2005.

Mark Utting, “Position Paper: Model-Based Testinkd;TP Working Conference: The
VSTTE Conference — Verified Software Theories, sTdetperimentsETH, Zurich,
Switzerland, 10-13 Oct 2005, 9 pages.

Mark Utting, Alexander Pretschner, and Bruno Lede&hk taxonomy of model-based
testing,” Technical Report 04/2006, Department ofmputer Science, The University
of Waikato, Hamilton, New Zealand, April 2006. 1l7ages. [TR online]
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs2Q06-04.pdf, Accessed Wed
20 Jun 2007.

300

References

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Mark Utting and Bruno Legear@ractical Model-Based Testing: A Tools Approach
Morgan Kaufmann Publishers/Elsevier, 27 Nov 2006.

Jeffrey M. Voas and Keith W. Miller, “Software Tability: The New Verification,”
IEEE Softwarevol. 12, no. 3, pp. 17-28, May 1995.

Jeffrey M. Voas, “How Assertions Can Increase Ef$tctiveness,TlEEE Software
vol. 14, no. 2, pp. 118-119, 122, Mar/Apr 1997.

Jeffrey Voas and Lora Kassab, “Using Assertions&ke Untestable Software More
Testable,"Software Quality Professionalol. 1, no. 4, Sep 1999.

Jeffrey Voas, “Composing software component ‘iitje IEEE Softwargvol. 18, no.
4, pp. 16-17, July/Aug 2001.

Markus Voelter, “A Taxonomy of Componentsldurnal of Object Technologyol.
2, no. 4, pp. 119-125, July-August 2003, ETH Zyrichair of Software Engineering.

World Wide Web Consortium (W3C), “Extensible Markumnguage (XML),”
[online] http://www.w3.org/xml/, http://www.w3.orgfandards/xml/. Accessed: Octo-
ber 2008, Wed 16 Mar 2011.

Y. Wang, G. King, |. Court, M. Ross and G. Stapl€3n Testable Object-Oriented
Programming,”ACM SIGSOFT Software Engineering Notesl. 22, no. 4, pp. 84—
90, July 1997.

Yingxu Wang, Graham King, and Hakan Wickburg, “Athied for Built-in Tests in
Component-based Software Maintenanc&d European Conference on Software
Maintenance and Reengineering (CSMR 19@Hapel of St. Agnes, University of
Amsterdam, The Netherlands. 3—-5 March 1999. IEEE@ider Society Press, 1999,
pp. 186-189.

Yingxu Wang, Graham King, Mohamed Fayad, Dilip Ratn Court, Geoff Staples
and Margaret Ross, “On Built-in Test Reuse in Ob{@dented Framework Design,”
ACM Computing Surveys (CSURDI. 32, no. les, pp. 7-12, March 2000.

Jos Warmer and Anneke Klepp€he Object Constraint Language: Getting Your
Models Ready for MDA2nd Edition, Addison-Wesley Professional, 2003.

Claes Wohlin, Per Runeson, Martin Host, Magnus @lssbn, Bjéorn Regnell and
Anders WesslérExperimentation in Software Engineering: An Introdon, Kluwer
Academic Publishers. Boston, MA USA, 2000.

Ye Wu, Mei-Hwa Chen, and Jeff Offutt, “UML-Basedtdgration Testing for Com-
ponent-Based SoftwareProc. 2nd Intl Conference on COTS-Based Softwaste8\s
(ICCBSS 2003)Ottawa, Canada, 10-12 Feb 2003. Lecture Not&oimputer Sci-
ence, vol. 2580, pp. 251-260, Springer, 2003.

xUnit — Unit Testing Framework, http://xunit.souferye.net/, Accessed Tue 14 Apr
20009.

Hwei Yin and James M. Bieman, “Improving Softwarestability with Assertion In-
sertion,”Proc. International Test Conference (ITC9gp. 831-839, October 1994.

Weiqun Zheng, “Software Component Testing and @eation — The Software
Component Laboratory Project,” Technical ReporRSII ISERG_TR-2006-01, Cen-
tre for Intelligent Information Processing Systef@shool of Electrical, Electronic and
Computer Engineering, University of Western AustadiVA, Australia, 2006.

References 301

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Weiqun Zheng, “Towards a Standard Test Specifinafir Software Component
Testing,” Technical Report CIIPS_ISERG_TR-2006-©&ntre for Intelligent Infor-
mation Processing Systems, School of Electricactibnic and Computer Engineer-
ing, University of Western Australia, WA, Austragli2006.

Weiqun Zheng, “Model-Based Software Component Tigstt An UML-Based Ap-
proach to Software Component Testing,” TechnicgddReClIPS_ISERG_TR-2006—
03, Centre for Intelligent Information Processingt®ms, School of Electrical, Elec-
tronic and Computer Engineering, University of VeéestAustralia, WA, Australia,
2006.

Weiqun Zheng, “Component-Based Software Developmaht UML and RUP/UP —

Case Study: Car Parking System,” Technical Repdif?E ISERG TR-2006-04,
Centre for Intelligent Information Processing Syste School of Electrical, Electronic
and Computer Engineering, University of Westerntfals, WA, Australia, 2006.

Weiqun Zheng, “Model-Based Software Component Tigsth Methodology in Prac-
tice,” Technical Report CIIPS_ISERG_TR-2006-05, t@eifor Intelligent Informa-
tion Processing Systems, School of Electrical, tibeic and Computer Engineering,
University of Western Australia, WA, Australia, 20

Weiqun Zheng, “Model-Based Software Component Tigsti Case Study: Car Park-
ing System,” Technical Report CIIPS_ISERG_TR-20@-@entre for Intelligent In-
formation Processing Systems, School of Electriedctronic and Computer Engi-
neering, University of Western Australia, WA, Awdia, 2006.

Weiqun Zheng and Gary Bundell, “A UML-Based Methlmdyy for Software Com-
ponent Testing,’Proc. The 2007 International Conference on Softwangineering
(ICSE 2007, Hong Kong, 21-23 March 2007, pp. 1177-1182.

Weiqun Zheng and Gary Bundell, “Model-Based Sofsv@omponent Testing: A
UML-Based Approach,Proc. 6th IEEE International Conference on Computed
Information Scienc@CIS 2007, Melbourne, Australia, 11-13 July 2007. IEEE Com-
puter Society Press, 2007, pp. 891-898.

Weiqun Zheng, “Applying Test by Contract to Impro8eftware Component Test-
ability,” Technical Report CIIPS_ISERG_TR-2007-@xntre for Intelligent Infor-
mation Processing Systems, School of Electricactibnic and Computer Engineer-
ing, University of Western Australia, WA, Austragli2007.

Weiqun Zheng and Gary Bundell, “A Framework of UNBased Software Compo-
nent Testing,” book chapter 40, in Oscar Castiliou and Sio-long Ao (Eds.Cur-
rent Trends in Intelligent Systems and Computeri&®ging Lecture Notes in Elec-
trical Engineering, vol. 6, pp. 575-597, Sprindéay 2008.

Weiqun Zheng and Gary Bundell, “Test by Contract@d/L-Based Software Com-
ponent Testing,Proc. 2008 IEEE International Symposium on CompS8t@ence and
its Applications(CSA 2008 Hobart, Australia, Mon 13 — Wed 15 Oct 2008. EEE
Computer Society Press, 2008, pp. 377-382.

Weiqun Zheng and Gary Bundell, “Contract-Based8afé Component Testing with
UML Models,” International Journal of Software Engineering arid Applications
vol. 3, no. 1, pp. 83-102, January 2009.

Weiqun Zheng, “Model-Based Approaches: Models, Miodeand Testing,” Techni-
cal Report CIIPS_ISERG_TR-2009-01, Centre for ligeht Information Processing
Systems, School of Electrical, Electronic and CorapiEngineering, University of
Western Australia, WA, Australia, 2009.

302

References

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

Weiqun Zheng, “Model-Based Software Component figstt Case Study: Auto-
mated Teller Machine System,” Technical Report SIIISERG_TR-2010-01, Cen-
tre for Intelligent Information Processing Systef@shool of Electrical, Electronic and
Computer Engineering, University of Western AustadiVA, Australia, 2010.

Weiqun Zheng, Gary Bundell and Terry Woodings, “WHBased Software Compo-
nent Testing,”2010 ITEE Symposium in association with the So#wamgineering
Forum on Progress in Software Testiigerth, Australia, July 2010.

Hong Zhu, Patrick A. V. Hall and John H. R. Maypfvare Unit Test Coverage and
Adequacy,”ACM Computing Surveyol. 29, no. 4, pp. 366—427, Dec 1997.

Paul Baker, Zhen Ru Dai, Jens Grabowski, @ysteingda, Ina Schieferdecker, and
Clay Williams, Model-Driven Testing Using the UML Testing Prafigpringer, 08
Nov 2007.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoearti Leucker, and Alexander
Pretschner (Eds.Model-Based Testing of Reactive Systéhavance Lecturg@slLec-
ture Notes in Computer Science, vol. 3472, Sprindeme 2005.

Tsun S. Chow, “Testing design modeled by finitdestaachines,TEEE Transactions
on Software Engineeringol. SE-4, no. 3, pp. 178-187, May 1978.

Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, ldalder Pals, “From Design to
Test with UML — Applied to a Roaming Algorithm f&luetooth Devices,Proceed-
ings of 16th IFIP International Conference on Tegtiof Communicating Systems
(TestCom 2004)Oxford, United Kingdom, 17-19 March 2004. LectiMetes in
Computer Science, vol. 2978, pp. 33—49, Springed42

Zhen Ru Dai, “UML 2.0 Testing Profile,” Chapter 1, Manfred Broy, Bengt Jons-
son, Joost-Pieter Katoen, Martin Leucker, and Abebest Pretschner (Edsyodel-
Based Testing of Reactive Systems (Advance Legtuexsture Notes in Computer
Science, vol. 3472, pp. 497-521, Springer, Jun&.200

Susumu Fujiwara, Gregor v. Bochmann, Ferhat Kheniflekhtar Amalou, and Ab-
derrazak Ghedamsi, “Test Selection Based on FBiidéee Models,[EEE Transac-
tions on Software Engineeringol. 17, no. 6, pp. 591-603, Jun 1991.

RobertM. Hierons, “Testing from a Z SpecificationJournal of Software Testing,
Verification and Reliabilityvol. 7, no. 1, pp. 19-33, March 1997, Wiley.

RobertM. Hierons, Sadeghipour, S., and Singh, H, “Testirsystem specified using
Statecharts and Z|hformation and Software Technolqogil. 43, no. 2, pp. 137-149,
February 2001, Elsevier.

Robert M. Hierons, Jonathan P. Bowen, and Mark HarifEds.),Formal Methods
and Testing: An Outcome of the FORTEST NetwRekised Selected Papers. Lecture
Notes in Computer Science, vol. 4949, Springer8200

Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bmy Rance Cleaveland, John
Derrick, Jeremy Dick, Marian Gheorghe, Mark Harmdtglpesh Kapoor, Paul
Krause, Gerald Littgen, Anthony J. H. Simons, Sekglkomir, Martin R. Wood-
ward, and Hussein Zedan, “Using Formal Specificeito Support Testing ACM
Computing Surveys (CSURPpI. 41, no. 2, pp. 1-76, February 2009.

David Lee, and Mihalis Yannakakis, “Principles dfidthods of Testing Finite State
Machines — A Survey,Proceedings of the IEER/ol. 84, no. 8, pp. 1090-1126, Au-
gust 1996.

References 303

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

Edward F. Moore, “Gedanken-experiments on Sequekltegchines,” In Claude E.
Shannon and J. McCarthy (Eds\ytomata Studies, Annals of Mathematical Stydies
vol. 34, pp. 129-153, Princeton University Presadeton, N.J. USA, 1956.

Object Management Group, “UML Testing Profile,” jittutp.omg.org/. Accessed
Wed 16 March 2011.

Object Management Group, “UML Testing Profile (UTP)Yersions 1.0,
http://www.omg.org/spec/UTP/1.0/PDF, formal/05-074#lf. Accessed Wed 16
March 2011.

Beatriz Pérez Lamancha, Pedro Reales Mateo, IgnRodriguez de Guzman,
Macario Polo Usaola, and Mario Piattini Velthiugyutomated model-based testing
using the UML testing profile and QVTProceedings of the 6th International Work-
shop on Model-Driven Engineering, Verification awdlidation (MoDeVVa 2009)
Denver, Colorado, USA, 05 Oct 2009. ACM Internatib@onference Proceedings
Series, vol. 413, ACM Press, 20009.

Ina Schieferdecker, Zhen Ru Dai, Jens Grabowskifat®l Rennoch, “The UML 2.0
Testing Profile and its Relation to TTCN-Ftoc. 15th IFIP International Confer-
ence on Testing of Communicating Systems (TestdifB8) 2Sophia Antipolis,
France, 26—28 May 2003. Lecture Notes in Computézrse, vol. 2644, pp. 79-94,
Springer, 2003.

Alin Stefanescu, Sebastian Wieczorek, and Marci&towwendland, “Using the UML
testing profile for enterprise service choreograpfiilEEE 36th EUROMICRO Con-
ference on Software Engineering and Advanced Agqics (SEAA 2010)Lille,
France, 01-03 Sep 2010. IEEE Computer Society P2648, pp. 12-19.

Jan Tretmans, “Conformance testing with labelledgition systems: implementation
relations and test generatiolGomputer Networks and ISDN Systerd. 29, no. 1,
pp. 49-79, December 1996, Elsevier.

Jan Tretmans, “Model-Based Testing and Some Stmpards Test-Based Model-
ling,” in Marco Bernardo and Valérie Issarny (Ed®Joceedings of 11th Interna-
tional School on Formal Methods for the Design oinuter, Communication and
Software Systems (SFM 201Bgrtinoro, Italy, 13—-18 June 2011. Advanced Lexsu
Lecture Notes in Computer Science, vol. 6659, @F—326, Springer, 2011.

Marc-Florian Wendland et al (Fraunhofer FOKUS, BerGermany), “UML Testing
Profile Tutorial — UTP 1.1 Review and Preview Tegil 2011 Model-Based Testing
User Conference (MBTUC 2011fraunhofer Forum, Berlin, Germany, 18-21 Oct
2011.

Justyna Zander, Zhen Ru Dai, Ina Schieferdecked, @aorge Din, “From U2TP
Models to Executable Tests with TTCN-3 — An Appioac Model Driven Testing,”
Proceedings of 17th IFIP TC6/WG 6.1 Internation@n@erence on Testing of Com-
municating Systems (TestCom 2008pntreal, Canada, 31 May — 02 June 2005. Lec-
ture Notes in Computer Science, vol. 3502, pp. 389-Springer, 2005.

304 References

Appendix A Software Component Laboratory Project 305

Appendix A
Software Component Laboratory Project

This research was partially motivated by the presicesearch work conducted by the Software
Component Laboratory (SCL) at the Centre of Irgelit Information Processing Systems,
School of Electrical, Electronic and Computer Eegiring, University of Western Australia,
Australia {0 [96] [97] [9€] [88]. In 1999, the SCL was established as an AustraBavern-
ment funded project, and supported by a grant fBwftiware Engineering Australia (Western
Australia) Ltd through the Software Engineering {@ua&entres Program of the Department of
Communication, Information Technology and the Aasistralia. The SCL project linked to-
gether expertise and collaboration at the UnivemsitWestern Australia, Murdoch University

and Software Engineering Australia (Western Austyaltd.

This appendix presents an overview of the SCL ptpgnd reviews its main limitations
and remaining issues to provide a basis for thiaéunrwork as part of this research. Further de-

tails about the SCL project and a comprehensivewesf it can be found inl[65.

A.1 The SCL Project Overview

A principle goal of the SCL project was to estdble laboratory for building reliable compo-
nent software for the new and fast-growing CBSE momty. The main SCL work can be

summarised as follows:

(@) An XML-basedcomponent test specificatig@TS) for specifying and representing com-
ponent test cases (called'S test case specificatiorigq] [96] [99]

(b) A lightweight testing tooltest pattern verifie(TPV) for verifying CTS test case specifi-
cations in a dynamic testing environmefi@][[96] [98] [88]

(c) A component testing indgCTI) as the rating scheme for measuring the éxaéeom-
ponent testingdg7] [98]

(d) A prototype of theverified software component librafyeriLib) [40] [97] [98]

The XML-based CTS and the TPV tool are outline®éction A.2andSection A.3 be-

cause they are used by this research as part afetredopment of the new MBSCT methodol-

ogy.

306 Appendix A Software Component Laboratory Project

A.2 XML-Based Component Test Specification

The XML-based CTS integrates the XML standard aawhnology 156 with SCT to specify
and represent CTS test case specifications, whiiob 80 support standard test specification
requirements and characteristics, such as a wiletkand well-structured specification for-
mat, portability, reusability, etc. (as describadd8] [166). The XML-based CTS has advan-
tages over traditional test representatidi¥, [and well caters for the needs of both component
developers and users in different contexts.

A dedicated XML DTD is defined, called CTS-DTDB{], to produce well-formed and
valid XML documents for CTS test case specificagiohhe full DTD can be restructured and
decomposed into individual XML DTDs according tdfelient characteristic categories of re-
lated test datalable A.1(which is adapted fromlp5 [166) shows the three sub DTDs and

their corresponding test documents that can bsitikss and created with the XML-based CTS.

Table A.1 Component Test Specification: DTD and Test Document

CTS Document Type Definition CTS Test Document

Component Descriptor DTD (CD-DTD) Component Descriptor Document (CDD)

Test Specification DTD (TS-DTD) Test Specification Document (TSD)

Test Specification DTD (TS-DTD) Result Set Document (RSD)

The most important sub DTD is the CTS TS-DTD thattains the twelve (12) main
XML elements and their attributes, as showrrigure A.1(which is adapted fromBp] [165).
The corresponding test specification document TSBni XML document that begins with the
<TestSpecification> root element and consists of a list of test skttest set(specified by the
<TestSet> element) contains multiple test groupstest group(specified by theTestGroup>
element) is composed of related operationsegk operatiorn(specified by theTestOperation>
element) comprises several logically ordea¢dmic test operationgach of them examines a
basic class operation, such esnstructor (specified by the<TestConstructor> element) or
method(specified by thecTestMethod> element). These structural mechanisms organide ind
vidual tests into appropriatest sequences establish the logical hierarchies of testsvaié to
the component under test (CUT), which are treeztirad, well-formed, simple and easy to

understand and use.

To understand these structural mechanisms andetestents,Table A.2 (which is

Appendix A Software Component Laboratory Project 307

adapted from166]) describes the TSD (e.g. for a test example corapbclasdieap) with its
main structures, elements, tags, attributes, elbichware defined in the TOTD (in Figure
Al).

<l-- CTS Test Specification DID -->
<l--
<?xm version="1.0" encodi ng="UTF-8" standal one="no"? >

<! DOCTYPE Test Speci fication SYSTEM " TestSpecification.dtd" >
-->

<! ELEMENT TestSpecification (TestSet+) >
<I ATTLI ST Test Specification Nane | D #REQUI RED >
<! ELEMENT TestSet (Desc? (TestGoup | TestOperation | Invariant)*) >
<I ATTLI ST Test Set Name | D #REQUI RED >
<! ELEMENT Decs (#PCDATA) >
<! ELEMENT TestGroup (Desc? (TestOperation | TestGoup | lnvariant)*) >
<! ATTLI ST Test G oup Nane | D #REQUI RED >
<I ATTLI ST Test Group Tar get Met hod CDATA #I MPLI ED >
ELEMENT Invariant (Arg* (Result | Exception)?) >
<I' ATTLI ST I nvariant DataType CDATA #REQUI RED >
<I ATTLI ST I nvari ant Test Met hod CDATA #REQUI RED >
ELEMENT TestOperation ((Test Constructor | TestMethod | Invariant)*) >
<I ATTLI ST Test Operati on Name | D #REQUI RED >
<I ATTLI ST Test Operation Pre |DREF #|l MPLI ED >
<I ATTLI ST Test Operation Version CDATA #l MPLI ED >
<! ELEMENT TestConstructor (Arg*, (Result | Exception)?) >
<! ATTLI ST Test Construct or Nanme CDATA #REQUI RED >
ELEMENT TestMethod (Arg*, (Result | Exception)?) >
<! ATTLI ST Test Met hod Nanme CDATA #REQUI RED >
<! ATTLI ST Test Method Tar get CDATA #REQUI RED >
<I ATTLI ST TestMethod Static (Y| N) "N >
<! ELEMENT Arg (#PCDATA) >
<I ATTLI ST Arg Nane CDATA #| MPLI ED >
<! ATTLI ST Arg Source CDATA #l MPLI ED >
<I ATTLI ST Arg Dat aType CDATA #| MPLI ED >
ELEMENT Result (Exp?) >
<I ATTLI ST Result Nane CDATA #| MPLI ED >
<I ATTLI ST Result DataType CDATA #| MPLI ED >
<I ATTLI ST Result Qualification CDATA #l MPLI ED >
<I ATTLI ST Result Save (Y| N) "N' >
<! ELEMENT Exp (#PCDATA) >
<I ATTLI ST Exp SpecVersi on CDATA #| MPLI ED >
ELEMENT Exception (Exp?) >
<! ATTLI ST Excepti on Nane CDATA #| MPLI ED >
<! ATTLI ST Excepti on DataType CDATA #REQUI RED >
<I ATTLI ST Exception Qualification CDATA #l MPLI ED >
<I ATTLI ST Exception Save (Y| N) "N' >

<

<!

<!

<

<

Figure A.1 An extract of CTS Test Specification DTD (TS-DTD)

308 Appendix A Software Component Laboratory Project
Table A.2 Test Specification Document: structures, elements, tags, attributes
Element Structures, Elements, Tags, Attributes, Caents Description
Test <TestSpecification Name=*heap.xml"> The TSD has only oneTestSpecification> root ele-
Specification <Test Set >+. . . ment containing one or more test sets (specifiethéy
</ TestSpecification> <TestSet> element) for the CUT, e.g. heap.
TestSet <TestSet Nane=“Heap_Basi cTest s"> A Test Set is a collection of test groups (specified by
(Test Set) <Desc>?. .. the<TestGroup> child element) or test operations
<Test G oup>*. .. (specified by theTestOperation> child element).
</ TestSet>
Desc <Desc> A set of basic tests The<Desc> element contains a text description of the
(Text checki ng operations. </Desc> element where theDesc> element is embedded.
Description)
TestGroup <TestGroup Name=“Constructor check”™ |A Test Group groups related tests together, which
(Test Group) <Desc>?. .. typically is a sequence of logically-ordered redatest
<Test Operation>*. .. operations. ATest Gr oup may recursively include
</ TestGroup> other nested test groups.
TestOperation | <TestOperation Name=“Heap(n) "> A Test Operation is a sequence of calls to constructor
(Test <Test Constrcut or>*. .. (specified by theTestConstructor> child element)
Operation) <Test Met hod>*. .. and/or method (specified by thk@estMethod> child
</ TestOperation> element) of the class under test. Calls formedanto
Test Oper ati on may perform some test scenario,
such as verifying object construction, testing ohe
methods of an object constructed, etc.
TestConstructor<TestConstructor Nane="Heap”> A Test Constructor represents a call to construct ar]
(Test <Arg Name="si ze” Dat aType="i nt "> object. It may take arguments (specified by<Aeg>
Constructor) 0 child element), and return a resultant object (gigec
</ Ar g> by the<Result> child element) or throw an exception
<Resul t Nane=*heap” (specified by thecException> child element). A
Dat aType="Heap”/> Test Construct or is an atomic test operation.
</ TestConstructor>
TestMethod <TestMethod Nane=“si ze” Tar get =“heap”> | A Test Method represents a call to invoke a method on an
(Method Call) <Resul t Nanme=“n”" object constructed. It may take arguments, andrretu
Dat aType='i nt” result or throw an exception. The object on whiud t
Save='y"> Test Met hod is invoked is specified by thé'arg(_et"
<Exp>0</ Exp> attribute, and was alrgady_constructed py a prevoon-
</ Resul t > structor that stored this object and specified/itieNane
</ TestMethod> attribute'of the<ResuIt'> element. ATest Met hod is
an atomic test operation.
Invariant <Invariant Dat aType="..." An Invariant for a class indicates that objects of the
Test Met hod=“. . . "> class must always hold some properties no mattat ywh
<Args>*... operations are applied to the objects. It takeddira
<Resul t>?. .. of a special method, which will always return awno
</ Invariant> result (indicating if the class is satisfied wittetin-
variant property) when the method is called.
Arg <Arg Name="x”" Dat aType="i nt "> An Arg argument can be either a literal or an object al-
(Argument) 5 ready constructed by the previous constructor.déte of
</ Arg> the<Arg> element should be read and converted to the
specified data type (primitive type or class) beftire
constructor or method is invoked. ThArg> element
specifies some test input to the constructor ohoget
under test.
Result <Result Name=‘enpty” A Result determines the expected data (specified by the
Dat aType="bool ean” <Exp> child element) to be returned from a method that i
Save="y"> successfully executed. The actual returned valuleeof
<Exp>t r ue</ Exp> method under tgst is storepl in the execut_|on enmient
</ Result> by theNare attribute, and is to be saved in the RSD ag-
companying the TSD when ti8ave="Y" attribute is
present. The expected data should be read andrtedve
the specified data type before it is compared thithac-
tual returned value.
Exp <Exp>t r ue</ Exp> An Exp expression represents the expected data (grimi-

(Expression)

tive result) of the method under test.

Appendix A Software Component Laboratory Project 309

Exception <Exception Nane="..." An Exception indicates that the method under test is
Dat aType="“..." expected to throw an exception as a result rattzar t
Save="Y"> returning normally. The exception value is to beesh

<Exp>? in the RSD as the specified class type of the diaep
</ Exception> if the Save="Y" attribute is present.

A.3 Test Pattern Verifier

The TPV tool enables component testers to executeegamine component tests specified by
the XML-based CTS, which supports executabilitcomponent tests ancerifiability of soft-

ware components. In the testing environment, dftertester selects a test specification (an
XML document) for the CUT, the TPV opens, readsses and stores it in an internal file struc-
ture that is similar to the XML document. The TPyphes the tests to the CUT, and checks the

actual test results against:

(@) The expected test results specifiedBxp elements in the test specification (especially
when the selected test specification is executeditst time for testing); or

(b) The historical test results previously stored ia ResultSet documents for the CUT (es-
pecially when the same test specification is réonmegression testing).

Figure A.2shows the TPV’s main GUI screen after a CTS tas¢ specification has been

loaded and a group of tests run (e.g. for compoadlessheap) [98]. The main frame contains

three panels:

BE Test Pattern Verifier 1.0.9 XMl Errors
Select Run RunMode Help OQuit
[1 heap :| - Test History

A
@ JJava ‘| Heap(n) Pass

| 1|/ Test Results

@ [scladtheapHeap
@ [add_tests

|| Test Group: Add sequence
| ad 1 Pass

Exec [State | Result | Emors |

1| pre: seltestintlist

iy ?5 pre: nodes
@ [Caonstructor check |Add 2 - no moves Pass |l pre: scladtheap Hoap
D Heap(n) ‘|| Add 2 - exchange needed Pass | || pre: top
@ EliAdd seence] | add 3 - no moves Pass |l pre:isEmaty
[Add 1 || add 3 - move up needed Pass | | pre: Inteariy

D Add 2 - no moves

) Add 3 - no moves

) Add 3 - move up needed

) Add and move up
) add atend
D Add and move up part
® 7 DeletaGroup
@ [T Add overfow
Lo e

:Add and move up Fail
[} Add 2 - exchange needed | - || Add at end Pass

‘|| Add and move up part Pass

AResult discrapancyl

Select operation(s), then Run option

Figure A.2 Main TPV GUI: test selection, history and results panels

310 Appendix A Software Component Laboratory Project

(1) The left-most panel displays the content of thé $pscification as a test set: test group:
operation hierarchy. The tester can select onbeofun options to run the appropriate test

set, group or single operation selected.

(2) The middle panel shows a history of test executitnglate combined with simple

pass/fail statistics for each test execution.

(3) The right-most panel has several tabs, which erthleléester to view the execution his-
tory for individual method invocations, the stafetloe run time environment, error re-

ports and results from each constructor or metladidro/ocation.

A.4 Main Limitations and Remaining Issues

This section analyses and reviews some of the hmaitations and remaining issues of the pre-
vious SCL work in order to provide a basis for theher work as part of this research, which

can be summarised as follows:
(1) Component test design and generation in the pre\&@L work

(@) Did not provide a systematic approach or framevaorkow to design and generate com-
ponent tests conforming to the standard XML-bas€8.C
The XML-based CTS provides a XML-styled notation tiest specification and represen-
tation with a standard, well-defined and well-staned format. Although it is a novel approach
towards the standardisation of test specificatitims previous SCL work did not provide a test-
ing method for test design and generation in practit is necessary to undertake further re-

search to investigate useful approaches for deweJdpTS test case specifications.

(b) Did not provide test criteria to assist design amdluation of CTS test case specifica-
tions.
Using the specification notation of the XML-basetiSCdoes not mean that any test cases
represented in the CTS format are “good testse&alising testing effectiveness. In fact, effec-

tive tests are principally measured with appropriast criteria and requirements.

(c) Did not correlate SBT/MBT/UMBT approaches with dgsand generation of CTS test
case specifications
The previous SCL work gave some IBT examples teatvdd test cases based on com-

ponent programs for code-based unit testd) [98]. A major deficiency of the SCL work is

Appendix A Software Component Laboratory Project 311

lacking a practical methodology for test design ayeheration particularly pertinent to

SBT/MBT/UBT approaches for high-level testing puses.

(2) Testlevels

The previous SCL work did not well address impdrtasting issues that can effectively
support integration and system testing. Becaudevad components are developed mainly for
reuse and integration in component applicationsamponent-based systems, component us-
ers are usually concerned much more about compamiegration and system testing for com-

ponent software quality at higher levels.

(3) Fault detection and diagnosis
The previous SCL work did not address the importesting issue of fault detection and
diagnosis, which is a crucial measurement of corapbruality. Fault detection and diagnosis

is one of most important testing capabilities #draeffective testing approach should have.

(4) Component testability and its improvement
The previous SCL work did not address the importsting issue of component testabil-
ity and its improvement, which is essential to stssifective component test development to

detect and diagnose possible component faults.

This research was partially motivated by the pnesi@CL project, with the aim to ad-
dress its main limitations with regard to modeldth€omponent test design and generation,
component integrations testing, component testalaitid its improvement, and component fault
detection and diagnosis. By bridging these gapthénprevious SCL work, the new MBSCT
methodology is developed to overcome these ren@gjmioblems to achieve a desirable level of

SCT effectiveness.

Page 312 of 425 Appendix A Case Study: Car Parking System

Appendix B Case Study: Car Parking System 313

Appendix B
Case Study: Car Parking System

The testing of the Car Parking System (CPS) iditeecase study that is used throughout this
thesis, in order to validate and evaluate the chegacteristic testing capabilities of the MBSCT
methodology and its framework. We have also usedQRS case study as a major source of
illustrative examples througho@hapter 5to Chapter 8 andChapter Shas presented the most
important contents of the CPS case study. Thisrapperovides the background and supple-
mentary information about the CPS case study. Th€PS case study has been described ear-
lier in [16§ [17(.

B.1 Overview of the CPS System

This section presents an overview of the CPS sysitémm CPS system is a typical access con-
trol system to provide public parking services. TS system employs a set of parking control
devices to monitor, coordinate and regulate a ftdvcars accessing the parking access lane
(PAL) for parking cars in the area of parking bajke CPS system comprises five individual
parking control devices that are located in threenntontrol points along the PAL (as illus-
trated inFigure B.J.

The following describes the main system operatams functional requirements for the

CPS system

(1) The first control point is the entry point, which jointly controlled by the Traffic Light

device and the In-PhotoCell Sensor device.

(@) The Traffic Light device controls a car’s accesdimg PAL entry point.

. The Traffic Light device displays @REEN signal to permit the waiting car to enter the
PAL;

. The Traffic Light device displays RED signal to disallow the next car to enter the PAL

and the next car must wait for access permission.

(b) The In-PhotoCell Sensor device senses whether theocurrent car is accessing the
PAL entry point.

. First, the In-PhotoCell Sensor device senses bwaPAL entry point has been occupied
by the entering car, when this car is accessingPfkie entry point;

. Then, the In-PhotoCell Sensor device senses thd AL entry point has been cleared by

the same entering car, after this car has finistvedssing the PAL entry point.

314

Appendix B Case Study: Car Parking System

Control State

2. The Car Parking System |:”EHZ|
Control_§ IN_PHOTOCELL > OCCUPIED ‘ otap
Panel '
Traffic__| s i P Ticket
Light — 80 ﬁf b Dispenser
In-PhotoCell Out-PhotoCell
Sensor Sensor

(2)

(@)

3)

(@)

(b)

T Parking T Stopping T

Entry Access Ticket Bar Exit
Point Lane Point Point

Figure B.1 The Car Parking System

The second control point is the ticket point, whisftontrolled by the Ticket Dispenser
device.

The Ticket Dispenser device delivers a ticket tavitedrawn by the car driver.

First, the Ticket Dispenser device delivers a paykicket;

Then, the current car driver withdraws the delidetieket, which is used to pay a parking
fare.

The third control point is the exit point, whichj@ntly controlled by the Stopping Bar
device and the Out-PhotoCell Sensor device.

The Stopping Bar device controls a car’s exiting AL exit point.

The Stopping Bar raises up to allow the currenteaxit the PAL exit point;

The Stopping Bar lowers down after the currenthes finished accessing the PAL exit
point, or the Stopping Bar lowers down to disallthe current car to exit the PAL exit
point.

The Out-PhotoCell Sensor device senses whetheotatha current car is accessing the
PAL exit point.

First, the Out-PhotoCell Sensor device sensesttiealPAL exit point has been occupied
by the exiting car, when this car is accessing?Ae exit point;

Appendix B Case Study: Car Parking System 315

Then, the Out-PhotoCell Sensor device senseshitbd®AL exit point has been cleared by

the same exiting car, after this car has finishessing the PAL exit point.

B.2 Special Testing Requirements

In addition, the CPS system must be secure arabtelin order to provide high quality public
access services. In the CPS case study, we havifietk and examined a set of special quality
requirements for supporting secure and reliabl&ipgrservices. Among many other require-
ments, the following specifies a set of the thra@smnmportant CPS special testing requirements

(#1, #2, and #3), which become the principal tgséind evaluation focus in the CPS case study.

(1) Special Testing Requirement #1: Parking Accesst&iele
In the CPS system, all parking cars must abidehbypiarking access safety rule ené
access at a timiewith the following specific mandatory public a&ss requirements:
(@) Only one car can access the PAL (Parking Accesg)Laha time. This means that it is
not allowed that two or more cars access the PAdngtsame time.
(b) The next car is allowed to access the PAL onlyrafte last car has finished its full PAL

access.

This CPS safety rule is jointly supported by therect control operations of the Traffic
Light device and the In-PhotoCell Sensor devicerateel at the PAL entry point. This rule can
prevent the occurrences of unsafe scenarios, esgiljje car collisions due to multiple concur-

rent car accesses.

(2) Special Testing Requirement #2: Parking Pay-SeRide

In the CPS system, all parking cars/drivers mustimg with the parking pay-service rule
— “no pay, no parking with the specific requirement that the driver shwithdraw a parking
ticket to pay the required parking fare.

This CPS pay-service rule is mainly supported l® ¢brrect control operations of the
Ticket Dispenser device operated at the PAL tigkent. This rule can assure the required level

of financial support for public parking service ogi#ons.

(3) Special Testing Requirement #3: Parking Servicei$gdrule
In the CPS system, all parking cars must confortiigparking service security rule for
any parking service violations, including:
(a) Violating the CPS safety rule
(b) Violating the CPS pay-service rule

(c) Any possible unsafe/insecure parking activitieg, excessive speeding along the PAL,

316 Appendix B Case Study: Car Parking System

parking in unready/unavailable bays, parking inutharised areas, etc.

This CPS security rule is jointly supported by tmgrect control operations of the Stop-
ping Bar device and the Out-PhotoCell Sensor dempmrated at the PAL exit point. This rule
can assure the required level of public servicetgéfecurity protection and maintenance with

the Stopping Bar device.

B.3 UML-Based Software Component Development

This section presents an overview of UML-basedngri component development for the CPS
system. For this case study, we develop a softeangroller simulation for the CPS system,
which simulates a typical public access controteays where a flow of cars and parking control
devices are monitored, coordinated and regulatathsigcertain public access requirements and
rules (as shown earlier Figure B.). The CPS system is a typical reactive systenayitemics
are controlled and regulated by stimuli (eventsdas) communicated with the external world
(e.g. a parking user who is a car driver). Its nm@ontrol structure for device communications
employs an event-driven client-server control aegdture. For event communications, we de-
velop an independent, lightweight, base compoierthtCommunication, which is a pattern-
based software component that is built on the Qlesgrattern $3] to implement a broadcaster-
listener communication mechanism. Several appbioatomponents are built on top of the Ob-
server component that allows these components tk eallaboratively to support event com-
munications. The main application components ineladdevice control component, a car con-
trol component and a GUI simulation component. &htire CPS system is componentised into
a Java-based CBS.

More details about the CPS system developmentuatieef described inlpg, including
UML-based component development and UML-based coenpospecifications for the CPS

system.

B.4 Constructing Test Models

Chapter 4to Chapter Shave previously demonstrated the methodologicatatdteristics and
applicability of the MBSCT methodology and its frework for effective test model construc-
tion. Test model development is performed by amglythe four main MBSCT methodological
components: the model-based integrated SCT protessscenario-based CIT technique, the
ThC technique, and the TCR strategy. This sectestibes the construction of the use case
test model (inrSection B.4.1 and the design object test model fection B.4.2 undertaken in

the CPS case study for the CIT purpose.

Appendix B Case Study: Car Parking System 317

B.4.1 Use Case Test Model Construction

The use case test model (UCTM) for testing the €f&%em was constructed as illustrated in
Figure B.2 The UCTM is represented in four main parts: a@rall test use case diagram shows
the threecoretest use cases (TUCs) (as showRigure B.2(a)), and three system test sequence
diagrams show the main system-level test scenafitise three individual CPS TUCs respec-
tively (as illustrated irFigure B.2(b), (c), (d)). In addition, as part of the UCTWVRble B.1de-
scribes an overview of the three core CPS TUC#kiing the CPS system.

Car Parking System

e

TestCar/TestDriver TUC2

Withdraw
Ticket

(@) Test Use Case Diagram (CPS System)

318 Appendix B Case Study: Car Parking System

% : CarParkingSystem

: TestCar/TestDriver

gn

Test Contract: stopping bar is in the state of "SB_ DOWN"

1
test car waits for traffic light to turn to the sta te of "TL_GREEN" |
1
1
1
1
1
1
1
1
1

traffic light turns to the state of "TL_GREEN" from "TL_RED"

l--

<
test car crosses and passes through the PAL entry p oint
_: traffic light turns to the state of "TL_RED" from " TL_GREEN"
<
Test Contract: traffic light is in the state of "TL _RED"

' "

(b) System Test Sequence Diagram (CPS TUC1 Test Scenario)

% : CarParkingSystem

: TestCar/TestDriver

Test Contract: traffic light is in the state of "TL _RED"

test car waits for ticket dispenser to deliverati cket

| fticket dispenser delivers a ticket (set TDinthe s tate of "TD_DELIVERED" from "TD_ WITHDRAWN")
e

test car proceeds towards and pauses besides ticket dispenser

g(n]

Test Contract: ticket dispenser is in the state of ~ "TD_WITHDRAWN"

I g

test driver withdraws the ticket (set TD in the sta te of "TD_ WITHDRAWN" from "TD_DELIVERED")

(c) System Test Sequence Diagram (CPS TUC2 Test Scenario)

Appendix B Case Study: Car Parking System 319

% : CarParkingSystem

: TestCar/TestDriver

Test Contract: ticket dispenser is in the state of "TD_WITHDRAWN"

test car waits for stopping bar to raise up to the state of "SB_UP"

! stopping bar is raised up to the state of "SB_UP"f rom "SB_DOWN"
<

test car passes through stopping bar and crosses th e PAL exit point

"0

stopping bar is lowed down to the state of "SB_DOWN " from "SB_UP"

-

Test Contract: stopping bar is in the state of "SB_ DOWN"

"0

(d) System Test Sequence Diagram (CPS TUC3 Test Scenario)

Figure B.2 Use Case Test Model (CPS System)

Table B.1 Use Case Test Model: Test Use Cases (CPS System)

Test Use Case Test Use Case Overview

CPS TUCL: Exercise and examine that the test car entersting goint of the parking access
Enter PAL lane (PAL) to start accessing the PAL.

CPS TUC2: Exercise and examine that the test driver withdrpawking ticket at the PAL
Withdraw Ticket| ticket point.

CPS TUCS: Exercise and examine that the test car exits the @3 point to finish accessing
Exit PAL the PAL.

B.4.2 Design Object Test Model Construction

The design object test model (DOTM) for testing @S system was constructed as illustrated
in Figure B.3 The DOTM is represented in three main parts:etiest sequence diagrams show
the main design-level test scenarios of the thnelevidual CPS TUCs respectively (as illus-
trated inFigure B.3(a), (b), (c)).

320 Appendix B Case Study: Car Parking System

testCPSController| | testCarController | [testCar : Car| |: DeviceController| |: TrafficLight | | inPhotoCell| |: StoppingBar|
: CPSController : CarController : PhotoCell
: TestCar/TestDriver
: T T T T T T T
\ 1 1 1 1 1 1 1
: enterAccessLane() ! ! ! ! ! !
|:|—>|:,I] ' ' | 0.1ITC: checkState(stoppingBar, "SB_DOWN")

. . : : : : : >
i | 1TS:wrnTrafficLightToGreen() | u. i i T

1 1 1 - 1 1 1
i ! ! > 1.1 TO: waitEv ent(stoppingBar, "SB_DOWN")
! i i i i |
: 1 1 1 1 1
| 1 1 1 1 1
. : : ! ! !
i ! ! 1.1 ITC: checkEvent(stoppingBar, "SB_DOWN")
1 | | 1 1 >|::]
: ! ! ! !
| ! ! 1.2 TO: setGreen() ' '
! h
| : : — > : :
! i i i | |
i ! ! 1.2 ITC: checkState(trafficLight, "TL_GREEN")
| ! ! —>] : :
! : i . i i i
! 2Ts: enterAccelssLane() ! ! ! ! !
! —’— 1 1 I I |
i 2.1 TO: waitEvent(trafficLight, "TL_GREEN") | ' '
!))
| : : : : :
| 1 1 1 1 1
! : ' : ' '
' 2.1 ETC: checkEvent(trafficLight, "TL_GREEN") ! !
' A . .
H + + >D 1 1
i ! ' ! !
! 2.2 TO: goTo(Igopace-cross-inP(I:, int) i i i
1
: ! ! ! !
! i i i i i
i 2.3 T0: occuply() : ! ! !
| | | | i
E 2.3 ETC: checkState(inPhotoCell, "IN_PC_OCCUPIED") ! !
' i i i i
i 2.4 TO: goTo(gopace-crossov er-inPC, int) 1 1 1
: R I : : : :
|]]]]
| 1 1 1 1 1
| 1 1 1 1 1
! 2.5 TO: clear() i i | |
| | | | |
i 2.5 ETC: checkState(inPhotoCell, "IN_PC_CLEARED") ! !
; : : : g :
| L 1 1 1 1 1
| 1 1 1 1 1 1
| X I' 1 1 1 1 1
! 3 TS: turnTrafficLightToRed() 1 1 1 1 1
: : : P 3.1 T0: waitEvent(inPhotoCell, :
! i i "IN_PC_CLEARED") i i
| : : : : :
! i i i i i
: . . [! ! '
! ' ' 3.1 ETC: checkEvent(inPhotoCell, '
! i i "IN_PC_CLEARED") i i
| : : ! :
|]]]]
! ! 1 3.2 TO: setRed() i i
: : : ———» : :
|]]]]
: ! ! ! ! !
! 1 1 3.2 ITC: checkState(trafficLight, "TL_RED")
: : : —> : :
|]]]]
! L | 1 = 1 1 1
|]]]]]]]
i]]]]]]]

(a) Design Test Sequence Diagram (CPS TUC1 Test Scenario)

Appendix B Case Study: Car Parking System 321
testCPSController| |testCarController| | testCar : Car| |: DeviceController| |: TrafficLight | |: TicketDispensel
: CPSController : CarController
: TestCar/ITestDriver
| T T T T T
! withdraw Ticket(| i i i !
[} ' '
[— | 0.1 ITC: checkState(trafficLight, “TL_RED") |
u ' ™1
]]
]

1 TS: deliverTic

et()

S — N

2 TS: withdraw Ticket()
—>_'

)

Bt

1.2 TO: deliver()

1

1

!
P4 1.1 TO: waitEvent(trafficLight,
*TL_RED")

1.1 ITC: checkEvent(trafficLight
"TL_RED") !

= g

1 1
1.2 ITC: checkState(ticketDispenser,
"TD_DELIVERED") !

(b) Design Test Sequence Diagram (CPS TUC2 Test Scenario)

[}
| |]
i i i
]]]
! ! :
2.1 TO: waitEvent(ticketDispenser, "TD_DELIVERED") !
< e e e
] : : : :
2.1 ETC: checkEvent(ticketDispenser, "TD_DELIVERED ") |
l l i]
2.2 TO: goTo(gopace-goto-TD, int) H H
——»] i i i
]]]
! : : :
2.3 TO: withdraw () ! ! !
| | | ")
2.3 ETC: checkState(ticketDispenser, "TD_WITHDRAWN ") !
: : : g
]]]]
]]]]
' ' ' '

322 Appendix B Case Study: Car Parking System

Q testCPSController| | testCarController| | testCar : Car| |: DeviceController| |: TicketDispensel |: StoppingBar| | outPhotoCell
X : CPSController : CarController : PhotoCell
: TestCar/TestDriver
: T T T T T T
| . 1 1 1 1 1 1
:eanccessLaneO ! ! ! ! ! !
1 1 1 1 1
D. [jl i 0.1 ETC: checkState ticketDispenser, "TD_WITHDRAWN ") i
| 0 | "1 |
]]]]]
I 1TS: raiseStoppingBar() 1 : :
' v Py 1.1 T0: waitEv ent(ticketDispenser,

"TD_WITI-|DRAV\{N")

e

1
1.1 ETC: checkEvent(ticketDispenser,
“TD_WITHDRAWN")

1.2 TO: raise() |

1.2 ITC: checkState(stoppingBar, "SB_UP")
1

2TS: exitAccess'Lane()
[}

A ! . |
2.1 TO: waitEvent(stopplngBalr, "SB_UP")
[}

[f——l |

2.1 ETC: checkEvent(stoppingBar, “SB_UP")

2.2 70: goTo(;gopace-cross-ou;tPC, int)

=
[}
[}

) 3 Y ¢ N

1

1

1 1

2.3 TO: occupy() '
1 1

1

1

1
2.3 ETC: checkState(outPhotoCell, "OUT_PC_OCCUPIED ")

1 1 1
1 1 1
2.4 TO: goTo(gopace-crossov er-outPC, int) !
i i
]]
]]]
2.5 TO: clear() 1 1
! ! !
2.5 ETC: checkState(outPhotoCell, "OUT_PC_CLEARED")
i i i
L] [} [} 1
1 1 1 1
1 1 1 1
3 TS: lowerStoppingBar() 1 1 1
' ' Py 3170 waitEv ent(outPhotoCell,
i i "OUT_PC_CLEARED") i
i i : i i
]]]]
: i (] | :
1 1 3.1 ETC: checkEvent(outPhotoCell,
H H "OUT_PC_CLEARED") H
i i a i
! ! 3.2 TO: lower() ! !
! ! : gn! !
: : ! ! !
! ! 3.2 ITC: checkState(stoppingBar, "SB_DOWN")
i i i : i
1 1 1 1
e]] e]]]
1 1 1 1 1 1 1
1 1 1 1 1 1 1

(c) Design Test Sequence Diagram (CPS TUC3 Test Scenario)

Figure B.3 Design Object Test Model (CPS System)

Appendix B Case Study: Car Parking System 323

B.5 Designing and Generating Component Tests

Chapter 4o Chapter &ave previously illustrated and demonstrated tethodological charac-
teristics and applicability of the MBSCT methodolognd its framework for component test
design and generation. Test case development i®lrhaded, process-based, scenario-based,
contract-based, FDD-based and mapping-based. &bi®s describes component test deriva-
tion undertaken in the CPS case study for the @QFpgse.

Note that the description uses some naming corefor acronyms or abbreviations of
the following testing terms in the MBSCT methodglo@S — test sequence/scenario, TG — test

group, TO — test operation, TC — test contract,lR@IETC — internal/external test contract.

B.5.1 Test Sequence Design

The test sequence design for testing the CPS systentonducted to organise and structure a
set of logically-ordered related test artefactg).(¢est operations, test contracts and test ele-
ments) into test sequences for the three CPS TUE test scenarios. The three main test se-
quences contain a total of eight (8) sub test sempgeand a total of eighteen (18) test groups (as
illustrated inFigure B.4.

(@) The test sequence for the CPS TUC1 test scenaniaios three (3) sub test sequences,
where sub test sequence #1 comprises two (2) egpg, sub test sequence #2 comprises
three (3) test groups, and sub test sequence #Brisa® two (2) test groups, with a sub-

total of seven (7) test groups (as illustratefigure B.4(a)).

(b) The test sequence for the CPS TUC2 test scenaniaios two (2) sub test sequences,
where sub test sequence #1 comprises two (2) iegpg, and sub test sequence #2 com-
prises two (2) test groups, with a subtotal of fotjrtest groups (as illustrated kigure
B.4 (b)).

(c) The test sequence for the CPS TUCS3 test scenani@ios three (3) sub test sequences,
where sub test sequence #1 comprises two (2) mgpg, sub test sequence #2 comprises
three (3) test groups, and sub test sequence #Brs@® two (2) test groups, with a sub-

total of seven (7) test groups (as illustrate#igure B.4(c)).

324

Appendix B Case Study: Car Parking System

test group 1.1 test group 1.2

test group 2.1

test group 2.3

test group 2.5

test group 3.1 test group 3.2

Basic|| — — — 4 — | — i — e — o - —_ | —_ = T
tes || : 1.1 TO 1.2T0 :21TO ::22TO23TO ::24TC25TO 31TO ::32TO
artefacts|| ! 7 S "N "'pg g ''p g ! il 'y !

| I T Test 11 T Sequence | B i>
specia [0 O Moom o Ht ot T T ! Tt
tes |[! 11ImC Il 12 CI|I 21ETCI| 2.3ETCI | 25ETCI || 3.1ETClI| 32ITC|
artefaCtS —_— e e = i — = —_ —_— e e = e — s — e — = — —_— e — = e — = —_
sub test sequence #1 sub test sequence #2 sub test sequence #3
() Structured Test Sequence (CPS TUC1 Test Scenario)
test group 1.1 test group 1.2| testgroup 2.1 testgroup 2.3
Basic|| — — — 4 — i — o | — e — . T -
tes || : 1.1 TO ©127T0 :|:21TO ::22T0 23TO :
artefacts|| | il I il M 1 I il il I
' Test ! ! ' sequence ! >
. | I 1 I |
Specia |f : ﬂ e ﬂ : ﬂ i ﬂ :
tes [|[! 1aITC 11 121ITCI |l 21ETCI| 2.3 ETCI
artefaCtS —_— e e = e — = —_ — e e = e —— e ——— J—
sub test sequence #1 sub test sequence #2
(b) Structured Test Sequence (CPS TUC2 Test Scenario)
test group 1.1 test group 1.2| testgroup 2.1 testgroup 2.3 test group 2.5 test group 3.1 test group 3.2
Basic||l - — — o4 — — o | —— e — . o -l -1l = T
tes | 1170 | | 1.2TO | | 2170 | i2'2 TO 2.37T0 | i2'4 TC25TO | 3170 | | 3270 |
atefactsl ! ! g '3 "gop g g o Ypg g !
| i T Fest T T Seqmenca 3 >
specia |0 O Moowm o Ht Tt T ! vt
tes|! 1AETCII 12ITCI|| 21ETCII 23ETCI | 25ETCI || 3.1ETCI| 3.2ITC|
artefacts —_— e e = e — = —_ —_— e e = e — s — e — e — = u— —_— e = e — e — —_

sub test sequence #1

sub test sequence #2

sub test sequence #3

(c) Structured Test Sequence (CPS TUCS3 Test Scenario)

Figure B.4 Test Sequence Design (CPS System)

Appendix B Case Study: Car Parking System 325

B.5.2 Component Test Design

Table B.2shows the relationships between sub test sequetestgyroups, test contracts, test
operations (with specified signatures) and tesestavhich were used for component test design
in the CPS case study for conducting CIT in the¢hCPS TUC core test scenarios (as illus-

trated inTable B.2(a), (b) and (c) respectively).

Table B.2 Component Test Design (CPS System):
test sequences, test groups, test operations, test contracts and test states

Table B.2 (a) Component Test Design (CPS TUC1 Test Scenario)

Test Test Test Operation Test Contract Test State
Sequence Group
enter PAL ent er AccessLane()
0.11TC: checkState(| SB_DOWN
st oppi ngBar ,
“SB_DOWN")
Sub Test 1TS:
Sequence turnTrafficLi ght ToG een()
#1
11 1.1 TO: wai t Event (1.1 ITC: checkEvent(| SB_DOWN
turn TG st oppi ngBar , “SB_DOWN") st oppi ngBar,
Traffic “SB_DOWN")
Light to))
GREEN 1.2 1.2 TO: set G een() 1.2 ITC: checkState(| TL_GREEN
TG trafficLight,
“TL_GREEN")
Sub Test 2 TS: enterAccessLan()
Sequence)
#2 2.1 2.1 TO: wai t Event (2.1 ETC: checkEvent (| TL_GREEN
TG trafficLight,“TL_GREEN”) | trafficLight,
enter the “TL_GREEN")
PA'-O;TW 23 | 2.27T0: goTo(
P TG gopace- cross-i nPC,int)
2.3 TO: occupy() 2.3 ETC: checkState(| IN_PC_OCCUPIED
i nPhot oCel |,

“IN_PC_OCCUPIED”)

25 2.4 TO: goTo(
TG gopace- crossover -i nPC,

int)
25TO:cl ear () 25 ETC: checkState(| IN_PC_CLEARED
i nPhot oCel | ,
“IN_PC_CLEARED")
Sub Test 3TS:
Sequence turnTrafficLi ght ToRed()
#3
3.1 3.1 TO: wai t Event (3.1 ETC: checkEvent (| IN_PC_CLEARED
turn TG i nPhot oCel |, i nPhot oCel | ,
Traffic “IN_PC_CLEARED") “IN_PC_CLEARED")
Lightto |55 1 32 TO: set Red() 3.2 ITC: checkState(| TL_RED
RED o
TG trafficLight,

“TL_RED")

326 Appendix B Case Study: Car Parking System

Table B.2 (b) Component Test Design (CPS TUC2 Test Scenario)

Test Test Test Operation Test Contract Test State
Sequence Group
withdraw wi t hdr awTi cket ()
ticket
0.1 ITC: checksSt at e(TL_RED
trafficLight,
“TL_RED")
Sub Test 1TS: deliverTicket ()
Sequence)
#1 11 1.1 TO: wai t Event (1.1 ITC: checkEvent (TL_RED
TG trafficLight,“TL_RED”) | trafficLight,
deliver “TL_RED")
e 12 | 1.27TO: deliver() 1.21TC: checkState(| TD_DELIVERED
TG ticket Di spenser,
“TD_DELIVERED")
Sub Test 2TS: wi t hdr awTi cket ()
Sequence)
#2 2.1 2.1 TO: wait Event (2.1 ETC: checkEvent (TD_DELIVERED
TG ti cket Di spenser, ti cket Di spenser,
withdraw “TD_DELIVERED") “TD_DELIVERED”)
ticket | 53 | 2270: goTo(
TG gopace- got o- TD, i nt)
2.3TO: wit hdraw) 2.3 ETC: checkSt at e(TD_WITHDRAWN
ticket Di spenser,
“TD_WITHDRAWN")

Appendix B Case Study: Car Parking System 327

Table B.2 (c) Component Test Design (CPS TUC3 Test Scenario)

Test Test Test Operation Test Contract Test State
Sequence Group
exit PAL exi t AccessLane()
0.1 ETC: checkSt at e(TD_WITHDRAWN
ti cket Di spenser,
“TD_WITHDRAWN")
Sub Test 1TS:
Sequence rai seSt oppi ngBar ()
#1
11 1.1 TO: wai t Event (1.1 ETC: checkEvent (TD_WITHDRAWN
raise TG ti cket Di spenser, ti cket Di spenser,
Stopping “TD_WITHDRAWN") “TD_WITHDRAWN")
'i?)r 12 | 1.27TO: raise() 1.2 ITC: checkSt at e(SB_UP
TG st oppi ngBar, “SB_UP”")
Sub Test 2 TS: exitAccesslLane()
Sequence)
#2 2.1 2.1 TO: wai t Event (2.1 ETC: checkEvent (SB_UP

TG st oppi ngBar, “SB_UP”) | st oppi ngBar, “SB_UP")
exitthe | 53 | 55 70: goTo(

PAL.eXIt TG gopace- cr oss- out PC,
point b
int)
2.3 TO: occupy() 2.3 ETC: checksSt at e(OUT_PC_OCCUPIED
out Phot oCel I,
“OUT_PC_OCCUPIED")
2.5 2.4 TO: goTo(
TG gopace- cr ossover -
out PC,i nt)
25TO: clear () 2.5 ETC: checksSt at e(OUT_PC_CLEARED
out Phot oCel I,
“OUT_PC_CLEARED")
Sub Test 3TS:
Sequence | ower St oppi ngBar ()
#3
3.1 3.1 TO: wai t Event (3.1 ETC: checkEvent (OUT_PC_CLEARED
lower TG out Phot oCel | , out Phot oCel |,
Stopping “OUT_PC_CLEARED") “OUT_PC_CLEARED")
d%évl\:n 3.2 3.2TO: | owner () 3.2 ITC: checkSt at e(SB_DOWN
TG st oppi ngBar,

“SB_DOWN”)

B.5.3 Component Test Generation

This section shows the target CTS test case spaiidns that are derived in the CPS case study
for the three CPS TUC core test scenarios, incudin

(1) The CTS test case specification for the CPS TUGtsienario (as shown fitigure B.5)
(2) The CTS test case specification for the CPS TUGRsienario (as shown kigure B.§
(3) The CTS test case specification for the CPS TUGBsienario (as shown kigure B.7

328 Appendix B Case Study: Car Parking System

<Test Speci fication Name="CPS_TUCL_CTS. xml ">
.. <Desc>CTS test case specification for CPS TUCl: car enters PAL</Desc>

.. <Test Set Name="TUCl_Test Set _turnTLt oG een">
....<Desc>Test Set #1: this test set examines turning traffic light to the state
of "TL_GREEN'</Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>1.1 TG grouped tests exam ne waiting the incom ng event notified
to turn traffic |ight</Desc>
...... <Test Operati on Nane="wait Event _tests">
........ <Desc>1.1 TO exanmine waiting the incom ng event notified to turn
traffic |ight</Desc>

........ <Test Met hod Name="wai t Event" Target="devi ceController">
.......... <Desc>1.1 TO deviceController waits the incom ng event notification

from st oppi ng bar </ Desc>
.......... <Arg Nanme="aObservabl e" Source="st oppi ngBar"

Dat aType="j ava. util . Cbservable" />

.......... <Arg Name="aEvent" Source="SB DOMWN' Dat aType="j ava.l ang. Object" />
........ </ Test Met hod>
........ <Test Met hod Name="checkEvent" Target="deviceController">
.......... <Desc>1.1 I TC. deviceController checks receiving the correct event

notification from stopping bar</Desc>
.......... <Arg Name="aObservabl e" Source="st oppi ngBar"

Dat aType="j ava. util . Cbservabl e" />

.......... <Arg Nanme="aEvent" Source="SB DOMNN' DataType="j ava.l ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ITC result: checkEvent must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. <Test G oup Nanme="set G een_groupedt ests">
...... <Desc>1.2 TG grouped tests examne turning traffic light to the state
of "TL_GREEN'</Desc>
...... <Test Operati on Nanme="set Green_tests">
........ <Desc>1.2 TO exanmine turning traffic light to the state of "TL_GREEN'</Desc>
........ <Test Met hod Name="set Green" Target="trafficLi ght">
.......... <Desc>1.2 TGO turn traffic light to the state of "TL_GREEN'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkState" Target="trafficLight">
.......... <Desc>1.2 ITC. check traffic light in the resulted correct state
of "TL_GREEN'</Desc>
.......... <Arg Nanme="abservabl e" Source="trafficLight"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aState" Source="TL_GREEN' DataType="j ava.l ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ITC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. </ Test Set >

.. <Test Set Nanme="TUCl_Test Set _car Ent er PAL" >
..<Desc>Test Set #2: this test set examines car entering PAL entry point</Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>2.1 TG grouped tests exam ne waiting the incom ng event notified
for car to enter PAL entry point</Desc>
...... <Test Operati on Nane="wait Event _tests">
........ <Desc>2.1 TO exanmine waiting the incomng event notified for car to
enter PAL entry point</Desc>
........ <Test Met hod Name="wai t Event" Target="testCarController">
.......... <Desc>2.1 TO testCarController waits the incom ng event notification
fromtraffic |ight</Desc>
.......... <Arg Nanme="aQbservabl e" Source="trafficLight"

Appendix B Case Study: Car Parking System 329

Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aEvent" Source="TL_GREEN' DataType="j ava.l ang. Object" />
........ </ Test Met hod>
........ <Test Met hod Nane="checkEvent" Target="testCarController">
.......... <Desc>2.1 ETC. testCarController checks receiving the correct event
notified fromtraffic |ight</Desc>
.......... <Arg Nanme="aObservabl e" Source="trafficLight"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nane="aEvent" Source="TL_GREEN' DataType="j ava. |l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.1 ETC result: checkEvent nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="occupy_groupedtests">
...... <Desc>2.3 TG grouped tests exam ne setting in-PhotoCell sensor in
the state of "IN_PC_OCCUPI ED' </ Desc>
...... <Test Operati on Nane="goTo_tests">
........ <Desc>2.2 TO exanmine the test car crossing PAL entry point</Desc>
........ <Test Met hod Nanme="goTo" Target="testCar">
.......... <Desc>2.2 TO the test car crosses PAL entry point controlled by
i n- Phot oCel | sensor </ Desc>
.......... <Arg Nane="gopace" Source="gopace-cross-i nPC' DataType="int" />
........ </ Test Met hod>
...... </ Test Oper ati on>
...... <Test Operati on Nanme="occupy_tests">
........ <Desc>2.3 TO exami ne setting in-PhotoCell sensor in the state of
"1 N_PC_OCCUPI ED" </ Desc>
........ <Test Met hod Name="occupy" Target="inPhotoCel | "
.......... <Desc>2.3 TO set in-PhotoCell sensor in the state of
"1 N_PC_OCCUPI ED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nanme="checkSt ate" Tar get="i nPhot oCel | ">
.......... <Desc>2. 3 ETC. check in-PhotoCell sensor in the resulted correct
state of "IN_PC OCCUPI ED'</ Desc>
.......... <Arg Nane="aObservabl e" Source="i nPhotoCel | "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aState" Source="|N_PC OCCUPI ED' DataType="java.l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Operati on>
.. </ Test G oup>

....<Test G oup Nane="cl ear _groupedtests">
...... <Desc>2.5 TG grouped tests examine setting in-PhotoCell sensor in
the state of "IN _PC CLEARED'</ Desc>
...... <Test Operati on Nane="goTo_tests">
........ <Desc>2.4 TO exanmine the test car crosses over and passes through
PAL entry poi nt </ Desc>
........ <Test Met hod Nanme="goTo" Target="testCar">
.......... <Desc>2.4 TO the test car crosses over and passes through PAL
entry point</Desc>
.......... <Arg Nane="gopace" Source="gopace-crossover-inPC' DataType="int" />
........ </ Test Met hod>
...... </ Test Oper ati on>
...... <Test Operation Nane="cl ear _tests">
........ <Desc>2.5 TO exami ne setting in-PhotoCell sensor in the state
of "I N_PC_CLEARED'</ Desc>
........ <Test Met hod Nane="cl ear" Target="i nPhotoCel | ">
.......... <Desc>2.5 TO set in-PhotoCell sensor in the state of "IN _PC CLEARED'</Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="i nPhotoCel | ">
.......... <Desc>2.5 ETC. check in-PhotoCell sensor in the resulted correct
state of "IN _PC CLEARED'</ Desc>
.......... <Arg Nane="aObservabl e" Source="i nPhotoCel | "
Dat aType="j ava. util . CObservabl e" />
.......... <Arg Name="aSt ate" Source="|N_PC CLEARED' DataType="java.l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.5 ETC result: checkState nmust return true</Desc>

330 Appendix B Case Study: Car Parking System

............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>

...... </ Test Oper ati on>
....<lTest G oup>

.. </ Test Set >

.. <Test Set Name="TUCl_Test Set _turnTLt oRed" >
....<Desc>Test Set #3: this test set exam nes turning traffic light to the state
of "TL_RED'</ Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>3.1 TG grouped tests exam ne waiting the incom ng event notified
to turn traffic |ight</Desc>
...... <Test Operati on Nane="wait Event _tests">
........ <Desc>3.1 TO exanmine waiting the incom ng event notified to turn
traffic |ight</Desc>
........ <Test Met hod Name="wai t Event" Target="devi ceController">
.......... <Desc>3.1 TO deviceController waits the incom ng event notification
fromin-PhotoCell sensor</Desc>
.......... <Arg Name="abservabl e" Source="i nPhotoCel | "
Dat aType="j ava. util . Cbservable" />
.......... <Arg Name="aEvent" Source="|IN_PC CLEARED' DataType="java.lang. Qbject" />
........ </ Test Met hod>
........ <Test Met hod Name="checkEvent" Target="deviceController">
.......... <Desc>3.1 ETC. deviceControl |l er checks receiving the correct event
notification fromin-PhotoCell sensor</Desc>
.......... <Arg Name="abservabl e" Source="i nPhotoCel | "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aEvent" Source="|IN_PC CLEARED' DataType="java.lang. Qbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.1 ETC result: checkEvent must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. <Test G oup Nanme="set Red_groupedtests">
...... <Desc>3.2 TG grouped tests examne turning traffic light to the state
of "TL_RED'</ Desc>
...... <Test Operati on Nanme="set Red_tests">
........ <Desc>3.2 TO examine turning traffic light to the state of "TL_RED'</Desc>
........ <Test Met hod Name="set Red" Target="trafficLight">
.......... <Desc>3.2 TO turn traffic light to the state of "TL_RED'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkState" Target="trafficLight">
.......... <Desc>3.2 ITC. check traffic light in the resulted correct state
of "TL_RED'</ Desc>
.......... <Arg Name="abservabl e" Source="trafficLight"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aState" Source="TL_RED' DataType="java.lang. Qbject" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.2 I TC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci fi cati on>

Figure B.5 CTS Test Case Specification for the CPS TUC1 Test Scenario

Appendix B Case Study: Car Parking System 331

<Test Speci fication Name="CPS_TUC2_CTS. xnl ">
.. <Desc>CTS test case specification for CPS TUC2: withdraw ticket</Desc>

.. <Test Set Nane="TUC2_Test Set _del i ver Ti cket ">
....<Desc>Test Set #1: this test set exami nes setting ticket dispenser in the state
of "TD_DELI VERED' </ Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>1.1 TG grouped tests exanine waiting the inconing event notified
to deliver ticket</Desc>
...... <Test Operati on Nane="wait Event _tests">
........ <Desc>1.1 TO examine waiting the incom ng event notified to
deliver ticket</Desc>

........ <Test Met hod Name="wai t Event" Tar get="devi ceController">
.......... <Desc>1.1 TGO deviceController waits the incom ng event notification

fromtraffic |ight</Desc>
.......... <Arg Nanme="aObservabl e" Source="trafficLight"

Dat aType="j ava. util . Cbservabl e" />

.......... <Arg Name="aEvent" Source="TL_RED' DataType="java.l ang. Object" />
........ </ Test Met hod>
........ <Test Met hod Nane="checkEvent" Target="devi ceController">
.......... <Desc>1.1 I TC. deviceController checks receiving the correct event

notification fromtraffic |ight</Desc>
.......... <Arg Nanme="aObservabl e" Source="trafficLight"

Dat aType="j ava. util . Cbservabl e" />

.......... <Arg Nane="aEvent" Source="TL_RED' DataType="j ava.l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ITC result: checkEvent nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<l Test G oup>

.. <Test G oup Nanme="del i ver _groupedtests">
...... <Desc>1.2 TG grouped tests exam ne setting ticket dispenser in the state
of "TD_DELI VERED' </ Desc>
...... <Test Operati on Nanme=" deliver_tests">
........ <Desc>1.2 TO exam ne setting ticket dispenser in the state of
"TD_DELI VERED' </ Desc>
........ <Test Met hod Nane="del i ver" Target="ticketD spenser">
.......... <Desc>1.2 TO set ticket dispenser in the state of "TD DELI VERED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nanme="checkSt ate" Target="ti cket Di spenser">
.......... <Desc>1.2 ITC. check ticket dispenser in the resulted correct state
of "TD_DELI VERED' </ Desc>
.......... <Arg Nane="aCbservabl e" Source="ti cket D spenser"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aState" Source="TD_DELI VERED' Dat aType="j ava. | ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ITC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Operati on>
.. </ Test G oup>

.. </ Test Set >

.. <Test Set Nane="TUC2_Test Set _wi t hdr awTi cket ">
..<Desc>Test Set #2: this test set exami nes setting ticket dispenser in the state
of "TD_W THDRAWN' </ Desc>

.. <Test G-oup Nanme="wai t Event _groupedt ests" >
...... <Desc>2.1 TG grouped tests exam ne waiting the incom ng event notified
to withdraw ticket</Desc>
...... <Test Operati on Nanme="wait Event_tests">
........ <Desc>2.1 TO examine waiting the incom ng event notified to
wi t hdraw ticket </ Desc>
........ <Test Met hod Name="wai t Event" Target="testCarController">
.......... <Desc>2.1 TGO testCarController waits the incom ng event notification

332 Appendix B Case Study: Car Parking System

fromticket dispenser</Desc>
.......... <Arg Name="aObservabl e" Source="ticket D spenser”
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aEvent" Source="TD DELI VERED' Dat aType="j ava.l ang. Obj ect" />
........ </ Test Met hod>
........ <Test Met hod Name="checkEvent" Target="testCarController">
.......... <Desc>2.1 ETC. testCarController checks receiving the correct event
notified fromticket dispenser</Desc>
.......... <Arg Nanme="aObservabl e" Source="ticket D spenser"
Dat aType="j ava. util . Cbservable" />
.......... <Arg Name="aEvent" Source="TD DELI VERED' Dat aType="j ava.l ang. Cbject" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.1 ETC result: checkEvent must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

....<Test Group Nane="wi t hdraw_gr oupedt ests">
...... <Desc>2.3 TG grouped tests exam ne setting ticket dispenser in the state
of "TD W THDRAWN' </ Desc>
...... <Test Operati on Nane="goTo_t ests">
........ <Desc>2.2 TO examine the test car crossing PAL ticket point</Desc>
........ <Test Met hod Nanme="goTo" Target="testCar">
.......... <Desc>2.2 TO the test car crosses PAL ticket point controlled by
ticket dispenser</Desc>
.......... <Arg Nanme="gopace" Source="gopace-goto-TD' DataType="int" />
........ </ Test Met hod>
...... </ Test Oper ati on>
...... <Test Operation Name="withdraw_ tests">
........ <Desc>2.3 TO examine setting ticket dispenser in the state of
"TD_W THDRAWN' </ Desc>
........ <Test Met hod Nanme="wi t hdraw' Target="ticket Di spenser"
.......... <Desc>2.3 TO set ticket dispenser in the state of "TD W THDRAWN' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Target="ticket D spenser">
.......... <Desc>2.3 ETC. check ticket dispenser in the resulted correct
state of "TD W THDRAWN' </ Desc>
.......... <Arg Name="aObservabl e" Source="ticket D spenser"”
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nane="aState" Source="TD W THDRAWN' Dat aType="j ava.l ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci f i cat i on>

Figure B.6 CTS Test Case Specification for the CPS TUC2 Test Scenario

Appendix B Case Study: Car Parking System 333

<Test Speci fication Name="CPS_TUC3_CTS. xnl ">
.. <Desc>CTS test case specification for CPS TUC3: car exits PAL</Desc>

.. <Test Set Nane="TUC3_Test Set _r ai seSt oppi ngBar ">
....<Desc>Test Set #1: this test set exami nes raising up stopping bar to
the state of "SB _UP"</Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>1.1 TG grouped tests exanine waiting the inconming event notified
to raise up stopping bar</Desc>
...... <Test Operati on Nane="wait Event _tests">
........ <Desc>1.1 TO examine waiting the incom ng event notified to
rai se up stoppi ng bar</Desc>
........ <Test Met hod Name="wai t Event" Tar get="devi ceController">
.......... <Desc>1.1 TGO deviceController waits the incom ng event notification
fromticket dispenser</Desc>
.......... <Arg Nane="aCbservabl e" Source="ti cket D spenser"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aEvent" Source="TD W THDRAWN' Dat aType="j ava. | ang. Cbj ect" />
........ </ Test Met hod>
........ <Test Met hod Nane="checkEvent" Target="devi ceController">
.......... <Desc>1.1 I TC. deviceController checks receiving the correct event
notification fromticket dispenser</Desc>
.......... <Arg Nanme="aObservabl e" Source="trafficLight"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nane="aEvent" Source="TD W THDRAWN' Dat aType="j ava. | ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ITC result: checkEvent nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G-oup Nanme="rai se_groupedt ests">
...... <Desc>1.2 TG grouped tests exam ne raising up stopping bar to
the state of "SB_UP"</Desc>
...... <Test Operati on Nanme="rai se_tests">
........ <Desc>1.2 TO exam ne raising up stopping bar to the state of "SB UP"</Desc>
........ <Test Met hod Nanme="rai se" Target ="st oppi ngBar" >
.......... <Desc>1.2 TO raise up stopping bar to the state of "SB UP"</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="st oppi ngBar ">
.......... <Desc>1.2 I TC. check stopping bar in the resulted correct state
of "SB_UP"</Desc>
.......... <Arg Nane="aCbservabl e" Source="st oppi ngBar "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aState" Source="SB_UP" DataType="java.l ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ITC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Operati on>
....<lTest G oup>

.. </ Test Set >

.. <Test Set Nane="TUC3_Test Set _car Exi t PAL" >
..<Desc>Test Set #2: this test set exami nes car exiting PAL exit point</Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>2.1 TG grouped tests exanine waiting the inconing event notified
for car to exit PAL exit point</Desc>

...... <Test Operati on Nane="wait Event _tests">

........ <Desc>2.1 TGO exami ne waiting the inconmng event notified for car to
exit PAL exit point</Desc>

........ <Test Met hod Nane="wai t Event" Target="testCarController">

.......... <Desc>2.1 TO testCarController waits the incom ng event notification

from st oppi ng bar </ Desc>
.......... <Arg Nane="aCbservabl e" Source="st oppi ngBar "

334 Appendix B Case Study: Car Parking System

Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Name="aEvent" Source="SB_UP" DataType="java.lang. Cbject" />
........ </ Test Met hod>
<Test Met hod Name="checkEvent" Target="testCarController">
<Desc>2.1 ETC. testCarController checks receiving the correct event
notified from stopping bar</Desc>
<Arg Name="aObservabl e" Source="st oppi ngBar"
Dat aType="j ava. util . Cbservabl e" />
<Arg Nanme="aEvent" Source="SB UP' DataType="java.l ang. Object" />
<Result DataType="j ava. | ang. Bool ean" Save="y">
<Desc>2.1 ETC result: checkEvent must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="occupy_groupedtests">
<Desc>2.3 TG grouped tests exam ne setting out-PhotoCell sensor in

the state of "QOUT_PC_OCCUPI ED' </ Desc>
<Test Operati on Nanme="goTo_tests">
<Desc>2.2 TO examne the test car crossing PAL exit point</Desc>
<Test Met hod Name="goTo" Target="testCar">
<Desc>2.2 TO the test car crosses PAL exit point controlled by
out - Phot oCel | sensor </ Desc>
.......... <Arg Nanme="gopace" Source="gopace-cross-outPC' DataType="int" />
........ </ Test Met hod>
...... </ Test Qper ati on>
<Test Operati on Nanme="occupy_tests">
<Desc>2.3 TO exanmine setting out-PhotoCell sensor in the state of
" QUT_PC_OCCUPI ED' </ Desc>
<Test Met hod Name="occupy" Target ="out Phot oCel | "
<Desc>2.3 TO set out-PhotoCell sensor in the state of
" QUT_PC_OCCUPI ED' </ Desc>
........ </ Test Met hod>
<Test Met hod Name="checkSt at e" Tar get =" out Phot oCel | ">
<Desc>2.3 ETC. check out-PhotoCell sensor in the resulted correct
state of "OUT_PC_OCCUPI ED' </ Desc>
<Arg Nanme="aQbservabl e" Source="out PhotoCel | "
Dat aType="j ava. util . Cbservable" />
<Arg Name="aState" Source="QOUT_PC OCCUPI ED' DataType="j ava.l ang. Obj ect" />
<Resul t DataType="j ava. | ang. Bool ean" Save="y">
<Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="cl ear _groupedt ests">

<Desc>2.5 TG grouped tests exam ne setting out-PhotoCell sensor in
the state of "OUT_PC_CLEARED'</ Desc>

<Test Operati on Nane="goTo_t ests">

<Desc>2.4 TO examine the test car crosses over and passes through
PAL exit point</Desc>

<Test Met hod Name="goTo" Target="testCar">

<Desc>2.4 TO the test car crosses over and passes through PAL
exit point</Desc>

.......... <Arg Nanme="gopace" Source="gopace-crossover-out PC' DataType="int" />

........ </ Test Met hod>

...... </ Test Qper ati on>

<Test Operati on Nane="cl ear_tests">

<Desc>2.5 TO examne setting out-PhotoCell sensor in the state
of "QUT_PC_CLEARED' </ Desc>

<Test Met hod Name="cl ear" Target ="out Phot oCel | ">

<Desc>2.5 TO set out-PhotoCell sensor in the state of
" OUT_PC_CLEARED" </ Desc>

........ </ Test Met hod>

<Test Met hod Name="checkSt at e" Tar get =" out Phot oCel | ">

<Desc>2.5 ETC. check out-PhotoCell sensor in the resulted correct
state of "OUT_PC_CLEARED'</ Desc>

<Arg Nanme="abservabl e" Source="out PhotoCel | "

Dat aType="j ava. util . Cbservabl e" />
<Arg Name="aSt ate" Source="QUT_PC _CLEARED' Dat aType="j ava.l ang. Gbject" />
<Resul t DataType="j ava. | ang. Bool ean" Save="y">

Appendix B Case Study: Car Parking System 335

............ <Desc>2.5 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

.. </ Test Set >

.. <Test Set Nane="TUC3_Test Set _| ower St oppi ngBar " >
..<Desc>Test Set #3: this test set exam nes |owering down stopping bar to
the state of "SB_DOM'</Desc>

....<Test G oup Nane="wait Event _groupedtests">
...... <Desc>3.1 TG grouped tests exam ne waiting the incom ng event notified
to | ower down stopping bar</Desc>
...... <Test Operati on Nanme="wait Event _tests">
........ <Desc>3.1 TGO exami ne waiting the incomng event notified to | ower down
st oppi ng bar </ Desc>
........ <Test Met hod Name="wai t Event" Tar get="devi ceControl |l er">
.......... <Desc>3.1 TO deviceController waits the inconing event notification
from out - Phot oCel | sensor </ Desc>
.......... <Arg Nanme="aObservabl e" Source="out PhotoCel | "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aEvent" Source="OUT_PC CLEARED' DataType="java.lang. Cbject" />
........ </ Test Met hod>
........ <Test Met hod Name="checkEvent" Target="devi ceController">
.......... <Desc>3.1 ETC. deviceController checks receiving the correct event
notification from out-PhotoCell sensor</Desc>
.......... <Arg Nanme="aObservabl e" Source="out PhotoCel | "
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nanme="aEvent" Source="OUT_PC CLEARED' DataType="java.l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.1 ETC resul t: checkEvent nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G oup Nane="I| ower _groupedt ests">
...... <Desc>3.2 TG grouped tests exanine |owering down stopping bar to the state
of "SB_DOWN'</ Desc>
...... <Test Operati on Nane="| ower_tests">
........ <Desc>3.2 TO exam ne | owering down stopping bar to the state of
" SB_DOMN' </ Desc>
........ <Test Met hod Nane="rai se" Target ="st oppi ngBar" >
.......... <Desc>3.2 TGO | ower down stopping bar to the state of "SB _DOM'</Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target ="st oppi ngBar" >
.......... <Desc>3.2 | TC. check stopping bar in the resulted correct state
of "SB_DOWN'</Desc>
.......... <Arg Nanme="aObservabl e" Source="st oppi ngBar"
Dat aType="j ava. util . Cbservabl e" />
.......... <Arg Nane="aState" Source="SB DOM' DataType="java.lang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.2 I TC result: checkState mnmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper at i on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci f i cat i on>

Figure B.7 CTS Test Case Specification for the CPS TUC3 Test Scenario

336 Appendix B Case Study: Car Parking System

B.6 Evaluation Examples for Evaluating Adequate Test
Artefact Coverage and Component Testability
Improvement

In Chapter 9 Section 9.3.2and Section 9.3.3examine and evaluate the effectiveness of the
MBSCT testing capabilities #4 and #5 (for adequest artefact coverage and component test-
ability improvement), specifically by using thesfirevaluation example for the CPS special test-
ing requirement #1 in the CPS case study. This@epresents the other two evaluation exam-
ples #2 and #3 for the two CPS special testingirequents #2 and #3 (iBubsections B.6.and
B.6.2respectively).

B.6.1 Evaluation Example #2: Parking Pay-Service Rule

The second evaluation example is about the CPSaspesting requirement #2 (Parking Pay-
Service Rule), and is related to the testing oftitieet dispenser device in the CPS TUC2 test
scenario. The testing is also CIT-related, bec#luseontrol operations of the ticket dispenser
device are exercised and examined in the CPS Tbi€griation testing context.

The CPS system has a special testing requiremehedho pay, no parkingrule for the
purpose of financially-funded public service mamagat (as described i8ection B.2. For
testing this CPS pay-service rule, the CPS testieses design and component test design
undertaken in the CPS case study (as describ&fkeation B.5above andSection 9.3.2in
Chapter 9 have provided adequate test artefact coverageexercising and examining the
testing-required control operations of the ticképdnser device. The main test operations
comprisel.2 TO del i ver () and2.3 TO wi t hdr aw() in the CPS TUC2 test scenario, and
they thus bridgélest-Gap #1(as described iBection 5.2.4.2n Chapter % Furthermore, the
CPS component test design constructs and applig®@pate test contracts to each of these
testing-required control operations for testing tloket dispenser device, and the main test
contracts includd.2 ITC checkSt at e(ti cket Di spenser, “TD_DELIVERED”) and2.3
ETC checkStat e(ti cket Di spenser, “TD_WITHDRAWN”). This enables testing to
evaluate relevant test results and obtain compdestability improvement, which bridg@est-
Gap #2(as described iBection 5.2.4.2n Chapter % Thus, the CPS component test design can

improve component testability and meet the CPSiabtesting requirement #2.

B.6.2 Evaluation Example #3: Parking Service Security Rud

The third evaluation example is about the CPS apéesting requirement #3 (Parking Service
Security Rule), and is related to the testing efgtopping bar device in the CPS TUC3 test sce-

Appendix B Case Study: Car Parking System 337

nario. Similarly, since the control operations oé stopping bar device are exercised and exam-
ined in the CPS TUC3 integration testing contehe, testing is CIT-related.

The CPS system has a special testing requiremehedpublic security protection and
maintenancérule for the purpose of ensuring public servieewity (as described i8ection
B.2). For testing this CPS security rule, as describegection B.5above andection 9.3.2n
Chapter 9the CPS test sequence design and componenetghdindertaken in the CPS case
study have provided adequate test artefact covdmgexercising and examining the testing-
required control operations of the stopping baraevihe main test operations inclutié TO
rai se() and3.2 TO | ower () in the CPS TUC3 test scenario. Thus, thesentgstquired ar-
tefacts are capable of bridginigest-Gap #1(as described irfsection 5.2.4.2n Chapter .
Moreover, the CPS component test design constamecisapplies adequate test contracts to each
of these testing-required control operations fatibg the stopping bar device. The main test
contracts comprisg.2 ITC checkSt at e(st oppi ngBar, “SB_UP”) and3.2 ITC check-

St at e(st oppi ngBar, “SB_DOWN"). These testing-support artefacts enable testing
evaluate relevant test results and improve compaesitability, and thus bridgéest-Gap #2
(as described isection 5.2.4.2n Chapter % Therefore, the CPS component test design can

improve component testability and fulfil the CP®adpl testing requirement #3.

B.7 Evaluation Examples for Fault Case Scenario Analysi
and Fault Diagnostic Solution Design

In Chapter 9Section 9.3.4xamines and evaluates the effectiveness of the@TB8sting ca-
pabilities #3 and #6 for fault detection, diagnaamsl localisation, by conducting fault case sce-
nario analysis and fault diagnostic solution deggrticularly with the first evaluation example
for the CPS special testing requirement #1 in tR& Case study. For this FDD evaluation, this
section describes the other two evaluation exan#feand #3 for the two CPS special testing

requirements #2 and #3 (Bubsections B.7.andB.7.2respectively).

B.7.1 Evaluation Example #2: Parking Pay-Service Rule

(1) Fault Case Scenario and Analysis

For the major fault/failure scenario of the CPS-pagvice rule: the test car crosses over
the ticket point to move forward towards the PALlt @oint, even though the test driver has not
withdrawn the ticket for paying parking fare. Thesulting failure is a pay-service violation of

the “no pay, no parkingrule against the CPS special testing requireri#ent

(2) Fault-Related Test Scenario

338 Appendix B Case Study: Car Parking System

This fault is related to the CPS TUC?2 test scenawigere the fault diagnosis is CIT-

related.

(3) Fault-Related Control Point
This fault is related to the CPS control point e ticket point in the PAL.

(4) Fault-Related Control Device
This fault is related to the CPS control devicédne-ticket dispenser device, which is op-
erated at the PAL ticket point.

(5) Direct Diagnostic Solution
The fault diagnostic solution with the CPS testiglesieeds to comprise the following

test groups in the CPS TUC2 test scenario:

(@) Test groupl.2 TG contains test operatiagh2 TO del i ver () and its associated (post-
condition) test contract 1.2 ITC checkState(ticketD spenser,
“TD_DELIVERED"), and test stateTD_DELIVERED".

(b) Test grouR.3 TG contains test operatich3 TO wi t hdr aw() and its associated (post-
condition) test contract 2.3 ETC checkState(ticketDi spenser,
“TD_WITHDRAWN?"), and test stateTD_WITHDRAWN".

(6) Stepwise Diagnostic Solution
The fault diagnostic solution with the CPS TUC2 wssign needs to comprise the fol-

lowing equivalent test artefacts as a specialgesip:

(@) Precondition: test contradiC_TD_DELIVERED, which functions equivalently to test
contractl.2 ITC in test groud.2 TG in the CPS TUC2 test scenario.

(b) Test operationTO_TD_WITHDRAWN, which functions equivalently to test operation
2.3 TO in test groui2.3 TG in the CPS TUC2 test scenario.

(c) Postcondition: test contratC_TD_WITHDRAWN, which functions equivalently to test
contract2.3 ETC in test grouf2.3 TG in the CPS TUC2 test scenario.

B.7.2 Evaluation Example #3: Parking Service Security Rud

(1) Fault Case Scenario and Analysis

For the major fault/failure scenario of the CPSusieg rule: the stopping bar remains un-
lowered, even after the current car has finisheduit access to the PAL (which means that the
current car has already finished accessing the &di_point), or even if no car is accessing the
PAL. The resulting failure is a security violatiohthe “public security protection and mainte-

nancé rule against the CPS special testing requirer#8&nt

Appendix B Case Study: Car Parking System 339

(2) Fault-Related Test Scenario
This fault is related to the CPS TUC3 test scenaxioere the fault diagnosis is CIT-

related.

(3) Fault-Related Control Point
This fault is related to the CPS control point e éxit point in the PAL.

(4) Fault-Related Control Device
This fault is related to the CPS control deviche-$topping bar device, which is operated
at the PAL exit point.

(5) Direct Diagnostic Solution
The fault diagnostic solution with the CPS testiglesieeds to include the following test

groups in the CPS TUC3 test scenario:

(a) Test groupl.2 TG contains test operatidn2 TO r ai se() and its associated (postcondi-
tion) test contracii.2 ITC checkSt at e(st oppi ngBar, “SB_UP”), and test state
“SB_UP".

(b) Test groum.2 TG contains test operatid2 TO | ower () and its associated (postcondi-
tion) test contracB.2 ITC checkSt at e(st oppi ngBar, “SB_DOWN”), and test
state ‘SB_ DOWN?".

(6) Stepwise Diagnostic Solution
The fault diagnostic solution with the CPS TUC3 tssign needs to include the follow-

ing equivalent test artefacts as a special testpgro

(a) Precondition: test contra@iC_SB_UP, which functions equivalently to test contrac2
ITC in test groud..2 TG in the CPS TUC3 test scenario.

(b) Test operatiomO_SB_DOWN, whichfunctions equivalently to test operatidr2 TO in
test grouB.2 TG in the CPS TUCS3 test scenario.

(c) Postcondition: test contratC_SB_DOWN, whichfunctions equivalently to test contract
3.2ITC in test grou8.2 TG in the CPS TUCS3 test scenario.

B.8 Evaluation Examples for Evaluating Adequate
Component Fault Coverage and Diagnostic Solutionsha
Results

In Chapter 9Section 9.3.%examines and evaluates the effectiveness of th8GIBtesting ca-

pability #6 for evaluating adequate component faalterage and diagnostic solutions, particu-

340 Appendix B Case Study: Car Parking System

larly with the first evaluation example for the CBfecial testing requirement #1 in the CPS
case study. For the further FDD evaluation heris, skction shows the other two evaluation
examples #2 and #3 for the two CPS special tesgngirements #2 and #3 (Bubsections
B.8.1andB.8.2respectively).

B.8.1 Evaluation Example #2: Parking Pay-Service Rule

This subsection diagnoses the possible directlyiradidectly related faults that cause the major
failure scenario of the CPS pay-service rule agdhes CPS special testing requirement #2. In
the CPS case study, we developed and applied teidnal fault diagnostic solutions (as de-
scribed inSection B.7.landTable 9.3in Chapter ® Each fault diagnostic solution contained
the relevant test groups in the CPS TUC2 test sitefaa the CPS test design (as illustrated in
Figure B.8below).

test group 1.2 test group 2.3
Basicl]] @@= @~ == = -
tes 1.2TO 122TC23TO
artefacts ! 1 ! ! ! [
Test ! 4 I Sequence ! % ! >
| | | |
Specia Fauh:/ ﬂ : . Fault / | ﬂ :
tes 311 [121TC | | 32 23ETC
artefacts —_— = .. —_ —_—— = 1 —_—
I* ”l

CPS service malfunction scenario

Figure B.8 Evaluation Example #2: Parking Pay-Service Rule
(Fault Diagnostic Solutions with the CPS TUC2 Test Design)

The following describes our FDD evaluation for thigjor fault/failure scenario:

(1) Primary Fault 3.ZAULT_TD_WITHDRAWN (as described ifiable 9.3in Chapter 9

To diagnose the directly-related primary fault, it fault diagnostic solution we
developed is that the CPS TUC2 test design usegitesp2.3 TG to exercise test operation
2.3 TO wi t hdr aw(), which is verified by its associated (postcoidi} test contrac2.3 ETC
checkSt at e(“TD_WITHDRAWN")
“TD_WITHDRAWN” in the CPS TUC2 test scenario.

ticket D spenser, and test state

If the test contract returrfalse the fault diagnostic solution has revealed tHWong
fault: the fault is related to the ticket dispendewice operated at the PAL ticket point, where
the ticket dispenser fails in the execution of afien wi t hdr aw(). This causes the ticket
dispenser device NOT to be in the correct contiatlesof “TD_WITHDRAWN" as expected,
showing that the test driver has not withdrawntitleet for paying the parking fare as expected.

This is Primary Fault 3.EAULT_TD_WITHDRAWN as described iffable 9.3 which violates

Appendix B Case Study: Car Parking System 341

the CPS pay-service rulen@ pay, no parking against the CPS special testing requirement #2.
Thus, Primary Fault 3.ZAULT_TD_WITHDRAWN directly results in the major
fault/failure scenario of the CPS pay-service asedescribed isection B.7.1The first fault
diagnostic solution is able to diagnose this diyeetlated primary fault. Following the CBFDD
guidelines (as described earlier $ection 7.5.5 the diagnosed fault can be corrected and

removed in the fault-related operationt hdr aw() of the ticket dispenser device.

(2) Primary Fault 3. FAULT_TD_DELIVERED (as described ifiable 9.3in Chapter 9

To diagnose an indirectly-related primary faulte $econd fault diagnostic solution we
developed employs test groa® TG to exercise test operatidn2 TO del i ver (), which is
verified by its associated (postcondition) test tomst 1.2 ITC checkSt at e(
ti cket Di spenser, “TD_DELIVERED”) and test state TD_DELIVERED” in the CPS
TUC2 test scenario.

If the test contract returralse the fault diagnostic solution has revealed atfalik fault
is related to the ticket dispenser device operatetie PAL ticket point, where the ticket dis-
penser fails in the execution of operatidel i ver (). This causes the ticket dispenser device
NOT to be in the correct control state GfD' DELIVERED” as expected, showing that the
ticket dispenser fails to deliver a ticket to thestt driver. This is Primary Fault 3.1
FAULT _TD_DELIVERED as described imable 9.3 The occurrence of this fault could lead to a
violated precondition, causing the test driver Nf©0Tbe able to withdraw the ticket for paying
the parking fare as expected, i.e. the relatedemating operatiomi t hdr aw() cannot be exe-
cuted as expected or its execution fails.

Therefore, Primary Fault 3BAULT_TD_DELIVERED could indirectly result in the oc-
currence of the major fault/failure scenario of @RS pay-service rule as describedbattion
B.7.1 The second fault diagnostic solution is able iegdose this indirectly-related primary
fault. In the same way, following the CBFDD guidels (as described earlier$ection 7.5.5
the diagnosed fault that is related to the tickspenhser device’s operatiatel i ver () can be

corrected and removed.

(3) Combined faults of the above two individual CP3raniy faults

To diagnose the combined faults related to theetickspenser device’s two operations,
the fault diagnostic solution needs to combine #te®ve two individual fault diagnostic
solutions. Based on the above (1) to (2), the coetwbidiagnostic solution can detect and
diagnose the possible combinations of these twmgrsi CPS faults, and the combined faults
can be corrected and removed in the fault-relateerations: the ticket dispenser device's

operationwi t hdr aw() and/or operatiodel i ver ().

342 Appendix B Case Study: Car Parking System

B.8.2 Evaluation Example #3: Parking Service Security Rud

This subsection diagnoses the possible directlyiadaectly related faults causing the major

failure scenario of the CPS security rule against@PS special testing requirement #3. In the
CPS case study, we developed and applied threeidndi fault diagnostic solutions (as de-

scribed inSection B.7.2andTable 9.3in Chapter). Each fault diagnostic solution included the

relevant test groups in the CPS TUCS3 test sceffarithe CPS test design (as illustratedrig-

ure B.9below).

test group 1.2 test group 2.5 test group 3.2
Basic|l @@= ... o —_ =
tes . 1.2TO : 124TC25T0 . 3.2TO :
artefacts ! il ! [! [[il [
Test | #% ! Sequence ! * U ! >
| | | | | |
Specia Faull:/ ﬂ : : Fauh/ ﬂ : Faut / ﬂ :
tes 411 1.217C | | 5.2 2.5 ETCI 421 3.21TC |
artefaCtS —_— = .. —_ —_— e — = u— —_ = = —_

CPS secuirity failure scenario

Figure B.9 Evaluation Example #3: Parking Service Security Rule
(Fault Diagnostic Solutions with the CPS TUC3 Test Design)

Our FDD evaluation for this major fault/failure segio is described as follows:

(1) Primary Fault 4. ZAULT_SB_DOWN (as described ifiable 9.3in Chapter 9

To diagnose the directly-related primary fault, tirst fault diagnostic solution we
developed is that the CPS TUCS3 test design usegitesp3.2 TG to exercise test operation
3.2 TO | ower (), which is verified by its associated (postcodi} test contracB.2 ITC
checkSt at e(st oppi ngBar, “SB_DOWN") and test stateSB_DOWN” in the CPS TUC3
test scenario.

If the test contract returrfalse the fault diagnostic solution has revealed tHiong
fault: the fault is related to the stopping baridewoperated at the PAL exit point, where this
CPS device fails in the execution of operatiawer (). This causes the stopping bar device
NOT to be in the correct control state &' DOWN” as expected. This is Primary Fault 4.2
FAULT_SB_DOWN as described iffable 9.3 which results in a failure to abide by the CPS
“public security protection and maintenahcale against the CPS special testing requirement
#3.

Hence, Primary Fault 4RPAULT_SB_DOWN directly causes the occurrence of the ma-
jor fault/failure scenario of the CPS security rake described iection B.7.2 The first fault

diagnostic solution is able to diagnose this diyelated primary fault. Following the CBFDD

Appendix B Case Study: Car Parking System 343

guidelines (as described earlier$ection 7.5.5 the diagnosed fault can be corrected and re-

moved in the fault-related operatibower () of the stopping bar device.

(2) Primary Fault 4. FAULT_SB_UP (as described ifiable 9.3in Chapter 9

To diagnose an indirectly-related primary faulte $econd fault diagnostic solution we
developed employs test groli2 TG to exercise test operatidr? TO r ai se(), which is veri-
fied by its associated (postcondition) test contda2 ITC checkSt at e(st oppi ngBar ,
“SB_UP”)) and test stateSB_UP” in the CPS TUC3 test scenario.

If the test contract returralse the fault diagnostic solution has revealed atfale fault
is related to the stopping bar device operateeaPAL exit point, where this CPS device fails
in the execution of operatiamai se(), which causes the stopping bar device NOT tinkibe
correct control state ofSB_UP” as expected. This is Primary Fault #2ULT_SB_UP as de-
scribed inTable 9.3 The occurrence of this fault indicates a violapgdcondition resulting
from the preceding operatiarai se(); this violated preconditiomould cause the related suc-
ceeding operatiohower () in the expected operation execution sequence NJe executed
correctly, i.e. the stopping bar device’s operatiomer () cannot be executed as expected or its
execution fails.

Thus, Primary Fault 4.EAULT_SB_UP could indirectly result in the occurrence of the
major fault/failure scenario of the CPS securitieras described iBection B.7.2The second
fault diagnostic solution is able to diagnose thiectly-related primary fault. In the same way,
following the CBFDD guidelines (as described eaiilieSection 7.5.5 the diagnosed fault that

is related to operationai se() of the stopping bar device can be correctedransbved.

(3) Primary Fault 5.ZAULT_OUT_PC_CLEARED (as described ifiable 9.3in Chapter 9
For diagnosing an indirectly-related primary fatitte third fault diagnostic solution we
developed uses test grogp TG to exercise test operati@b TO cl ear (), which is verified
by its associated (postcondition) test contradg ETC checkSt at e(out Phot oCel |,
“OUT_PC_CLEARED") and test stateOUT_PC_CLEARED” in the CPS TUC3 test scenario.
If the test contract returrdalse the fault diagnostic solution has revealed atfalk fault
is related to the out-PhotoCell senderice operated at the PAL exit point, where thHSQle-
vice fails in the execution of operatiah ear (), causing the out-PhotoCell sensevice NOT
to be in the correct control state @®UT_PC_CLEARED” as expected. This is Primary Fault
4.2 FAULT _OUT_PC_CLEARED as described iffable 9.3 The occurrence of this fault indi-
cates that the current car might have not finisteedccess to the PAL exit point. Consequently,

this fault could lead to a violated preconditiosuking from the preceding operatiohear ();

344 Appendix B Case Study: Car Parking System

this violated precondition could cause the relatectceeding operatidmower () in the expected
operation execution sequence NOT to be executeéatly, i.e. the stopping bar device’s op-
erationl ower () cannot be executed as expected or its execiailsn

Therefore, Primary Fault 4RAULT_OUT_PC_CLEARED could indirectly result in the
major fault/failure scenario of the CPS securitieras described ifection B.7.2 The third
fault diagnostic solution is able to diagnose tihdirectly-related primary fault. In the same
manner, following the CBFDD guidelines (as desatikarlier inSection 7.5.j the diagnosed
fault can be corrected and removed in the fauditeel operatio| ear () of the out-PhotoCell

sensodevice.

(4) Combined faults of the above three individual CEBary faults

To diagnose the combined faults related to thepstgpbar device and the out-PhotoCell
sensor device, the fault diagnostic solution needsombine the above three individual fault
diagnostic solutions. Based on the above (1) tot(i8) combined diagnostic solution can detect
and diagnose the possible combinations of these tBiPS primary faults, and the combined

faults can be corrected and removed in the follgWault-related operations:

(@) the stopping bar device’s operatioower (), and/or
(b) the stopping bar device’s operatioai se(), and/or

(c) the out-PhotoCell sensdevice’s operatioc!| ear ().

Appendix C Case Study: Automated Teller Machin&ystem 345

Appendix C
Case Study: Automated Teller Machine System

The testing of the Automated Teller Machine (ATM¥t&m is the second major case study un-
dertaken in this research, in order to furtherdstk and evaluate the core MBSCT testing capa-
bilities. Chapter %has presented the most important contents of fHd Aase study. This ap-
pendix provides the background and complementdyrnmation about the ATM case study.
The full ATM case study has been described earigt7§.

C.1 Overview of the ATM System

This section presents an overview of the ATM systEhe ATM example is a fairly very well-
known case study in the area of object-orientetivsoé development with the UML modeling
and Unified Process. The ATM system used in oue chsdy is based on a prototype example
described in124 [78], which is also used by many other researchersaattibrs in the litera-
ture. In our ATM case study, we present more cofmgmsive and rigorous descriptions of the
UML-based software component development and teétinthe ATM system1[7§. Our case
study particularly focuses on how the ATM systenerapes to provide the main banking ser-
vices for the core ATM transactions, which are thest important functional operations and

system requirements for the ATM system.

C.1.1 ATM Devices and Operations

The ATM system provides the typical ATM-based bagkservices for bank customers. The
ATM system comprises a number of physical hardveaéces that collaboratively work to-
gether to perform all ATM operations and controts|uding ATM sessions, ATM transactions,
ATM device operations and maintenances, etc.

The following describes the main ATM devices, ralgvoperations and functional re-

quirements:

(1) Card Reader

The bank customer inserts an ATM card into the hotl of the Card Reader device,
which reads in the card information (e.g. card nemiencoded on the ATM card. Inserting a
card activates a new transaction session. The §gmtkm must validate the customer informa-
tion (e.g. card number and PIN entered by the custdrom the ATM Keypad device) before

any subsequent ATM operation can be performedynAaiM transaction.

346 Appendix C Case Study: Automated Teller Machin&ystem

The Card Reader device can eject the inserted Adid t the card slot when the bank
customer finishes or cancels a transaction sesAiter. the ejected card is taken away from the
card slot by the customer, the current transadession finishes. The Card Reader device can
retain the inserted ATM card after the customds fdaree times to enter a correct PIN (personal

identification number).

(2) Customer Console: Keypad and Display

The Customer Console device is the interface betwlee bank customer and the ATM
system, and contains the Keypad device and Disptagén device. The ATM Keypad device
allows the bank customer to enter the PIN (witlia permitted three entry attempts) and the
amount of money to be transacted, or enter otheratipn-required information, in order to
perform appropriate transactions or operations. ATiEl Display/Screen device shows a num-
ber of ATM operation menus/options, and allowslihek customer to select a type of transac-
tion or bank account, or select other relevant Adperations (e.g. cancel or select no more

transactions).

(3) Cash Dispenser
The Cash Dispenser device, where cash notes aegl sthspenses multiple cash notes as
requested by the bank customer to the cash dispeskit for withdrawal by the customer dur-

ing the “Withdraw Cash” transaction.

(4) Money Depositor

The bank customer deposits the money envelope ¢trains cash notes or cheques to
be deposited) into the Money Depositor device dutime “Deposit Money” transaction. The
money envelope is first dispensed to the envel@positing slot; then the bank customer takes
the money envelope, places the cash notes or chagoethe money envelope and inserts the

money envelope into the envelope depositing slodépositing money.

(5) Receipt Printer
The Receipt Printer device prints transaction g@seior the bank customer, who can get

printed receipts from the receipt slot.

The ATM system communicates with the Bank ATM Serwhose main functions are to
conduct relevant ATM-based banking operations, sicchecessary bank account updating op-
erations when an associated ATM transaction (hey“Withdraw Cash” transaction fBection
C.1.2 has finished, necessary bank validation operattonensure that ATM transactions are
performed correctly (isection C.2, etc. As a part of the backend Bank system, trekBATM

Server connects the ATM with the Bank system thhongtwork communication systems. The

Appendix C Case Study: Automated Teller Machin&ystem 347

overall ATM system comprises the ATM (in practieenumber of ATMs) and the Bank ATM
Server (or the “Bank” for abbreviation). For singily in the current scope of this ATM case
study, we do not cover all detailed operations alhow the Bank system and the networked
communication system work, as they simply provige necessary supporting system services

for the ATM system.

C.1.2 Core ATM Transactions

The ATM system provides a set of banking serviogth¢ bank’s customers, and the following

describes its four core ATM transactions:

(1) Inquire Balance
A bank customer can inquire about the availablari@ of any bank account linked to
the ATM card. If the operation of customer validatifails, the customer cannot make an “In-

quire Balance” transaction.

(2) Withdraw Cash

A bank customer can withdraw cash (e.g. multiplé &sh notes) from any bank account
linked to the ATM card. The withdraw-from accourtldnce must be updated after withdraw-
ing. If the customer validation operation fails tbe operation of account balance validation
fails, then the customer cannot make a “WithdrawhC#&ransaction, the Cash Dispenser device

does not dispense any cash and the withdraw-framust must remain unchanged.

(3) Deposit Money

A bank customer can deposit money (cash notesemues) into any bank account linked
to the ATM card. The deposit-to account balancetrbasipdated after depositing. If the opera-
tion of customer validation fails, then the custoennot make a “Deposit Money” transaction,
the un-deposited money must be returned to themestand the deposit-to account must re-

main unchanged.

(4) Transfer Money

A bank customer can transfer money between anybamix accounts linked to the ATM
card. Both the transfer-to account balance andrtresfer-from account balance must be up-
dated after transferring money. If the customeidation operation fails or the operation of
transfer-from account balance validation fails, tustomer cannot make a “Transfer Money”

transaction and the two bank accounts remain umgglthn

The ATM system serves one bank customer at a tiimeofie ATM session serves a sin-

gle customer at a time), and the bank customergubect and perform one or more transactions

348 Appendix C Case Study: Automated Teller Machin&ystem

in an ATM session. A core ATM transaction describesystem integration scenario that con-
trols a number of operations of the related ATMides. Accordingly, these core ATM transac-

tions are the primary basis for integration tesbhthe ATM system.

C.2 Special Testing Requirements

In addition to the above ATM system descriptiorSiection C.1the ATM system must be se-
cure and reliable for providing high quality barkiservices. In particular, we have identified
and examined a set of special quality requiremtsupporting secure and reliable banking
services for the core ATM transactions in the AT§tem. Accordingly, these special quality
requirements become the most important ATM speegting requirements, which are regarded
as the central focus of testing and evaluation tiaklen in the ATM case study.

Among many other requirements, the following spesia set of the eight most important
special requirements (#1 to #8) of the ATM syst&ute that the current scope of the ATM
special testing requirements shown in this appenthinly apply to the first two core ATM
transactions “Inquire Balance” and “Withdraw CasBther ATM special testing requirements

applicable to the last two core ATM transactiores @gscribed in1[79.

(1) Special Testing Requirement #1: Session Start iatibn — verifying session started
correctly
In the ATM system, a new ATM session starts wite tustomer inserting their ATM
card into the Card Reader device. Session staificagion has the following specific require-
ments:
(@) The new ATM session must be started correctly, Wwiscconfirmed by the examination

of Special Testing Requirement #3: Customer Valiat

(2) Special Testing Requirement #2: Session Stop \atiin — verifying session
stopped/finished correctly
In the ATM system, an ATM session stops when thetaraer indicates that they have no
more transactions in the current session, andhfsisvith the customer taking the ejected ATM
card from the Card Reader device. Session stofication has the following specific require-
ments:
(@) The current ATM session must be stopped correctigrwthe customer indicates that
they have no more transactions to perform, whictoigfirmed by the examination that
the ejected ATM card is taken away by the custoimem the Card Reader device cor-

rectly.

(3) Special Testing Requirement #3: Customer Validatioralidating the customer eligibil-

Appendix C Case Study: Automated Teller Machin&ystem 349

ity for accessing the ATM system
In the ATM system, a customer who wants to useAm® must have an authorised

ATM access permission. Because the ATM card reptegke customer who accesses the ATM

system, customer validation requires correct custanformation (e.g. ATM card number and

PIN) with the following specific requirements:

(@) The customer must have a valid ATM card, which mhestcorrectly inserted into and
read in by the Card Reader device. The ATM cardrmétion (e.g. card number encoded
on the inserted card) being read in must be coaedtidentical to the card information
stored in the bank system.

(b) The customer must have a valid PIN, which must dreectly entered into and read in
from the Customer Console (Keypad) device. The @iéfsonal identification number)
being read in must be correct and identical toRH¢ information stored in the bank sys-
tem.

(c) Based on the above (a) and (b), the customer @M card representing the cus-

tomer) must have authorised eligibility to accdssATM.

(4) Special Testing Requirement #4: Transaction Starifi¢ation — verifying transaction
started correctly
In the ATM system, a new ATM transaction startshwitte customer selecting a type of
transaction from the Customer Console (Display/&tralevice. Transaction start verification
has the following specific requirements:
(@) The new ATM transaction must be started corregtlyich is confirmed by the examina-

tion of Special Testing Requirement #6: TransacBelection Validation.

(5) Special Testing Requirement #5: Transaction Stopfivation — verifying transaction
stopped/finished correctly
In the ATM system, an ATM transaction stops whea tlirrent ATM transaction fin-
ishes with the customer taking the printed trarisaceceipt from the receipt slot of the Receipt
Printer device. Transaction stop verification Hasfbllowing specific requirements:
(@) The current ATM transaction must be stopped (amiested) correctly, which is con-
firmed by the examination that the printed transacteceipt is taken away by the cus-

tomer from the receipt slot of the Receipt Primtevice correctly.

(6) Special Testing Requirement #6: Transaction Seledalidation — validating the cus-
tomer-selected transaction access eligibility s ATM system
In the ATM system, a customer (or the ATM card esgnting the customer) may be
permitted to access certain types of ATM transastiavailable in the current ATM. For exam-

ple, the “Deposit Money” transaction may be avddabn some selected ATMs in some se-

350 Appendix C Case Study: Automated Teller Machin&ystem

lected locations. Thus, transaction selection adilich is necessary and has the following spe-

cific requirements:

(@) The type of the customer-selected transaction {&/ghdraw Cash”) must be linked to
the inserted ATM card in the current ATM under asce

(b) The selected ATM transaction type can be accesgeldebcustomer for performing the

selected ATM transaction.

(7) Special Testing Requirement #7: Account Selectiahdétion — validating the customer-
selected account access permission in the ATM syste
In the ATM system, an ATM card (which represents ¢istomer who accesses the ATM

system) is issued to be originally linked to thevigs” account, and may not be permitted to

access the “Cheque” or “Credit Card” account. Tlacgount selection validation is necessary

and has the following specific requirements:

(&) The type of the customer-selected account (e.guifi§a” account) must be valid for the
customer’s account in the bank system.

(b) The type of the customer-selected account (e.qifi§a” account) must be linked to the
inserted ATM card in the current ATM under access.

(c) This selected account in the bank system can bessed by the customer for performing

the customer-selected ATM transaction.

(8) Special Testing Requirement #8: Account Balancaddtibn — validating the available
credit balance of the customer-selected accountcdia be transacted correctly in the
ATM system
In the ATM system, the customer-selected accourstrave a sufficient credit balance

available for correctly performing certain ATM tsactions, such as “Withdraw Cash” or

“Transfer Money”. Account balance validation has fbllowing specific requirements:

(@) The customer-selected account must have previdusin validated correctly as de-
scribed in the above “Special Testing Requirem&ni¥count Selection Validation”.

(b) The available credit balance of the customer-setbetccount must be sufficient, and
must be greater than or equal to the transactioouam(i.e. the customer-requested
amount of money that can be transacted correctiigarcustomer-selected ATM transac-

tion).

C.3 UML-Based Software Component Development

This section describes an overview of UML-basedverie component development for the

ATM system. For this case study, we develop a softveontroller simulation for the ATM sys-

Appendix C Case Study: Automated Teller Machin&ystem 351

tem, which simulates the core ATM transactionsqgrened with a set of ATM devices and op-
erations in the ATM system. The ATM system simwlatis developed with object-oriented
component development, UML modeling and the Unifiedcess, which produces a number of
UML-based software models as the main componentifsgions for UML-based software
component development. The ATM system is composedtinto a Java-based CBS for the
purpose of SCT with the MBSCT methodology and iigsriework. The five main application
components comprise ATM Session, ATM TransactiohMADevices, ATM GUI and Bank.
More details about the ATM system development aréhér described inl[7g.

C.4 Constructing Test Models

The testing of the ATM system starts with buildidlylL-based test models. In the ATM case
study, we apply the four main MBSCT methodologmainponents for test model development:
the model-based integrated SCT process, the sodmsed CIT technique, the TbC technique
and the TCR strategy (as described earligChapter 4o Chapter ». As the illustrative exam-
ples for the purpose of model-based CIT of the A3ydtem, this section describes the devel-
opment of the use case test modeS@ttion C.4.1and the design object test modelSiection
C.4.2 for the ATM case study.

C.4.1 Use Case Test Model Construction

This section describes the use case test model M)&obnstructed for the ATM case study.
Figure C.1lillustrates the test use case diagram (includirgrain test use cases and sub test
use cases), anthble C.1describes an overview of these test use casesATReUCTM em-
ploys a<<include>> relationship between the including test use c®seform Session” and the
included test use case “Perform Transaction”. ThdlASession test use case has segsion-
specificsub test use cases (“Start Session” and “Stopd®ésswhere a specific ATM transac-
tion is exercised and examined in between thesestwiotest use cases. In addition, the ATM
UCTM shows ageneralisatiorrelationship between the general (or abstract)uss case “Per-
form Transaction” and the specialised (or concrigs) use case for each of the four core ATM
transactions, which are identified as twre test use cas¢3UCs). Each TUC igransaction-
specificand can be examined independently for the CIT gaep

The ATM case study presented in this thesis focosethe testing of the ATM Session
and the first two ATM TUCs (i.e. ATM TUC1 and ATMUIC2). As part of the ATM UCTM,
the three system test sequence diagrams are cfeatdad ATM Session test scenario (as illus-
trated inFigure C.2, the ATM TUC1 core test scenario (as illustraiedrigure C.3, and the

ATM TUC2 core test scenario (as illustratedrigure C.4. Each system test sequence diagram

352 Appendix C Case Study: Automated Teller Machin&ystem

shows a sequence of main system test messages/evehthe overall test contracts of the re-
lated ATM test scenario. Note that the later cexst tise case scenarios covertthesaction-
specificcore test scenarios for the ATM TUC1 and TUC2, dwitnot include the two sub test
scenarios (“Start Session” and “Stop Session”) Hrat separately described in thession-
specifictest scenario of the ATM Session test use case.

Note that the Bank (as shown fiigure C.) represents a part of the backend Bank sys-
tem, the Bank ATM Server, which is mainly respofesitor ATM-based banking operations
(e.g. necessary bank validation operations as ithescin Section C.2. It connects the ATM
with the Bank system through network communicagatems to provide the necessary sup-
porting system services for the ATM system. TheralVéTM system comprises the ATM and
the Bank ATM Server (or the “Bank” for abbreviafjoVe also use the “ATM/Bank” system
when dealing with some operations that are relatedspecific ATM device or a specific Bank

operation.

ATM System
Start Stop
Session Session
Perform

Session

«include»

\/

1<

TestCustomer Bank

Perform
Transaction

Inquire Withdraw Transfer
Balance Cash Money
TUC1l TuC2 Tuc4

Figure C.1 Use Case Test Model: Test Use Case Diagram (ATM System)

Appendix C Case Study: Automated Teller Machin&ystem

353

Table C.1 Use Case Test Model: Test Use Cases (ATM System)

Test Use Case

Sub Test
Use Case

Test Use Case Overview

Perform Exercise and examine that a bank customer perf(stag and stop
Session an ATM session for performing ATM transactions.
Start Session | Exercise and examine that the bank customer stargsTM session
to perform one or more ATM transactions.
Stop Session | Exercise and examine that the bank customer shepsurrent ATM
session when indicating no more transaction.
Perform Exercise and examine that the bank customer pesf@start, do and
Transaction stop) a specific ATM transaction within the ATM s&sn.

ATM TUC1:
Inquire Balance

Exercise and examine that the bank customer ingjaieut the
available balance of the any bank account (e.gvitfga” account)
linked to the ATM card.

ATM TUC2: Exercise and examine that the bank customer wittslthe

Withdraw Cash | requested amount of cash notes (e.g. multiple $28sh from any
bank account (e.g. “Savings” account) linked toAfiéM card.

ATM TUCS: Exercise and examine that the bank customer deposihey (cash

Deposit Money

notes or cheques) into any bank account (e.g. f§aviaccount)
linked to the ATM card.

ATM TUC4:
Transfer Money|

Exercise and examine that the bank customer transfeney
between any two bank accounts (e.g. from “Savirgsbunt to
“Cheque” account) linked to the ATM card.

354 Appendix C Case Study: Automated Teller Machin&ystem

% - ATMSystem

: TestCustomer

[
| |
| |
: Test Contract: The ATM has no card inserted inand the last ATM session has finished correctly :

1

The customer inserts the ATM card into the card slo t of the Card Reader device to starta new ATM sess ion |
g

The customer enters the PIN from the Keypad device i

>_..

The ATM validates the customer information (e.g. ca rd number and PIN)

in |
The customer selects and performs a specific ATM i ansaction within the ATM session |

>_L

The ATM on-screen prompts the customer whethertod o another transaction
T
The customer indicates no more transaction !
>_..
The ATM ejected the inserted ATM card
The customer takes the ejected card from the cards lot of the Card Reader device > i
The ATM finishes the current ATM session

in |
Test Contract; The inserted ATM card has been taken and the ATM session has finished correctly :

1

|

[}

Figure C.2 Use Case Test Model: System Test Sequence Diagram
(ATM Session Test Scenario)

Appendix C Case Study: Automated Teller Machin&ystem

355

%

: TestCustomer

: ATMSystem

[}
[}
[}
! Test Contract: The ATM has validated the customer i nformation and the ATM session has started correctl
[}

y

The customer selects the "Inquire Balance" transact ion from the ATM screen

)

>

The ATM validates the selected transaction type ("l nquire Balance")

The customer selects the "Savings" account fromthe ~ ATM screen

The ATM validates the selected account ("Savings"a ccount)

A 4
F-—

[T

The ATM on-screen displays the available balance of the selected bank account ("Savings" account)

[T

The ATM prints the receipt for the "Inquire Balance " transaction

[T

The customer takes the printed receipt from the rec eipt slot of the Receipt Printer device

-1

The ATM finishes the current ATM transaction

[T

Test Contract: The customer has taken the transacti on receipt and the ATM transaction has finished cor

T
rectly !

Figure C.3 Use Case Test Model: System Test Sequence Diagram
(ATM TUCL1 Core Test Scenario)

gqn

356 Appendix C Case Study: Automated Teller Machin&ystem

% : ATMSystem

: TestCustomer

|
|
|
I Test Contract The ATM has validated the customer i nformation and the ATM session has started correctt y
|

>

The customer selects the "Withdraw Cash" transactio n from the ATM screen i
>_|
:|< The ATM validates the selected transaction type ("W ithdraw Cash")
[
The customer selects the "Savings" accountfromthe ~ ATM screen »I
:|< The ATM validates the selected account ("Savings"a ccount)
[
The customer enters the withdrawal amount fromthe ~ Keypad device »I
:|< The ATM validates the selected account balance ("Sa vings" account)
[
:|< The ATM dispenses the requested amount of cash note s
[
The customer takes the dispensed cash notes fromth e cash dispensing slot of the Cash Dispenser device -:r
>_|
:|< The ATM updates the selected account record ("Savin gs" account)
[
:|< The ATM prints the receipt for the "Withdraw Cash” transaction
[
The customer takes the printed receipt from the rec eipt slot of the Receipt Printer device »I
:|< The ATM finishes the current ATM transaction
[
Test Contract; The customer has taken the transacti on receipt and the ATM transaction has finished cor rectly _ir

g

Figure C.4 Use Case Test Model: System Test Sequence Diagram
(ATM TUC2 Core Test Scenario)

C.4.2 Design Object Test Model Construction

This section presents the design object test m@ieTM) constructed in the ATM case study.
The DOTM is mainly described with design test seqeediagrams to illustrate design test se-
guences, design test messages/operations andaisdotEst contracts that jointly realise the
ATM test use cases described in the ATM UCTM, aswshinFigure C.5to Figure C.7

Appendix C Case Study: Automated Teller Machin&ystem 357
% : ATMController | |: Session | |: Transaction |[]: Customer || : CardReader [|: CustomerConsole : Bank
. TestCustomer
' T T T T T
|]]]]]
! performSession() ' ' ' '
|]]]]
] 1 1 1
] L] I 0.1 ETC: checkState(cardReader, "CARD_TAKEN")

1
1 TS: startSession()

Figure C.5 Design Object Test Model:

>_|_

1.1 TO: insertCard()

[}
1.1 ETC: checkState(

]
cardReader, "CARD_INSERTED")

[}
1.2 TO: readCard()

>

gn

]]
1.2 ETC: checkState(cardReader, "CARD_READ")

]
1.3 TO: enterPIN()

gn

[}
1 1
1.3 ETC: checkState(customerConsole, "PIN_ENTERED")

1
1.4 TO: readPIN()

&

1
1.4 ETC: checkState

(customerConsole, "PIN_READ") !

>

1 1
1.5 TO: validateCustomer(insertedCard,

1 1
1.5 ETC: checkState(bank, "CUSTOME

enteredPIN)

[}
1
R_VALIDATED")

L

1
4 TS: stopSession()
L

2 TS: perfo
[}

1 1
3 TS: continueAnotherTransaction()

1 1
rmTransaction()
!

4.1 TO: ejectCard()

1
3.1 TO: promptAnotherTransaction()

[} [}
3.2 TO: indicateNoMore Transaction()

U

[}
4.1 ETC: checkState(car

dReader, "CAR

gn

4.2 TO: taléeCard()

gn

1 1 1
4.2 ETC: checkState(cardReader, "CARD_TAKEN")

(ATM Session Test Scenario)

[}
D_EJECTED")

Design Test Sequence Diagram

358 Appendix C Case Study: Automated Teller Machin&ystem

% : ATMController | |: Session | |: Transaction ||: Balancelnquiry ||: Customer | |: CustomerConsole [|: ReceiptPrinter : Bank

: TestClustomer
! |
i inquireBalance()

>

T T

| |

))

| |

i i
startSession() ! !
_L 1 1

T

1

)

1

)

|
—> -
0.1 ETC: checkState(bank, "CUSTOMER_VALIDATED")

1

1 1

1 TS: startTransaction() H
—»_L ! . 1
1.1 TO: selectTranasctionType()
) 1

: gn

1 []
1 1 1

1.1 ETC: checkState(customerConsole, "TRANSACTION_ TYPE_SELECTED")
1 1 1
i i [:]

1.2 TO: readTransactionType() !

: 1
selectedTranasctionType:=“Inquire Balance”

1 1 1 1

1.2 ETC: checkState(customerConsole, "TRANSACTION_ TYPE_READ")
1 1 1
i i [:] i

1 1 1 1
1.3 TO: validateTransaction(insertedCard, enteredP IN, selectedTransactionType)

1 1 1
1 1 1
1.3 ETC: checkState(bank, "TRANSACTION_VALIDATED")

1 1
2 TS: doTransaction("Inquire Balance")
L 1

1
2.1 TO: selectAccountType()

4’[:]

1
2.1 ETC: checkState(customerConsole,
"ACCOUNT_TYPE_SELECTED")

1

1
2.2 TO: readAccountType() !

1
selectedAccountType

:="Savings"
< --------- [P

1 1
2.2 ETC: checkState(customerConsole, "ACCOUNT_TYPE _READ")
1 1

[] []

1 1
2.3 TO: validateAccount(insertedCard,
enteredPIN, selectedAccountType)

1
|
|
'
|
|
|
i
|

D

1 1
2.3 ETC: checkState(bank, "ACCOUNT_VALIDATED"

1
1
2.4 TO: getAccountBalance()

inquiredAccountBalance

1
1
i
SGREEEEEL L Fommmommmoooe- Foommmmmmmoooe- EEEEEEE LR
1 1
2.5 TO: displayAccountBalance()

g

-
1

3 TS: stopTransaction(“Inquire Balance")

—>_' !

3.1 TO: printReceipt("Inquire Balance")
1 1

g i i

3.1 ETC: checkState(receiptPrinter, "RECEIPT_PRINT ED")

]

>

T
1

3.2 TO: takeReceipt()
—
' '

3.2 ETC: checkState(receiptPrinter, "RECEIPT_TAKEN ")

g

= ne L T L
1 1 1 1
1 1 1 1

Figure C.6 Design Object Test Model: Design Test Sequence Diagram
(ATM TUCL1 Core Test Scenario)

Appendix C Case Study: Automated Teller Machin&ystem

359

x

: TestCustomer

: ATMController

: Session

: Transaction ||: CashWithdrawal ||: Customer | |: CustomerConsole | |: CashDispenser

: ReceiptPrinter

: Bank

T
withdraw Cash()

T
i
P startSession()

.
|
|

0.1 ETC: checkState(bank, "CUSTOMER_VALIDATED")

T
1 !
1 TS: startTransaction() ! !

.
|
|

1.1 TO: selectTranasctionType()
| - !
| g u|

1)
1.2 TO: readTransactionType() | i

i i
selectedTranasctionType:="Withdraw Cash"

1.2 ETC: chec!(State(customer?onsole, "TRANSA;CTION_ TYPE_RE/§D")
| -
T T 1
1 1 'U 1

1 1
1.1 ETC: checkState(customerConsole, "TRANSACTION_ TYPE_SELECTED")
H H » i

1 1 1 1
1.3 TO: validateTransaction(insertedCard, enteredP IN, selectedTransactionType)

o P g | ——

o 1
3 TS: stopTransaction("Withdraw Cash")
1 1

3.1 TO: printReceipt("Withdraw Cash")
1 1

y

[
3.1 ETC: checkState(receiptPrinter, "RECEIPT_PRINT ED")

1
3.2 TO: takeReceipt()
1

4’D

1

3.2 ETC: checkState(receiptPrinter, "RECEIPT_TAKEN ")
T T

1

|

= = | |
| | | |
| | | |

J 3

Figure C.7 Design Object Test Model: Design Test Sequence Diagram

(ATM TUC2 Core Test Scenario)

| -
1 1 1)
1.3 ETC: checkState(bank, "TRANSACTION_VALIDATED") 1 -]
1 1))
2 TS: doTransaction("Withdraw Cash") 1 1 I
1 1)))
2.1 TO: selectAccountType() | | i
: : : :
7 i i i
2.1 ETC: checkState(customerConsole, "ACCOUNT_TYPE _SELECTED") H
1 | .l)))
1 »]]]
2.27T0: readAlccountTypeo ! E E E
1)))
selectedAccountType H H 1
="Savings" 1 1 1
+ 1 1)
))))
: . : : :
2.2 ETC: checkState(customerConsole, "ACCOUNT_TYPE _READ") | H
| -
| | | |
2.3 TO: validateAccount(insertedCard, enteredPIN, selectedAccountType) - 1
1 1 1 1
2.3 ETC: checksState(bank, "ACCOUNT_VALIDATED") H g !
2.4T0: enterivloneyAmount() E E E !
0 | | | |
2.4 ETC: checkState(custonLerCt)nsoIe, "MONEY_AMOUNT _ENTERED") |
1 1] 1 !
) e)))
25T0: readl\{loneyAmountO ! E E E
B i i i
enteredMoneyAmount 1 1 |
i | | |
: . : | |
2.5 ETC: checkState(customerConsole, "MONEY_AMOUNT _READ")} H
! - i i i
2.6 TO: validateAccountBalance(selectedAccountType , enteredMoneyAmount) |
T T T T
1 1 1 1
2.6 ETC: checkState(bank, "ACCOUNT_BALANCE_VALIDAT ED") | -
T T T T
N 1 1 1)
2.7 TO: dlspe;nseCash() E - E E
: ! . | |
2.7 ETC: checkState(cashDispenser, "CASH_DISPENDSE D") H H
'|]]
2.8 TO: takeCash() E ! E E
| | | |
2.8 ETC: checkState(cashDispenser, "CASH_TAKEN") H H
|-
! ! i i
2.9 TO: updateAccount(selectedAccountType, withdra ~ walMoneyAmount) |
1 1 1 1 L
1 1 1)
2.9 ETC: checksState(bank, "ACCOUNT_UPDATED") H |
1 1 | -t
|
)
)
)
)
)
1

360 Appendix C Case Study: Automated Teller Machin&ystem

C.5 Designing and Generating Component Tests

For component test design and generation underiakifye ATM case study, we apply the five
main MBSCT methodological components: the integt&@€ET process, the scenario-based CIT
technique, the TbC technique, the TCR strategytaedCTM technique. This allows the ATM
component test development to be model-based, gsdased, scenario-based, contract-based,
FDD-based and mapping-based (as described earl@napter 4to Chapter 8 Based on test
models described iSection C.4this section describes component test derivatratertaken in

the ATM case study for the CIT purpose, and focusedest sequence design @ection
C.5.1), component test design (Bection C.5.§. and component test generation 8action
C.5.3.

C.5.1 Test Sequence Design

For the CIT purpose, test sequence design is ctediiic the ATM case study to organise and
structure an array of logically-ordered relevast trtefacts (including test operations, test con-
tracts and test elements) into test sequenceh@ATM test scenarios captured with UML-

based test models.

(1) ATM Session: test sequence design (as illustrat&igure C.§
Based on the corresponding four sub test scen@uiaish are illustrated ifrigure C.3,

the test sequence designed for the ATM Sessionstestario contains four (4) sub test se-

guences, with a total of eight (8) basic test gsoupach basic test group usually contains at
least a pair of a test operation and its assoctattdtontract. Sub test sequence #1 (i.e. TS: star
Session) is a major sub test sequence and comfitied$) basic test groups. Sub test sequence
#3 (i.e. TS: continue another transaction) comprizge test group. Sub test sequence #4 (i.e.
TS: stop Session) is a major sub test sequence@ngrises two (2) basic test groups. Note

that sub test sequence #2 (i.e. TS: perform Traiosads further expanded and realised with

the relevant ATM TUC test sequence (e.g. as illusth inFigure C.9andFigure C.1(below).

(2) ATM TUCL: test sequence design (as illustrateBigure C.9

Based on the corresponding three sub test scer(ariish are illustrated ifrigure C.9,
the test sequence designed for the ATM TUCL1 teshaio contains three (3) sub test se-
guences, with a total of nine (9) basic test gro@ub test sequence #1 (i.e. TS: start Transac-
tion) comprises three (3) basic test groups. Ssissequence #2 (i.e. TS: do current Transaction
(“Inquire Balance”)) comprises four (4) basic tgsbups. Sub test sequence #3 (i.e. TS: stop

current Transaction (“Inquire Balance”)) comprisee (2) basic test groups.

Appendix C Case Study: Automated Teller Machin&ystem 361

(3) ATM TUC2: test sequence design (as illustrateBigure C.10

Based on the corresponding three sub test scer(aridsh are illustrated ifrigure C.7,
the test sequence designed for the ATM TUC2 teshaio contains three (3) sub test se-
quences with a total of fourteen (14) basic tesugs. Sub test sequence #1 (i.e. TS: start
Transaction) comprises three (3) basic test grdapsllustrated inFigure C.10(a)). Sub test
sequence #3 (i.e. TS: stop current Transactiont{itivaw Cash”)) comprises two (2) basic test
groups (as illustrated also ffigure C.10(a)). Sub test sequence #2 (i.e. TS: do curresmsac-
tion (“Withdraw Cash”)), which is further expandedd illustrated inFigure C.10(b), com-
prises nine (9) basic test groups.

362 Appendix C Case Study: Automated Teller Machin&ystem
. 1.1TG 1.2TG 1.3TG 147G 15TG 2TS 3.2TG 417G 427G
Basml o == | === 1 [r——— 1 o V| | o=
arteffa\ecsts 1.1TO | | 1.2TO | | 1.3TO | | 1.4TO | | 15TO | | | i?"l TC3.2TO | | 41TO | 42TO |
L e e
Specis T L 1 L A B (N A T
tes ! 1.1ETCI! 12ETC! 13ETCI! 14ETC! 15ETC | | Ll I{! 41ETO ! 4.2ETd
Contracts —_— e — e — e — = e e — s — e — = e e — = ; —_— e — = —_— e e —— e — —_—_ e i = e — =
sub test sub test sub test sub test
sequence TS #1 sequence sequence sequence TS #4
TS#2 TS#3
Figure C.8 Structured Test Sequence Design (ATM Session Test Scenario)
_ 117G 127G 137G 217G 227G 23TG 247G 3.1TG 3.2TG
Bas|(l o == | 1 = — = | P | | o |\ ==
artef;ecsts 1.1TO | | 1.2TO | | 1.3TO | | 2170 | | 22T0O | | 23TO | i2.4 TC25TO | | 3.1TO i 3.2TO |
T e T
Specia i) ! T ! T ! ! T I T ! T II b T II T !
tes ! 1.1ETC!! 12ETC ! 13ETC || 21ETC! 22ETC! 23ETC | ! 31ETO ! 3.2 ETQ
COﬂtraCtS —_— e — e — e — = e e — s — ; —_— e = e = e i = ; —_— e e —— e — : —_— e — = D e i =) ;

sub test sequence TS #1

sub test sequence TS #2

Figure C.9 Structured Test Sequence Design (ATM TUC1 Core Test Scenario)

sub test sequence TS #3

Appendix C Case Study: Automated Teller Machin&ystem 363
117G 127G 13TG 2TS 3.1TG 3.2TG

Basic || — —. . —..—.. R o N I TR | !

tes | :11TO ©:1.2TO 1.3T0O : : 3170 £ :13.2TO :

artefacts | Il | | il I I | I Il I | il | ! a !

! ' Test I P | "sequence ' ! >

Specia ! T ! T ! T ! ! T ! ! T ! ! T !

tes ||| 1.1ETC!! 1.2 ETC | 1.3 ETC ! ! ! 3.1ETQ | 3.2ETA

Contracts —_— e — = e — e — = e = = N —_— e — e — —_— e — = = L e — e — =Y ;

sub test sequence TS #1 sub test sub test sequence TS #3

sequence
TS#2
(a) subtestsequence TS #1, TS #3
217G 227G 23TG 247G 25TG 26TG 277G 28TG 29TG

Basi; R | R e it | Frmm— e | !
arteff’:lecsts | 2170 | | 22T0 i 23TO | | 24T0O | i 25TO i 26TO | | 27T0O | | 28TO | | 29T0 |
: L o : : Do ﬂ Lo ﬂ Lo ﬂ i ﬂ :
! < I = I ﬂTest M < M = M " TSequence ! m !
Specia! ﬂ” ﬂll ﬂll ﬂll ﬂll II ﬂll ﬂll ﬂl
tes | ! 2.1ETC!! 22ETC ! 23ETCI | 24ETC ! 25ETC ! 26ETC | 27ETC ! 2.8ETQ ! 2.9 ETd
contracts = e — = e = = e = L i = Do — e — = e — = D e = L — e — e — :

sub test sequence TS #2

(b) sub test sequence TS #2

Figure C.10 Structured Test Sequence Design (ATM TUC2 Core Test Scenario)

364 Appendix C Case Study: Automated Teller Machin&ystem

C.5.2 Component Test Design

In the ATM case study, component test design islgoted to incorporate relevant test artefacts
(including test sequences, test groups, test amstend test operations with specified signa-
tures, and test states) to design component tesite icorresponding integration test scenario for

the CIT purpose.

(1) ATM Session: test design (as showable C.3

Table C.2shows the component test design for the ATM Segsst scenario, which il-
lustrates relevant test artefacts and relationstiipshe CIT purpose. In this test design, there
are a total of four (4) sub test scenarios/sequeemight (8) test groups, nine (9) test operations,
seven (7) test contracts, and seven (7) test stdtge that test contra@fTC checkSt at e(
car dReader, “CARD_TAKEN”) and associated test stateARD_TAKEN” are the special
test artefacts that are used as the overall pré&gamslpostconditions of the ATM Session test

scenario.

(2) ATM TUCLI: test design (as shownTmable C.3

Table C.3shows the component test design for the ATM TUQE d¢est scenario, which
illustrates relevant test artefacts and relatigmsiior the CIT purpose. In this test design, there
are a total of three (3) sub test scenarios/segsenme (9) test groups, ten (10) test operations,
eight (8) test contracts, and eight (8) test stdtede that an initial test contra@tl ETC and
associated test stat€USTOMER_VALIDATED” are the special test artefacts that are used as
the overall preconditions of the ATM TUC1 core tesg¢nario.

(3) ATM TUC2: test design (as shownTmable C.4

Table C.4shows the component test design for the ATM TUG@2 d¢est scenario, which
illustrates relevant test artefacts and relatigmsiior the CIT purpose. In this test design, there
are a total of three (3) sub test scenarios/se@semaurteen (14) test groups, fourteen (14) test
operations, fourteen (14) test contracts, and éauri{14) test states. Note that an initial test con
tract 0.1 ETC and associated test stattUSTOMER_VALIDATED” are the special test arte-

facts that are used as the overall preconditiotlseoATM TUC2 core test scenario.

Appendix C Case Study: Automated Teller Machin&ystem 365

Table C.2 Component Test Design (ATM Session Test Scenario):
test sequences, test groups, test operations, test contracts and test states

Test Test Test Operation Test Contract Test State
Sequence Group
perform per f or nSessi on()
Session
0.1 ETC: checkSt at e(| CARD_TAKEN
car dReader,
“CARD_TAKEN")
Sub Test 1TS: start Session()
Sequencél -
1.1 1.1 TO: insertCard() 1.1 ETC: checkSt at e(|CARD
start TG car dReader , _INSERTED
Session “CARD_INSERTED")
1.2 1.2 TO: readCard() 1.2 ETC: checkSt at e(| CARD_READ
TG car dReader
“CARD_READ")
1.3 1.3TO: enterPl N) 1.3ETC: checkSt at e(|PIN_ENTERED
TG cust oner Consol e,
“PIN_ENTERED”)
1.4 1.4TO: readPl N) 1.4 ETC: checksSt at e(|PIN_READ
TG cust oner Consol e,
“PIN_READ")
15 1.5TO: vali dateCustoner (1.5ETC: checkSt at e(|CUSTOMER
TG | insertedCard,enteredPl N) bank, “CUSTOMER _VALIDATED
_VALIDATED”)
Sub Test 2TS: perfornmlranasction()
Sequencé?2
perform
Transaction
Sub Test 3TS:
Sequenc#3 cont i nueAnot her Tr ansact i on()
continue 3.2 3.1TO:
another TG pr onpt Anot her Tr ansact i on()
transaction 3.2 7O
i ndi cat eNoMbr eTr ansact i on()
Sub Test 4TS: stopSession()
Sequencé4 -
4.1 4.1TO: ejectCard() 4.1 ETC: checkSt at e(|CARD
stop TG car dReader , _EJECTED
current “CARD_EJECTED”)
Session] .
4.2 4.2 TO: takeCard() 4.2 ETC: checkSt at e(| CARD_TAKEN
TG car dReader ,
“CARD_TAKEN")

366 Appendix C Case Study: Automated Teller Machin&ystem

Table C.3 Component Test Design (ATM TUCL1 Core Test Scenario):
test sequences, test groups, test operations, test contracts and test states

Test Test Test Operation Test Contract Test State
Sequence Group
inquire i nqui reBal ance()
balance
0.1 ETC: checkSt at e(| CUSTOMER
bank, “CUSTOMER _VALIDATED
_VALIDATED”)
Sub Test 1TS: startTransaction()
Sequencél
1.1 1.1 TO: 1.1 ETC: checkSt at e(| TRANSACTION
start TG | sel ect Tranascti onType() cust oner Consol e, _TYPE
Transaction “TRANSACTION _SELECTED
_TYPE_SELECTED")
1.2 1.2TO: 1.2 ETC: checkSt at e(| TRANSACTION
TG readTransacti onType() cust omer Consol e, _TYPE_READ
“TRANSACTION
_TYPE_READ")
1.3 1.3TO: validateTransaction([1.3ETC: checkState(| TRANSACTION
TG i nsertedCard, ent eredPI N, bank, “TRANSACTION |_VALIDATED
sel ect edTransacti onType) _VALIDATED”)
Sub Test 2TS: doTransacti on(
Sequencé2 “I nqui re Bal ance”)
docurrent | 2.1 | 21TO: sel ect Account Type() 2.1 ETC: checksSt at e(|ACCOUNT
Transaction| TG cust oner Consol e, _TYPE
“I' nquire “ACCOUNT _SELECTED
Bal ance”) _TYPE_SELECTED”)
2.2 2.2TO: readAccount Type() 2.2 ETC: checkStat e(|ACCOUNT
TG cust oner Consol e, _TYPE
“ACCOUNT _READ
_TYPE_READ")
2.3 2.3TO: validateAccount (2.3 ETC: checkStat e(|ACCOUNT
TG i nsertedCard,enteredPl N, bank, “ACCOUNT _VALIDATED
sel ect edAccount Type) _VALIDATED”)
2.4 2.4TO: get Account Bal ance()
TG
25TO:
di spl ayAccount Bal ance()
Sub Test 3TS: stopTransaction(
Sequencé#3 “I nqui re Bal ance”)
stop 3.1 3.1 TO: printReceipt(3.1 ETC: checkSt at e(|RECEIPT
current TG | “I nquire Bal ance”) recei pt Printer, _PRINTED
Transaction “RECEIPT_PRINTED")
(Inquire 55 [3570: takeRecei pt () 3.2 ETC: checkSt at e(|RECEIPT

Bal ance”) | 1g recei ptPrinter, _TAKEN

“RECEIPT_TAKEN")

Appendix C Case Study: Automated Teller Machin&ystem

367

Test

Table C.4 Component Test Design (ATM TUC2 Core Test Scenario):
test sequences, test groups, test operations, test contracts and test states

Test

Test Operation

Test Contract

Test State

Sequence Group

withdraw wi t hdr awCash()
cash
0.1 ETC: checkSt at e(| CUSTOMER
bank, “CUSTOMER _VALIDATED
_VALIDATED")
Sub Test 1TS: startTransacti on()
Sequencé?2
11 1.1TO: 1.1 ETC: checkSt at e(| TRANSACTION
start TG sel ect Tranascti onType() (cust oner Consol e, _TYPE
Transaction “TRANSACTION _SELECTED
_TYPE_SELECTED")
1.2 1.2TO: readTransacti onType() |1.2 ETC: checkSt at e(| TRANSACTION
TG cust oner Consol e, _TYPE_READ
“TRANSACTION
_TYPE_READ")
13 1.3TO: validateTransacti on(|1.3ETC: checkState(| TRANSACTION
TG i nsert edCard, ent er edPI N, bank, “TRANSACTION |_VALIDATED
sel ect edTransacti onType) _VALIDATED")
Sub Test 2TS: doTransacti on(
Sequenceé2 “W t hdraw Cash”)
do current 21 2.1 TO: sel ect Account Type() 2.1 ETC: checkSt at e(|[ACCOUNT
Transaction | TG cust oner Consol e, _TYPE
(“W t hdr aw “ACCOUNT _SELECTED
Cash”) _TYPE_SELECTED")
2.2 2.2 TO: readAccount Type() 2.2 ETC: checkState(|ACCOUNT
TG cust oner Consol e, _TYPE
“ACCOUNT _READ
_TYPE_READ")
2.3 2.3TO: validateAccount (2.3 ETC: checkState(|ACCOUNT
TG | insertedCard,enteredPlN, bank, “ACCOUNT _VALIDATED
sel ect edAccount Type) _VALIDATED")
2.4 2.4TO: enterMneyAnount () 2.4 ETC: checkSt ate(| MONEY
TG cust omer Consol e, _AMOUNT
“MONEY_AMOUNT _ENTERED
_ENTERED")
2.5 25TO: readMoneyAnount () 25ETC: checkSt at e(| MONEY
TG cust oner Consol e, _AMOUNT
“MONEY_AMOUNT _READ
_READ")
2.6 26 TO: 2.6 ETC: checkSt at e(|ACCOUNT
TG | val i dat eAccount Bal ance(bank, “ACCOUNT _ _BALANCE
sel ect edAccount Type, BALANCE_VALIDATED” | _VALIDATED
ent er edvbneyAnpunt))
27 2.7 TO: dispenseCash() 2.7 ETC: checkStat e(|[CASH
TG cashDi spenser, _DISPENDSED
“CASH_DISPENDSED")
2.8 2.8 TO: takeCash() 2.8 ETC: checkSt at e(| CASH_TAKEN
TG cashDi spenser,

“CASH_TAKEN")

368 Appendix C Case Study: Automated Teller Machin&ystem

29 2.9 TO: updat eAccount (29 ETC: checkStat e(|ACCOUNT
TG sel ect edAccount Type, bank, “ACCOUNT _UPDATED
wi t hdr awal MoneyAnount) _UPDATED")
Sub Test 3TS: stopTransacti on(
Sequencé3 “Wt hdraw Cash”)
stop current | 3-1 3.1 TO: printReceipt(3.1 ETC: checkSt at e(|RECEIPT
Transaction | TG | “Wthdraw Cash”) recei ptPrinter, _PRINTED
(“W t hdr aw “RECEIPT_PRINTED")
Cash") 32 | 3.27TO: takeReceipt () 32 ETC: checkSt at e(|RECEIPT
TG recei ptPrinter, _TAKEN
“RECEIPT_TAKEN")

C.5.3 Component Test Generation

This section presents the target CTS test casefispgons that are derived in the ATM case

study for the three selected ATM test scenaridslésns:

(1) The CTS test case specification for the ATM SesJiest Design in the ATM Session
test scenario — “Start Session” and “Stop Sesg@s’shown irFigure C.1)

Note that there are no specific test contractsceest®al with test operations in Test Set #3
(as shown irFigure C.1). These tests are related to the verificationhef ATM’s on-screen
prompts/instructions and/or the customer’s selesti@sponses to those prompts/instructions.

Testing this aspect is not the focus in the cursenpe of the ATM case study.

<Test SpeC| fi cat| on Name="ATM Sessi on_CTS. xm ">
.. <Desc>CTS test case specification for ATM Session: start/stop session</Desc>

.. <Test Set Nane="Sessi on_Test Set _start Sessi on">
....<Desc>Test Set #1: this test set exami nes Custoner starts a new ATM sessi on</ Desc>

.. <Test G oup Name="insert Card_groupedt ests">
<Desc>1.1 TG grouped tests exam ne Custoner inserts the ATMcard into
Card Reader </ Desc>
...... <Test Operati on Name="insertCard_tests">
<Desc>1.1 TO examne setting Card Reader in the state of
" CARD_| NSERTED' </ Desc>
........ <Test Met hod Name="insert Card" Target="custoner">
.......... <Desc>1.1 TO set Card Reader in the state of "CARD_| NSERTED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
<Desc>1.1 ETC. check Card Reader in the resulted correct state
of " CARD_| NSERTED" </ Desc>
.......... <Arg Name="aDevi ce" Source="cardReader" DataType="java.lang. Cbject" />
.......... <Arg Name="aSt ate" Source="CARD | NSERTED"' Dat aType="j ava.lang. Qbject" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

Appendix C Case Study: Automated Teller Machin&ystem 369

.. <Test G oup Name="readCard_groupedtests">
...... <Desc>1.2 TG grouped tests exam ne ATMreads the inserted card
from Card Reader </ Desc>
...... <Test Operati on Nanme="readCard_tests">
........ <Desc>1.2 TO exam ne setting Card Reader in the state of "CARD READ'</Desc>
........ <Test Met hod Nane="readCard" Tar get ="car dReader" >
.......... <Desc>1.2 TO set Card Reader in the state of "CARD READ'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Target ="sessi on">
.......... <Desc>1.2 ETC. check Card Reader in the resulted correct state
of "CARD _READ'</ Desc>
.......... <Arg Nane="aDevi ce" Source="cardReader" DataType="java.lang. Object" />
.......... <Arg Nane="aState" Source="CARD READ' DataType="java.lang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G oup Name="ent er Pl N_groupedt ests">
...... <Desc>1.3 TG grouped tests exam ne Custonmer enters the PIN from
Cust oner Consol e (Keypad) </ Desc>
...... <Test Operati on Nanme="enterP| N tests">
........ <Desc>1.3 TO exam ne setting Customer Console (Keypad) in the state
of "PI N_ENTERED' </ Desc>
........ <Test Met hod Nane="enter PIN' Target="cust oner">
.......... <Desc>1.3 TO set Custoner Console (Keypad) in the state
of "PI N_ENTERED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>1.3 ETC. check Custoner Console (Keypad) in the resulted
correct state of "PIN_ENTERED'</Desc>
.......... <Arg Nanme="aDevi ce" Source="custonmer Consol e" DataType="j ava. | ang. Obj ect" />
.......... <Arg Nanme="aSt ate" Source="Pl N ENTERED' DataType="j ava.l ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.3 ETC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="readPl N_groupedtests">
...... <Desc>1.4 TG grouped tests exam ne ATMreads the entered PIN
from Cust omer Consol e (Keypad) </ Desc>
...... <Test Operati on Nane="readPl N_tests">
........ <Desc>1.4 TO examine setting Custonmer Console (Keypad) in the state
of "PI N_READ'</ Desc>
........ <Test Met hod Nanme="readPlI N' Tar get =" cust ormer Consol e" >
.......... <Desc>1.4 TQO set Custoner Console (Keypad) in the state
of "PI N_READ'</ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Target ="sessi on">
.......... <Desc>1.4 ETC. check Customer Consol e (Keypad) in the resulted
correct state of "PlIN_READ'</Desc>
.......... <Arg Nane="aDevi ce" Source="custoner Consol e" DataType="java.lang. Object" />
.......... <Arg Name="aState" Source="PI N _READ' DataType="j ava.l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.4 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<l Test G oup>

.. <Test G-oup Name="val i dat esCust oner _gr oupedt est s" >
...... <Desc>1.5 TG grouped tests exam ne Bank validates custoner information</Desc>
...... <Test Operati on Nanme="val i dat esCust oner_tests">
........ <Desc>1.5 TGO exami ne setting Bank in the state of "CUSTOVER VALI DATED' </ Desc>
........ <Test Met hod Name="val i dat esCust oner" Tar get ="bank" >
.......... <Desc>1.5 TO set Bank in the state of "CUSTOVER VALI DATED'</ Desc>
.......... <Arg Nanme="insertedCard" Source="card" DataType="java.lang. Object" />

370 Appendix C Case Study: Automated Teller Machin&ystem

.......... <Arg Nanme="enteredPlI N' DataType="java.l ang.|nteger" />
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
<Desc>1.5 ETC. check Bank in the resulted correct state of
" CUSTOVER_VALI| DATED' </ Desc>
.......... <Arg Name="aBank" Source="bank" DataType="java.l ang. Object" />
.......... <Arg Nane="aState" Source="CUSTOVER_VALI DATED"
Dat aType="j ava. | ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.5 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

. </ Test Set >

. <Test Set Nanme="Sessi on_Test Set _per f or nilr ansacti on" >
..<Desc>Test Set #2: this test set examines performng an ATM transaction, and the
related test spec is referred to the test spec of a specific ATM TUC</ Desc>

. </ Test Set >

.. <Test Set Nane="Sessi on_Test Set _conti nueAnot her Transacti on">
....<Desc>Test Set #3: this test set exam nes whether Custoner is to
do anot her transaction</Desc>

....<Test G oup Nane="not DoAnot her Transacti on_gr oupedt est s" >
<Desc>3.2 TG grouped tests exam ne Custonmer is not to
do anot her transacti on</Desc>
...... <Test Oper ati on Nane="pronpt Anot her Transacti on_t est s">
<Desc>3.1 TO exam ne Custoner Consol e on-screen pronpts custoner
whet her to do another transaction</Desc>
<Test Met hod Narme="pr onpt Anot her Tr ansacti on" Tar get =" cust omer Consol e" >
<Desc>3.1 TO Custoner Consol e on-screen pronpts custoner
whet her to do another transaction</Desc>
........ </ Test Met hod>
...... </ Test Oper ati on>
<Test Operati on Name="i ndi cat eNoMor eTr ansacti on_t ests">
<Desc>3.2 TO exam ne Custoner indicates no nore transaction</Desc>
........ <Test Met hod Name="i ndi cat eNoMbor eTr ansacti on" Tar get =" cust oner" >
.......... <Desc>3.2 TQO Custoner indicates no nore transaction</Desc>
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. </ Test Set >

.. <Test Set Nane="Sessi on_Test Set _st opSessi on">
....<Desc>Test Set #4: this test set exanmines Custoner stops the current
ATM sessi on when indicating no nore transacti on</Desc>

....<Test G oup Nane="ej ect Card_groupedt ests">
<Desc>4.1 TG grouped tests exam ne ATM ejects the inserted card
from Card Reader </ Desc>
...... <Test Operation Nane="ejectCard_tests">
<Desc>4.1 TO exanmine setting Card Reader in the state of
" CARD_EJECTED' </ Desc>
<Test Met hod Name="ej ect Card" Tar get ="car dReader ">
.......... <Desc>4.1 TO set Card Reader in the state of "CARD EJECTED'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Tar get ="sessi on">
<Desc>4.1 ETC. check Card Reader in the resulted correct state
of " CARD_EJECTED" </ Desc>
<Arg Name="aDevi ce" Source="cardReader" DataType="java.lang. Cbject" />
.......... <Arg Nanme="aState" Source="CARD EJECTED' DataType="java.l ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>4.1 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
.. </ Test G oup>

Appendix C Case Study: Automated Teller Machin&ystem 371

....<Test G oup Nane="t akeCard_groupedtests">
...... <Desc>4.2 TG grouped tests exam ne Customer takes the ejected card
from Card Reader </ Desc>
...... <Test Operati on Nanme="t akeCard_tests">
........ <Desc>4.2 TO examine setting Card Reader in the state of "CARD TAKEN'</Desc>
........ <Test Met hod Nanme="t akeCard" Tar get ="cust omer">
.......... <Desc>4.2 TO set Card Reader in the state of "CARD TAKEN'</Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>4.2 ETC. check Card Reader in the resulted correct state
of " CARD_TAKEN'</ Desc>
.......... <Arg Nane="aDevi ce" Source="cardReader" DataType="java.lang. Object" />
.......... <Arg Nane="aState" Source="CARD TAKEN' Dat aType="j ava.lang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>4.2 ETC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci f i cat i on>

Figure C.11 CTS Test Case Specification for the ATM Session Test Scenario

(2) The CTS test case specification for the ATM TUCXtTResign in the ATM TUC1 core

test scenario — “Inquire Balance” transaction (@ss inFigure C.12

Note that there are no specific test contractsciateal with test group.4 TG in Test Set
#2 (as shown ifrigure C.12. These tests are related to the examinationeohtimeric format
representing dollars and cents that are displayedthe ATM Customer Console (Dis-
play/Screen). Testing this aspect is not the factise current scope of the ATM case study.

<Test Speci fication Name="ATM TUCL_CTS. xni ">
.. <Desc>CTS test case specification for ATM TUCL: |nquire Bal ance</ Desc>

.. <Test Set Nane="TUCLl_Test Set_start Transacti on">
....<Desc>Test Set #1: this test set exami nes Custoner starts the ATM
transaction ("lnquire Bal ance") </ Desc>

....<Test G oup Nane="sel ect Tranascti onType_gr oupedt est s" >
...... <Desc>1.1 TG grouped tests exani ne Custoner selects the ATMtransaction type
("I'nqui re Bal ance") from Custoner Consol e (Display/ Screen)</Desc>
...... <Test Oper ati on Nane="sel ect Tranascti onType_tests">
........ <Desc>1.1 TO exami ne setting Customer Console (Display/Screen) in
the state of "TRANSACTI ON_TYPE _SELECTED' for the sel ected
transaction type ("Inquire Bal ance") </ Desc>
........ <Test Met hod Nanme="sel ect Tranascti onType" Tar get ="cust omer">
.......... <Desc>1.1 TO set Custoner Consol e (Display/Screen) in the state
of " TRANSACTI ON_TYPE_SELECTED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nanme="checkSt ate" Target="sessi on">
.......... <Desc>1.1 ETC. check Custoner Consol e (Display/Screen) in the resulted
correct state "TRANSACTI ON_TYPE SELECTED'</ Desc>
.......... <Arg Nane="aDevi ce" Source="custoner Consol e" DataType="java.lang. Object" />

372 Appendix C Case Study: Automated Teller Machin&ystem

.......... <Arg Name="aState" Source="TRANSACTI ON_TYPE_SELECTED"
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G oup Nanme="readTransacti onType_groupedtests">
...... <Desc>1.2 TG grouped tests exam ne ATMreads the sel ected transaction type
("I'nquire Bal ance") from Custoner Consol e (Display/ Screen)</Desc>
...... <Test Operati on Nanme="readTransacti onType_tests">
........ <Desc>1.2 TO exam ne setting Custoner Console (Display/Screen) in
the state of "TRANSACTI ON_TYPE READ' for the read-in
transaction type ("Inquire Bal ance") </ Desc>
........ <Test Met hod Nanme="readTransacti onType" Tar get ="cust oner Consol e">
.......... <Desc>1.2 TO set Custoner Console (Display/Screen) in the state
of "TRANSACTI ON_TYPE_READ' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>1.2 ETC. check Custoner Console (Display/Screen) in the resulted
correct state of "TRANSACTI ON_TYPE _READ'</ Desc>
.......... <Arg Nanme="aDevi ce" Source="custoner Consol e" DataType="java.l ang. Obj ect" />
.......... <Arg Name="aState" Source="TRANSACTI ON_TYPE_READ'
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G oup Nanme="val i dat eTransacti on_groupedt ests">

...... <Desc>1.3 TG grouped tests exam ne Bank validates the selected
transaction type ("Inquire Bal ance") </ Desc>
...... <Test Operati on Nanme="val i dateTransacti on_tests">
........ <Desc>1.3 TO exam ne setting Bank in the state of "TRANSACTI ON_VALI DATED"
for the selected transaction type ("lnquire Bal ance") </ Desc>
........ <Test Met hod Name="val i dat eTransacti on" Tar get ="bank" >
.......... <Desc>1.3 TO set Bank in the state of "TRANSACTI ON_VALI DATED" </ Desc>
.......... <Arg Name="insertedCard" Source="card" DataType="java.lang. Cbject" />
.......... <Arg Name="enteredPl N' DataType="j ava.l ang.|nteger" />
.......... <Arg Nanme="sel ect edTransacti onType" DataType="java.lang. String" />
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>1.3 ETC. check Bank in the resulted correct state of
" TRANSACTI ON_VALI DATED" </ Desc>
.......... <Arg Nanme="aBank" Source="bank" DataType="java.l ang. Object" />
.......... <Arg Nane="aSt ate" Source="TRANSACTI ON_VALI DATED"
Dat aType="j ava. | ang. Obj ect" />

.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.3 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>

.. </ Test G oup>

.. </ Test Set >

.. <Test Set Nane="TUCl_Test Set _doTransaction("|nquire Bal ance")">
..<Desc>Test Set #2: this test set exami nes Customer does the current ATM
transaction ("Inquire Bal ance") </ Desc>

....<Test G oup Nane="sel ect Account Type_gr oupedt est s" >
...... <Desc>2.1 TG grouped tests exam ne Custoner selects the account type
("Savings") from Customer Console (D splay/Screen)</Desc>
...... <Test Operati on Nanme="sel ect Account Type_tests">
........ <Desc>2.1 TO exam ne setting Custoner Console (Display/Screen) in
the state of "ACCOUNT_TYPE_SELECTED' for the sel ected
account type ("Savings")</Desc>
........ <Test Met hod Nanme="sel ect Account Type" Tar get ="cust oner">

Appendix C Case Study: Automated Teller Machin&ystem 373

.......... <Desc>2.1 TO set Custoner Console (Display/Screen) in the state
of " ACCOUNT_TYPE_SELECTED" </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>2.1 ETC. check Custoner Console (Display/Screen) in the resulted
correct state "ACCOUNT_TYPE_SELECTED'</ Desc>
.......... <Arg Nanme="aDevi ce" Source="custoner Consol e" DataType="j ava. | ang. Obj ect" />
.......... <Arg Nane="aState" Source="ACCOUNT_TYPE_SELECTED"
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.1 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper at i on>
.. </ Test G oup>

....<Test G oup Nane="readAccount Type_groupedt est s" >
...... <Desc>2.2 TG grouped tests exam ne ATM reads the sel ected account type
("Savings") from Custonmer Consol e (Di spl ay/ Screen) </ Desc>
...... <Test Operati on Nanme="readAccount Type_tests">
........ <Desc>2.2 TO examine setting Custoner Console (Display/Screen) in
the state of "ACCOUNT_TYPE_READ' for the read-in
account type ("Savings")</Desc>
........ <Test Met hod Nane="readAccount Type" Target ="cust oner Consol e" >
.......... <Desc>2.2 TO set Custoner Console (Display/Screen) in the state
of "ACCOUNT_TYPE_READ' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>2.2 ETC. check Custoner Console (Display/Screen) in the resulted
correct state of "ACCOUNT_TYPE_READ'</Desc>
.......... <Arg Nanme="aDevi ce" Source="custoner Consol e" DataType="j ava.l ang. Obj ect" />
.......... <Arg Nane="aState" Source="ACCOUNT_TYPE_READ' Dat aType="j ava.lang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.2 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Operati on>
.. </ Test G oup>

....<Test G oup Nane="val i dat eAccount _gr oupedt est s" >
...... <Desc>2.3 TG grouped tests exan ne Bank validates the sel ected
account type ("Savings")</Desc>
...... <Test Oper ati on Nane="val i dat eAccount _tests">
........ <Desc>2.3 TGO exami ne setting Bank in the state of "ACCOUNT_VALI DATED"
for the selected account type ("Savings")</Desc>
........ <Test Met hod Nanme="val i dat eAccount"” Tar get =" bank" >
.......... <Desc>2.3 TO set Bank in the state of "ACCOUNT_VALI DATED' </ Desc>
.......... <Arg Nanme="insertedCard" Source="card" DataType="java.lang. Cbject" />
.......... <Arg Nane="enteredPlI N' DataType="java.lang.|nteger" />
.......... <Arg Nanme="sel ect edAccount Type" DataType="java.lang.String" />
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>2.3 ETC. check Bank in the resulted correct state of
" ACCOUNT_VALI DATED' </ Desc>
.......... <Arg Nanme="aBank" Source="bank" DataType="j ava.l ang. Object" />
.......... <Arg Nane="aState" Source="ACCOUNT_VAL| DATED' Dat aType="j ava.lang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Operati on>
.. </ Test G oup>

....<Test G oup Name="inquireBal ance_groupedtests">
...... <Desc>2.4 TG grouped tests exami ne inquiring the available credit
bal ance of the sel ected account ("Savings")</Desc>
...... <Test Oper ati on Nanme="get Account Bal ance_t ests">
........ <Desc>2.4 TGO exami ne getting the available credit bal ance of
the sel ected account ("Savings")</Desc>
........ <Test Met hod Name="get Account Bal ance" Tar get ="bank">
.......... <Desc>2.4 TO getting the available credit bal ance of
the sel ected account ("Savings")</Desc>

374 Appendix C Case Study: Automated Teller Machin&ystem

........ </ Test Met hod>

...... </ Test Qper ati on>

...... <Test Oper ati on Name="di spl ayAccount Bal ance_t ests">

<Desc>2.4 TO exam ne Customer Consol e on-screen displays the avail able
credit balance of the selected account ("Savings")</Desc>

<Test Met hod Name="di spl ayAccount Bal ance" Tar get =" cust oner Consol e" >

<Desc>2.4 TO Customer Consol e on-screen displays the avail able
credit balance of the selected account ("Savings")</Desc>

........ </ Test Met hod>

...... </ Test Qper ati on>

.. </ Test G oup>

.. </ Test Set >

.. <Test Set Nane="TUCL_Test Set _stopTransaction("Ilnquire Bal ance")">
..<Desc>Test Set #3: this test set exami nes Customer stops/finishes
the current ATMtransaction ("Inquire Bal ance")</Desc>

.. <Test G oup Name="printRecei pt_groupedt ests">
<Desc>3.1 TG grouped tests exam ne ATMprints the receipt of the current ATM
transaction ("I nquire Balance") from Receipt Printer</Desc>
...... <Test Operati on Name="print Recei pt_tests">
........ <Desc>3.1 TO exam ne setting Receipt Printer in the state of
"RECEI PT_PRI NTED" for the current transaction ("Inquire Bal ance") </ Desc>
........ <Test Met hod Nanme="printRecei pt" Target="receiptPrinter">
.......... <Desc>3.1 TO set Receipt Printer in the state of "RECElIPT_PRI NTED'</ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
<Desc>3.1 ETC. check Receipt Printer in the resulted correct
state of "RECElI PT_PRI NTED' </ Desc>
.......... <Arg Nanme="aDevi ce" Source="recei ptPrinter" DataType="java.lang. Object" />
.......... <Arg Name="aState" Source="RECElI PT_PRI NTED' DataType="j ava.l ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.1 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<lTest G oup>

.. <Test G oup Name="t akeRecei pt_groupedt ests">
<Desc>3.2 TG grouped tests exam ne Custoner takes the printer receipt of the
current ATM transaction ("lInquire Bal ance") from Recei pt Printer</Desc>
...... <Test Operati on Nane="t akeRecei pt_tests">
........ <Desc>3.2 TO examine setting Receipt Printer in the state of "RECEI PT_TAKEN'
for the current ATMtransaction ("Inquire Bal ance")</Desc>
........ <Test Met hod Nanme="t akeRecei pt" Target ="cust onmer">
.......... <Desc>3.2 TO set Receipt Printer in the state of "RECElI PT_TAKEN'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Tar get ="sessi on">
<Desc>3.2 ETC. check Receipt Printer in the resulted correct
state of "RECElI PT_TAKEN'</Desc>
.......... <Arg Name="aDevi ce" Source="recei ptPrinter" DataType="java.lang. Object" />
.......... <Arg Nanme="aState" Source="RECElI PT_TAKEN' Dat aType="j ava.l ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.2 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci fi cati on>

Figure C.12 CTS Test Case Specification for the ATM TUC1 Core Test Scenario

Appendix C Case Study: Automated Teller Machin&ystem 375

(3) The CTS test case specification for the ATM TUC23tTResign in the ATM TUC2 core
test scenario— “Withdraw Cash” transaction (as shmArigure C.13

<Test Speci fication Name="ATM TUC2_CTS. xni ">
.. <Desc>CTS test case specification for ATM TUC2: Wt hdraw Cash</ Desc>

.. <Test Set Nane="TUC2_Test Set_start Transacti on">
....<Desc>Test Set #1: this test set exanmines starting the ATM
transaction ("Wthdraw Cash") </ Desc>

....<Test G oup Nane="sel ect Tranascti onType_gr oupedt est s" >
...... <Desc>1.1 TG grouped tests exani ne Custoner selects the ATMtransaction type
("Wthdraw Cash") from Custoner Consol e (Display/ Screen)</Desc>
...... <Test Operati on Nane="sel ect Tranascti onType_tests">
........ <Desc>1.1 TO exami ne setting Customer Console (Display/Screen) in
the state of "TRANSACTI ON_TYPE _SELECTED' for the sel ected
transaction type ("Wthdraw Cash") </ Desc>
........ <Test Met hod Nanme="sel ect Tranascti onType" Tar get ="cust omer">
.......... <Desc>1.1 TO set Custoner Consol e (Display/Screen) in the state
of " TRANSACTI ON_TYPE_SELECTED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Target ="sessi on">
.......... <Desc>1.1 ETC. check Customer Consol e (Display/Screen) in the resulted
correct state "TRANSACTI ON_TYPE_ SELECTED'</ Desc>
.......... <Arg Nane="aDevi ce" Source="custoner Consol e" DataType="java. |l ang. Object" />
.......... <Arg Nane="aState" Sour ce="TRANSACTI ON_TYPE_SELECTED"
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.1 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="readTransacti onType_gr oupedt ests">
...... <Desc>1.2 TG grouped tests exan ne ATMreads the selected transaction type
("Wthdraw Cash") from Custoner Consol e (Display/ Screen)</Desc>

...... <Test Operati on Nane="readTransacti onType_t ests">
........ <Desc>1.2 TGO exanmine setting Customer Console (Display/Screen) in

the state of "TRANSACTI ON_TYPE _READ' for the read-in

transaction type ("Wthdraw Cash") </ Desc>
........ <Test Met hod Name="readTransacti onType" Target ="cust onmer Consol e" >
.......... <Desc>1.2 TO set Custoner Consol e (Display/Screen) in the state

of " TRANSACTI ON_TYPE_READ' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Tar get ="sessi on">
.......... <Desc>1.2 ETC. check Customer Consol e (Display/Screen) in the resulted
correct state of "TRANSACTI ON_TYPE_READ'</ Desc>
.......... <Arg Nane="aDevi ce" Source="custoner Consol e" DataType="java.lang. Object" />
.......... <Arg Nane="aSt ate" Sour ce="TRANSACTI ON_TYPE_READ'
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.2 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

.. <Test G-oup Nanme="val i dat eTransacti on_gr oupedt ests">
...... <Desc>1.3 TG grouped tests exani ne Bank validates the selected
transaction type ("Wthdraw Cash") </ Desc>
...... <Test Operati on Nane="val i dat eTransacti on_tests">
........ <Desc>1.3 TO exam ne setting Bank in the state of "TRANSACTI ON_VALI DATED'
for the selected transaction type ("Wthdraw Cash") </ Desc>
........ <Test Met hod Nane="val i dat eTransacti on" Tar get ="bank" >
.......... <Desc>1.3 TQO set Bank in the state of "TRANSACTI ON_VALI DATED' </ Desc>
.......... <Arg Name="insertedCard" Source="card" DataType="java.l ang. Cbject" />

376 Appendix C Case Study: Automated Teller Machin&ystem

.......... <Arg Nanme="enteredPlI N' DataType="java.l ang.|nteger" />
.......... <Arg Name="sel ect edTransacti onType" DataType="java.lang. String" />
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Tar get ="sessi on">
.......... <Desc>1.3 ETC. check Bank in the resulted correct state of
" TRANSACTI ON_VALI| DATED" </ Desc>
.......... <Arg Name="aBank" Source="bank" DataType="java.l ang. Object" />
.......... <Arg Name="aState" Source="TRANSACTI ON_VAL| DATED'
Dat aType="j ava. | ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>1.3 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
.. </ Test G oup>

.. <l Test Set >

.. <Test Set Nane="TUCl_Test Set _doTransaction("Wthdraw Cash")">
....<Desc>Test Set #2: this test set examines Custoner does the current ATM
transaction ("Wthdraw Cash") </ Desc>

.. <Test G oup Nanme="sel ect Account Type_gr oupedt est s" >
...... <Desc>2.1 TG grouped tests exam ne Custoner selects the account type
("Savings") from Custoner Consol e (Display/Screen)</Desc>
...... <Test Operati on Nane="sel ect Account Type_t ests">
........ <Desc>2.1 TO exam ne setting Custoner Consol e (Display/Screen) in
the state of "ACCOUNT_TYPE_SELECTED' for the sel ected
account type ("Savings")</Desc>
........ <Test Met hod Name="sel ect Account Type" Tar get="custoner">
.......... <Desc>2.1 TO set Custoner Console (Display/Screen) in the state
of " ACCOUNT_TYPE_SELECTED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt ate" Tar get ="sessi on">
.......... <Desc>2.1 ETC. check Custoner Console (D splay/Screen) in the resulted
correct state "ACCOUNT_TYPE_SELECTED'</ Desc>
.......... <Arg Nanme="aDevi ce" Source="custoner Consol e" DataType="j ava.l ang. Obj ect" />
.......... <Arg Name="aState" Source="ACCOUNT_TYPE_SELECTED'
Dat aType="j ava. |l ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.1 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
....<l Test G oup>

.. <Test G oup Name="readAccount Type_gr oupedt ests">
...... <Desc>2.2 TG grouped tests exam ne ATMreads the sel ected account type
("Savings") from Custoner Consol e (Display/Screen)</Desc>
...... <Test Oper ati on Nanme="readAccount Type_t ests">
........ <Desc>2.2 TO exam ne setting Custoner Console (Display/Screen) in
the state of "ACCOUNT_TYPE_READ' for the read-in
account type ("Savings")</Desc>
........ <Test Met hod Name="readAccount Type" Tar get ="cust oner Consol e" >
.......... <Desc>2.2 TO set Custoner Console (Display/Screen) in the state
of " ACCOUNT_TYPE_READ' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>2.2 ETC. check Custoner Console (D splay/Screen) in the resulted
correct state of "ACCOUNT_TYPE_READ'</Desc>
.......... <Arg Nanme="aDevi ce" Source="custoner Consol e" DataType="java.l ang. Obj ect" />
.......... <Arg Nanme="aState" Source="ACCOUNT_TYPE READ' Dat aType="j ava.l ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.2 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. <Test G oup Nanme="val i dat eAccount _gr oupedt ests">
...... <Desc>2.3 TG grouped tests exam ne Bank validates the sel ected
account type ("Savings")</Desc>

Appendix C Case Study: Automated Teller Machin&ystem 377

<Test Operati on Nane="val i dat eAccount _tests">
<Desc>2.3 TGO exam ne setting Bank in the state of "ACCOUNT_VALI DATED'
for the selected account type ("Savings")</Desc>
<Test Met hod Nane="val i dat eAccount"” Tar get =" bank" >
<Desc>2.3 TGO set Bank in the state of "ACCOUNT_VALI DATED' </ Desc>
.......... <Arg Name="insertedCard" Source="card" DataType="java.l ang. Cbject" />
.......... <Arg Name="ent eredPl N' Dat aType="j ava.l ang. Integer" />
.......... <Arg Nane="sel ect edAccount Type" DataType="java.lang. String" />
........ </ Test Met hod>
<Test Met hod Name="checkSt ate" Target ="sessi on">
<Desc>2. 3 ETC. check Bank in the resulted correct state of
" ACCOUNT_VALI DATED' </ Desc>
.......... <Arg Nane="aBank" Source="bank" DataType="java.lang. Cbject" />
.......... <Arg Nanme="aState" Source="ACCOUNT_VAL| DATED' Dat aType="j ava.lang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.3 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper at i on>
....<lTest G oup>

.. <Test Group Nane="ent er MoneyAmount _gr oupedt est s" >

<Desc>2.4 TG grouped tests exam ne Customer enters the withdrawal noney
armount from Customer Consol e (Keypad) </ Desc>

<Test Oper ati on Nanme="ent er MoneyAnount _t ests">

<Desc>2.4 TO exam ne setting Customer Console (Keypad) in the state of
" MONEY_AMOUNT_ENTERED' for the entered w t hdrawal noney anpunt </ Desc>

<Test Met hod Nane="ent er MoneyAnount" Tar get ="cust oner" >

<Desc>2.4 TO set Custoner Console (Keypad) in the state of
" MONEY_AMOUNT_ENTERED" </ Desc>

........ </ Test Met hod>

<Test Met hod Nane="checkSt ate" Target="sessi on">

<Desc>2.4 ETC. check Custoner Console (Keypad) in the resulted correct
state of "MONEY_AMOUNT_ENTERED' </ Desc>

.......... <Arg Nanme="aDevi ce" Source="customnmer Consol e" DataType="j ava.l ang. Obj ect" />

.......... <Arg Nane="aState" Source="MONEY_AMOUNT_ENTERED'

Dat aType="j ava. | ang. Obj ect" />

.......... <Result DataType="j ava. | ang. Bool ean" Save="y">

............ <Desc>2.4 ETC result: checkState nust return true</Desc>

............ <Exp>t r ue</ Exp>

.......... </ Resul t >

........ </ Test Met hod>

...... </ Test Oper ati on>

.. </ Test G oup>

....<Test G oup Nane="readMbneyAnount _groupedt ests">

<Desc>2.5 TG grouped tests exam ne ATM reads the entered w thdrawal noney
amount from Cust omer Consol e (Keypad) </ Desc>

<Test Oper ati on Nanme="readMoneyAnount _tests">

<Desc>2.5 TO exanine setting Custoner Console (Keypad) in the state of
" MONEY_AMOUNT_READ' for the read-in w thdrawal noney anount </ Desc>

<Test Met hod Nanme="readMoneyAmount" Tar get =" cust ormer Consol e" >

<Desc>2.5 TO set Custoner Console (Keypad) in the state of
" MONEY_AMOUNT_READ' </ Desc>

........ </ Test Met hod>

<Test Met hod Nanme="checkSt ate" Target="sessi on">

<Desc>2.5 ETC. check Custoner Console (Keypad) in the resulted correct
state of "MONEY_AMOUNT_READ'</ Desc>

.......... <Arg Nanme="aDevi ce" Source="custonmer Consol e" DataType="j ava.l ang. Obj ect" />

.......... <Arg Nanme="aSt ate" Source="MONEY_AMOUNT_READ' Dat aType="j ava.l ang. Cbj ect" />

.......... <Result DataType="j ava. | ang. Bool ean" Save="y">

............ <Desc>2.5 ETC result: checkState nmust return true</Desc>

............ <Exp>t r ue</ Exp>

.......... </ Resul t >

........ </ Test Met hod>

...... </ Test Operati on>

....<l Test G oup>

.. <Test G-oup Nane="val i dat eAccount Bal ance_gr oupedt est s" >

<Desc>2.6 TG grouped tests exani ne Bank validates the available credit
bal ance of the selected account ("Savings") with the entered
wi t hdrawal noney anount </ Desc>

<Test Oper ati on Nane="val i dat eAccount Bal ance_t ests">

<Desc>2.6 TO exami ne setting Bank in the state of

378 Appendix C Case Study: Automated Teller Machin&ystem

" ACCOUNT_BALANCE_VALI DATED' for the selected account ("Savings")</Desc>
........ <Test Met hod Name="val i dat eTransacti on" Tar get ="bank" >
.......... <Desc>2.6 TO set Bank in the state of "ACCOUNT_BALANCE_VAL| DATED' </ Desc>
.......... <Arg Nanme="sel ect edAccount Type" DataType="java.lang. String" />
.......... <Arg Nanme="ent eredMoneyAnount" DataType="java.l ang.|nteger" />
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>2.6 ETC. check Bank in the resulted correct state of
" ACCOUNT_BALANCE _VALI DATED' </ Desc>
.......... <Arg Name="aBank" Source="bank" DataType="java.l ang. Object" />
.......... <Arg Nane="aSt ate" Sour ce="ACCOUNT_BALANCE_VALI DATED"
Dat aType="j ava. | ang. Obj ect" />
.......... <Resul t DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.6 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="di spenseCash_groupedt est s">
...... <Desc>2.7 TG grouped tests exanm ne ATM di spenses the w thdrawal anount
of cash notes from Cash Di spenser </ Desc>
...... <Test Operati on Name="di spenseCash_tests">
........ <Desc>2.7 TO exam ne setting Cash Dispenser in the state
of " CASH DI SPENDSED" </ Desc>
........ <Test Met hod Name="di spenseCash" Target ="cashDi spenser">
.......... <Desc>2.7 TO set Cash Dispenser in the state of "CASH DI SPENDSED' </ Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>2.7 ETC. check Cash D spenser in the resulted correct
state of "CASH DI SPENDSED' </ Desc>
.......... <Arg Nanme="aDevi ce" Source="cashDi spenser" DataType="java.l ang. Object" />
.......... <Arg Nanme="aState" Source="CASH DI SPENDSED' Dat aType="j ava.l ang. Obj ect" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.7 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
.. </ Test G oup>

....<Test G oup Nane="takeCash_groupedtests">
...... <Desc>2.8 TG grouped tests exam ne Custoner takes the dispensed
cash notes from Cash Di spenser </ Desc>
...... <Test Operati on Nanme="t akeCash_t ests">
........ <Desc>2.8 TO exam ne setting Cash Dispenser in the state
of "CASH TAKEN'</ Desc>
........ <Test Met hod Name="t akeCash" Tar get ="cust oner" >
.......... <Desc>2.8 TO set Cash Dispenser in the state of "CASH TAKEN'</Desc>
........ </ Test Met hod>
........ <Test Met hod Name="checkSt at e" Tar get ="sessi on">
.......... <Desc>2.8 ETC. check Cash Dispenser in the resulted correct
state of "CASH TAKEN'</ Desc>
.......... <Arg Nanme="aDevi ce" Source="cashD spenser" DataType="java.l ang. Object" />
.......... <Arg Name="aState" Source="CASH TAKEN' Dat aType="j ava.l ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.8 ETC result: checkState must return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Qper ati on>
....<lTest G oup>

.. <Test G- oup Name="updat eAccount _gr oupedt ests">
...... <Desc>2.9 TG grouped tests exam ne Bank updates the record of the sel ected
account ("Savings") with the dispensed/w thdrawn cash anount </ Desc>

...... <Test Operati on Nanme="val i dat eAccount Bal ance_t ests">
........ <Desc>2.9 TO exam ne setting Bank in the state of

" ACCOUNT_UPDATED" for the selected account ("Savings")</Desc>
........ <Test Met hod Nanme="updat eAccount" Tar get ="bank">
.......... <Desc>2.9 TO set Bank in the state of "ACCOUNT_UPDATED'</ Desc>
.......... <Arg Name="sel ect edAccount Type" DataType="java.lang. String" />
.......... <Arg Name="wi t hdr awal MoneyAmount " Dat aType="j ava. |l ang. | nteger" />
........ </ Test Met hod>

Appendix C Case Study: Automated Teller Machin&ystem 379

........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>2.9 ETC. check Bank in the resulted correct state of
" ACCOUNT_BALANCE_VALI DATED" </ Desc>
.......... <Arg Nane="aBank" Source="bank" DataType="java.lang. Cbject" />
.......... <Arg Nane="aState" Source="ACCOUNT_UPDATED' Dat aType="j ava.lang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>2.9 ETC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper at i on>
....<lTest G oup>

.. </ Test Set >

.. <Test Set Nane="TUCL_Test Set _stopTransacti on("Wthdraw Cash")">
....<Desc>Test Set #3: this test set exami nes Custoner stops/finishes
the current ATM transaction ("Wthdraw Cash") </ Desc>

.. <Test G-oup Name="printRecei pt _groupedtests">
...... <Desc>3.1 TG grouped tests exanmne ATM prints the receipt of the current ATM
transaction ("Wthdraw Cash") from Recei pt Printer</Desc>

...... <Test Operati on Nane="print Recei pt_tests">
........ <Desc>3.1 TG exam ne setting Receipt Printer in the state of

"RECEI PT_PRI NTED' for the current transaction ("Wthdraw Cash") </ Desc>
........ <Test Met hod Nane="print Recei pt" Target="recei ptPrinter">
.......... <Desc>3.1 TO set Receipt Printer in the state of "RECElI PT_PRI NTED'</Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>3.1 ETC. check Receipt Printer in the resulted correct

state of "RECElI PT_PRI NTED' </ Desc>
.......... <Arg Nanme="aDevi ce" Source="recei ptPrinter" DataType="java.lang. Object" />
.......... <Arg Nane="aState" Source="RECElI PT_PRI NTED' Dat aType="j ava. |l ang. Object" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.1 ETC result: checkState nmust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper ati on>
.. </ Test G oup>

....<Test G oup Nane="t akeRecei pt _groupedtests">
...... <Desc>3.2 TG grouped tests exanmi ne Custoner takes the printer receipt of the
current ATM transaction ("Wthdraw Cash") from Receipt Printer</Desc>
...... <Test Operati on Nane="t akeRecei pt _tests">
........ <Desc>3.2 TGO examine setting Receipt Printer in the state of "RECEl PT_TAKEN'
for the current ATMtransaction ("Wthdraw Cash") </ Desc>
........ <Test Met hod Nanme="t akeRecei pt" Target="custoner">
.......... <Desc>3.2 TO set Receipt Printer in the state of "RECEI PT_TAKEN'</Desc>
........ </ Test Met hod>
........ <Test Met hod Nane="checkSt ate" Target="sessi on">
.......... <Desc>3.2 ETC. check Receipt Printer in the resulted correct
state of "RECElI PT_TAKEN'</ Desc>
.......... <Arg Nane="aDevi ce" Source="receiptPrinter" DataType="java.lang. Object" />
.......... <Arg Nanme="aState" Source="RECElI PT_TAKEN' Dat aType="j ava.l ang. Cbject" />
.......... <Result DataType="j ava. | ang. Bool ean" Save="y">
............ <Desc>3.2 ETC result: checkState nust return true</Desc>
............ <Exp>t r ue</ Exp>
.......... </ Resul t >
........ </ Test Met hod>
...... </ Test Oper at i on>
.. </ Test G oup>

.. </ Test Set >

</ Test Speci f i cat i on>

Figure C.13 CTS Test Case Specification for the ATM TUC2 Core Test Scenario

380 Appendix C Case Study: Automated Teller Machin&ystem

C.6 Evaluation Examples for Evaluating Adequate Test
Artefact Coverage and Component Testability
Improvement

In Chapter 9Section 9.4.2and Section 9.4.3xamines and evaluates the effectiveness of the
MBSCT testing capabilities #4 and #5 (for adequest artefact coverage and component test-
ability improvement), particularly with the evaligt example #3 for the ATM special testing
requirements #8 in the ATM case study. This sedtlostrates the other two evaluation exam-
ples #1 and #2 for the two ATM special testing ieguents #3 and #7 (iBubsections C.6.1
andC.6.2respectively).

C.6.1 Evaluation Example #1: Customer Validation

The ATM special testing requirement #3 (Customelidagion) is important in the ATM Ses-
sion test scenario. Customer validation requiresadte test artefact coverage and testability
for validating the customer eligibility for accasgithe ATM system, that is, the customer must
have a valid ATM card and PIN to correctly start’aFM session for accessing the ATM sys-
tem.

Based orection C.5above andection 9.4.2n Chapter 9the component test design for
the ATM Session test scenario develops a speciatesst sequence #1 that can exercise and
examine all five testing-required control operasiamf the ATM card and PIN, includingy1
TO,1.2TO,1.3TO, 1.4 TO and1.5 TO. These test operations are adequate to biidge Gap
#1 (as described iection 5.2.4.2n Chapter ». In addition, the special sub test sequence #1
covers a set of appropriately-designed test castraccludingl.1 ETC, 1.2 ETC, 1.3 ETC, 1.4
ETC and1.5 ETC. These testing-support artefacts can adequateify \each of the five test-
ing-required control operations for customer valwa which can bridgdest-Gap #2as de-
scribed inSection 5.2.4.2n Chapter % Adequate testing artefact coverage improves comp
nent testability and enables testing to evaluater¢tevant test results for customer validation.
Therefore, the ATM component test design can improemponent testability and fulfil the

ATM special testing requirement #3: Customer Valma

C.6.2 Evaluation Example #2: Account Selection Validation

The ATM special testing requirement #7 (Accountegbn Validation) is important in the test

scenario of each ATM TUC. Account selection valiolatrequires that adequate test artefact

Appendix C Case Study: Automated Teller Machin&ystem 381

coverage and testability are needed to validatectiséomer-selected account access eligibility
in the ATM system. In particular, the customer-stdd account (e.g. “Savings” account) must
be valid and must be linked to the inserted ATMdctor performing the customer-selected
ATM transaction.

Based orSection C.5above andsection 9.4.2n Chapter 9the component test design for
the ATM TUCL1 core test scenario constructs a spscia test sequence #2 that can exercise
and examine all three testing-required control ap@ns of account selection, includiad TO,

2.2 TO and2.3 TO. These test operations are adequate and can briekjeGap #1(as de-
scribed inSection 5.2.4.2n Chapter % Moreover, the special sub test sequence #2 iosnaa
array of appropriately-designed test contractduiting2.1 ETC, 2.2 ETC and2.3 ETC. These
testing-support artefacts can adequately veriffnedcahe three testing-required control opera-
tions for account selection validation, which caiddpe Test-Gap #2as described iSection
5.2.4.2in Chapter % Adequate testing artefact coverage enablesitgsii evaluate the relevant
test results of account selection validation and timproves component testability. Therefore,
the ATM component test design can improve compotestability and realise the ATM special

testing requirement #7: Account Selection Validatio

C.7 Evaluation Examples for Fault Case Scenario Analysi
and Fault Diagnostic Solution Design

In Chapter 9 Section 9.4.4.Fexamines and evaluates the effectiveness of th&®IBtesting

capabilities #3 and #6 for fault detection, diage@sd localisation, by performing fault case
scenario analysis and fault diagnostic solutionghespecifically with the evaluation example
#3 for the ATM special testing requirements #8ha ATM case study. For this FDD evalua-
tion, this section shows two other evaluation exasmgl and #2 for the two ATM special test-

ing requirements #3 and #7 @ubsections C.7.4ndC.7.2respectively).

C.7.1 Evaluation Example #1: Customer Validation

(1) Fault Case Scenario and Analysis

For the major fault/failure scenario of Custometidétion: The ATM/Bank system fails
to validate the ATM-input customer information (ecard number and PIN), and/or fails to re-
ject the customer’s access to the ATM while thikdedion is NOT fulfilled. The correct valida-
tion requires that the inserted-card number mustaltid, the entered PIN must be valid, and the
ATM-input customer information must be correct addntical to the customer information

stored in the Bank system. A validation failure Vdoallow the customer to access the ATM

382 Appendix C Case Study: Automated Teller Machin&ystem

while the customer-inserted card is invalid andf@ customer-entered PIN is invalid, which

violates the ATM special testing requirement #3stGmer Validation.

(2) Fault-Related Test Scenario

This fault is covered by the ATM Session test sdena

(3) Fault-Related ATM Device (or Fault-Related Bank €pien)
This fault is related to the Card Reader device,@stomer Console (Keypad) device,

the Customer, and/or the Bank.

(4) Fault Diagnostic Solution
The fault diagnosis is CIT-related in the ATM Sessiest scenario. The fault diagnostic

solution with the ATM Session test design must ipogate certain basic fault diagnostic solu-

tions with the following related test groups (asatéed inSection C.5.2

(@) Test groupl.1 TG comprises test operatidnl TO i nsert Car d() and its associated
test contractl.1 ETC checkSt at e(car dReader, “CARD_INSERTED”) (as post-
condition), and test stat€ ARD_INSERTED".

(b) Test groupl.2 TG comprises test operatidn2 TO r eadCar d() and its associated test
contractl.2 ETC checkSt at e(car dReader, “CARD_READ”) (as postcondition),
and test stateCARD_READ".

(c) Test groupl.3 TG comprises test operatidn3 TO ent er PI N() and its associated test
contract 1.3 ETC checkSt at e(custoner Consol e, “PIN_ENTERED”) (as
postcondition), and test stateIN_ENTERED".

(d) Test groupl.4 TG comprises test operatidn4 TO r eadPl N() and its associated test
contract 1.4 ETC checkState(custonerConsol e, “PIN_READ”) (as
postcondition), and test statelIN_READ".

(e) Test group 1.5 TG comprises test operatiol.5 TO val i dat eCust oner (
insertedCard, enteredPIN) and its associated test contratt5 ETC
checkSt at e(bank, “CUSTOMER_VALIDATED") (as postcondition), and test state
“CUSTOMER_VALIDATED".

C.7.2 Evaluation Example #2: Account Selection Validation

(1) Fault Case Scenario and Analysis
For the major fault/failure scenario of Account&ion Validation: The ATM/Bank sys-
tem fails to validate the customer-selected accaamd/or fails to reject the customer’s access

to the selected account while this validation isTNfDIfilled. The correct validation requires

Appendix C Case Study: Automated Teller Machin&ystem 383

that the customer-selected account must be valithocustomer’s account in the Bank system,
must be linked to the inserted ATM card, and cara@eessed by the customer to perform the
customer-selected ATM transaction. A validatioriui@ would allow the customer to perform
transactions on the selected account, which vieldte ATM special testing requirement #7:

Account Selection Validation.

(2) Fault-Related Test Scenario
This fault is covered by the test scenario of e&€M TUC, e.g. in the ATM TUCL1 core
test scenario.

(3) Fault-Related ATM Device (or Fault-Related Bank @ypien)
This fault is related to the Customer Console ([2gfScreen) device, the Customer,

and/or the Bank.

(4) Fault Diagnostic Solution
The fault diagnosis is CIT-related in the ATM TUCdre test scenario. The fault diag-

nostic solution with the ATM TUCL test design mimstorporate certain basic fault diagnostic

solutions with the following related test groups ¢@escribed ifsection C.5.p

(@) Test group2.1 TG comprises test operatidhl TO sel ect Account Type() and its
associated test contract2.1 ETC checkState(custonerConsol e,
“ACCOUNT_TYPE_SELECTED”) (as postcondition), and test state
“ACCOUNT_TYPE_SELECTED".

(b) Test grouR.2 TG comprises test operati@®2 TO r eadAccount Type() and its asso-
ciated test contract 22 ETC checkState(custoner Consol e,
“ACCOUNT_TYPE_READ”) (as postcondition), and test state
“ACCOUNT_TYPE_READ".

(c) Test group 2.3 TG comprises test operatior2.3 TO vali dat eAccount (

i nsertedCard, enteredPI N, sel ect edAccount Type) and its associated test
contract 2.3 ETC checkState(bank, “ACCOUNT_VALIDATED”) (as
postcondition), and test statRCCOUNT_VALIDATED".

C.8 Evaluation Examples for Evaluating Adequate
Component Fault Coverage and Diagnostic Solutionsha
Results

In Chapter 9 Section 9.4.4.2xamines and evaluates the effectiveness of th&®IBtesting

capability #6 for evaluating adequate componenlt feaverage and diagnostic solutions and

384 Appendix C Case Study: Automated Teller Machin&ystem

results, particularly with the evaluation exampBefér the ATM special testing requirements #8
in the ATM case study. For this FDD evaluationsthection presents two further evaluation
examples #1 and #2 for the ATM special testing irequents #3 and #7 (iBubsections C.8.1
andC.8.2respectively).

C.8.1 Evaluation Example #1: Customer Validation

This subsection evaluates the fault diagnosticteols and results for diagnosing the possible
faults that result in the same major requiremealating faultFAULT_CUSTOMER against
the ATM special testing requirement #3: Customelidésion. As described isection C.7.1
andTable 9.7in Chapter 9we develop and apply the five individual basiglfaiagnostic solu-
tions in the ATM case study. Each basic fault desgic solution uses a basic test group to di-
agnose a directly/indirectly related fault in th& M Session test scenario (as illustratedrig-

ure C.13.

) 1.1 TG 127G 1.3TG 147G 15TG
Basg = | o= | — = R R |
tesfl 11170 ::1.2TO ::1.3TO ::1.4TO ::1.5TO

artefacty 1y | g ! Tl |
- T e e 1T # Ty saee T @ T

specia | & 1 U el S LC S L

|| u (N (N u || u || |

_tes | Eaut a1 eTcll Bl 1ot L ERMl 13 ETCt | BB 14 ETCl | FAYl 15 ETC

. | I I | |

I I
| major fault/failure scenario |

Figure C.14 Evaluation Example #1: Customer Validation
(Fault Diagnostic Solutions with the ATM Session Test Design)

The following describes the FDD evaluation for titmajor requirement-violating fault:

(1) Basic Fault 3.F¥AULT_CUSTOMER_VALIDATED (as shown ifTable 9.7in Chapter 9

To diagnose the directly-related fault in the ATMsSion test scenario, the ATM Session
test design incorporates the first fault diagnostiltition that uses test grotid TG to exercise
test operationl.5 TO val i dat eCustoner(i nsertedCard, enteredPI N). This
operation is verified by its associated test camtrd.5 ETC checkSt at e(bank,
“CUSTOMER_VALIDATED") (as postcondition) and test sta@JSTOMER_VALIDATED".

If test contractL.5 ETC returnsfalse this fault diagnostic solution has detected aiad-d
nosed the following fault: the execution of opevatral i dat eCust oner () fails, causing the
Bank system NOT to be in the correct control stHté CUSTOMER_VALIDATED” as ex-
pected. This means that the ATM/Bank system failgalidate the ATM-input customer infor-

Appendix C Case Study: Automated Teller Machin&ystem 385

mation (e.g. card number and PIN), and/or failseject the customer’s access to the ATM
while this validation is NOT fulfilled. In this fducase scenario, the ATM-input customer in-
formation is invalid in the Bank system, and therent customer is not permitted to access the
ATM. This accords with the basic fault F3ULT_CUSTOMER_VALIDATED as described in
Table 9.7 and the customer validation failure directly ai@s the ATM special testing require-
ment #3: Customer Validation.

Therefore, the basic fault 3BAULT_CUSTOMER_VALIDATED is the directly-related
fault that causes the major requirement-violatiagltfFAULT_CUSTOMER, which directly
results in the major fault/failure scenario of @user Validation as described 8ection C.7.1
The first fault diagnostic solution is able to diage this directly-related fault. Following the
CBFDD guidelines (as described earlierSection 7.5. the diagnosed fault can be corrected

and removed in the fault-related Bank's operatiahi dat eCust oner ().

(2) Basic Fault 3.FAULT_CARD (as shown imable 9.7in Chapter)
To diagnose possible indirectly-related faults #rat associated with the ATM card in the
ATM Session test scenario, the FDD evaluation &rriaxamines the following two fault case

scenarios.

(2.1) Basic Fault 3.1.ZAULT_CARD_READ (as shown ifable 9.7in Chapter 9

To diagnose an indirectly-related fault that isoagsted with the ATM card in the ATM
Session test scenario, the ATM Session test désogmporates the second fault diagnostic so-
lution that uses test group2 TG to exercise test operatidn2 TO r eadCar d(). This opera-
tion is verified by its associated test contrdce ETC checkSt at e(car dReader,
“CARD_READ”) (as postcondition) and test stat®@ARD_READ".

If test contractl.2 ETC returnsfalse this fault diagnostic solution has detected and
diagnosed the following fault: the Card Reader devails in the execution of operation
readCar d(), causing the Card Reader device NOT to be indbwect control state of
“CARD_READ” as expected. This means that the ATM fails tadreathe card information
(e.g. card number) encoded on the customer-ins&&d card, and/or the Card Reader device
fails to eject the inserted but unreadable/unaetdptcard. This accords with the basic fault
3.1.2FAULT_CARD_READ as described ifiable 9.7 The occurrence of this fault indicates a
violated precondition, which causes the relatedseding operatiomal i dat eCust oner ()
in the expected ATM Session test sequence NOT texkeuted correctly, i.e. this validation
operation cannot be executed as expected or itsug@r fails in the expected operation
execution sequence.

Thus, the basic fault 3.1RAULT_CARD_READ is an indirectly-related fault that causes

386 Appendix C Case Study: Automated Teller Machin&ystem

the directly-related fault 3.BAULT_CUSTOMER_VALIDATED, and then furthermore, as de-
scribed in (1) above, indirectly results in the samajor requirement-violating fault 3.3
FAULT_CUSTOMER. The second fault diagnostic solution is able iegdose this indirectly-
related fault. Following the CBFDD guidelines (ascribed earlier isection 7.5.5 the diag-
nosed fault that is associated with the Card Redeleice’s operationeadCar d() can be cor-

rected and removed.

(2.2) Basic Fault 3.1.FAULT_CARD_INSERTED (as shown ifTable 9.7in Chapter 9

To diagnose an indirectly-related fault that isoassted with the ATM card in the ATM
Session test scenario, the ATM Session test deésggmporates the third fault diagnostic solu-
tion that uses test groupl TG to exercise test operatidnl TO i nsert Car d(). This opera-
tion is verified by its associated test contrdct ETC checkSt at e(car dReader,
“CARD_INSERTED") (as postcondition) and test sta@ARD _INSERTED".

If test contractL.1 ETC returnsfalse this fault diagnostic solution has detected aiad-d
nosed the following fault: the execution of opeyati nsert Car d() fails, causing the Card
Reader device NOT to be in the correct controkstéit’‘CARD_INSERTED” as expected. This
means that the ATM card is inserted incorrectlythy customer into the card slot of the Card
Reader device. While this fault occurs, the Carddee device fails to eject the ATM card that
is inserted incorrectly by the customer into thedcslot, and/or the ATM fails to be ready for
the customer to re-insert a card for a new ATMisesd his accords with the basic fault 3.1.1
FAULT_CARD_INSERTED as described itable 9.7 The occurrence of this fault indicates a
violated precondition, which causes the succeedipgrationr eadCar d() in the expected
ATM Session test sequence NOT to be executed ¢lyrree. this operation cannot be executed
as expected or its execution fails in the expeopetation execution sequence.

Hence, the basic fault 3.1FAULT_CARD_INSERTED is an indirectly-related fault that
causes the indirectly-related fault 3.ERULT_CARD_READ, and then indirectly results in the
same major requirement-violating fault FAULT_CUSTOMER. The third fault diagnostic
solution is able to diagnose this indirectly-rethfault. Following the CBFDD guidelines (as
described earlier iection 7.5.) the diagnosed fault that is associated withGhstomer and

Card Reader device related operaiimser t Car d() can be corrected and removed.

(3) Basic Fault 3.ZAULT_PIN (as shown iTable 9.7in Chapter 9
To diagnose possible indirectly-related faults @& associated with the customer’s PIN
in the ATM Session test scenario, we need to furtlvaluate the following two fault case sce-

narios.

Appendix C Case Study: Automated Teller Machin&ystem 387

(3.1) Basic Fault 3.2.FAULT_PIN_READ (as shown imable 9.7in Chapter)

To diagnose an indirectly-related fault that isoassted with the customer’s PIN in the
ATM Session test scenario, the ATM Session tesgdescorporates the fourth fault diagnostic
solution that uses test groap! TG to exercise test operatidd TO r eadPl N(). This opera-
tion is verified by its associated test contrhet ETC checkSt at e(cust onmer Consol e,
“PIN_READ”) (as postcondition) and test stafIN_READ".

If test contractl.4 ETC returnsfalse this fault diagnostic solution has detected and
diagnosed the following fault: the Customer Cong#leypad) device fails in the execution of
operatiorr eadPI N(), causing the Customer Console (Keypad) devic& Cbe in the correct
control state of PIN_READ” as expected. This means that the ATM fails todréa the
customer’s PIN entered from the Customer Consoykid) device, and/or fails to reject the
entered but unreadable/unacceptable customer’'s &itllor fails to allow the customer to re-
enter a readable/acceptable customer’s PIN (wilenpermitted three entries). This accords
with the basic fault 3.2.BAULT_PIN_READ as described iffable 9.7 The occurrence of this
fault indicates a violated precondition, which asisthe related succeeding operation
val i dat eCust oner () in the expected ATM Session test sequence NObDetexecuted
correctly, i.e. this validation operation cannoteébecuted as expected or its execution fails in
the expected operation execution sequence.

Thus, the basic fault 3.2RAULT_PIN_READ is an indirectly-related fault that causes
the directly-related fault 3.BAULT_CUSTOMER_VALIDATED, and then indirectly results in
the same major requirement-violating fault BAULT _CUSTOMER. The fourth fault diagnos-
tic solution is able to diagnose this indirectlyated fault. Following the CBFDD guidelines (as
described earlier iBection 7.5. the diagnosed fault that is associated withGhstomer Con-

sole device’s operatianeadPl N() can be corrected and removed.

(3.2) Basic Fault 3.2.FAULT_PIN_ENTERED (as shown imable 9.7in Chapter 9

To diagnose an indirectly-related fault that isoassed with the customer’s PIN in the
ATM Session test scenario, the ATM Session tedgdeacorporates the fifth fault diagnostic
solution that uses test gro8 TG to exercise test operatidm83 TO ent er Pl N(). This opera-
tion is verified by its associated test contra@& ETC checkSt at e(cust oner Consol e,
“PIN_ENTERED") (as postcondition) and test staiN_ENTERED".

If test contractl.3 ETC returnsfalse this fault diagnostic solution has detected aiag-d
nosed the following fault: the execution of oparatent er Pl N() fails, causing the Customer
Console (Keypad) device NOT to be in the correcttrmd state of PIN_ENTERED” as ex-
pected. This means that the customer’s PIN is edtercorrectly by the customer from Cus-
tomer Console (Keypad) device. While this faultwsg the ATM fails to reject the customer’s

PIN that is entered incorrectly by the customemfrthe Customer Console (Keypad) device,

388 Appendix C Case Study: Automated Teller Machin&ystem

and/or fails to allow the customer to re-enter haotPIN (within the permitted three entries).
This accords with the basic fault 3.ZAULT_PIN_ENTERED as described ifable 9.7 The
occurrence of this fault indicates a violated pretiion, which causes the succeeding operation
readPI N() in the expected ATM Session test sequence NQJetexecuted correctly, i.e. this
operation cannot be executed as expected or itaigge fails in the expected operation execu-
tion sequence.

Hence, the basic fault 3.2HAULT_PIN_ENTERED is an indirectly-related fault that
causes the indirectly-related fault 3.ZRULT_PIN_READ, and then indirectly results in the
same major requirement-violating fault 3FAULT_CUSTOMER. The fifth fault diagnostic
solution is able to diagnose this indirectly-rethtault. Following the CBFDD guidelines (as
described earlier iection 7.5.) the diagnosed fault that is associated withGhstomer and

Customer Console device related operatinher Pl N() can be corrected and removed.

(4) Combined faults of the above five individual ditgthdirectly related faults

Based on the FDD evaluation in (1) to (3) abovel(iding (2.1) and (2.2), (3.1) and (3.2)
above), a comprehensive fault diagnostic solutieeds to incorporate the abovementioned five
individual fault diagnostic solutions to detect afidgnose the combined faults of the above five
individual directly/indirectly related faults againthe same ATM special testing requirement
#3: Customer Validation. The combined faults carcbeected and removed in the following

fault-related operations:

(@) the Bank’s operatiomal i dat eCust omer (), and/or

(b) the Card Reader device’s operatiazadCar d(), and/or

(c) the Customer and Card Reader device related operaiser t Car d(), and/or
(d) the Customer Console device's operati@adPl N(), and/or

(e) the Customer and Customer Console device relatectipnent er Pl N().

C.8.2 Evaluation Example #2: Account Selection Validation

This subsection evaluates the fault diagnosticteols and results for diagnosing the possible
faults that result in the same major requiremealating fault
FAULT_ACCOUNT_SELECTION against the ATM special testing requirement #7: dArt
Selection Validation. As described $ection C.7.2andTable 9.7in Chapter 9we develop and
apply the three individual basic fault diagnostidutions in the ATM case study. Each basic
fault diagnostic solution uses a basic test graugiagnose a directly/indirectly related fault in
the ATM TUCL1 test scenario (as illustrated-igure C.15.

Appendix C Case Study: Automated Teller Machin&ystem 389

_ 217G 227G 237G
Basg = | = | m = |
tes :2.1TO 112270 1 :23TO :
artefacts ! il I 1 Il il [
' % Test || # """ 3% sequence ! >
s . | [I T I
pecia : . - :
tes | Fault 5 1 grcl 1 Faull o o g1l | Faull 5 3 el
contracts| .71 7 L2 T R :
-]

major fault/failure scenario |

Figure C.15 Evaluation Example #2: Account Selection Validation
(Fault Diagnostic Solutions with the ATM TUC1 Test Design)

The FDD evaluation for this major requirement-violg fault is described as follows:

(1) Basic Fault 7.3 AULT_ACCOUNT_VALIDATED (as shown imable 9.17n Chapter 9

To diagnose the directly-related fault in the ATNUCT1 test scenario, the ATM TUCL1
test design incorporates the first fault diagnostiltition that uses test grog@ TG to exercise
test operation 2.3 TO validateAccount(insertedCard, enteredPIN,
sel ect edAccount Type); this operation is verified by its associatest ontrac2.3 ETC
checkSt at e(bank, “ACCOUNT_VALIDATED”) (as postcondition) and test state
“ACCOUNT_VALIDATED".

If test contrac®.3 ETC returnsfalse this fault diagnostic solution has detected aiag-d
nosed the following fault: the execution of opevatval i dat eAccount () fails, causing the
Bank system NOT to be in the correct control stdteACCOUNT_VALIDATED” as expected.
This means that the ATM/Bank system fails to vakdéne customer-selected account, and/or
fails to reject the customer’s access to the sateatcount while this validation is NOT ful-
filled. In this fault case scenario, the custoneested account is invalid and/or inaccessible in
the Bank system, and the current customer is nobified to access the customer-selected ac-
count for doing any ATM transaction. This accordsithw the basic fault 7.3
FAULT_ACCOUNT_VALIDATED as described ifiable 9.7 and the account validation failure
directly violates the ATM special testing requireth&7: Account Selection Validation.

Therefore, the basic fault 7RBAULT_ACCOUNT_VALIDATED is the directly-related
fault that causes the major requirement-violatimgltf FAULT _ACCOUNT_SELECTION,
which directly results in the major fault/failureenario of Account Selection Validation as
described irSection C.7.2The first fault diagnostic solution is able tagihose this directly-
related fault. Following the CBFDD guidelines (assdribed earlier irSection 7.5} the
diagnosed fault can be corrected and removed in fthét-related Bank's operation

val i dat eAccount ().

390 Appendix C Case Study: Automated Teller Machin&ystem

(2) Basic Fault 7.FAULT_ACCOUNT_TYPE_READ (as shown imable 9.7in Chapter)

To diagnose an indirectly-related fault in the ATNIC1 test scenario, the ATM TUCL1
test design incorporates the second fault diagnastiution that uses test gro@® TG to
exercise test operatiod.2 TO readAccount Type(); this operation is verified by its
associated test contract 2.2 ETC checkSt at e(cust orrer Consol g,
“ACCOUNT_TYPE_READ") (as postcondition) and test sta®CCOUNT_TYPE_READ".

If test contrac.2 ETC returnsfalsg this fault diagnostic solution has detected aiag-d
nosed the following fault: the Customer Consolesfilay/Screen) device fails in the execution
of operationr eadAccount Type(), causing the Customer Console (Display/Screewjce
NOT to be in the correct control state #&CCOUNT_TYPE_READ” as expected. This means
that the ATM fails to read in the account type sedd from the Customer Console (Dis-
play/Screen) device, and/or fails to reject theaeld but unreadable/unacceptable account type,
and/or fails to allow the customer to re-seleceadable/acceptable account. This accords with
the basic fault 7.ZAULT_ACCOUNT TYPE_READ as described ifTable 9.7 The occur-
rence of this fault indicates a violated precowditiwhich causes the related succeeding opera-
tion val i dat eAccount () in the expected ATM TUCL test sequence NOT tcekecuted
correctly, i.e. this validation operation cannotécecuted as expected or its execution fails in
the expected operation execution sequence.

Thus, the basic fault 72AULT_ACCOUNT_TYPE_READ is an indirectly-related fault
that causes the directly-related fault FAULT_ACCOUNT_VALIDATED, and then indirectly
results in the same major requirement-violatingtf&®AULT_ACCOUNT_SELECTION. The
second fault diagnostic solution is able to diagnttss indirectly-related fault. Following the
CBFDD guidelines (as described earlielSection 7.5.) the diagnosed fault that is associated
with the Customer Console device’s operatiadAccount Type() can be corrected and

removed.

(3) Basic Fault 7.1FAULT_ACCOUNT_TYPE_SELECTED (as shown inTable 9.7in
Chapter 9
To diagnose an indirectly-related fault in the ATNIC1 test scenario, the ATM TUCL1
test design incorporates the third fault diagnosticition that uses test grod TG to exercise
test operatior2.1 TO sel ect Account Type(); this operation is verified by its associatest te
contract2.1 ETC checkSt at e(cust oner Consol e, “ACCOUNT_TYPE_SELECTED”)
(as postcondition) and test stafeCCOUNT_TYPE_SELECTED".
If test contract2.1 ETC returnsfalse this fault diagnostic solution has detected and

diagnosed the following fault: the execution of i@ti®n sel ect Account Type() fails,

Appendix C Case Study: Automated Teller Machin&ystem 391

causing the Customer Console (Display/Screen) deN@T to be in the correct control state of
“ACCOUNT_TYPE_SELECTED” as expected. This means that the type of bankuattcis
selected incorrectly by the customer from the QustoConsole (Display/Screen) device. While
this fault occurs, the ATM fails to reject the aonb type that is selected incorrectly by the
customer from the Customer Console (Display/Screggyice, and/or fails to allow the
customer to re-select another bank account. Thisords with the basic fault 7.1
FAULT_ACCOUNT_TYPE_SELECTED as described ifable 9.7 The occurrence of this fault
indicates a violated precondition, which causes thsucceeding operation
readAccount Type() in the expected ATM TUCL1 test sequence NOT to elxecuted
correctly, i.e. this operation cannot be execugedxgpected or its execution fails in the expected
operation execution sequence.

Hence, the basic fault 7.EAULT_ACCOUNT_TYPE_SELECTED is an indirectly-
related fault that causes the indirectly-relatadtfa.2 FAULT_ACCOUNT_TYPE_READ, and
then indirectly results in the same major requineinwolating fault
FAULT_ACCOUNT_SELECTION. The third fault diagnostic solution is able t@giose this
indirectly-related fault. Following the CBFDD guldees (as described earlier 8ection 7.5.h
the diagnosed fault that is associated with thetd@osr and Customer Console device related

operationsel ect Account Type() can be corrected and removed.

(4) Combined faults of the above three individual disgmdirectly related faults

Based on the FDD evaluation in (1) to (3) abovepmprehensive fault diagnostic solu-
tion needs to incorporate the abovementioned timaigidual fault diagnostic solutions to de-
tect and diagnose the combined faults of the albloree individual directly/indirectly related
faults against the same ATM special testing requéngt #7: Account Selection Validation. The

combined faults can be corrected and removed ifotlmving fault-related operations:

(&) the Bank’s operatiomal i dat eAccount (), and/or
(b) the Customer Console device’s operati@adAccount Type(), and/or

(c) the Customer and Customer Console device relatechbpnsel ect Account Type().

