

Robot Simulators and the
Porting of EyeSim from

Windows to Mac
Advanced Embedded Systems Group

Author: Jessen Harry Beinart

Supervisor: Professor Thomas Bräunl
27/10/2014

2

Abstract

The Advanced Embedded Systems project’s goal is to update the EyeBot hardware
and software. EyeSim is the Eyebot’s simulator; a multiple mobile robot simulator
that runs Eyebot programs and models a robots movement and sensors. The purpose
of this project involves the porting of the EyeSim simulator from Windows to Mac
Operating Systems. A brief overview of simulators, their history and operation is
covered. An in-depth look at the workings of the EyeSim simulator is presented. The
author provides the porting process, including version control, the installation of the
latest versions of open source libraries, bugs and their solutions and debugging
methods. The final results are presented, along with suggestions for further work for
the updating of EyeSim.

3

Acknowledgments

The author would like to thank:

His supervisor Professor Thomas Bräunl, from whom I have learnt a lot over the
course of the project.

His fellow Advanced Embedded systems team members: Thomas Smith and Stuart
Howard for the help they gave him.

His friends and family for the support they have given him throughout the project.

5

Table of Contents
Abstract ... 2
Acknowledgments .. 3
Letter of Transmittal ... 4
Introduction .. 6
Literature Review ... 8

Player/Stage .. 9
Gazebo ... 10
ROS .. 11
Webots .. 11
TeamBots ... 12
A detailed examination of EyeSim.. 14

Scope of Project .. 15
Process ... 16

Method .. 16
Open Source Libraries .. 16
Makefile .. 17
Editing the EyeSim source code .. 17
Debugging the EyseSim Executable .. 19
Scripts .. 23

Results and Discussion .. 23
Current Problems with EyeSim on Mac ... 25

Future Work ... 27
Appendix A ... 29
Appendix B ... 30

Bibliography.. 31

Figure 1: The EyeBot (Bräunl, 2008) ... 6
Figure 2: A view of EyeSim on Windows (Bräunl, 2008) ... 7
Figure 3: A view of the old EyeBot menu (Bräunl, 2008)... 7
Figure 4: A view of Stage (Player Project, 2014) .. 10
Figure 5: A view of Gazebo (Gazebo, 2014) .. 10
Figure 6: A view of the Webots interface (Webots, 2014) .. 11
Figure 7: A Webots mobile robot model (Webots, 2014) ... 12
Figure 8: TeamBots soccer map (TeamBots, 2014) .. 12
Figure: 9 EyeSim Sim File .. 15
Figure 10: Linking of Static Libraries (Apple, 2014) ... 20
Figure 11: Linking of Dynamic Libraries (Apple, 2014) .. 21
Figure 12: A view of EyeSim running on Mac .. 24

file:///C:/Users/Bram/Desktop/REPORT%20V4.docx%23_Toc402126421
file:///C:/Users/Bram/Desktop/REPORT%20V4.docx%23_Toc402126422
file:///C:/Users/Bram/Desktop/REPORT%20V4.docx%23_Toc402126423
file:///C:/Users/Bram/Desktop/REPORT%20V4.docx%23_Toc402126429

6

Introduction

The EyeBot, shown in Figure 1, is a small programmable mobile robot with a number
of on-board sensors. It is used in research and teaching at UWA. It has also been used
in a variety of other configurations such as walking, aerial and underwater robots. The
previous version of EyeBot is controlled using the ‘EyeCon’, a 32 bit Motorola
M68332 embedded controller that provides an interface for a digital camera (Bräunl,
2008). This is old and slow and needs to be updated. The new EyeBot controller has
been chosen: the Raspberry Pi. The overall goal of this project is to modernize the
EyeBot software and hardware to make it more functional, user friendly and up to
date.

To achieve this goal a number of tasks need to be completed, namely:

x Port the operation of the EyeBot from the Motorola controller to the
Raspberry Pi, as the Raspberry Pi is faster, newer and more robust.

x Update the operating system library functions (called RoBIOS), particularly
the camera functions, to accommodate the new onboard computer.

x Manufacture a USB expansion board to interface between the Raspberry Pi
and inputs/outputs.

x Update the EyeBot Simulator (EyeSim) to reflect the physical changes to the
EyeBot.

Figure 1: The EyeBot (Bräunl, 2008)

7

The purpose of this particular project is updating the EyeSim simulator.

The current version of EyeSim (version 6) runs on the Windows operating system,
and its display is shown in Figure 2. The updated version is required to run on both
Windows and Mac OS X. This will allow more people to access the software. The
simulator’s Graphical User Interface (GUI) also needs to be updated to reflect the
changes in the new EyeBot GUI. The old GUI is displayed in Figure 3. The Raspberry
Pi interfaces with a larger colour touch screen compared to the black and white non-
touch screen of the previous version. Finally the changes to the RoBIOS library
functions and new functions needed to be implemented in the simulator.

Figure 3: A view of the old
EyeBot menu (Bräunl, 2008)

Figure 2: A view of EyeSim on Windows (Bräunl, 2008)

8

Literature Review

Simulators are an important part of robotic study, research and development (Aaron
Staranowicz, 2011). They play a role in static manipulators, mobile robots and
manufacturing processes in automated factories. A number of commercial and open-
source robot simulators are available to the public.

In recent years there has been an increased need for robot simulators that are accurate
and robust and easy to use, that will simulate robots, sensors, errors, and control in
virtual environments (Bräunl, 2008). This need is driven by the rise of modern robotic
applications which require autonomous operation, many in close proximity to humans
for example in human-robot interaction (Murphy, 2004), medical robotics (Dan
Stoianovici, 2003) or in robotics for assistive environments (Kim, 2009) In these
cases, as well as many others it is important to test the efficiency, robustness and
safety of new algorithms by dependable and realistic methods. Other uses are for
algorithm optimization and educational purposes, where real robots may be
impractical or too expensive.

Robot simulators have a number of uses, namely:

x Testing robustness and performance of robot design by changing specific

environmental conditions (Aaron Staranowicz, 2011).
x Simulators allow for the conducting of robot research without the need for actual

robots. Studies can be carried out even if the physical model does not actually exist
(Neto, 2010).

x Simulations allow for rapid prototyping. The entire method of building a robot can
change significantly through the use of simulations. Simulations can deal with and
make "on the fly" changes to a robots build without the need to physically rebuild
the entire robot. This is more time and cost effective.

The benefits of robot simulation are:

x They allow for reduced cost (Neto, 2010). Physical robots can be expensive and
simulations may be adequate to achieve desired objectives.

x Simulators can perform thousands of repetitions, faster than real world applications
where inertia must be overcome. This environment is useful to program and model
neural networks and genetic algorithms. These need to gather sizeable amounts of
training data. Real world vehicle runs can be difficult to train in, as they can take
long, and might be dangerous (Bräunl, 2008).

x Simulation can be executed in a “perfect” environment with specified sensor and
actuator errors. This allows for testing of a robot and algorithms for robustness in a
near real-word scenario (Bräunl, 2005). This also allows for proof of concept in

9

ideal conditions.
x The simulation of hundreds of robots can be executed (Webots, 2014). This allows

for the development of swarm algorithms.

The difficulties robot simulators present are:
x The making of unrealistic assumptions about the robot, the environment or the

mechanics.
x The obscuring of a real problem a robot might face.
x Simulators are different to the real world. For example simulating balancing robots

is impractical as there are complex mechanics and too many factors at play. The
disparity between the real world and simulators means that a model that can
balance on the simulator might not balance in the real world and vice versa.

The robotics community has acknowledged the need for more open-source robotic
simulator and interfacing software (Knoll, 2009) (Bruyninckx, 2008), and has started
to increase its interest in these tools and their applications (Aaron Staranowicz, 2011).

Detailed below are some popular robot simulators, a brief description and their
relation to EyeSim:

Player/Stage

Player/Stage (PS) (Player Project, 2014) is a free open-source software project,
released under the GNU General Public Licence. It provides tools for single and
multi-robot interface and control (Aaron Staranowicz, 2011). Player supports a large
range of robotics platforms and sensors. Player is available for Windows, Linux and
Mac OSX.

Stage allows for 2-D simulation of robotic platforms and sensors. Stage’s robotic
models are computationally economical, and therefore allow many robots to be
simulated at the same time, as seen in Figure 4. Stage has the potential to simulate
hundreds of thousands of robots at the same time (Aaron Staranowicz, 2011). Stage
attempts to run at real time (B.P Gerkey, 2003), but will run slower if robotic models
take longer to update. Stage is available on Mac and Linux. Stage relates to EyeSim in
that EyeSim is also a multi robot simulator, useful for indoor environments. Both
Stage and EyeSim rely on FLTK library for the graphical user interface.

10

Figure 4: A view of Stage (Player Project, 2014)

Gazebo

Gazebo (Gazebo, 2014)is a 3-D simulator, a view of which is presented in Figure 5.
Gazebo has been developed to be used in conjunction with Player. Gazebo can utilize
the functions from Player/Stage without modifications. Gazebo uses an Object-
Orientated Graphics Engine (OGRE) (Assaf Raman, 2014)and an Open Dynamics
Engine (ODE) (Smith, 2014) to render 3-D environments, objects and robots. This
allows Gazebo to accurately replicate the environment a robot may confront (Howard,
2004). All simulated objects have mass, friction and other characteristics, that allow
for realistic behaviour upon interaction e.g. if knocked or pulled etc. Gazebo is
available on both Mac and Linux. Gazebo uses OpenGL for the rendering graphics;
similarly EyeSim uses GL or OpenGL for the same purpose.

Figure 5: A view of Gazebo (Gazebo, 2014)

11

ROS

Robot Operating System (ROS) (ROS, 2014)is an open-source operating system that
provides hardware abstraction, message-passing between processes, low-level device
control and package management. ROS has a growing community of researchers that
contribute to the expansion of ROS through code repositories which are available on
its website (Aaron Staranowicz, 2011). ROS supports Python, C++, Octave and LISP
(Quigley, 2009). Control code is implanted in ROS using nodes, messages, topics and
services to perform task. ROS is available on Mac, Linux and with limited
functionality on Windows.

Webots

Webots (Webots, 2014)is a commercial 3-D simulator, a view of which is depicted in
Figure 6. Models have many customizable attributes such as their shape, mass,
friction and texture. They are provided by the Open Dynamics Engine (ODE) Library
(Smith, 2014). Webots can simulate mobile, humanoid and quadruped robots as well
as a variety of sensors. A view of a mobile robot model is shown in Figure 7. Webots
can transfer programs directly to real world robots via Bluetooth (Aaron Staranowicz,
2011). Programs are coded in C, C++, Java, Python and Matlab. Webots is available
on Windows, Mac and Linux.

Figure 6: A view of the Webots interface (Webots, 2014)

12

Figure 7: A Webots mobile robot model (Webots, 2014)

TeamBots

TeamBots (TeamBots, 2014) is an open-source 2-D mobile robot simulator that
specializes in multi-robot control systems. It has been used to simulate robot soccer,
maze solving and capture the flag competitions as well as navigation of city roads.
The soccer setup is displayed in Figure 8. Programs can be ported directly to the
Nomadic Technologies' Nomad 150 robots. TeamBots runs in a java environment,
which has attracted many complaints. Despite these criticisms, developers have found
that it runs fast enough for its intended purposes. TeamBots is available on Windows,
Mac and Linux. EyeSim is similar to TeamBots in that EyeSim programs can run on
the EyeBot unchanged, as well as possessing a top down view.

Figure 8: TeamBots soccer map (TeamBots, 2014)

13

Below in Table 1 is a comparison of a number of robot simulators

Table 1: Characteristics of a Range of Robotic Simulation Software

 License
Type

OS Simulator
Type

Programming
Language

Portability Sensors Graphical
User
Interface

Webots Comme
rcial

Linux,
Mac,
Win

3-D C, C++, Java,
Matlab,
Python

Yes Odometry,
range,
camera, GPS

Yes

Player/Stage Open-
Source

Linux,
Mac,
Win

2-D Player(any)
Stage(C,
C++, Python,
Java)

Yes Odometry,
range,

No

Gazebo Open-
Source

Linux 3-D C, C++,
Python,
Java

Yes Odometry,
range,
camera

No

ROS Open-
Source

Linux,
Mac,
Win

2-D, 3-D C++,
Python,
Octave,
LISP,
Java, Lua

Yes Odometry,
range,
camera

No

Simbad Open-
Source

Linux,
Mac,
Win

3-D Java Limited Vision,
range,
contact

No

CARMEN Open-
Source

Linux 2-D C, Java Yes Odometry,
range,
GPS

No

USARSim Open-
Source

Linux,
Win

3-D C,C++,Java Yes(Using
Player)

Odometry,
range,
camera,
touch

Yes

MRDS Open-
Source

Win 3-D VPL,C#,Visual
Basic,
JScrpit,Iron-
Python

Yes Odometry,
range,
camera

Yes

MissionLab Open-
Source

Linux 3-D VPL Yes Odometry,
range,

Yes

TeamBots Open-
Source

Linux,
Mac,
Win

2-D Java Yes Odometry,
range

No

EyeSim Open-
Source

Mac,
Win

2-D C,C++ Yes Odometry,
range,
camera

Yes

14

A detailed examination of EyeSim

EyeSim uses a copy of a real robots API (application programming interface) and
features a simulation of all its sensors and actuators, adjustable error models and the
generation of a virtual camera image. The system makes use of the RoBIOS (Robot
Basic Input Output System) API. EyeSim has been used for time-consuming tasks,
such as experiments in Neural Networks and Genetic Programming (Bräunl, 2008), (J
Du, 2003)

EyeSim implements the two levels of driving (Andreas Koestler, 2004), that are
available on RoBIOS as follows:

x A High level driving controller for basic driving operations such as driving in
straight and curved segments, and on the spot turning.

x A low level driving system for simulation of motor actuators, shaft encoders
and feedback for different driving models such as differential drive, Ackerman
steering and omni-directional drive.

EyeSim differs from most simulation implementations (Braunl, 1997)that run
simulations as separate programs or processes that communicate with the application
via a message passing. EyeSim dynamically links the simulation program at run-time
and provides all API system functions for reading data from sensors and motors. The
system relies on FLTK for the GUI (graphical user interface), Commoncpp for cross
platform file operations and OpenGL for graphics.
For each simulation, the system accepts a number of parameters. A number of
optional parameters are detailed in Figure 2below.

Table 2: EyeSim Parameters

Parameter Function
-r simTimeRatio Sets the simulation to real time ratio
-s time Starts the simulation after specified

number of seconds
-d Enables debugging mode
-m Start simulation with minimized GUI

15

The simulation also requires a “Sim File” (simulation file), as seen in Figure: 9
below, which is a file that again contains a number of parameters.

These parameters include a compulsory environment file path, a compulsory “Robi”
file path accompanied by an optional location parameter and a compulsory simulation
program (dynamic library) file path. It may also contain optional object files and
location parameters (Andreas Koestler, 2004)
Environment files describe the driving scenery and can be of the type “world”, or the
simpler “maze” type. Robi files describe the robot type and change the graphical
model displayed. Objects are .ms3d (MilkShape 3-D) files.

Scope of Project

The aim of the project is simple: the porting of EyeSim from the Windows operating
system to the Mac operating system.

The scope of the project is:

x Achieve the same functionality on Mac as the Windows version. This requires
all demo programs to run on Mac, the buttons on the simulator to work and the
way the simulator is started to be the same.

x EyeSim should be cross compatible between operating systems. There should
be an easy way to move from compiling the source code on Windows to Mac
and vice versa. The way functions are implemented on different machines

include ../path.txt

world description file (either one maze one world)

world %sim%/worlds/worlds/Soccer1998.wld

additional obstacles: x,y,theta, friction parameter, image file

object 800 800 0 0.0 %sim%/worlds/objects/can/can.ms3d

robi description file
robi %sim%/robots/SocBot/S4.robi DriveDemo.dll 400 400 0

Figure: 9 EyeSim Sim File

16

should be similar. Different methods should not be used to accomplish the
same task on different machines.

x Maintaining version control. The same files should be used for each function,
no matter which machine it is running on. It is too arduous and inefficient to
keep track of different files and methods for each version of EyeSim.

Process

The process of porting EyeSim from Windows to Mac involved the following steps:

1) Updating and installing open source libraries
2) Editing Makefiles
3) Editing EyeSim source code
4) Porting scripts
5) Debugging executable

The objectives of this cross compilation process were:

x To minimise the differences between the platforms.
x Have only one file for each task e.g. one simulation file instead of one

Windows simulation file and one Mac simulation file.
x All platforms work in the same way.
x Achieve same functionality across all platforms.

Method

This project was completed on a Mac OS X Mavericks (10.9.5). Debugging was done
using ‘Lldb’. ‘Gdb’, the program previously used, has been replaced by Lldb on Mac.
Debugging was done by first localizing the glitch in the source code. Breakpoints
were set at these locations to further find the lines of code causing problems. Once the
problem was identified further inspections were made, either into local variables,
using Lldb, or research on the functions used was carried out.

Open Source Libraries

EyeSim relies on two open source libraries: Commoncpp and FLTK. Open source
libraries are helpful as they provide extra functionality for free. A problem they do
present is currency. Open source libraries have the possibility of becoming out of date
due to a lack of maintenance. The Application Program Interfaces (API’s) that the
unmaintained software relies on may change or be replaced. This results in
incompatibility. There are a number of solutions to this issue. These are:

1) Pay for a library that is updated
2) Write your own library which is time consuming, or
3) Find a new open source library that is updated.

17

Commoncpp

The Commoncpp framework was utilized in EyeSim for portable threading and file
operations (Yurii Rashkovskii, 1998)The version (Commoncpp2-1.6.2) had known
problems compiling on OS X so the most up to date version was used (Commoncpp2-
1.8.2). Despite Commoncpp claims of portability, it provided compilation problems.
The latest update to the framework was November 2010 (GNU, 2014). Changes to the
source code were made to allow for compilation. These changes are detailed in
Appendix A. Following these changes the library was built and installed.

FLTK

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit (Spitzak, 2014).
The latest version of FLTK, released December 2012, was used, as the current version
was not compatible with the updated Commoncpp library. The FLTK source code did
not compile at first and, as a result had to be debugged. The changes made to the
source code are detailed in Appendix A. After these changes the library was built and
installed.

Makefile

After the open source libraries compiled, a new folder, entitled ‘mac’, was added to
the EyeSim source code directory and the Makefile was edited. Changes were made
to the names of the updated libraries, as well as dependencies. The Windows GL
libraries were changed to OpenGL, which are available on Mac.

Editing the EyeSim source code

The next step was to compile the EyeSim source code, with the new Makefile.
Detailed below are the problems that were encountered and their solutions that were
developed.

1) The GL library is available on Windows, but not on Mac. The Mac equivalent is
OpenGL. All instances of GL header files needed to be appended. The way this was
done, for cross compilation, was as follows:

#if defined (_WIN32)
#include <GL/glu.h>
#else
#include <OpenGL/glu.h>
#endif

18

This issue occurred in the following files:
x engine/meTexture.h
x engine/meViewport.h
x src/Main3DView.h
x engine/meSphere.h
x engine/me.h

2) Both engine/me.h and engine/meComponent.h included the header windows.h,
which is not available on Mac. This was dealt with in a similar way to the way the
GL/OpenGL problem was resolved as follows:

#if defined (_WIN32)
#include <windows.h>
#endif

3) At the top of some header files there was the macro definition:

 #define WIN32 1

This was removed to allow for quick cross compilation. It is inefficient to change
these macros every time you change machines. Any dependencies on this macro were
changed to “_WIN32” or “_APPLE_”.

The following files had the WIN32 definition removed:

x engine /me.h
x engine /me3DVector.h
x engine /meBMPImageReader.h
x engine /meCamera.h
x engine /MeCollision.h
x engine /meColor.h
x engine /meContainer.h
x engine /meCuboid.h
x engine /meGenVector.h
x engine /meTexture.h
x engine /meVeiwpoint.h
x engine /meWorldSettings.h

4) In engine/meComponent.h (line 85) and src/sim.h (line 716) single lines of code
did not compile on Mac. Conditional compilation was used to check if the operating
system was Windows.

19

In src/Synchronization.cpp (line 94) the following code was added:

#define EXPORT_FUNC extern "C" __declspec(dllexport)

Line 106 was changed from:

pthread_mutex_t temp ={0, 0, 0, PTHREAD_MUTEX_RECURSIVE/*_NP*/,
__LOCK_INITIALIZER};

to:

pthread_mutex_t temp =PTHREAD_MUTEX_INITIALIZER;

After these changes EyeSim compiled.

Debugging the EyseSim Executable

After EyeSim compiled there were a number of runtime errors. Detailed below are the
problems that were encountered and their solutions that were developed:

1) In src/Synchronization.cpp the CSemaphore() function crashes EyeSim.
Windows supports unnamed semaphores such as sem_init() and sem_destroy(),
however Mac does not (Singh, 2001). Only named semaphores can be used, therefore
the sem_open() and sem_close() functions are used, and replaced the unsupported
function.

2) In src/thread adapter.cpp abort() was called terminating with uncaught exception of
type ost::DSO*. DSO is the class to dynamically load object files cross platform and
is defined in the Commoncpp library (GNU, 2012). This class is utilized for opening
and loading the dynamic library simulation file for each robot, on non-Windows
machines. The issue was not able to be solved by fixing the direct cause of the
problem. The way it was resolved was by implementing a similar approach that the
Windows method used. The Windows method used the function LoadLibrary() found
in the dlfcn.h header file. The new Mac implementation used the dlopen() function
also found in the dlfcn.h header file. The Mac implementation needed to create the
function pointer ‘sim_main’.

In Windows it is executed as follows:

sim_main = (cfunc) GetProcAddress ((HMODULE)hLib, "main");

while in Mac it is executed as follows:

sim_main= (int(*)())dlsym(hLib,"main");

20

The GetProcAddress() function is defined in the Windows header Winbase.h and
there is no corresponding Mac definition. This is where the Commoncpp library
should be beneficial, to be used as the Mac equivalent. However, as seen before, the
issues could not be resolved and a new approach was taken.

3) Once EyeSim was able to load dynamic libraries a problem arose with the actual
libraries. EyeSim would load the library and then try to execute the simulation
program, but would exit with the following error:
Undefined symbols for architecture x86_64:
 "_KEYGet", referenced from:
 _main in DriveDemo-14a743.o

Each time a RoBIOS function was called, EyeSim could not find their definitions,
which were defined in the EyeSim application itself in files such as src/rb_lcd.cpp.
The difficulty here is the difference in the way .dll and .dylib files work. Dynamic
libraries are bound at runtime, whereas static libraries are added at the linking phase
as seen in Figure 10 and Figure 11 below.

Figure 10: Linking of Static Libraries (Apple, 2014)

21

Figure 11: Linking of Dynamic Libraries (Apple, 2014)

Windows uses .dll files while Mac uses .dylib files. The main difference between
these is what is visible by default from each file type. Files of type .dylib export the
language level linkage, which means symbols that are "extern" are available for
linking when .dylibs are pulled in. It also means that, at resolving .dylib files is a link
step, the loader doesn't mind which .dylib file a symbol comes from. It just searches
the specific .dylib files.

By contrast .dll files are an operating system feature, completely separate to the link
step. The .dll file has no dangling references. Instead, an admission to methods,
functions and data goes through a lookup table. This means that DLL code does not
have to be fixed up at runtime to refer to the program’s memory. Instead, the lookup
table is changed at runtime to point to the functions and data.

To create the .dylib files the following lines of shell script were used:

g++ shared -fno-common -Wall -dynamiclib -undefined suppress -
flat_namespace -I../include $*

Sim.h had the following code added at line 47:

#elif defined __APPLE__
#define EXPORT_FUNC extern "C" __attribute__ ((visibility ("default")))//
#else

This code segment ensured that the symbols in the dynamics libraries were visible.

22

A lot of care needs to be taken when creating .dylib files. Use of the otool and
install_name_tool are important Terminal utilities to examine the visibility of symbols
and ensure the correct install paths and versions. These tools are discussed in the
section ‘Installing EyeSim’.
 ‘Installing EyeSim’.

4) EyeSim then crashed with the exception type ‘EXC_BAD_ACCESS (SIGSEGV)’.
This error is a segmentation fault, and in this case is caused by trying to call an
OpenGL command without a ‘context’. An OpenGL context is a data structure that
stores all the states of an OpenGL instance (Apple, 2014). To remedy this issue a call
to CGLGetCurrentContext() is made, which returns the current rendering process.
This ensures that any subsequent OpenGL commands have a context associated with
them, and do not cause a segmentation fault.

Main3DView.cpp is edited at line 67 in the following way:

#ifdef __APPLE__
CGLGetCurrentContext();
#endif

The CGLGetCurrentContext() function is defined in OpenGL.h, so this header is
included in Main3DView.h as follows:

#ifdef __APPLE__
#include <OpenGL/OpenGL.h>
#endif

5) When loading World files, mazes were not loading properly. Maze files are text
files with symbols representing the maze. The root cause of the problem is that the
Windows and the Mac use different newline characters. Windows uses ‘\n’ while Mac
uses ‘\r’. This meant that when the parser came to an ‘\r’ character, it did not treat it
as a newline. To fix this, a new case was added to the switch-case statement in the
following way, so that the map drawing function would stop drawing at the
appropriate time:

In world.cpp line 1422 and line 1270

#ifdef __APPLE__
case '\r':
#endif

23

Scripts

Scripts and Makefiles are used to compile the simulation programs,.
Batch files are utilized on Windows machines, but these are not available on Mac
devices. However shell scripts are available. A new shell script called
gccsimMAC.sh was created, with the same functionality as the gccsim.bat batch
file. The updated Makeincl file decides which script to execute.

The Makefile would include the file Makeincl. This script recognizes which operating
system it is on and defines common operation. The pseudo code for the Makeincl is as
follows:

ifeq ($(shell ver),)
 PLATFORM = UNIX
 COPY = cp -f
 RM = rm -f
 TMPDIR = /tmp

else
 PLATFORM = DOS/Windows
 COPY = copy
 RM = del
 TMPDIR = .
endif

The line that would decide which Operating System it is currently on, would not work
on Mac and so none of the script worked. The command ‘ver’ was changed to
‘uname,’ which provides the operating system name on both Windows and Mac
machines (GNU, 2012). Another two definitions were added, namely GCCSIM and
LIBSUFFIX. GCCSIM defines the name of the script to run i.e. the gccsim batch
script for Windows or gccsimMAC.sh shell script for Mac. To run shell scripts the
command ‘sh’ precedes the script name, so for Mac the definition of GCCSIM is:

GCCSIM = bash gccsimNEW2.sh

LIBSUFFIX is the suffix of the dynamic library pertaining to the current Operating
System. It is used to create the file names in the Makefile file. On Windows it is
defined as .dll and on Mac as .dylib.

Results and Discussion

The open source libraries, FLTK and Commoncpp, were compiled and installed on
Mac. Part way through this project, after FLTK was installed correctly, it stopped
working. Attempts at trying to build FLTK again produced compilation errors. During

24

this time, Xcode released an update, and it was thought that this update caused the
issue.

Porting of EyeSim was successful and it now compiles and runs on Mac as seen in
Figure 12 Most functionality has been retained, although with some issues detailed in
the sub-section ‘Current Problems with EyeSim on Mac’.

Figure 12: A view of EyeSim running on Mac

The Scripts and Makefiles work correctly. An important goal of cross compilation is
using the same file over all machines. This means that only one change needs to be
made if there is an update, instead of changing a different file for each platform.

The ‘gccsim’ script is used to work out the linking option needed to create a dynamic
library, to plug into EyeSim. For Windows, Batch scripts only need the file name to
be entered into the command line in order to execute the script. To run Shell scripts
on Mac, the command “sh” or “bash” needs to precede the filename. For Windows
the Makeincl file creates the GCCSIM variable as follows:

GCCSIM = gccsim

On Mac, GCCSIM is as follows:

GCCSIM = bash gccsimMAC.sh

On Mac the compiler executes the gccsimMAC.sh script, with the above
implementation, as desired.

25

All the demo programs that are provided with EyeSim compiled on Mac.

The following demonstration programs ran as expected:

x LowLevelDrive
x RandomDrive
x DetectObject
x DriveDemo
x Wireless
x DriveToBall
x MazeSearch

The following programs did not run correctly:

x Cluster
x MultiTask
x Nerual
x Pantilt
x Randomdrive6
x SoccerDemo
x Genetic prog

The reason that these programs did not run correctly is due to the texture problem as
discussed below in the ‘BitMaps’ sub-section. This is more a problem of 3D models
not loading, than problems with the programs themselves. These 3D models are
objects that are declared in the Sim File.

Current Problems with EyeSim on Mac

On Windows, a click to play icon was created, which launched a simulation command
line tool. Clicking on a Sim file would run that simulation. Currently this feature has
not been implemented on Mac. In its present state, Eyesim is launched from the
terminal in the following way:

$./eyesim SimName.sim

Terminal’s “iconutil” can be used to create the required icon (Apple, 2014).

26

Sim files in their current form are not cross-platform compatible. Sim files include the
file path.txt, which gives the location of the EyeSim application and the worlds,
robots and object files. Path.txt has one line:

define sim /path/to/eyesim

In batch files, sim is called as %sim%. This works correctly and points to the file
location needed. However on Mac, this does not work. When the “sim” variable is
called as $(sim), it is interpreted as “$(sim)” and not the contents of the variable sim.
A solution to this issue has not been found yet.

BitMaps

The textures for objects and world floors are produced from Bitmap images of file
type .bmp. These images are only available on Windows (Microsoft, 2014). The
MS3D (MilkShape 3-D) model needs to be changed from using the .bmp file format
to a more portable format such as JPEG. This feature is not integral to the running of
EyeSim, nevertheless it has a superior look when the floor is the correct colour and
objects appear to be more realistic. A MilkShape 3-D licence is needed to save .ms3d
files. The floor texture images were saved in JPEG format, but the image would not
appear. EyeSim has a member function meBMPImageReader, which reads bitmaps,
and an equivalent needs to be created to read other file types. Another project group is
currently working on replacing MilkShape with Blender, another modelling software
package.

The pause button presently hangs the program when pushed. It should stop the robots
from moving, pause the dynamic library program, and pause time. It is not understood
why this occurs. It is theorized that there is a problem with the threading, and that the
threads become out of sync.

A feature that could be implemented in the future is the ability to manipulate the users
viewpoint. Currently the view is constrained to a 2-D top view. A 3-D view would
work in a similar manner to the way a simulated robot’s camera field of view is
calculated and displayed.

Installing EyeSim

Upon trying to use EyeSim on another Mac computer a number of faults arose, which
are all caused by the same problem: dynamic libraries. While making EyeSim on a
new Mac, linking errors arose from the dependant dynamic libraries. When trying to
run an already made EyeSim, all dependant dynamic libraries were not found. These
problems were due to the fact that dynamic libraries need to be ‘installed’ in their
current directory. That is if you copy a dynamic library to a new location or machine

27

(thereby changing its absolute path) it has not been installed in the new location. The
shell command:

$ otool –L foo.dylib

is used to investigate a dynamic library and display its install path.

The command:

$ install_name_tool –id foo.dylib

and

$ install_name_tool –change OLD/path/name/foo.dylib
NEW/path/name/foo.dylib

are used to install a dynamic library to a directory. Using the ‘otool’ command once
again will verify the install path change.

A script was created to execute this process of changing the install paths of all
dependencies so that EyeSim will work on new Macs, as shown in Appendix B.

The way EyeSim is deployed on Mac is by copying the EyeSim executable, the
include headers, robot files, world files, object files, compiling scripts, and a
dependencies folder. This dependencies folder contains all the .dylib files that EyeSim
relies on. Before running EyeSim the ‘installScript.sh’ script needs to be executed, so
that the dynamic libraries are installed to the correct path, and can be used.

Future Work

There are still many facets of EyeSim that need to be upgraded. The graphical user
interface (GUI) needs to be upgraded in both its physical appearance and function.
The new Raspberry Pi and Beagle Board screens are touch-sensitive and this
functionality needs to be implemented. FLTKs DEVICE_TOUCH and
DEVICE_MOUSE events can be utilized (Spitzak, 2014).

The size of the screen is different for the Raspberry Pi, Beagle Board and the old
EyeBot. This should be represented in the simulator. In the Simulation file, an
optional parameter could be constructed to indicate the desired screen size, or use a
preset size. Another project group is currently working on this aspect of the simulator.

As the RoBIOS functions are updated to manage the new hardware, so too, the
EyeSim’s versions of the RoBIOS functions need to change. These are implemented

28

in the ‘rb’ source files e.g. rb_lcd.cpp. It is important to note that the EyeSim’s
version of the RoBIOS functions are high level and only apply the result of a function
not the inner workings. For example the drive function in the real world turn the
motors on and then the robot would move as a result. In the simulator, there are no
motors so the robot is manipulated forward. Once again another project group is
currently working on this aspect of the simulator.

The next stages of development of EyeSim should be moving away from
Commoncpp and FLTK. FLTK can perhaps be replaced with ‘Qt’, a more up-to-date
and portable software package. EyeSim can also be ported to Linux and this should
not be difficult as Mac OS X is similar to Linux. Other features like 3-D viewing and
the option to change viewpoint can be included.

29

Appendix A

Changes to compile and install Commoncpp-1.8.1 on Mac

In inc/string.h
Line 734 change to:
friend __EXPORT std::istream &getline(std::istream &is, String &str);//, char
delim = '\n', size_t size = 0);

Line 115 change to:
public:

In src/applog.cpp
Line 48 add:
#include <sys/types.h>
#include <sys/stat.h>

In inc/file.h
Line 63 add:
#include <cc++/serial.h>

Comment out line 80

Line 153 – 155 change to:
accessReadOnly = O_RDONLY,GENERIC_READ,
accessWriteOnly = O_WRONLY,GENERIC_WRITE,
accessReadWrite = O_RDWR,GENERIC_READ | GENERIC_WRITE

In inc/serial.h
Line 61 change to:
#define INVALID_HANDLE_VALUE -1

Changes to compile and install FLTK-1.3.2 on Mac

In Type_FL.cpp
Line 39 change to:
friend Fl_Widget *make_type_browser(int,int,int,int,const char *l);

30

Appendix B

Script to install .dylib libraries - installScript.sh

This script is used to install EyeSim’s dependent dynamic libraries.

#!/bin/bash

LIBPATH="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

DYLIBS="libfltk_forms.dylib libfltk_gl.dylib libfltk_images.dylib libfltk.dylib
libccgnu2.dylib libccgnu2-1.8.0.dylib"

for DYLIB in ${DYLIBS} ; do
LIBFILE=${LIBPATH}/${DYLIB}
DYLIBID=`otool -DX ${LIBPATH}/$DYLIB`
NEWDYLIBID=${NEWLIBPATH}/${DYLIB}
install_name_tool -id ${NEWDYLIBID} ${LIBFILE}
install_name_tool -change ${DYLIBID} ${NEWDYLIBID} ../eyesim
done

31

Bibliography

Aaron Staranowicz, G. L. M., 2011. A survey and comparison of commercial and
open-source robotic simulator software. p. 56.
Andreas Koestler, T. B., 2004. Mobile Robot Simulation with Realistic Error
Models.

Apple, 2014. Dynamic Library Programming Topics: Overview of Dynamic
Libraries. [Online]
Available at:
https://developer.apple.com/library/mac/documentation/developertools/conc
eptual/dynamiclibraries/100Articles/OverviewOfDynamicLibraries.html#//app
le_ref/doc/uid/TP40001873-SW2
[Accessed September 2014].

Apple, 2014. OpenGL Programming Guide for Mac: Working with Rendering
Contexts. [Online]
Available at:
https://developer.apple.com/library/mac/documentation/graphicsimaging/con
ceptual/opengl-
macprogguide/opengl_contexts/opengl_contexts.html#//apple_ref/doc/uid/TP
40001987-CH216-SW12
[Accessed August 2014].

Assaf Raman, J. B., 2014. OGRE – Open Source 3D Graphics Engine. [Online]
Available at: http://www.ogre3d.org/
[Accessed 4 10 2014].

B.P Gerkey, R. V. a. A. H., 2003. The player/stage project: Tools for multi-robot
and distributed sensor systems. Proceedings of the 11th International Conference
on Advanced Robotics, pp. 317--323.

Bräunl, K. W., 2005. Mobile Robots between Simulation and Reality. Servo
Magazine, 3(1), pp. 43-50.

Braunl, S., 1997. Mobile robot simulation with sonar sensors and cameras.
Simulation, 69(5), pp. 277--282.

Bräunl, T., 2008. Embedded robotics: mobile robot design and applications with
embedded systems. Berlin: Springer.

Bruyninckx, H., 2008. Robotics software: The future should be open. IEEE
Robotics Automation Magazine.

Dan Stoianovici, R. H. T., 2003. Medical robotics in computer-integrated surgery.
Robotics and Automation, IEEE Transactions on, 19(5), pp. 765--781.

32

FLTK, 2014. Download - Fast Light Toolkit (FLTK). [Online]
Available at: http://www.fltk.org/software.php
[Accessed 2014].

Gazebo, 2014. Gazebo. [Online]
Available at: http://gazebosim.org/
[Accessed 1 10 2014].

GNU, 2012. GNU Bayonne 2: ost::DSO Class Reference. [Online]
Available at: http://www.gnutelephony.org/doxy/bayonne2/a00083.html
[Accessed October 2014].

GNU, 2014. Commoncpp Change Log. [Online]
Available at: http://www.hyperrealm.com/commoncpp/ChangeLog.txt
[Accessed 2014].

Howard, N. K., 2004. Design and use paradigms for gazebo, an open-source multi-
robot simulator. IEEE/RSJ International Conference on Intelligent Robot and
Systems, Volume 3, pp. 2149--2154.

J Du, T. B., 2003. Collaborative Cube Clustering with Local Image Processing.
Proc. of the 2nd Intl. Symposium on Autonomous Minirobots for Research and
Edutainment.

Kim, L. B., 2009. An empirical study with simulated adl tasks using a vision-
guided assistive robot arm. IEEE International Conference on Rehabilitation, pp.
504--509.

Knoll, H., 2009. Workshop on Open-Source Software. [Online]
Available at: http://www.openrtp.jp/icra09_workshop/
Michael Abbott, R. A. e. a., 2014. Building C and C++ Extensions on Windows.
[Online]
Available at: https://docs.python.org/2/extending/windows.html#differences-
between-unix-and-windows
[Accessed June 2014].

Microsoft, 2014. BITMAP structure (Windows) - Msdn.microsoft.com. [Online]
Available at: http://msdn.microsoft.com/en-
us/library/windows/desktop/dd183371(v=vs.85).aspx
[Accessed 22 9 2014].

Murphy, R. R., 2004. Human-robot interaction in rescue robotics. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 34(2),
pp. 138--153.

Neto, P. M., 2010. Robot path simulation: a low cost solution based on CAD. pp.
333--338.

33

Player Project, 2014. Player Project. [Online]
Available at: http://playerstage.sourceforge.net/

Quigley, M. C. K. G. B. F. J. F. T. L. J. W. R. a. N. A., 2009. ROS: an open-source Robot
Operating System. International Conference on Robotics and Automation
Workshop on Open Source Software.

ROS, 2014. ROS.org | Powering the world's robots. [Online]
Available at: http://www.ros.org/
[Accessed 3 10 2014].

Scacchi, W., 2002. Understanding the Requirements for Developing Open Source
Software Systems. IEE Proceedings, Febuary.p. 29840.

Singh, A., 2001. Mac OS X Internals: A Systems Approach. s.l.:Addison-Wesley
Professional.

Smith, R., 2014. Open Dynamics Engine - home. [Online]
Available at: http://www.ode.org/
[Accessed 10 2014].

Spitzak, B., 2014. Fast Light Toolkit - Fast Light Toolkit (FLTK). [Online]
Available at: http://www.fltk.org/index.php
[Accessed 7 10 2014].

TeamBots, 2014. TeamBots(tm). [Online]
Available at: http://www.teambots.org/
[Accessed 3 10 2014].

Webots, 2014. Webots: robot simulator - Features. [Online]
Available at: http://www.cyberbotics.com/features
[Accessed 12 9 2014].

Yurii Rashkovskii, D. S. C. V. J. C. S. C., 1998. GNU Operating System. [Online]
Available at: http://www.gnu.org/software/commoncpp/
[Accessed 12 05 2014].

