

�

Abstract — Recently, there has been a lot of interest in the
application of autonomous flight with small unmanned aerial
vehicles (UAV’s). Research was taken with the Robotics and
Automation Labratory at the University of Western Australiain
this area with a Hexacopter UAV to see if such a platform could
be developed for various Search and Rescue applications,
building upon work started last year.

Using pre-existing components, a system was developed
capable of autonomously mapping an outdoor area and returning
information to the user about any interesting features. This thesis
focused on the navigational capabilities of the Hexacopter system
and how well it could be made to move between locations.

The performance of the platform was sufficiently upgraded,
allowing it to be operated in a much more precise, controlled
manner which would have been needed for our intended
applications.

I. INTRODUCTION

A. Background
Aerial vehicles present an exciting and interesting area for

research. There has recently been a lot of growth in this area,
especially with regards to unmanned flight. The University of
Western Australia Robotics and Automation Laboratory began
a project last year investigating the capabilities of a small,
autonomous platform that could be programmed to do a
variety of tasks. The project was run by Professor Thomas
Bräunl and Chris Croft along with the final year students Chris
Venables and Rory O‟Connor.

Together, they managed to develop a Hexacopter UAV
(Unmanned Aerial Vehicle) platform capable of position
tracking, along with on-board image processing [1][2]. The
goal this year was to further develop that platform into a more
robust system that could then be sent different objectives in
flight, check for objects of interest and be controlled via a web
interface.

My particular area of focus was on the Autonomous
Navigation, concentrating on ways to optimise the motion of
the Hexacopter. It wanted to be seen if it were possible to
improve upon the navigation methods developed last year and
have the Hexacopter perform some sort of ordered search,
rather than simply fly to random locations.

This paper was submitted to the Mechanical Engineering Office and the

University printing company UniPrint at the University of Western Australia
on the 26th of October 2014 as my MCTX4422 Final Year Project Engineering
Thesis, both times in an electronic format and typed according to the IEEE
2013 Standard.

This Thesis was supervised by Professor Dr. Thomas Bräunl and Chris
Croft and done in a group with the students Michael Baxter, Alexander Mazur
and Merrick Cloete.

B. Hexacopters
There are several different models of small, remote-

controlled UAV‟s available commercially. The model being
currently used is a Hexacopter, a small helicopter-like vehicle
with six sets of rotor vertical blades, as shown below. A
Hexacopter was determined to be the most suitable design last
year as it was capable of vertically taking off, but also had
redundant components in case of failure [1].

Fig. 1 - DJI F550 Hexacopter

Rather than create their own platform from scratch, the
team last year selected a pre-existing Hexacopter platform to
make their own changes to. The DJI Flamewheel F550 was
chosen as the most capable design as it came with a pre-
existing flight controller that offered better control than any
corresponding open source models [1]. The F550 has its rotors
arranged in a Hexa-V formation, as is shown below in Error!
Reference source not found., where the six blades are spaced
equidistant around the outside of the Hexacopter, each
spinning in the opposite direction to those adjacent to prevent
the Hexacopter from rotating. Two of the arms form a „V‟ at
the front of the craft and are coloured red to help the pilot
identify which way the craft is facing while it is in the air.
Further information about the F550 can be found in Appendix
A.

O. Targhagh

Autonomous Navigation of Unmanned Aerial
Vehicles (October 2014)

1

Fig. 2 - Layout of Hexacopter Blades

C. Navigation
In order for any robotic system to operate autonomously, it

must have some sort of feedback about its position and
orientation. Since a Hexacopter is capable of moving in three
dimensions, this would indicate that a total of six different
coordinates would be needed to record position and
orientation, which can be seen below in Fig. 3. However our
problem can be simplified by taking into account the
mechanical restrictions the Hexacopter structure imposes on
the system.

Fig. 3 - General Body Coordinates for an Aircraft [3]

Due to the lift generated by each of the blades, the
Hexacopter will self-correct if it undergoes any small
perturbations in its pitch and roll, provided it does not get
perturbed so far that it flips over. Also, for reasons that I will
explain later, the height of the Hexacopter was made to always
be controlled manually. This reduces the three dimensional
problem indicated earlier to a much simpler two dimensional
one, requiring only three coordinates – two for position (x and
y) and one for orientation (yaw) – that we needed to consider.

Although several methods for a UAV to determine its
position with respect to some local coordinate system exist,
these would require a pre-built environment for the UAV to
operate in. As we wished develop a system capable of
operating in many different outdoor environments, it was
decided that we would need to use some form of universal

method to determine the UAV‟s position. The most
straightforward method to implement was with a GPS, or
Global Positioning System, as these are frequently used a
variety of outdoor setting, not just robotics.

D. Search Patterns
Once the UAV knows its position, it can then be given

flight objectives in the form of position coordinates and then
fly to them in turn. However having the user enter all these
manually could be time consuming and required the user to be
experienced enough to know what the best search pattern
would be. In order to remove the emphasis on operator
knowledge and to make it easier for unexperienced users to
access the system via the web interface, it wanted to be seen if
the Hexacopter could be made to follow a flight path that it
generated itself, given very little user input, such as a start and
finish location.

In Search and Rescue, one of the most common patterns
used to scan over an area by air is the Creeping Line pattern
[5]. As shown below, this pattern involves making alternating
parallel sweeps of a target area, allowing the whole area to be
covered in a relatively short time.

Fig. 4 – Creeping Line Search Pattern [5]

 This pattern is especially useful when the objects that you
are looking for can be anywhere within the area. For Search
and Rescue operations this is ideal as we would have no pre-
existing information about the location of any people or
objects we would be looking for. Several other resources
examined confirmed that this would be the best case for our
purposes, as well as listing other patterns used for aerial
searches. These additional patterns are mentioned in Appendix
B.

E. Literature Review
Before we started our project, it was important for us to get

an idea of the current state of the field. While the most helpful
resources were the papers of the students who worked on
robotics projects at this university last year, there were still a
lot of other additional resources available in areas such as GPS
tracking and aerial navigation. A full summary of these
resources that I used in this project can be found in Appendix
C.

2

II. EQUIPMENT

A. Manual Flight
Particular care was taken to learn how to control the

Hexacopter manually so that all the relevant capabilities could
then be replicated autonomously. Knowing how to pilot the
craft was also important in case of an emergency, for example
if an error occurred with our software we could confidently
take over and bring the Hexacopter back under control.

Manually, the Hexacopter is controlled by the user sending
it signals via a hand-held controller, which is connected to a
receiver mounted on board the Hexacopter. The receiver then
sends these signals to the Flightboard, a proprietary controller
mounted in the centre of the Hexacopter that analyses the user
commands and converts them into the necessary commands
for each motor. This process can be seen in the figure below,
where the four coordinate channels used to determine the pose
of the Hexacopter are passed to the Flightboard by the
Receiver and then converted to six motor commands.

Fig. 5 - Manual Control Diagram

1) Controller
The controller used was the Futuba 14SG, which allowed us

to use up to 8 different channels to control the Hexacopter [6].
The table below outlines the function of each of the 8 channels
as used in our project. The first four are the coordinate
channels, they allow us to change the position and yaw of the
Hexacopter. The fifth and sixth switch the Hexacopter
between a variety of control modes, the seventh was unused
and the eighth controlled the camera pan, which was used for
the Image Processing. More information about the controller
can be found in Appendix D.

TABLE I

HEXACOPTER CHANNELS

Number Name Function

1 Aileron Strafes Hexacopter Left/Right
2 Elevator Strafes Hexacopter

Forwards/Backwards
3 Throttle Moves Hexacopter Vertically Up

and Down
4 Rudder Rotates Hexacopter on the Spot

5 Mode Control Shifts the Hexacopter between its
own Internal Modes

6 Command Control Shifts Control of the Hexacopter
between Manual and Automatic

7 Gimble Switch 2 Unused

8 Gimble Switch 1 Camera Pan

2) DJI Flamewheel F550 Platform

As mentioned earlier, the Hexacopter platform used in this
project was a Flamewheel F550, developed by DJI industries

[7]. This platform is has 6 motors, each mounted on an arm
connected to two central plates. In between the plates, at the
centre of the Hexacopter is mounted the Flightboard, the
device responsible for converting the flight commands from
the controller into motor commands.

This Flightboard provided several additional features which
were quite useful for our project, such as inbuilt flight
stabilisation, which corrected the position of the Hexacopter if
it was hit by strong winds and adjusted the camera if
necessary. The F550 also came with several safety features,
such as an Automated Recovery System (ARS) that would
return the Hexacopter to its starting location if it lost contact
with the controller and a low-battery warning system that
would land the Hexacopter immediately if it detected that it
did not have sufficient power to keep flying.

3) Batteries

The Hexacopter platform was powered by a single Lithium
Potassium, or LiPo, 11.1 V (3 Cell) rechargeable battery.
These batteries were used as they have a reasonably high
energy density and are used for many industrial multirotor
applications [8]. However good care must be taken with these
batteries in order to prolong their life and ensure that they can
be used over and over again without breaking. Failure to do so
can result in the internal resistance of the batteries
substantially increasing, which is often visible as a bulge or
swelling on the battery.

Generally speaking, LiPo batteries must not be allowed to
drop below about 30% of their maximum charge and
whenever they are being charged, the charging cycle must not
be interrupted early. To make these guidelines easier to
follow, we used a balance charger, the Imaxrc B6AC Pro,
which gave us feedback on the charging progress of the
batteries and also charged each cell equally.

 When new, our batteries gave about 15 minutes of flying
time and took about 2 hours to recharge. However as they
were used more and more often resistance errors began to
creep in. Eventually the batteries held so little charge that the
low voltage thresholds on the Hexacopter would be triggered
only 5 minutes after taking off, making them virtually useless.

At present the batteries have to be replaced and set on
charge manually. While automatic charging stations for
UAV‟s have been proposed [9], as we were only using one
UAV the scale of our operation was not large enough to justify
such a set-up.

B. Autonomous Flight
Of course, although the manual capabilities are important,

the real purpose of the project was to explore the autonomous
capabilities of such a platform. Autonomous control is
important as in some cases an operator may not be able to
move the Hexacopter precisely to where it is needed. Rather
than design a whole new system from scratch, an autonomous
system was used that replicated the signals sent by the
controller, allowing the pilot to switch between manual and
autonomous control in flight.

3

1) Safety
Even while operating a UAV manually, there is a clear and

present risk that someone may be injured as a result, a fact that
we were reminded of when someone was injured in Geralton
after being hit by a Drone [10]. Of course, making the system
autonomous only adds to the danger and we had to ensure that
we were operating in clear and safe manner at all times. In
Australia, the Civil Aviation Safety Authority (CASA) is the
national agency responsible for all aviation safety, including
regulations about autonomous flight. When operating the
Hexacopter, we had to be sure to follow their requirements,
especially making sure we were not operating the Hexacopter
near crowds and that we could instantly take over manually
when it was flying autonomously [11]. A summary of the
relevant CASA regulations for this project can be found in
Appendix E.

2) Raspberry Pi

In order to control the Hexacopter autonomously, a
microcontroller was needed to both replicate the signals
produced by the controller and to calculate when those signals
had to be generated. Rather than use a separate device for
each function, it was decided that it would be easier to simply
use a microcontroller that could do both, which meant that we
could mount fewer devices on the Hexacopter, improving
battery life.

A Raspberry Pi was used as it not only fitted both our
requirements, but also came with several standard software
libraries that reduced the need for complex programming.
Since we had to mount sensors that were USB compatible, the
B+ model with 4 USB ports was the best one for our purposes.
Raspberry Pi‟s also have the property that all their software is
loaded onto an SD card which they then boot from, so that we
could set up multiple cards each with slightly different
software and test them all by switching between SD cards.
Camera chips also specifically designed for the Pi exist,
making it easier to support image processing.

A schematic of the B+ can be seen below, where we can see
that a Raspberry Pi takes a 5V power supply, but the only
power source in the Hexacopter was the 11.1V battery. Rather
than use a separate power supply, a DC-DC converter that
could output 5V was used to step down the supplied voltage to
an appropriate level.

Fig. 6 - Raspberry Pi Schematic, B+ Model [12]

3) PWM Signals
The signals generated by the Controller were Pulse Width

Modulated, or PWM, signals. These were capable of being
reproduced by the Pi, with help of a special software library
known as wiringPi. The signals for each channel had a
frequency of 66.67Hz, with a high pulse time that roughly
ranged from 1200 to 1900 μs. Further details about the value
of each particular channel used can be found in Appendix F.

4) Switching Circuit

In order to determine the flight mode, a switching circuit
was used to change between the controller and the Raspberry
Pi signals. The switching circuit used was developed by
Jonathan Brant, a Senior Electronics Technician working at
the UWA in the faculty of Electrical and Electronic
Engineering and installed on the Hexacopter last year [1]. By
reading a control signal, the switching circuit diverts one of
two input channels to an output channel. Each channel is
capable of supporting up to eight different signals, so it was
more than capable of switching between the controller and the
Raspberry Pi. A diagram showing how the switching circuit
fitted into the circuit can be seen below, with a more detailed
version in Appendix G.

Fig. 7 – Autonomous Control with the Switching Circuit

 It can be seen from the diagram that the Throttle,
responsible for controlling the altitude of the Hexacopter, was
actually hardwired directly into the Flightboard and bypassed
the switching circuit entirely. Although the original intention
had been to also control the altitude autonomously, this proved
too difficult achieve safely as it was strongly dependent on the
remaining power available in the battery. Unfortunately, as we
were using LiPo batteries, this was not a simple linear
relationship and to make matters worse, the exact Voltage-
Current curve varied from battery to battery and slowly
changed over time. This meant that trying to implement
altitude control proved to be too risky to achieve safely and for
this reason the control was simplified to a two dimensional
problem as alluded to earlier.

5) GPS Module

As mentioned earlier, the most suitable way for the
Hexacopter to determine its orientation was with a GPS
system as this could be used in a variety of outdoor settings.
While the F550 comes with its own GPS module, this was
propriety hardware, meaning that it was locked and we could
not access it for our purposes. This meant that we had to
install a separate module for the Raspberry Pi to access so that
it could reliably determine the position of the Hexacopter.

The module selected was the QSTARZ 818X-BT. The main
reason that this model was selected was that it that had been

4

successfully used in other Robotics Projects, including last
year‟s Hexacopter Project [1][2]. However, it was not in any
way inferior to our purposes as it had a standardised USB plug
that the Pi could easily interface with and was capable of
determining a position fix accurate to within 3m in less than
35 seconds. Research of other possible models indicated that
this was one of, or close to, the best available in the field at the
time.

Fig. 8 - QSTARZ 818-X GPS Module

III. SOFTWARE

A. Standardised Libraries

Rather than develop a whole software system for
controlling the Hexacopter from scratch, it was decided that
just as we had modified an existing platform for our uses, we
would also take advantage of the many software libraries also
developed for the Raspberry Pi. The Raspberry Pi is an open-
source piece of hardware, and its creators have strongly
encouraged the creation of software by its users, so a lot of
people have developed software for others to use. In
particular, a lot of the low-level functionality of the Pi such as
reading and sending digital signals already existed.

1) Raspian

Raspian is a Linux based operating system (OS) provided
by the Raspberry Pi Foundation that can be installed on a
Raspberry Pi allowing it to boot up in a manner similar to that
of a Desktop computer. Using Raspian meant that we had a
pre-built environment to load and test our own programs
without having to worry about the low-level microcontroller
management of the Pi, which was the main benefit of actually
using a Pi in the first place. The Raspian OS, along with
instructions for its use, can be downloaded from the Raspberry
Pi Foundation website [13].

2) wiringPi

In order to send and receive data with the Pi, the most
common method is to use the General Purpose Input and
Output (GPIO) pins. These allow for more generic interfacing
compared to other data ports such as USB‟s and a lot more
devices can be connected to them. The wiringPi libraries,
allow these pins to be set up for any type of data transfer [14].
While wiringPi also has the ability to create PWM signals, we
found that the signals it could generate were not suitable for
our purposes, similar to what was found last year [1].

3) servoBlaster

To create PWM signals identical to those generated by the
controller, the ServoBlaster library was used as this could

generate PWM signals at the desired frequency in steps of
10µs, fine enough for our needs [15] . These signals were
tested in the laboratory to ensure that they replicated the
desired signals exactly. Appendix F contains further
information about these signals.

B. User Programs
Of course, software did not exist that already covered all of

our design requirements and so we wrote some of our own
programs. Almost all of the programs generated were written
in the C++ language as this was compatible with the low-level
libraries used and could be written up and tested on other
systems.

1) Reading Sensors

Although the GPS module easily interfaced with the
Raspberry Pi through a USB connection, there was no
software provided to process the data so we had to write our
own libraries. Using wiringPi, we were able to read directly
the raw data being emitted by the GPS, which was in National
Maritime GPS Association (NMEA) form.

Fig. 9 - Sample NMEA GPS Data generated by our module

In the raw data, the position data is always expressed as a
string beginning with the header „$GPGGA‟, which can be
seen in the top and bottom sample lines. This string always
contains the the latitude and longitude data, along with their
hemisphere identifiers, separated by commas. This means that
the position data can then be extracted by scanning the input
from the GPS until a string with the appropriate header is
found, then counting along the commas until the appropriate
location.

Once the raw data had been identified, it had to be
converted into an appropriate form. According to NMEA
standards [16], the latitude (or longitude) is represented as a
decimal number which is equal to one hundred times the
degree value of the latitude (or longitude) plus the number of
arc minutes, along with a character representing what
hemisphere the GPS is in. This can be converted into an
absolute value in of degrees by the formulas shown below.

 (⌊

⌋ ())

 ()

 (⌊

⌋ ())

 ()

$GPGGA,050126.000,3158.7593,S,11548.9611,E,1,
5,5.84,18.6,M,-29.4,M,,*51
$GPGSA,M,3,30,26,15,07,28,,,,,,,,6.15,5.84,1.92*01
$GPGSV,3,1,11,28,69,137,33,26,56,212,36,05,40,30
7,,30,37,125,33*7C
$GPGSV,3,2,11,13,32,058,,17,27,038,,15,18,225,15,
10,14,359,*79
$GPGSV,3,3,11,07,10,105,17,09,01,048,,46,,,*7B
$GPRMC,050126.000,A,3158.7593,S,11548.9611,E,
0.58,346.65,261014,,,A*7D
$GPGGA,050126.200,3158.7592,S,11548.9611,E,1,
5,5.84,18.6,M,-29.4,M,,*52

5

Where:

� is the latitude, in degrees
� is the longitude, in degrees
� is the raw latitude value outputted by the

GPS, in NMEA format
� is the raw longitude value outputted by the

GPS, in NMEA format
� is 1 if the latitude hemisphere character

is „N‟, -1 if it is „S‟
� is 1 if the longitude hemisphere

character is „E‟, -1 if it is „W‟
� ⌊ ⌋ is the floor, or whole number part, of
� is the modulo, or remainder operator

2) Waypoint Navigation
In order to travel between locations, the Hexacopter would

measure its current position and compare that to its target. By
determining the compass bearing between the two locations,
this could then be converted into channel commands for the
Hexacopter, based on its current orientation.

To determine its current orientation without a compass, the
Hexacopter had to perform a bearing test so that it could
calculate its bearing using only a GPS. It did this by
measuring its current GPS location, then flying forwards for
several seconds, then measuring its new location. By
comparing the latitude and longitude of where it started and
finished, its orientation could then be determined.

In a similar manner, the compass bearing the Hexacopter
had to fly in could then be determined by comparing its
current position to its target. Then, by comparing the bearing
with the Hexacopter orientation, the relative direction the
Hexacopter had to travel in could be determined. As we had
no feedback about the orientation, the rudder command was
set to zero so that the orientation would remain constant.

However while this gave a relative indication of the Aileron
and Elevator commands, it gave no information about their
actual values. This was calculated by determining the distance
between the start and end positions, then using a proportional,
or P, controller to determine their actual values. Since the start
and end positions were points on a sphere, the Haversine
formulas below in (3) and (4) was used to determine the
distance, similar to what was used last year [1][2].

 (√ (

) () () (

)) ()

 (
 () ()

 () () () () ()
) ()

Where:

� is the starting latitude
� is the stating longitude
� is the ending latitude
� is the ending longitude
� is the radius of the Earth

Fig. 10 - Process the Hexacopter would use to fly to a waypoint

3) Creeping Line Search

In order to search a target area in a Creeping Line pattern,
the overall area was broken down into a series of target points
so that it all the points ordered into a flight and then the
method of flying to the waypoints could be called iteratively
until all of the points had been reached. The area to search was
assumed to be rectangular and aligned with lines of latitude
and longitude as this allowed the Pi to calculate the internal
points much quicker.

To calculate the points, the start and end points were fed
into the program, which were then used to calculate all four
corner points. From these, the ends of the sweeps were
determined. Finally, intermediate points along the sweeps

6

were also calculated in order to improve the accuracy of the
flight, as can be seen in the figure below.

Fig. 11 – Generated points for the Creeping Line Pattern. The
Red points are the starting locations, the Blue points are the ends
of the sweeps and the Green points are the intermediate points.
Background image courtesy of WDSOT, 1997 [5]

 The flow chart following shows the overall flow of the
Program used to fly to each point in the Creeping Line Pattern.
Firstly, the Hexacopter would check that the GPS Module was
attached and that sensible data could be read from it, in order
to prevent the Hexacopter flying without a proper position fix.
Then, the Hexacopter would generate all the points it had to
fly to before waiting to be put into autonomous mode. Once it
had permission to do so, it would then fly to each point in the
list, checking the whole time that it was still allowed to be
flying autonomously. If it was switched back into Manual
mode, or it finished flying to all the points, it would then stop
flying and exit the program. While the stop command would
be ignored if it had been switched back into Manual mode,
this was still important to include so that the Hexacopter
would not continue to fly off in a random direction if it were
inadvertently switched back.

Fig. 12 - Generation of the Creeping Line Search Pattern

4) Image Processing

Of course, it was important that the Hexacopter was able to
more than just fly around. Software was developed allowing it
to process images in-flight using the Raspberry Pi Camera. To
overcome the fact that we would be investigating objects some
distance away, a Hue, Saturation and Value (HSV) scheme
was used to identify colours as this was found to be superior to
the Red Green Blue (RGB) system that is conventionally used
in image processing.

In order to perform the Image Processing, the Raspberry Pi
Camera module was used to capture images while in the air.
While this module is normally capable of taking images with a
resolution of pixels, it was found that this was
much too slow for our purposes. By reducing the resolution to
a quarter of its standard value – pixels – we were
able to get image processing speeds up to around 25 frames
per second, almost fast enough so that the video feed would
not seem jerky to an observer.

Most of the actual processing was done using the Open CV
libraries which are used in a variety of Linux systems, not
only Raspian. These libraries were used to perform a mean-
shift search on the image so that the Hexacopter would be
capable of tracking multiple objects at once.

7

Fig. 13 - HSV Colour Wheel [17]

5) Web Server

All of our programs would be useless if they could not be
accessed readily and easily. A web interface was developed so
that users would be able to send commands to the Hexacopter
in flight, from everyday devices such as a smartphone or a
laptop.

The server was hosted on a network that the Pi generated
itself on boot, meaning that a user could connect by simply
being in Wi-Fi range, several hundred meters in our case, and
then opening a website on a browser. For security reasons, the
network was made password-protected so that we could
restrict access and be sure no unauthorised flight commands
were being sent to the Hexacopter.

The website was designed to be very user friendly,
displaying the location of the Hexacopter superimposed over a
satellite map of the local area, with a trace visually recording
the flight path. Users could also see the live camera feed being
streamed down from the Raspberry Pi Camera.

C. Overall Layout
The diagram below shows the overall structure of the

software installed on the Pi for this project. The bottom or
„Base‟ level contains all of the basic libraries that were used
throughout most of our programs. The middle, or „Modules‟
level used elements from several of the Base libraries and
combined into self-contained programs that fulfilled a specific
purpose such as Navigating via GPS locations or analysing
images. Most of the code that I wrote for this project was in
this level. Finally, the top or „Applications‟ level had
programs that wrapped around the files from the Modules
level and allowed them to be used in actual programs that
could them be used on the PI, either via the Web Interface or
smaller testing programs that only considered a particular
aaspect.

Web Server

Navigation Image Processing

Pi Testing Programs

Open CVservoBlasterWiring PiGPS Reading

Fig. 14 - Software Structure, with the top ‘Applications’, middle
‘Modules’ and bottom ‘Base’ levels

D. Additional Software
In addition to the software running on the Pi, several other

programs were used in the laboratory to assist with other
functions such as writing code, connecting to the Pi and
receiving feedback from the Hexacopter. As the Pi‟s
processor, while still powerful, was not that fast compared to a
desktop computer, it was often faster for us to write code on
some other machine and then transfer it over to the Pi.

1) PuTTY

Using PuTTY, we were able to connect to the Raspberry Pi
and run programs on it form our own computers using a
terminal interface over a network connection. Similar to that
found when you boot up a Pi, this meant that we could have
multiple students using the same computer, each of us making
their own changes to their part of the program. This was also
handy to use in the field so that we did not have to use a
screen or power in order to get our programs started.

2) WinSCP

While we could run programs on the Pi with PuTTY, we
needed other programs to get files on there in the first place.
WinSCP is a file transfer program for Windows that allows
file to be transferred over two computers using the same
network with a click and drag user interface. This was used in
the lab to transfer files to and from the Hexacopter.

3) NAZA-M Assistant

DJI provided software for users to interact with the
Hexacopter while it was landed. Using the NAZA-M assistant
software, we were able to properly calibrate the Hexacopter
before use and to set up the Flightboard. The interface also
allowed us to get feedback about the PWM signals generated
by the controller. Further information about this software can
be found in Appendix A.

8

IV. FINDINGS

A. GPS Drift
Testing for the error associated with the position bearing of

the QSTARZ GPS indicated that the nominal error quoted by
the manufacturer did not tell the entire story. By leaving the
GPS unit in one place and repeatedly taking position
measurements, we were able to obtain a more accurate
estimate of the error that would be associated with the position
drift of the GPS. As shown in the figure below, this error was
not constantly around 3m, as claimed by the manufacturer, or
around 0 m as it was in reality, but instead slowly increased as
we kept measuring for longer and longer periods.

Fig. 15 - Error in position due to GPS Drift. The orange dashed
line is the nominal error of 3m and the blue solid line is the
measured drift.

Given that the error increased with time, the obvious

solution was to make sure that not much time passed between
the start and end of our flights. Even with new batteries, the
maximum amount of flight time we could get was about
fifteen minutes, but by flying in short bursts of no more than
five minutes at a time, we could ensure that the maximum
possible position error was kept to under a meter.

It was also noted that the accuracy of the GPS decreased
substantially whenever we could not get a sufficiently strong
connection to enough satellites. Measurements in the
laboratory were noted to be substantially less accurate than
those made outside, or on cloudy days. One of the advantages
of using the safety features on the DJI F550 was that we could
tell if it took a long time to start up because its own
GPS/Compass unit would take a while to get a lock, then this
would mean that the Qstarz module used by the Raspberry Pi
would also struggle to obtain a strong signal.

B. Waypoint Accuracy
Once we knew the accuracy of our GPS, we knew what sort

of error we would have to expect in our flight. As the error
from the GPS could not be ignored, this meant that we could
never be sure that we were exactly where the GPS claimed we
were, so we could be trying to fly to a point but never exactly
reach it, because the GPS would drift around too much.

To overcome this, we had to include an allowance for some
positional error whenever we attempted to reach a waypoint.
So rather than considering our waypoints as points, we had to
consider them as circles and assume that the point had been
„reached‟ when the Hexacopter was inside that circle. By
tightening the bounds more and more, managed to get more
and more accurate runs and we were able to use targets as
small as one meter.

However while reducing the size of our target circles
improved accuracy, it also led to other problems. When using
a proportional controller to determine speed, as we got closer
and closer to the waypoint, the Hexacopter travelled slower
and slower. This meant that our runs took longer to complete,
increasing the risk of GPS drift as mentioned above. Also, the
Flightboard interpreted any motor commands close to zero as
zero, as a safety feature in case of improper calibration, so
sometimes the Hexacopter did not move at all if it was given
very small commands.

Clearly, something better was needed and so we switched
from a simple P (proportional) controller to a PI (Proportional
and Integral) one. By using a discrete PI controller, as seen in
(5), we not only considered the present error in the position of
the Hexacopter but also its past errors. This greatly improved
performance and overcame the two problems mentioned above
with the P model – Flight time and hitting the „dead band‟ of
the Flightboard.

 ∑

 ()

Where:

� is the Proportional gain
� is the Integral gain
� is the time difference between measurements
� is the ith distance between the Hexacopter‟s current

position and its desired position
� is the ith speed

 Although adding in a Derivative Control element as well
was considered, this was not included because the role of a
Derivative Controller is to improve settling time of the system.
However as we were considering waypoints to be circles, we
did not have to worry about the system settling down to an
exact value and so this element would have been redundant.
Leaving out the Derivative Controller also meant that we did
not have to filter out the high frequency noise that would have
been amplified by a derivative term.

9

Fig. 16 - Control Loop used to determine the Hexacopter's speed

 In order to properly tune the PI controller, the Zeiger-
Nichols method was used to optimise the values of the
parameters and . First, was set to 0, and then was
slowly increased until the resulting loop oscillated about the
mean position. Once this oscillation gain was found, then
 and could be calculated according to the formulas below
for a PI controller.

 ()
 ()

Where:

� is the tuned Proportional gain
� is the tuned Integral gain
� is the Proportional gain that just causes oscillation
� is the period of oscillation

 Using this method, I found the value of that just caused
oscillation to be 25 with a frequency of 1Hz, which led to
and values of 12 and 2.4 respectively.

C. Creeping Line Run
Using these determined values for the Control Loop

constants, I was able to get the Hexacopter to perform more
reliable Creeping Line searches, an example of which can be
seen below. In this example, the target waypoints generated by
the Hexacopter show up as grey diamonds, with the dotted line
between them being the desired path of travel and the actual
path travelled being shown by the coloured lines (each
different colour represents the Hexacopter flying to a different
waypoint).

Fig. 17 – Creeping Line Run with Intermediate Points

 It can be seen that the Hexacopter was able to follow the
desired path very closely, with a few deviations of about a
meter occurring at the ends of some of the sweeps when it
changed direction. Since these only occur at some of the ends
and are always in the same direction, they are almost certainly
the result of wind affecting the Hexacopter and dragging it off
course. This is further reflected by measurements we took
regarding wind speed, which were in the same direction as the
deviations to the plot.
 It can also be seen that the deviations did not have the
chance to affect the overall path the Hexacopter travelled, with
the intermediate points, being added in at 5m intervals,
causing it to quickly return to the desired path after it had left.
Note also that with this Creeping Line search the Hexacopter
finished on the same side that it started; this is because the
overall target area was only 15m wide and the Hexacopter was
told to make sweeps 5m apart, so the number of sweeps it
needed to make to properly cover the area was even.

V. CONCLUSION

A. Meeting Aims
I am very happy with the progress made throughout the year

and I believe I successfully managed to achieve the goals I had
intended with regards to the Hexacopter navigation. I
successfully managed to identify and implement a professional
Search and Rescue method to scan an area by air with a UAV
– as could be seen earlier, the Hexacopter used the Creeping
Line Search pattern to navigate over an area with a reasonably
high degree of accuracy. The Hexacopter was also able to
navigate much closer to waypoints, around one meter rather
than four, thanks to a tuned PI controller. The groundwork that
I have put in this year will serve as an excellent base for any
students who wish to continue working on this project in the
future.

B. Future Work
Although a lot of work was done on the Hexacopter

navigation this year, there certainly is room for improvement,.
The following are a few suggested areas that students wishing
to work on this project next year may want to look at to
improve the reliability and the robustness of the existing
system.

10

1) Altitude Control

While using the Throttle autonomously safely proved to be
too difficult this year, turning the two dimensional motion of
the Hexacopter into three dimensional motion should certainly
be looked into in the future. Implementing altitude control will
allow the user to be able to set waypoints in three dimensions,
but a more accurate method of determining height may need to
be considered as the only currently installed sensor, the
Qstartz GPS is unable to determine height readings very
accurately. Possible solutions may include a downward facing
laser sensor that constantly measures off the ground or an
accelerometer.

2) Installing a Compass

While using the GPS to determine the bearing was adequate
for our purposes, it would probably be worthwhile to include a
sensor that is capable of giving feedback about the orientation
of the Hexacopter in in real time. Not being able to know the
orientation meant that we had to assume that it was constant
throughout the flight. While we were able to account for this
in our code, it meant that the Hexacopter was unable to correct
for external factors that spun it around mid-flight, causing its
orientation to change.

3) More Robust Flight Plan

Adding intermediate points to the Creeping Line search
pattern improved its accuracy, particularly in windy
conditions, but also meant that the Hexacopter flew slower as
it tried getting to more points. In order to improve
performance while retaining speed, an idea that could
potentially be implemented next year is to have the
Hexacopter fly following a line, rather than to a point.

The Hexacopter would then fly to the ends of the sweeps
using a PI controller as before, but also try and stay close to
the line between the two using a „bang-bang‟ or a P controller.
As it would not be flying to close to its target point the PI
controller would keep it moving quickly but the „bang-bang‟
controller would keep it on the desired flight path.

4) Simulator

All of the data and testing of our flight code that we had to
collect had to be done in the field, a process which was often
rather time consuming. In order to save time, it may be
worthwhile for any students wishing to continue this project
next year to look into a Hexacopter simulator which can
replicate the function of the F550. While a simulator would
not replicate some of the outdoor features such as wind that
you would get in the real world, it could still assist students by
providing a platform where they could comfortably and
quickly test their flight codes in the laboratory without any of
the dangers of failures that you could get outdoors [18].

However, performing simulations of a Hexacopter system is
inherently complicated as you have to simulate several
complex factors, such as three dimensional motion. This was
one of the reasons simulations were not used this year. A
possible solution is to use one of the more advanced Robotic
Control Systems available, such as ROS, Robotic Operating
System, to handle the programming while using a separate
simulator for the graphics [19] .

VI. APPENDIX

A. DJI F550 Hexacopter
Developed by DJI Industries [7], the F550 is an integrated

Hexacopter kit that serves as a base for the user to develop
their own UAV platform. The base kit consists of two
integrated modules – the Flightboard and the GPS/Compass
along with six sets of motors, rotors and ECG‟s.

1) Flightboard

The Flightboard is an integrated module that is responsible
for interpreting the commands coming in from the joystick and
converting these to the desired motor speeds. The Flightboard
must be placed as close to the centre of mass of the
Hexacopter as possible in order to function properly. The one
we were using could also be pre-programmed to perform
several key tasks, such as an auto landing function if it ever
lost connection with the controller, which we added in as an
extra safety feature.

In order to monitor the status of the Flightboard while in the
air, an external LED sensor relayed information back to the
pilot by varying the colour and number of blinks. For
example,

Fig. 18 - Basic DJI Kit, with the top plate removed showing the
red Flightboard module mounted in the centre of the aircraft

2) GPS/Compass
Combined into one unit, which was mounted high above the

main body of Hexacopter in order to reduce interference from
the motor spin, the GPS/Compass was used by the Flightboard
in order to determine the location and orientation of the
Hexacopter. Although we were using our own version of these
instruments on the Raspberry Pi, maintaining them as
redundant components that interfaced directly with the
Flightboard meant that we could be sure that the Hexacopter
was capable of maintain its own stability and position control
even if the Raspberry Pi or our own programs failed.

3) Motors

Each of the motors was mounted at the end of an arm, with
an ECG mounted in the underside. Each ECG took in the DC

11

12V and Ground Voltages from the battery, as well as a
control signal from the Flightboard, and converted these into
the voltages sent to each motor.

4) NAZA-M Assistant Software

The Assistant Software provided with the Pi was very
useful and allowed us to do a variety of tasks. With the
Assistant Software, we could use our own computers to pre-
set some of the DJI safety features such as the auto-landing
function. Also, we had to use the software before we could
take off to set the location and orientation of the
GPS/Compass module relative to the Flightboard. This
allowed the Hexacopter to use its own internal self-
stabilisation routines, even when it was receiving signal from
the Raspberry Pi.

However the most useful feature of the Assistant Software
that meant we saved a lot of time during testing was that it
outputted the relative strengths of the joystick commands, as
received by the Flightboard. This was used when calibrating
the PWM signals in order to determine what the rise time of
the signals being sent by the Pi should have been. It was also
used when testing our flight code, as it meant that we could
see what signals the Pi was sending the Flightboard in the lab
without having the Hexacopter take off.

The latest version of the Assistant Software that we were
using at the time of writing this report was 2.20.

B. Alternative Search Patterns
Several other Search Patterns were considered, but

ultimately found to be inferior for our purposes compared to
the Creeping Line Search Pattern which we ultimately used to
autonomously scan over an area.

1) Expanding Square Search Pattern

As can be seen below, this pattern involves spiralling
outwards in an ever-expanding square. This pattern is useful if
you do not wish to fly very far or if you know that the object
that you are looking for is very close to your starting location,
but it also requires you to have very good methods of
maintaining your position in order to avoid gaps. As we were
developing a system that could be used in outdoor settings
where any external factors could cause us to deviate from our
intended path and no information about our targets would be
known we decided to not consider this pattern.

Fig. 19 - Expanding Square Search Pattern [5]

2) Sector Search
This pattern involves making repeated sweeps over a small

target. This pattern is mainly used for obtaining more
information about a particular target in a very small area. As
we were only wished to identify specific objects over large
areas this pattern was not particularly useful.

Fig. 20 - Sector Search Pattern [5]

3) Contour Search
With this pattern, the UAV tracked over an area, following

contour lines so it would always be tracking a section of the
ground at the same height above sea level. This pattern was
deemed unsuitable as the Hexacopter was not able to control
its height autonomously, so an operator would have had to
assist with the search anyway

Fig. 21- Contour Search Pattern [5]

12

4) Complex Scan

This pattern is the same as the Creeping Line Pattern, but
with a second pattern superimposed over the first one at right
angles. For our purposes, as we intended to track objects that
are moving much slower than the Hexacopter, any objects that
we detect on the second sweep we will have already picked up
on the first one, so there will be nothing gained.

Fig. 22 - Complex Scan Search Pattern [20]

5) Figure-of Eight
One of the more simple patterns, this pattern involves

making a continuous sweep in a figure-of-eight over an area.
This pattern is only useful for obtaining repeated data about a
particular target that you have already identified, not
identifying objects of interest in the first place.

Fig. 23 - Figure-of-Eight Search Pattern [20]

6) Particle Swarm Optimisation (PSO)
This pattern involved using multiple UAV‟s in order to

generate an evolutionary search pattern that rapidly converged
on a moving target. However this was not useful for several
reasons, namely that it required more than one UAV and prior
knowledge of the target, neither of which we had.

Fig. 24 - PSO Search Pattern. Each Coloured Line represents a
different UAV [21]

7) Independent Circular Track Pattern
While this pattern was originally designed to be used to

track objects moving in a straight line, it was considered to be
suitable also to scan an area as it offered a high level of
overlap in case objects were missed. However initial tests of
the Image Processing suggested that the Hexacopter only
needed to perform one sweep over an area to detect the desired
object and so this pattern was dropped in favour of a simpler
one.

Fig. 25 - Independent Circular Track Pattern [22]

C. Literature Review

1) Previous Students

a) Multirotor Umanned Aerial Vehicle Autonomous
Operation in an Industrial Environment using On-
board Image Processing, Venables C., 2013[1]

This paper, written by Chris Venables in October 2013 for
his Final Year Engineering Thesis on the Hexacopter, was the
most widely-used resource for this project. It set the standard
for our goals and aims and gave us a good background for
what was achievable with the current system. The information
on GPS navigation was extremely useful for me in particular,
especially as many of the systems that I was working with
were the same ones used last year. Unfortunately, the thesis
was a little long to read (over 120 pages) and this made it a
little hard to always find the relevant information.

b) Developing a Multicopter UAV Platform to Carry
Out Research into Autonomous Behaviours, using
On-board Image Processing Techniques, O’Connor,
R., 2013 [2]

Rory O‟Connor‟s paper still contained important
information about the Hexacopter project, but did not go into
as much detail, and focused more on the areas that I was not

13

working on, such as Image Processing. However its brevity
did make it somewhat easier to read and it was often handy for
providing a quick summary about a particular area of the
project.

c) Development of a Navigation Control System for an
Autonomous Formula SAE-Electric Race Car, Drage,
T.H., 2013[3]

While also dealing with autonomous navigation, this paper
focused more on sensor fusion and tying together
measurements from a whole range of devices such as laser
scanners and compasses, not only GPS‟s. It still gave a good
overview of the limitations of an autonomous system and also
indicated the importance of always making sure to log data out
in the field for later analysis in the laboratory, something
which saved us a lot a of time and meant that we could
perform tests more efficiently.

2) GPS Measurements

a) Validity and reliability of GPS for measuring
distance travelled in field-based team sport,s Gray
A.J. et al, 2010 [23]

This paper highlights a study done at the School of Human
Movement Studies at the University of Queensland measuring
the accuracy of GPS measurements of moving objects. The
study found that moving in non-linear paths reduced the
accuracy of GPS measurements and that this could also be
overcome by increasing the GPS update rate (1 Hz in their
case). This was a very useful finding, as it meant, as it meant
that we could limit our Hexacopter motion to linear paths and
still maintain a high degree of accuracy.

b) Advanced motion control and GPS guide car steering
robot, Palmer, D., 2006 [24]

This journal article was rather short and brief, with not
much information. About the only useful piece was the claim
that the accuracy of the GPS‟s could get to as low as 10 cm –
this was used as a goal that we should strive to.

c) Vehicle Dynamics Control Based on Low Cost GPS,
Zhang, J., 2006 [25]

This article was quite in-depth and went into a lot of detail
about using GPS measurements on vehicles. Most of the study
involved the use of ground vehicles, but it was still applicable
for our use. The study also went into detail about how GPS
measurements can be used to supplement other navigation
systems, but in our case the GPS was the only such system so
this was not so useful.

3) Flight Planning

a) Chapter 11: Visual Search Patterns, WSDOT, 1997
[5]

While strictly speaking a government publication and not an
academic publication, this reference was the most useful for

this Thesis apart from the papers from last year. Its handy
diagrams, some of which I have reproduced, were very good
at readily conveying information about search atterns.

b) Incorporating Heuristically Generated Search
Patterns in Search and Rescue, Woolan, H., 2004
[26]

This paper gave a good sense of what is used by
professional Search and Rescue teams in order to find objects
of interest. While some of the patterns studied referred to
planes only and so could not be used, there was still enough
general information within for this to be a useful resource.

c) Flight Plan Specification and Management for
Unmanned Aircraft Systems, Santamaria E. et al,
2012 [20]

While this paper focused more on programming flight paths
in planes, it still contained useful information such as
alternative search patterns. It also confirmed our decision that
the flight pattern we had selected was the correct one.

d) Mobile Ground Target Pursuit Algorithm, Xiaowei
F., 2012[27]

The ideas contained within this paper related mainly to the
tracking of moving objects autonomously by air. While the
ideas were interesting, ultimately this line of research was not
pursued. The paper still contained useful information about the
manoeuvrability of Aerial Vehicles which was considered in
my code.

e) A New Performance Metric for Search and Track
Missions, Pitre et al, 2009 [21]

This paper covered an evolutionary search pattern known as
Particle Swarm Optimisation, which could not be used for our
purposes as it involved multiple UAV‟s. For a single UAV,
the author recommended using a ladder search pattern, which
functioned similar to the Creeping Line Pattern that we had
already identified. This pattern was also noted as being
superior for instances that you had no prior knowledge of the
target, as was the case in our situation.

f) Path Generation Tactics for a UAV Following a
Moving Target, Husby C.R., 2005 [22]

This paper focused more on tracking moving objects, but
again their method for tracking a stationary object was similar
to the Creeping Line Search Pattern. While the ideas for
tracking a moving object could not be implemented this year,
they may prove useful to future students working on this
project.

4) Simulators

a) Real Time Multi-UAV Simulator, Göktoğan A.H. et
al, 2003 [18]

This paper outlined the role UAV simulators could play in
developing software, and the benefits that could be gained
from such a system. While being rather brief, it still provided a
reasonably detailed overview of using such a system.

14

b) Comprehensive Simulation of Quadrotor UAVs Using
ROS and Gazebo, Myer J. et al, 2012 [19]

This suggested a possible solution to the problem of having
to simulate both an UAV system and the software to run it –
using two different systems that were each responsible for half
of the simulation. This solution was also good because both of
the systems mentioned have been used by other students at
this University on similar projects, so some work has already
been done on how to integrate them into a system such as
ours.

5) Batteries

a) Lithium batteries: Status, prospects and future,
Scrosati B.et al, 2009 [8]

This article was a little old, and did not go into a lot of
detail about LiPo batteries. However it still covered most of
the basic information about them, including their construction,
the internal chemical process that they use to generate energy
and how to safely maintain and store them. This made it an
excellent reference that we could use to refresh ourselves
about LiPo batteries.

b) Automatic Battery Replacement System for UAVs:
Analysis and Design, Suzuki K. et al, 2011 [9]

While the ideas mentioned in this paper about an automated
charging system for a UAV ended up being too unfeasible to
implement, it was still a useful resource, backing up some of
the general statements made about LiPo batteries from our
other sources and highlighting the benefits of using these in a
UAV system.

D. Controller
The controller used, the Futuba 14SG, allowed the user to

potentially send 8 different control signals to the Hexacopter
[6]. The controller transmitted over a 2.4GHz frequency,
which meant that we were avoiding possible signal clashes
with the Raspberry Pi because its internal processors only ran
at 700 MHz. Tests found its range to be about 500 m – almost
double the length of a standard oval – so we were confident
that we could maintain a secure connection with it while
performing all of our testing on James Oval.

The controller is very comfortable to use, which is not just
an aesthetics bonus as this means that your hands do not
become fatigued when you are using it and you are still able to
react quickly to potential dangers. The graphics display, while
basic, still relays important information such as the battery
voltage and signal strength for each channel, meaning the pilot
is able to obtain some feedback about the Hexacopter even
when flying manually and the Raspberry Pi is not running.

E. CASA Regulations
CASA have outputted a number of regulations pertaining

to the use of UAV‟s within Australia, both manned and
unmanned, form as far back as 1998, with the latest revision
to the rules being 2014. Part 101.F of their Safety
Regulations [11] outlines the general rules surrounding
UAV‟s, however as we operating a UAV for research

purposes only, the majority of this section, particularly the
part involving licencing, did not apply.

Fig. 26 - Section 101.235 of the Civil Aviation Safety Regulations
(CASA 1998)

However, we still had to obey their general rules
surrounding model aircraft as outlined in part 101.G, an
excerpt from which is shown below, particularly the sections
involving keeping it away from people. This often caused us
problems as our flight area of choice, James Oval, was often
very crowded between classes, forcing us to wait until the
crowds dispersed. Also, members of the public were often
very interested in our activities and would want to get close to
the Hexacopter while it was flying.

Fig. 27 - Section 101.395 of the Civil Aviation Safety Regulation
(CASA 1998)

For autonomous flight, CASA regulations state that the
normal procedures apply, provided that a human operator is
capable of instantaneously taking control of the aircraft. An
advisory circular published in July 2002 [28] highlighted
additional safety procedures that needed to be taken, including
the need for an Automated Recovery System (ARS) that
would land the Hexacopter automatically if the signal was
lost, especially for operations in populated areas.

15

Fig. 28 - Section 5.2.2 of the CASA Advisory Circular (CASA
2002)

Fig. 29 - Section 8.2.2 of the CASA Advisory Circular (CASA
2002)

F. Desired PWM Signals
Every time changes were made to the Hexacopter wiring,

the peak time of the PWM signals that had to be sent to the
Flightboard to achieve a specific signal would change
slightly. This meant that we then had to measure the PWM
values produced by the transmitter again and determine
what the new relationship would be between motor output
and PWM peak time, then re-enter this data into our
programs.

The measurements listed below are for the Aileron,
Elevator, and Rudder channels, which were the three we
were using to automate the movement. The peak times were
measured with an oscilloscope while the motor outputs
were measured with the NAZA-M assistant software as a
percentage. The following data was recorded on 17 October
2014 and at the time this report was published, was the data
stored on the Hexacopter for its internal calculations.

TABLE II
ELEVATOR PWM VALUES, 17 OCTOBER 2014

PWM Peak Time (µs) Motor Output (percentage)

1200 79.8

1300 55.2

1400 31.0

1500 7.3

1600 -14.5

1700 -39.1

1800 -62.6

1900 -88.2

TABLE III
AILERON PWM VALUES, 17 OCTOBER 2014

PWM Peak Time (μs) Motor Output (percentage)

1200 -78.0

1300 -54.3

1400 -29.5

1500 -5.5

1600 20.3

1700 43.6

1800 67.4

1900 90.8

TABLE IIV

RUDDER PWM VALUES, 17 OCTOBER 2014

PWM Peak Time (µs) Motor Output (percentage)

1200 -76.7

1300 -51.1

1400 -30.3

1500 -5.1

1600 19.7

1700 42.6

1800 67.3

1900 91.3

G. Wiring Schematic
The diagram shown below is a more detailed version of Fig.

7, found in section II.B.4), which shows all of the connections
between the various components, along with a photo
displaying those connections in real life. The ports listed for
the Raspberry Pi follow the standard naming configuration as
listed by the manufacturer [13].

16

Fig. 30 - More detailed Schematic highlighting the various
connections in the Switching Circuit

Fig. 31 - The actual wiring of the Switching Circuit inside the
Hexacopter. Key: 1 – Reciever, 2 – Switching Circuit, 3 –
Flightboard, 4 – Ribbon cable connecting to Raspberry Pi

ACKNOWLEDGEMENT
 I would like to thank both of my supervisors, Professor Dr.
Thomas Bräunl and Chris Croft for their support and guidance
throughout this project. Also, I would like to acknowledge the
students Michael Baxter, Alexander Mazur and Merrick
Cloete that I worked with for their input and effort, especially
Michael Baxter for his contributions in writing and adapting
several of the Base libraries for the Hexacopter that my own
programs had to call. Special mention must also go to my
fellow year students Garrick Paskos and Ruvan Muthu-
Krishna for their assistance throughout the year and Brian
from the Perth RC Hobby Store, for lending us equipment for
demonstrations at the UWA 2014 Open Day.

REFERENCES

[1] Venables, C., 2013. Multirotor Umanned Aerial Vehicle

Autonomous Operation in an Industrial Environment
using On-board Image Processing. Engineering Final
Year Thesis. University of Western Australia.

[2] O‟Connor, R., 2013. Developing a Multicopter UAV
Platform to Carry Out Research into Autonomous
Behaviours, using On-board Image Processing
Techniques. Engineering Final Year Thesis. University of
Western Australia.

[3] Drage T.H. 2013. Development of a Navigation Control
System for an Autonomous Formula SAE-Electric Race
Car. Engineering Final Year Thesis. University of
Western Australia.

[4] Mahoney, M.J., Aircraft_Attitude2 n.d. [image online]
Available At:
http://mtp.mjmahoney.net/www/notes/pointing/pointing.h
tml [Accessed 6 October 2014]

[5] WDSOT (Washington State Department of
Transportation), 1997, Chapter 11: Visual Search
Patterns. [pdf] Washington: State Department of
Transportation. Available at:
http://www.wsdot.wa.gov/NR/rdonlyres/505EB17D-
DE17-4FF0-A132-
55282890DB84/0/WSDOTAircrewTrainingTextChpts111
4.pdf [Accessed 12 May 2014]

[6] Futuba, 2014 14SG: 14-Channel, 2.4GHz Computer
Radio System. [online] Available at: http://www.futaba-
rc.com/systems/futk9410-14sg/ [Accessed 4 May 2014]

[7] DJI, 2014. DJI: The Future of Possible. [online]
Available at: http://www.dji.com/ [Accessed on 15
August 2014]

[8] Scrosati B., Garche J., 2009, Lithium batteries: Status,
prospects and future, Journal of Power Sources.
95(2010), pp 2419–2430

[9] Suzuki K.A.O., Filho P.K., Morrison J.R., 2012.
Automatic Battery Replacement System for UAVs:
Analysis and Design. Journal of Intelligent & Robotic
Systems, [journal] 65(1), pp 563-586. Available through:
University of Western Australia Library website
<http://download.springer.com.ezproxy.library.uwa.edu.a
u/static/pdf/779/art%253A10.1007%252Fs10846-011-
9616-
y.pdf?auth66=1413863399_878278e0f3207f36d719fe599
6bcd554&ext=.pdf> [Accessed 13 August 2014]

[10] ABC, 2014. CASA Plans Legal Action over Drone Crash
in Gerladton [online] Available at:
http://www.abc.net.au/news/2014-06-25/casa-plans-legal-
action-over-drone-crash-in-geraldton/5550764 [Accessed
7 October 2014]

4

2

3

1

17

[11] Civil Aviation Safety Authority. 1998. Civil Aviation
Safety Regulations 1998, Statutory Rules No. 237, 1998
as amended, made under the Civil Aviation Act 1988. In
Volume 3: rr. 99.005–137.300, Office of Parliamentary
Counsel, Canberra, 1998. Available From:
http://www.comlaw.gov.au/Details/F2014C00612/Downl
oad, Current as of 1 May 2014.

[12] Element14, 2014. Raspberry Pi Model B+. [online]
Available at:
http://www.element14.com/community/community/
raspberry-pi/raspberry-pi-bplus/blog [Accessed 6 October
2014]

[13] Raspberry Pi Foundation, 2014, Downloads.[online]
Available at: http://www.raspberrypi.org/downloads/
[Accessed 13 March 2014]

[14] Drogon, 2014. wiringPi: GPIO Interface for the
Raspberry Pi. [online] Available at: http://wiringpi.com/
[Accessed 23 May 2014]

[15] Hirst, R., 2013 PiBits/servoBlaster [online] Available at:
https://github.com/richardghirst/PiBits/tree/master/Servo
Blaster [Accessed 23 May 2014]

[16] DePriest, D. NMEA Data [online] Available at:
http://www.gpsinformation.org/dale/nmea.htm [Accessed
4 May 2014]

[17] Had2Know, 2014, HSV Colour. [online] Available at:
http://www.had2know.com/technology/hsv-rgb-
conversion-formula-calculator.html [Accessed 9 October
2014]

[18] Göktoğan A.H., Netttleton E., Ridley M., Sukkarieh S.,
2003, Real Time Multi-UAV Simulator, In: IEEE
Proceedings of the 2003 International Conference on
Robotics and Automation, Taipei, Taiwan, 14-19
September 2003, IEEE

[19] Myer J., Sendobry A., Kohlbrecher S., Kilngauf U., Stryk
O. von, 2012, Comprehensive Simulation of Quadrotor
UAVs Using ROS and Gazebo, In: Simulation, Modeling,
and Programming for Autonomous Robots, Tsukuba,
Japan, 5-8 November 2012, SIMPAR

[20] Santamaria E., Pastor E., Barrado C., Prats X., Royo P.,
Perez M., 2012, Flight Plan Specification and
Management for Unmanned Aircraft Systems. Journal of
Intelligent &Robotic Systems, [Peer Reviewed Journal] 67
(2). Available through: University of Western Australia
Library website
http://download.springer.com/static/pdf/554/art%253A10.
1007%252Fs10846-011-9648-
3.pdf?auth66=1413611530_4ffeaa5a24f5c253bcff39f6ef7
f782b&ext=.pdf [Accessed 15 May 2014]

[21] Pitre R.R. Li X.R., 2009, A New Performance Metric for
Search and Track Missions, 2: Design and Application to
UAV Search. 12th Inrenational Conference on
Information Fusion, Seatle, USA, 6-9 July 2009

[22] Husby, C.R., 2005. Path Generation Tactics for a UAV
Following a Moving Target. Master of Science in
Aeronautics and Astronautics Thesis. University of
Washington.

[23] Gray A.J., Jenkins D., Andrews M.H., Taaffe D.R. &
Glover M.J. 2010. Validity and reliability of GPS for
measuring distance travelled in field-based team sports,
Journal of Sports Sciences, 28:12, 1319-1325, DOI:
10.1080/02640414.2010.504783

[24] Palmer, D., 2006. Advanced motion control and GPS
guide car steering robot, Eureka [e-journal] (26/2),
Available through: University of Western Australia
website http://search.proquest.com/docview/219365256
[Accessed 20 May 2014]

[25] Zhang, J., 2010, Vehicle Dynamics Control Based on
Low Cost GPS, In: IEEE International Conference on
Information and Automation, Harbin, China, 20-23 June
2010, IEEE

[26] Woolan, H., 2004, Incorporating Heuristically Generated
Search Patterns in Search and Rescue. [online]
Edinburgh, Scotland: University of Edinburgh. Available
at:
http://www.aiai.ed.ac.uk/project/ix/documents/2004/2004
-msc-wollan-sar-patterns.pdf [Accessed 11 May 2014]

[27] Xiaowei F., Feng H., Xiaoguang G., 2012. UAV Mobile
Ground Target Pursuit Algorithm, Journal of Intelligent
& Robotic Systems, [journal] 68(3). Available through:
University of Western Australia Library website
http://download.springer.com/static/pdf/170/art%253A10.
1007%252Fs10846-012-9690-
9.pdf?auth66=1413618402_17b4b1486468b77649822578
faf4cef1&ext=.pdf [Accessed 16 May 2014]

[28] Civil Aviation Safety Authority. 2002. Advisory Circular
AC 101-1(0) July 2002, Unmanned Aircraft and Rockets,
Unmanned Aerial Vehicle (UAV) Operations, Design
Specification, Maintenance and Training of Human
Resources. Available From:
http://www.casa.gov.au/wcmswr/_assets/main/rules/1998
casr/101/101c01.pdf

