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Abstract

The world of robotics has grown so much that it has reached a state where it can

be trusted with many real-world applications, especially those that involve

a high safety risk for human effort. From its ‘humble’ beginnings operating in a

static and controlled environment, robot platforms are now required to operate in

dynamic and unknown environments, which traditionally require human intelligence

for real-time decision making. Development of a control system for a robot platform

to handle such scenario can be very demanding. The system requires complex

decision making capabilities in order to be sufficiently robust and responsive to the

dynamics of its environment.

One possible approach is to implement a behavior-based system, which

‘reacts’ to its environment rather than using preprogrammed rules of engagement.

However, other than the accuracy of its sensors, the success of a behavior-based

system relies largely on its Action Selection Mechanism (ASM) module, which is

basically a behavior coordination method. Common implementations of behavior

coordination method can be categorised into two: arbitration and command fusion.

Consequently, deciding on a suitable coordination method for a particular task in

an unknown environment presents a similar complex issue. To handle this, the more

popular approach is to use Artificial Intelligence (AI) in the development of ASM

modules.

In this thesis, a Genetic Algorithm (GA) has been used to evolve a neural

network engine that is used as an ASM module for a behavior-based system. The
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proposed control architecture implements a basic GA to train the synaptic weights of

a simple Multi-Layered Perceptron (MLP) feed-forward Artificial Neural Network

(ANN) in identifying a suitable formulation of ASM. A simple, yet found to be

sufficiently adequate, fitness function has been formulated in order to ensure the

effectiveness of a GA in evolving the system. The proposed fitness function is

defined as such that it can be generalised and applied to any robot control tasks.

The proposed system has been tested using simulation software in two common

robot mission scenarios involving unknown environments: search and exploration,

and target tracking.

Simulation results show that the proposed Genetically Evolved ASM

(GEASM) can dynamically manage the behavior coordination method that enables

the system to achieve mission objectives in both test scenarios. For the search and

exploration mission, the GEASM managed to achieve a 93% success rate compared

to other architectures, with the nearest competitor at 67%. As for the target track-

ing mission, the GEASM achieved a stunning 100% success rate, compared to the

next best at 75%. Since the test environment is actually different from the one used

in training the proposed system, it can be projected that the GEASM can actually

enable a system to perform in an unknown environment with a significantly high

probability of success.
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Chapter 1

Overview of the Thesis

1.1 Introduction

Advancements in robot control technology incline towards the development of au-

tonomous mobile robot platform with sufficient intelligence so that it may operate

in any given dynamic environment even without prior information. In such environ-

ments, due to the existence of various potential sources of uncertainties, identifying

a function to produce a desired control output for a specific sensory inputs is al-

most impossible. Instead of pushing the limits of processing elements on robot

controllers, an alternative can be found in the biological-inspired systems that has

been around since the late 1940s.

In 1953, W. Grey Walter successfully implemented a tortoise-like hard-

ware platform based on the principles that machines with proper feedback control

systems exhibits natural behaviors [1, 2]. Walter’s tortoise was designed as a mobile

platform (i.e. fitted with motor-driven wheels) that is always exploring its environ-

ment except when it needs to feed (i.e. recharge). Other than making sure it does

not run into obstacles, it reacts on light sensor inputs (i.e. fitted with proximity

sensor and a photocell) as its motivation during exploration. Implementing these

1



2 CHAPTER 1. OVERVIEW OF THE THESIS

simple reactive circuits, Walter’s tortoise managed to exhibit a more complex nat-

ural behavior — safely exploring an environment and recharging itself as required.

This early example of the capabilities of reactive systems in generating a

moderately complex behavior has spurred many subsequent works that attempt to

enhance the system—mainly by implementing a more complex reactive behavior.

This led to the transition from simple reactive system design to a more deliberate

behavior-based system. With its roots in reactive systems design, it is easy to see

why many publications managed to prove that a behavior-based system is very

responsive to unknown, dynamic environments [3, 4, 5, 6, 7, 8].

One example of a behavior-based system that has been successfully ex-

ecuted in unknown dynamic environment was presented by Parker through AL-

LIANCE architecture [4]. Parker has successfully tested her proposed method by

implementing it in a team of three robots operating in a hazardous waste cleanup

mission. From her experiments, which have been conducted on both simulated and

physical robots, it is interesting to note that the team of robots was able to respond

to unexpected obstacles, which have been intentionally added into the mission en-

vironment. Another example of the responsiveness of a behavior-based system has

been presented by Huq et al. in [8]. Their proposed approach was able to achieve

a 100% success rate on a robot’s navigation task, which has been executed in the

presence of unpredictable obstacles and within unknown environments.

In simple reactive systems, using basic logical arbitration, in allowing

which reaction gets control of the system, is sufficient in most cases. With more

deliberate behaviors existing in a behavior-based system, the need for a proper

mechanism to select a dominant or resulting behavior becomes rather critical in

nature. In fact, the success of a behavior-based system implementation relies greatly

on this action selection mechanism (ASM) module. The role of ASM is to coordinate

actions suggested from each behavior module in order to produce an appropriate

system response at any given instance. Several classifications of ASM have been

suggested, but in [9], ASM has been classified into two main categories: arbitration

and command fusion.
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The arbitration category consists of mechanisms that allow the behaviors

to compete for control of the system’s resources for a period of time [10, 11, 12].

Priority-based (PB) is one example from this category. Depending on a predefined

priority for each behavior module, which is usually based on the nature of the

input parameter, a reliable control signal is determined from the selected behavior

output. However, methods from this category can be considered inappropriate when

dealing with multiple reliable control signals from active behaviors. This is obvious

because the ‘losing’ signals will be completely decimated and their information will

be lost. Also, in order to implement this method, appropriate priorities should be

assigned to each behavior. In many cases, this is rather difficult to do because the

priorities may change depending on mission scenario and environment, and some

implementations have to use AI methods to overcome this problem [13, 14, 15, 16].

A more detailed insight on this is covered in Chapter 2.

Alternatively, the methods in the command fusion category allow all be-

haviors to contribute towards producing a control output in a cooperative manner

as proposed by Arkin, Rosenblatt, and Riekki and Ronning in [17], [18], [19] re-

spectively. This method makes an effort to retain all information provided by each

behavior. The central issue here is to find a fair representation of information for

all contributing behaviors. A simple example for this is to take the average of all

the behavior outputs, like vector addition in the Motor Schema [17]. Unfortunately,

this can produce a control signal which does not comply with any of the behavior

outputs. Furthermore, it can suffer from the local minima problem [18].

Due to the fact that both methods have specific limitations, the logical

next step needed in progressing towards a better ASM is to actually come up with

a combination of both methods, by focusing on the strength of each method while

minimising the limitation. It is imperative that a certain behavior module be given

‘control’ but this has to be done while considering ‘opinions’ from other behavior

modules. This is actually more complex than it seems. Quite a number of works

have provided a platform to implement the two classes of ASM on the same control
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architecture. For example, as presented by Scheutz and Andronache, and Proetzsch

et al. in [20], and [21], their proposed techniques have implemented ASM methods

from both categories, and are able to switch from one method to another. However,

using these techniques requires another mechanism to decide which ASM method

should be executed. As for the work presented in [8], a fuzzy logic technique has

been used to generate activity states for each behavior. Based on the activity states,

ASM methods from both command fusion and behavior arbitration categories will

be applied in order to produce an effective control signal. However, as reported, this

technique suffers from handling a large number of variables and tuning parameters

in order to achieve a successful operation of the system.

The trend in implementing an integrated (combination of arbitration and

command fusion) solution clearly shows that using AI in obtaining optimal perfor-

mance for ASM has become the most important part, given the increasing complex-

ity of a system’s operating environment. An ASM that can dynamically adapt to its

environment would be the best solution for a behavior-based system to perform in

an unknown environment. A study needs to be done on suitable AI methods in or-

der to find the ideal candidate in generating such dynamically-adaptive ASM. This

should be hugely beneficial for mobile robot applications that intend to implement

behavior-based control systems.

Evolutionary robotics (ER) is one of the most popular research fields

that have employed AI techniques (i.e. evolutionary algorithms) in modelling a

robot control system. It is usually implemented as a black box, where the function

of the control system will be automatically adapted from the input information of

the environment by extracting the data stream accessible from the robot. This

technique provides a mechanism for a robot to move and react to its environment

and at the same time will adjust its behavior according to real situations. In

addition, unknown nonlinearities will be taken into account during the adaptation

process. This probably being the main contribution towards several success works

of ER approach in executing their robot control system under uncertainties.
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Quite a number of works in ER have proven that their techniques can

successfully adapt to various unknown, changing environments [22, 23, 24]. For

instance, Knudson and Tumer in [22] have implemented a neuro-evolutionary ap-

proach for adaptive navigation of a mobile robot. In their research, an evolutionary

algorithm is used to configure the parameter space of a neural network to find the

path qualities for a robot to travel in an environment. Based on the selected con-

figuration, the neural network is run for several potential paths from the robot’s

surrounding in order to find the greatest path quality. From the experiments con-

ducted, a successful navigation has been achieved in various changing environments.

In fact, the same control system has been successfully transferred from simulations

to a real robot without any modification.

Since an ER approach offers automated design to develop a robot con-

trol system with adaptive capability, the use of this technique to ease the problem

in finding an adaptive ASM for a specific robot application could be a great op-

tion. Furthermore, as stated in [25] a behavior-based system and an ER approach

share many common characteristics. With this fact, the idea of employing the two

techniques on the same platform could be possible, perhaps with a high chance of

success in enhancing the capability of a behavior-based system to be executed in

various kind of environmental conditions.

1.2 Project Overview

The purpose of this research is to investigate the use of Artificial Intelligence (AI)

techniques in order to generate a suitable ASM based on a system’s mission sce-

nario. With an assumption that at every decision making cycle, when a suitable

coordination method has been applied to a behavior-based system with appropriate

parameters, rapid interactions of its behavior modules with the environment can

be fully utilised. This may contribute towards a successful execution of a behavior-

based system for achieving the overall system’s objective even if it is executed in

the existence of uncertainties.
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This research presents the Genetically Evolved Action Selection Mecha-

nism (GEASM), as an alternative method to overcome the problem of formulating

an effective ASM in a behavior-based system. The main idea is to use a dynamic

and adaptive model in the process of finding the appropriate ASM. In this case, a

Genetic Algorithm (GA) has been used to provide the capability in traversing the

search space for the optimum solution. The search space is provided by the neural

network engine in the form of an array of synaptic weights. This solution focuses

on constructing low-level components of the behavior-based systems, which usually

feature rapid interaction between a robot platform and its environment. In the im-

plementation, the GEASM will produce a low level action (e.g. turn left, turn right,

go forward) that can be used to control the robot in accomplishing its mission.

The proposed method is a generalised approach that can be implemented

for various robot applications. In this thesis, the feasibility of the method has

been tested through two main test applications: search and exploration mission,

and target tracking task. The performance of the proposed method is investigated

in various experiments. This includes the capability of the system to deal with

uncertainties from various sources. Moreover, the capability of the GEASM system

to be utilised for a higher level of robot applications through a simple arbitration

type of ASM will also be explored.

1.3 Thesis Outline

This thesis is organised as follows. In Chapter 2, research in areas related to this

work is reviewed. Two main areas are covered. First, a general introduction to

behavior-based systems is presented. Second, various aspects of implementing AI

techniques for various robot applications are discussed. Focus of the discussion is

given to the works that have used Neural Network, and GA techniques. The theory

of the GEASM architecture, including some of the fundamental design choices is

described in Chapter 3. Chapter 4 reviews the full implementation of the system for
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search and exploration tasks and target tracking missions. Experimental platforms,

environments and mission scenarios are also detailed in this chapter. Chapter 5

presents the detailed experimental descriptions, results and discussion. Chapter 6

concludes with a summary of the approach and discussion of results, including the

contributions of this work and suggested future research directions.



Chapter 2

Related Work

There are two main areas of robotics research that are relevant to this thesis:

behavior-based systems, and evolutionary robotics. Therefore, this chapter

intends to establish a comprehensive foundation in these areas, and to review all

important related work of the two fields. This includes an overview of robot control

philosophy, a discussion on the fundamentals of a behavior-based system, and a

survey on research works that have employed artificial intelligence (AI) techniques

in the development of their robot control system.

2.1 Robot Control Philosophy: An Overview

Generally, a robot control can be defined as a process of mapping the robot sensory

information to produce an appropriate action in an environment. In [26], the control

philosophies have been categorised into four basic classes: deliberative, reactive,

hybrid and behavior-based. The obvious differences among the approaches can be

seen not only at the the system structure but also by the amount of computation

performed and the degree of real-time responsiveness upon changes in the world

[27].

8
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Using a deliberative approach, the Sense-Plan-Act paradigm [1, 28] is ap-

plied. This method is computationally intensive due to the use of explicit reasoning.

It requires a search of possible state-action sequences and their outcomes. It also

relies on a centralised world model and usually uses symbolic representation where

the planning for actions is made based on this model. As shown in Figure 2.1(a),

information from sensors will be filtered through several intermediate stages of in-

terpretation before it can be used to control the actuators. The method has been

criticised as it is obviously not capable of coping with changing environments and

uncertainty [3]. This limitation will lead to a ‘qualification problem’ where a con-

tinual planning process is required [1]. To illustrate this issue, let’s say a robot has

been programmed to deliver a medicine to a patient using a deliberative approach.

Using this approach, the robot would have the hospital’s map to plan all possible

paths from its current position to the desired patient’s room. Since the world rep-

resentation of the hospital is available to the control system, the robot is able to

search the shortest path to its destination.

However, working in a busy hospital environment is not an easy task.

What would happened if on its way to the room using the shortest path, the route

is closed due to some construction works in the hospital? In this case, the robot

control needs to update its map, re-plan, and search for a new path to the desired

destination. Developing a deliberative robot control system for a large hospital will

definitely involve a large number of possible states in order to plan the execution

of the robot’s task. Clearly, the control system may require a very long time to

browse the large state spaces before generating an appropriate action based on its

current situation. This is one of the main reasons why the deliberative approach

is not able to make a fast decision when dealing with changing environment and

uncertainty. For instance, if the robot needs to avoid an unexpected danger, the

robot may risk collisions before the planning process has completed. Therefore,

the deliberative method is usually applied to control a robot for a very specific

task that operates in a structured and highly predictive environment. As stated



10 CHAPTER 2. RELATED WORK

in [2], a robot surgery is one good example of an application that is suitable to

employ a deliberative approach. Using this method, not only can the perfect plan

be calculated for the robot to follow (e.g. drilling the patient’s skull at a specific

position), but the environment can be kept perfectly static in order to precisely

execute the robotic task.

Reactive systems, on the other hand, have an extremely different ap-

proach from the deliberative method. They provide a tight coupling between sens-

ing and action by allowing rapid real-time responses. Usually, a reactive system

is constructed using several basic behaviors (refer Figure 2.1(b)). Each of the be-

haviors will be implemented using a simple rule-based method involving a minimal

amount of computation which consists of a simple sensors-to-effectors pair [1]. As

stated in [2], to design a reactive system, all possible states should be uniquely

coupled to appropriate actions. This offers the system a great run-time efficiency.

However, a reactive system has usually exhibit an unsatisfactory performance in

complex environments and tasks. Due to lack of memory, the system is less ef-

fective in integrating world knowledge and unable at learning over time [29, 30].

Moreover, a reactive system has a limited representational capability. Even though

the system is suited to dynamic and unstructured worlds, it cannot rely on a world

model for more complex reasoning processes.

This limitation can be further described using a similar delivery robot

task executed in a hospital environment as presented earlier. In this case, the

reactive approach is employed for a safe navigation system for the delivery robot.

Let’s say, two behaviors have been used to develop the reactive system. One is to

make sure the robot is moving forward smoothly in the environment. The other

one is turning away from a detected obstacle. More behavior can be added to the

reactive system to fulfil the other system’s requirement. However, the two behaviors

are sufficient enough to allow the robot to move around the hospital safely. Clearly,

by using the two behaviors, the reactive system is capable of fast response to any

unexpected obstacles. Reaching a destination using this safe navigation system
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(a) Deliberative, redrawn after Brooks [28]

(b) Reactive, redrawn after Mataric [2]

(c) Hybrid system, redrawn after Mataric [2]

(d) Behavior-based system, redrawn after Mataric [26]

Figure 2.1: Block diagram of four basic robot control architectures
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is possible when it is executed in a small unknown environment. However, the

possibility to efficiently reach the target destination within a range of time gets

lower when the system is executed in a large hospital environment. Since a reactive

system does not rely on a world model, it is not possible for the robot to find the

shortest path to deliver the medicine to the specific patient’s room. In fact, in this

large environment, there is a possibility that the robot is not able to find the target

destination at all.

Hybrid systems attempt to compromise between the two approaches.

They employ a reactive system for a low-level control to deal with a robot’s imme-

diate need (fast time-scale). They also have a planner (deliberative) for high-level

decision making that operates at a longer time-scale. In this case, using this ap-

proach, the delivery robot is able to manipulate the world representation in planning

the shortest path to its desired destination (i.e. deliberative system). At the same

time, it is able to avoid any unexpected obstacles (i.e. reactive system) during the

execution of its task. However, as the two systems have distinct time-scales, an

intermediate module is essential to allow the deliberative component to communi-

cate with the reactive component (Figure 2.1(c)). This is the most challenging part

of implementing the hybrid system where the two control systems need to inter-

act with each other without creating any conflicts at the output. Mataric [2] has

discussed a number of methods to manage the interaction of the three layers in a

hybrid control system. However, as mentioned in the text, the intermediate layer is

hard to design and implement. In most cases, the layer will be designed for a very

specific-purpose, and a new design of this layer will be required when implementing

the control system on a different robot or task. Moreover, due to the difficulties

of integrating the layers, the hybrid system has been widely implemented in single

robot control domain.

Behavior-based systems are an alternative to hybrid systems as they may

include the deliberative and reactive components in their architecture. Unlike the
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hybrid control structure, behavior-based systems are composed from a set of in-

dependent modular components called behaviors that are executed in parallel (as

shown in Figure 2.1(d)). The parallel structure of the behaviors provides a fast real-

time response to the control system. This structure and the capability to maintain

real time couplings between sensing and action always lead to a misconception be-

tween behavior-based systems and reactive systems. However, unlike in a reactive

system (where the development of each behavioral unit is based on sense-act pairs),

a behavior-based system may use representations in developing its behavioral unit.

This allows the behavior-based system the ability to store the system state in a

distributed fashion. For this reason, behavior-based systems can be more powerful

than the reactive systems as they can have representation that enables reasoning,

planning and learning in their control structure. Behavior-based control is best

suited for a system that is situated in an environment with significant dynamic

changes. In this kind of environment, fast response and adaptation are crucial.

This is one of the reason why behavior-based systems are widely utilised, even for

multi-robot control applications [31, 32, 33, 34].

2.2 Behavior-based Control System

This section will discuss in more detail the theory of a behavior-based system.

2.2.1 Principles of a Behavior-based System

Behavior-based control was originally developed for robots that operate in a dy-

namic, unpredictable environment without using an abstract representation [26, 35].

In principle, a behavior-based control works through the integration of a set of in-

teracting behaviors in order to achieve a desired system objective. Figure 2.2 shows

the basic architecture of a behavior-based system. From the figure, it can be seen
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that the system is organised from several behavioral modules. Each of the behav-

iors will manipulate the data from the sensory inputs (e.g. camera, ultrasound,

infra-red, tactile) to produce an output for robot effectors (e.g. wheels, grippers,

arm, speech). As defined by Arkin [1], a behavior is a reaction to a stimulus. The

relation between the input and the output of each behavior can be also expressed

using a stimulus-response (SR) diagram, illustrated in Figure 2.3.

Figure 2.2: Basic architecture of a behavior-based system

Figure 2.3: A stimulus-response diagram, redrawn after Arkin [1]

As mentioned by Pirjanian in [9], the development of the behavioral mod-

ules in a behavior-based system can be characterised by dividing the overall system’s

objective into simpler and smaller tasks. Therefore, each of the behaviors will be

designed so that it can generate an action in order to reach or maintain its own goal

[30]. For example, avoid obstacle behavior will utilise the sensory information to

produce an output that can keep the robot safe from obstacles. It is important to

note that this behavioral output can be used as additional information to the other

behaviors as well.
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The response generated from each behavioral module will then be used

as control signals for controlling a robot to reach the overall system objective. One

advantage of this modular structure is the contribution to the robustness of the

system. This structure allows each of the behaviors to interact actively with the

environment and with the other behavior components as well. Interestingly, the

side-effect of these interactions can usually generate a useful high-level behavior

that is not specified by the robot’s program. This behavior is called an emergent

behavior [36].

Figure 2.4 shows an example of an SR diagram for a target tracking task.

As reflected from the figure, the behavioral components will play an important role

to observe the current environment. Based on a given stimulus, each of the behaviors

will suggest an appropriate action according to its own goal [30]. For example, the

Avoid obstacle behavior in a target tracking task will always suggest an action

so that the robot will not run into obstacles. On the other hand, a Track behavior

will always suggest an action to move towards its target. It is also important to

note that the proposed actions of each behavior, may or may not be aligned with

the robot’s overall objective.

Figure 2.4: A stimulus-response diagram for target tracking task
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According to Arkin [1], the overall robotic response can be expressed as

below:

ρ = C(G ∗B(S)) [1] (2.1)

where,

ρ is the overall robotic response.

C is the behavioral coordination function.

S is a vector of all perceivable stimuli si for each behavior βi at time t.

B is a vector of all active behaviors βi at time t.

G is a gain vector gi that specifies the relative strength of each behavior βi.

Since each of the behaviors βi will produce its own specific response ri

based on detected stimuli si (β : S→ R), the above expression can be alternatively

written as:

ρ = C(G ∗R) [1] (2.2)

where,

R is a vector of all responses ri generated from each active behavior.

Let us say, two behaviors are involved in the development of a behavior-

based robot control system. The first one is a homing behavior where it will

produce a response in order to drive a robot towards a home location. The second

one is an avoid obstacle behavior that always produces a response to ensure the

robot moves away from any obstacles. Assuming the coordination function C in

Equation 2.2 is implemented using a vector summation method. In this case, the

response from each behavior has been encoded as action vector (i.e. a vector of all



2.2. BEHAVIOR-BASED CONTROL SYSTEM 17

responses R), consisting of orientation and magnitude components. If the behavior-

based system has been developed so that both behaviors are equally important to

the system, then, in this case, the gain value of 0.5 can be applied to each of the

two behaviors representing a similar relative strength of each response (note that

the gain value will be set using gain vector G). Therefore, in a situation where

both behaviors are generating a response to moving forward, the output of overall

robotic response ρ will also produce a similar action as suggested by the behaviors

(i.e. moving forward).

From Equation 2.2, it is clear that the gain vector and the coordination

function are the two important elements that ensure the success of a behavior-

based system. Note that the responses will be multiplied by the gain G before the

coordination function is applied. This is to set the relative importance of each of

the behavioral components (i.e. if required), which will provide useful information

to the coordination function. As an example, if the overall response has been chosen

based on the highest-ranked component of an active behavior, the ranking of each of

the behavioral modules will be set using the gain gi. However, to set an appropriate

value of the gain vector is not as simple as it seems. A series of questions may arise

in order to do this. First, what is the right initial gain vector that should be assigned

to the behavior-based system in executing a particular robot mission? Then, which

behaviors are more important than the other behaviors? If an appropriate initial

gain vector has been successfully determined by a trial and error process, should

the value for each gain remain static along the execution of its task? Will the static

value of the gain vector be able to cope with various uncertainties especially when

the system is executed within an unknown environment? Unfortunately, there are

no specific rules to answer these questions.

It is also important to note that the coordination function C in Equa-

tion 2.2 should be properly developed. This is to ensure a single, stable output

control signal can be generated to achieve a successful mission of the behavior-

based system. This is because, at any given time, the behaviors may produce
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conflicting control actions, which will lead to system instability. This is where the

coordination function C plays its major role. There are various techniques that

have been proposed to encode the coordination function. Some of them have been

discussed in the introduction chapter. Detailed coverage of this topic will be further

discussed in the following sub-section.

2.2.2 Action Selection Mechanism

The coordination function C in Equation 2.2 is also known as an action selection

mechanism (ASM). ASM is a central issue in the design of a behavior-based control

system. This involves choosing a particular action from a set of possibilities from

behavior components in order to select the most appropriate robot’s next action.

Depending on how the behavioral module is developed, actions in this case may be

considered at two levels: high-level and low-level. High-level action selection may

be defined as choosing between abstract activities (e.g. go to a location, analyse

target, etc). This usually involves more than one robot’s movement to execute the

selected action. One example of ASM that implements high-level actions, has been

presented in [4]. As for the low-level action, it deals with the next physical action

(e.g. go forward, turn left, stop, etc). Obviously, for this case, at every decision

cycle the robot will make one step each in order to execute the selected action (e.g.

as presented in [37, 38]).

Several classifications of ASM have been suggested, but as proposed by

Pirjanian in [9], ASM has been classified into two main categories: arbitration and

command fusion (Figure 2.5). Table 2.1 summarises some of the existing techniques

that have appeared in the literature. It is important to note, no matter which

category it belongs to, there are no constraints or rules in generating a method for

behavioral organisation (i.e. ASM). This has led many researchers to investigate a

number of ways to coordinate the behavioral module effectively. The following sub-

sections give more comprehensive reviews on ASM according to the mechanisms

used in selecting an appropriate robot’s next action.
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Table 2.1: A brief review on action selection mechanism as classified by Pirjanian [9]

Main Classes ASM Technique Description Related
Work

Arbitration
Priority-based Action is selected based on prior-

ities that are assigned to each of
the behavioral units. Behaviors
with higher priorities will take
control of robot.

[10, 37]

State-based Behavior selection is done using
state-transition. It will select a
set of behaviors that is adequately
competent at handling the situa-
tion upon the given state.

[39, 12]

Winner-take-all Behaviors will compete among
them until one behavior wins the
competition and the winner will
take control of the robot.

[40]

Command Fusion

Voting Behaviors generate votes for ac-
tions. Action that receives the
maximum number of votes will be
chosen.

[18, 41]

Superposition This method uses a linear combi-
nation of behavior outputs (such
as vector summation) to create
command signals for actuators.

[17, 42]

Fuzzy This is performed by combining
the fuzzy output that encodes the
desirability of each action by us-
ing fuzzy inferencing. Defuzzifi-
cation is then applied to select fi-
nal action that best satisfies the
decision objectives.

[43, 44],

Mulitple Objec-
tive

Each behavior calculates an ob-
jective function over a set of per-
missible actions. Multiple behav-
iors are then blended into single
complex behaviors to select an ac-
tion that satisfies all objectives as
well as possible.

[45, 46]
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Figure 2.5: Class of action selection mechanism as categorised by Pirjanian [9]

Arbitration

As stated earlier, arbitration is an ASM approach category where each of the be-

haviors in the behavioral module will compete with each other in order to control

a robot’s actuator. In this case, the action (i.e. response) suggested from a single

behavior component will be selected by the coordinator (i.e. ASM module). It is

also important to note, in some cases, other than the selected behavioral module,

a non-conflicting behavior can be allowed to operate in parallel.

One well-known method in arbitration category has been presented by

Brooks in [10] through his Subsumption architecture. Using his approach, a fixed-

priority hierarchy has been assigned to each of the behaviors. Selection of one

behavior (from many) to generate a robot’s next action is made based on the highest

priority of active behaviors. This is done by allowing a higher-level (i.e. higher

priority) behavior to suppress the input and override the output of a lower-level

behavior. Figure 2.6 shows an example of an SR diagram of a simple behavior-

based system, employing Subsumption architecture. As shown in the figure, two

behaviors have involved in the development of the system: Wander, and Drive

To Target. By default, Wander behavior is active, and the robot will be executed

based on the action suggested by this behavior. However, when the robot senses

a target object, Drive To Target behavior will be activated and suppresses the
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response from Wander behavior. This is done through inhibition and suppression

mechanisms as described in [10] and [1].

Figure 2.6: An SR diagram of a simple behavior-based system, employing Subsumption Architecture

Temporal Sequencing [47] is another method of ASM in this category.

An illustration of the overall system can be represented as a Finite State Acceptor

(FSA). Figure 2.7 shows an FSA representing flow of control for a door traversal

task (an example which has been discussed in [9]). Employing this technique, the

transition in executing a response from one behavior to another is determined by

a triggered signal. As shown in Figure 2.7, there are five states (i.e. behaviors)

in the FSA diagram. From the figure, it can be seen that the robot will start its

mission once receiving a user command signal, and thus will select the Find Door

behavior for controlling robot’s actuator to search a door. While searching, if the

robot finds the door, a signal will be triggered to allow a transition from executing

Find Door behavior to Traverse Door behavior. During this state (i.e. Traverse

Door), whenever the robot senses an obstacle in its path, the Obstacle Avoidance

behavior will be invoked until a clear path has been achieved. A signal to end the

robot mission will only be sent when the door has been successfully traversed.

Clearly, similar to Subsumption architecture, only one behavior is taking control

of the robot at any one time. However, as for the Temporal Sequencing technique,

it will employ an FSA to set the sequencing between a series of behaviors. In this

case, each of the behaviors will be executed when its corresponding signal has been

triggered.

The work presented by [48] has also employed an arbitration type of ASM

in their proposed control architecture. However, before a coordination function is
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Figure 2.7: An FSA for a door traversal task, copied from Pirjanian [9]

applied, the response of each behavioral module (i.e. R in Equation 2.2) will be

adapted using the evolutionary technique. A neurocontroller have been evolved for

each behavior component incrementally, starting with the basic behaviors (bottom

layers). When the evolution of the particular behavior component has reached a

suitable fitness score (i.e. the behavior is able to produce an appropriate response

for the environment), a more complex behavior (upper levels) will be created. At

this stage, the behavior from the lower level will be frozen. A simple behavior

coordination (which is nearly similar with the Subsumption architecture approach)

will then be applied. However, instead of selecting a behavior based-on a triggering

condition, a control signal from a higher level behavior will be used to determine

which response should be executed by comparing it with a predefined threshold. As

reported, their proposed method has been successfully applied for a mobile robot

navigation.
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Command Fusion

Unlike arbitration, the command fusion approach will blend actions from multiple

behaviors. The coordinator will apply a method that takes two or more behavioral

responses to generate an output to control the robot. For instance, a voting-based

method is used in Rosenblatt [18] through his behavior-based control architecture

known as DAMN (Distributed Architecture for Mobile Navigation). Even though

this approach is classified under command fusion, it is quite similar to an arbitration

concept. However, it reduces the effect of suppressing other behavior outputs by

introducing weights and votes in its preference combining algorithm.

Figure 2.8 illustrates a scenario of how votes are issued in DAMN. In

this example, it is assumed that two behaviors are active: Obstacle Avoidance

behavior and Goal Seeking behavior. Each of these behaviors will suggest its

preference response based on these pre-defined possible actions. As shown in the

figure, there are five possible options to control the robot movement (i.e. Hard Left,

Soft Left, Straight Ahead, Soft Right, and Hard Right). The magnitude of a vote

ranges from -1 to +1, indicating the behavior representing against that particular

action (i.e. -1), or representing the most favourable action (i.e. +1). In Figure 2.8,

the size of the circles illustrates the magnitude of the votes. A positive value of the

magnitude is described by the unfilled circle, while the negative value is represented

by the striped circle. As shown in the figure, the Goal Seeking behavior gives the

highest vote (e.g. +1) for the most preferred Straight Ahead response. The next

preference is the Soft Left response with a possible vote value of 0.5. Other than the

two responses mentioned earlier, the Goal Seeking behavior is against the Hard

Left response and the right turn responses. The large striped circle illustrated in the

figure indicates that the behavior is against mostly to the Hard Right response. Note

that, in this example, the smallest striped circle may be represented by a negative

value which is near to 0. Other than the magnitude of a vote, each behavior is

assigned with a weight value in order to show the importance of each behavior

towards the overall system. As described in [49], since avoiding an obstacle is more



24 CHAPTER 2. RELATED WORK

important than seeking for the shortest path to the goal (which is suggested by

Goal Seeking behavior), the Obstacle Avoidance behavior is assigned with a

higher weight. This is indicated by thicker arrows in Figure 2.8. An arbiter in

DAMN then sums up the weighted votes received from the two behaviors, for every

possible actions. The final action is selected by the arbiter based on the highest

value of the weighted sum. As shown in the figure, Soft Left action will be selected.

Figure 2.8: Behavior voting in DAMN, copied from [49]

Another popular approach of ASM in this category has been proposed by

Arkin [17] through his Motor Schema behavior-based architecture. ‘Motor Schemas’

in this case are the behavioral modules shown in Figure 2.2. Based on a perceived

stimuli (i.e. information used to compute the reaction for the respective behavior),

each of the motor schema will produce an action in the form of a vector (consisting

of magnitude and orientation components of a robot’s movement). The action

vector from each motor schema will be multiplied with its associated gain value

before applying the coordination function. Using this technique, a simple, straight-

forward vector addition is employed for its coordination function. The command

resulting from this behavior coordination will then be normalised to ensure the

control signal is executable on the robot. As stated in [1], it is also important

to note that even the action vector of each motor schema is generated based on

a potential field approach (refer [50]), only a single vector at a robot’s current
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position will be used in determining the output of the behavior coordination (i.e.

robot’s next action). For example, assume a robot is on its way to a home that

is located to the right side of a robot’s current position. Also, at this position,

the robot has detected an obstacle at the right side between the robot and the

home. In this situation, motor schema from Avoid Obstacle may produce an

action vector so that the robot will make a left turn in order to get away from

the obstacle. However, Goal Seeking behavior will definitely produce an action

vector to drive the robot towards the home location, which is located at the right

side of the robot. Clearly, in this scenario, the control signal produced from the

overall process described earlier will make a forward movement with the turning

angle between the one suggested by Avoid Obstacle and Goal Seeking motor

schemas. How much the robot is turning will depend on several parameters, such

as the gain value assigned to each of the motor schema, and the distance between

the robot and the obstacle.

Figure 2.9: Fuzzy automaton for robot navigation with two fuzzy states, copied from Jayasiri et al. [51]

There are quite a number of works that have employed a fuzzy logic

technique in the implementation of their behavior-based robot control systems

[51, 8, 52, 43, 53, 54]. Jayasiri et al. [51] present an approach to control a behavior-

based system using ‘supervisory control’ of Fuzzy Discrete Event Systems (FDES).

In their proposed method, each of the behavioral modules is represented by a fuzzy

state. Figure 2.9 is an example of a system developed using this method with two

fuzzy states: A—representing Avoid Obstacle behavior, and B—for Go to Tar-

get behavior. As described in [51], two fuzzy events are defined for the transition

from fuzzy state A to fuzzy state B, and vice versa. Depending on a robot’s sensory
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information, these fuzzy events may be triggered by a module known as ‘super-

visory control’. For example, assume a robot is initially executed in a clear path

environment where no obstacles will be detected on a robot’s surroundings. In this

scenario, only a fuzzy event labelled as σ2 (refer Figure 2.9) will be triggered. How-

ever, in a situation where a robot sensed an obstacle, besides the fuzzy event σ2, the

supervisory control will also enable fuzzy event σ1. In the proposed method, both

fuzzy events must comply with each other to allow the robot to reach the target

safely. This is done by computing a new set of fuzzy events which represent the

weights associated to its corresponding behavior (i.e. state). Using these weights,

recommendations from the two behaviors will be combined, thus, a command fusion

type of behavior coordination is achieved.

Other Approaches

An effective ASM is expected to generate an action that enables a robot to move

towards the satisfaction of the current situation. In doing so, the robot control

system should be able to observe and utilise the information from the environment

and consider the suggestion from all behaviors in order to achieve the overall system

objective. However, to develop an ASM that can generate appropriate actions to

be executed in various environmental conditions is not an easy task. Even ASM

strategies that are developed from a fixed mathematical model may require param-

eter tuning through a series of experiments before a given target mission can be

successfully implemented on a behavior-based system. Furthermore, when a reliable

parameter setting is discovered, still it is never certain that the ‘best’ settings will be

valid for all mission scenarios. This may be due to a number of constraints imposed

by the real world, such as incorrect or incomplete data from sensor readings, the

dynamic and non-deterministic environment, and the robot’s goal that may vary

over time as the current situation changes during the execution of the mission.

Therefore, there are implementations that have highlighted the impor-

tance of having both arbitration and command fusion methods during the execution
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of a behavior-based system [21, 20, 8]. Figure 2.10 and Figure 2.11 show the basic

structure of an APOC (Activating-Processing-Observing-Components) component

and the basic iB2C (integrated Behavior-Based Control) behavior module, as pro-

posed by Scheutz et al. and Proetzsch et al. in [20] and [21] respectively. In both

implementations, they have used their proposed basic structure to compose exist-

ing behavior coordination methods (e.g. Subsumption architecture, Motor Schema,

DAMN, ALLIANCE), where special links are used to integrate various behavior

coordination methods on the same control architecture. As stated in their reports,

switching among different behavior selection strategies will be carried out through

another mechanism. A different approach has been presented by Huq et al. in

[8]. Instead of switching the ASM method, they have applied both arbitration and

command fusion methods in their control architecture of a behavior-based system.

Figure 2.10: Basic structure of APOC, copied from Scheutz et al. [20]

There are also implementations that adapt the parameters in the coordi-

nation function in order to improve ASM techniques [5, 55, 56, 57, 14]. Adapting

in this case can be an adjustment of internal parameters to cope with the envi-

ronmental changes during the run-time of the system. For example, Parker [4] has

proposed a mechanism that can activate a behavior set depending on motivation,

which is computed during the execution of a robot’s task by several components

(i.e. the sensory input, activity of other behavior sets, and explicit communication
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(a) Basic behavior module (b) Fusion behavior module

Figure 2.11: Basic structure of IB2C, copied from Proetzsch et al. [21]

among the robots). Whenever the activation level (which is defined by the moti-

vation of each behavior set) exceeds a given threshold, the corresponding behavior

set becomes active. This method has been successfully applied to hazardous waste

clean-up missions which were executed by a team of robots.

Various works in behavior-based system have employed AI techniques

to allow their ASM strategies to be adaptable with changing environments. One

example has been presented by Ram et al. in [55]. In their work, AI has been

applied to modify internal parameters that affect the strength (i.e. gain) of active

behaviors. They have employed a genetic algorithm (GA) to automatically fine-tune

parameters of three schemas (i.e. move-to-goal, avoid-static-obstacle, and noise)

for a robot’s navigation. Another example has been presented by Farahmand et

al. in [13]. They have adopted three AI techniques in the development of their

behavior-based system: an evolutionary algorithm, a reinforcement learning, and a

culture-based memetic algorithm. The proposed method have used an evolutionary

algorithm to generate several sets of behavioral modules. For example, if a behavior-

based system requires two behaviors in the development of its system (e.g. avoid

obstacles, and go to target behaviors), the evolutionary algorithm will generate

several candidates for each of the respective behavior modules. A reinforcement

learning on the other hand, will be used to learn the organisation of the behavior

modules. Since a purely parallel Subsumption architecture has been employed for
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its ASM, the role of reinforcement learning in this case is to find an appropriate

ordering for each behavior module. Remember that the higher level of an active

behavior module in Subsumption architecture can inhibit and suppress the behavior

at the lower level. To sum up, employing evolutionary algorithm and reinforcement

learning in the proposed method enables the system to find an appropriate set of

behavioral modules and organises those behaviors in the architecture according to

their received reinforcement signal. This is done by maximising the received rewards

value when the agent interacts in the environment. Other than the two algorithms

described earlier, Culture-based memetic algorithm has been introduced and used

in the proposed method as a medium for sharing previous experiences of the other

agents to accelerate the learning process. Note that the proposed method has been

successfully implemented for multi-robot object-lifting tasks, which has been tested

on a simulation platform. More examples of work that employ AI techniques to

construct ASM strategies can be found in [14, 15, 16].

In short, an ASM is the most challenging issue in developing a behavior-

based system. However, the successful system has shown a great potential for a

robot execution especially in a real, unknown, dynamic world. This is one of the

reasons why the research in this field has been continuously explored.

2.2.3 Emergent Behavior

As stated by Arkin in [1], most action selection mechanisms are developed from

algorithms in which theoretically they will produce a deterministic and computable

output. However, due to the dynamic properties and uncertainty of a real world,

the output of coordinated action has usually generated unpredictable output. The

unpredictable output is known as ‘emergent behavior’. It is one of the main features

of a behavior-based system where the system will generate interesting behavior

without explicitly being programmed to do so.
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A simple example of an emergent behavior has been discussed in [2] and

[26]. In the example, three behaviors have been constructed in the development of

a behavior system:

1. Avoid obstacle: To ensure the robot does not get too close to the other

robot or obstacles

2. Stay close to the group: To make sure the robot does not get too far from

other robots

3. Keep moving: To allow the robot to keep moving in the environment, if

possible.

This is assuming that the above behavior-based system is executed in

parallel by a number of robots in the same environment. Note that each of the

robots is executing the system independently without having any communication

among them. Interestingly, by allowing interactions between the robot’s controller

and its environment, it is observed that the group of robots is performing a flocking

behavior, which is none of the three behaviors that have been initially constructed

for the system. In this example, the flocking behavior is an emergent behavior, as

it is only arises at the execution time of the system (not pre-programmed using

rules!).

However, it is also important to note that not all behaviors that emerge

from the system’s dynamics are desirable. For example, a robot with obstacle

avoidance behavior may interact with the other behaviors and its environment,

causing the robot to oscillate and get stuck in a corner. This unpredictable output

is also an emergent behavior but will be treated as an undesirable rather than a

desirable feature [2]. This is the reason why the development of a behavior-based

system will usually involve a lot of trials and errors.
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2.3 AI Techniques for Robot Control

A conventional way for designing a robot control system is based on a predefined set

of rules (i.e. sensing to action pairs). Such a control design approach is suitable for

robot tasks that are executed in structured and predictable environments. Robot

arms used for manufacturing applications is a good example of a robot control sys-

tem in this category. Since the positions and orientations of the robot hardly vary,

and the robot is performing precise motions and repetitive processes, developing a

program for such a system is not very difficult. This is because the rules to perform

its tasks can be clearly defined.

Today, robots have been used for various challenging missions. Space

exploration, processing radioactive ore in the nuclear industry and rescuing tasks

are some of the risky jobs in which the use of robots can be advantageous. Reduc-

ing the risk to human lives is one obvious benefit of replacing humans with robots

in such missions. However, these missions are usually executed in an unstructured

environment. In consequence, it demands a robot control system to be able to mod-

ify its action appropriately when responding to any unpredictable and unexpected

situations. Developing such a system can be very complex. This is because it is

impossible to pre-program the control system to handle every possible situation.

Adopting an AI technique can be very useful in this case. Many research

studies have proven that the technique is able to overcome some of the difficulties in

designing a robot control system. This has been done in several ways. Parameter

tuning is one example. For instance, Mehdi and Boubaker in [58] used AI tech-

niques for parameter tuning. In their work, Particle Swarm Optimization (PSO)

is applied to fine tuning the controller parameters of a robot manipulator. Apart

from parameter tuning, AI techniques are also being used to manipulate a complex

function to develop a robot control system for a specific application. For instance,

Batllori et al. in [59] have employed Spiking Neural Network (SNN) to train a robot

for a light seeking task. Using their approach, data from three infra-red sensors
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and two lights sensors have been used to control a robot’s movement by control-

ling the left side and right side of the robot’s wheels. In order to train the neural

network, a set of input-output data has been generated using a rule-based method

for a similar task. In this case, the neural network will act like a black box where

the function of the control system is not known. The function of the system will

be approximated during the training process by mapping the input-output data.

Another example of work that has utilised the AI technique for robot control has

been reported in [60]. They have employed a reinforcement learning method to al-

low a robot to learn through its experience when interacting with the environment.

Their proposed method has been successfully tested on a real robot (i.e. NEO) for

backward docking at a charging station.

In short, various AI techniques have been explored to aid robot control

designers in the development of their system for various applications. Fuzzy logic,

reinforcement learning, GAs and neural networks are among the popular techniques

that have been implemented in the literature. Some examples have been discussed

previously. However, the focus of this section will be given to approaches under

evolutionary robotics (ER) field which is closely related to the work presented in

the thesis.

2.3.1 Evolutionary Robotics: An Overview

Inspired by the Darwinian principle, ER uses evolutionary computation to develop

robot controllers. Algorithms in ER frequently operate on populations of candidate

controllers which will evolve and repeatedly modified according to a fitness func-

tion. The performance of each candidate controllers will be evaluated using the

fitness function, which can be further used to determine how well each of the can-

didate controllers to achieve the global objective. GA is one popular evolutionary

algorithm implemented in ER.
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The reason of employing a GA for robot control is mainly due to its adap-

tive capabilities [61, 62, 63]. This allows a robot to work in a dynamic environment

where the goal or constraint can be changed over time. Another reason is the ability

of the algorithm to develop an effective controller without having full understanding

of the relationship between the robot and its environment [25, 64, 65].

However, the evolutionary process requires a few iterations before it can

achieve a desired solution. Applying this method (testing individuals) on a real

robot will require a huge amount of power. Furthermore, the fact that the solution

could be some random solution (especially at the early generations) increases the

possibility of exposing its platform to physical damage.

A robot simulator can overcome such potential hazards. As mentioned

by Nolfi and Floreano in [25], using a simulator can also reduce the time required

to evolve a satisfactory controller. Nowadays, there are many robot simulators

available and many of them have the option to execute the simulation in fast mode.

In fact, most robotics researchers tend to completely evolve the controller within the

simulation environment until a desired system response has been achieved, before

transferring to a real robot [66, 67].

Alternately, the controller can be evolved partly using a simulator until

an approximately good result has been obtained. The following evolution will then

be continued on a real robot for fine tuning until the preferred system is found

[68]. Even though there is a huge amount of work that has been carried out us-

ing simulators within the evolutionary robotics community, there are still several

projects presented where the experiments have been fully conducted on a physical

robot [69, 70]. More works related to the methods of evolving a robot controller

have been discussed in [25, 64, 65].

In any case, the success of an approach using GAs will greatly rely on the

definition of its fitness function. Nelson et al. have presented a survey and analysis

on the usage of fitness functions in [71]. The surveyed research has compared the
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amount of prior information being used to successfully evolve a specific controller

to perform a specific task. For a more practical approach, fitness functions should

be defined using data that is only available in a real environment. Without relying

on data that is only available from the simulator, the system will be more adaptive

and more robust to a changing environment where further evolution can be carried

out (if necessary) on a real robot platform.

Another research area that is very similar to ER would be developmental

robotics (DevRob). However, rather than trying to evolve a population of robots

(social development), DevRob focuses more on evolving a single entity (individual

development). In other words, the evolution is focus on a single robot’s control

system, similar to how a child develops through experience, over time.

Although it may seem that the implementation need not keep huge data

(e.g. gene pool), it needs instead to retain as much memory of previous experience

as possible. This memory of accumulated experience needs to be available for

the robot controller to evolve over time. This fact may dampened the desire for

hardware implementation as it needs an expandable data storage to keep DevRob

platform experiencing new things.

2.3.2 Combining Neural Network with Genetic Algorithm

Many success works in ER have employed neural network controller in their imple-

mentations. The ability of a neural network to learn and generalise a non-linear

function is what makes it attractive for many tasks. Instead of having to go through

lengthy mathematical analysis, complex functions can be approximated by an arti-

ficial neural network through some pattern recognition mechanisms on a given set of

data. Neural networks have been successfully applied to various areas of robot con-

trol [72, 73, 74]. Navigation and target tracking are among attractive applications

[75, 76, 77].
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The success of a neural network highly depends on how well it adapts

during the learning process. For a basic multi-layered perceptron (MLP) feed-

forward neural network with back-error propagation (BEP) learning algorithm, this

is done by altering the weights of its connections using the value ∆wij calculated

in Equation 2.3.

∆wij = ηδjyi [78] (2.3)

where,

∆wij is the value used to update Wij (the weight connection from node i to j)

η is the learning rate

δj is the value to be back-propagated

yi is the output of input neuron i

and,

δj =

y′j(dj − yj), j is an output node

y′j
∑

kδkWjk, otherwise
[78] (2.4)

As can be seen from Equation 2.4, the term δj for an output node is

slightly different from that of a hidden node because of the fact that a desired

output, dj, is available for the output nodes. This error-based term will be propa-

gated backward beginning from the output layer to the previous layers. Using this

approach, the combination of weights that minimises the error value will be the

solution for the learning task. Noticing the term y′j (derivative of the output value

yj) in δj, the BEP algorithm strives to minimise the error term (dj − yj) using the

gradient descent method. However, a problem with this technique is the possibility

of being trapped in a local minimum where the minimum error found is not the

global minimum of the search space.
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Another problem of using the BEP algorithm, or any other supervised

learning methods, is the need to supply data for the learning process. As shown

in [79], the BEP algorithm has been applied to train a recurrent neural network

for motion control of a mobile robot. Notice that a huge series of input-output

pairs generated from simulation data have to be provided for the training before

the network can converge into a desired solution (i.e. learn the pattern). Thus, a

problem of such learning algorithms is the requirement of huge training data sets,

which are usually proportional to the complexity of the input-output patterns.

An alternative learning method that can be used is known as Reinforce-

ment Learning (RL). In terms of machine learning, it defines an action that an

agent should take in an environment in order to achieve a global objective. The

environment is usually represented by a finite number of states and each state will

have a set of possible actions. Every action selected by the agent (based on a given

policy) will generate a feedback signal (a.k.a. reinforcement signal) that will be

the basis for the learning process. This makes it suitable to learn problems where

the agent does not know the so-called ‘correct’ action, which is quite common in

a real-world scenario. This learning paradigm emphasises the trade-off between

exploitation (using what we already know to optimise results) and exploration (try

new things that may or may not be beneficial).

The problem with RL approach is that we need to define the states of the

environment and its action paths, as well as evaluating the rewards (i.e. reinforce-

ment signal) related to it. In addition to that, because of limited perception (i.e.

sensor features), it is virtually impossible to discretely define the current state of

the environment. Consequently, this affects the coverage of state-action pairs of the

environment. This can be seen in [80], where a robot control application using a

neural network and reinforcement learning has been presented. In their work, they

have used a special topology of a neural network called Adaptive Heuristic Critic

(AHC) Neural Network. As stated in the text, the solution lacks the number of

input sensors to properly classify the environment characteristics.
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Similarly, the evolutionary algorithm is able to train a neural network

without a predefined set of input-output pairs [81, 82, 83]. However, the primary

advantage of using an evolutionary algorithm over RL can be highlighted when

the availability of state information is little or none. In other words, the evolu-

tionary algorithm does not introduce any constraints on what can be the part of

self-organisation process. In [84], a method called Cooperative Synapse Neuroevo-

lution (CoSyNE) has been used to train a neural network based on an evolutionary

algorithm. This method has also been compared to a wide range of RL through

some experiments on a pole balancing problem. In the study, CoSyNE has been

shown to be more reliable and efficient in comparison to RL. Although some texts

may classify the neuro-evolution method under reinforcement learning approach, it

is actually another form of machine learning that utilises an evolutionary algorithm

like a GA.

2.3.3 Trends of Application in Evolutionary Robotic

The earliest success in ER has been presented in [85] through a navigation task.

It is important to highlight that to hand design a navigation control system even

for a simple environment can be very difficult [86]. To obtain a good trajectory,

the designer should fine tune many parameters in order to successfully control the

direction of robot’s motion and its velocity. In addition, to implement a similar

navigation task on different robots and/or in different environments may require

different sets of carefully chosen value of parameters.

The experiment conducted by Floreano and Mondada [85] revealed that

the evolutionary approach could find a solution for straight navigation and obstacle

avoidance without a prior knowledge on robot’s sensors, motors, and environment.

In the experiment, Florano and Mondada employed a simple GA to evolve the

synaptic strength of a recurrent neural network. The neural network was composed

by eight input neurons and two output neurons. The input neurons were attached
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with infrared sensors (placed at eight different positions) and the output neurons

were connected to each wheels of the robot. The performance of each individual

(i.e. fitness function) was based on three components: speed, straight motion, and

distance from objects. It should be noticed that even though the fitness function

did not specify the direction for the robot to navigate, the evolved neural network

can automatically generate a navigation control system by exploiting the interac-

tions between robot and its environment. As the results, the evolved controller

was observed being capable to avoid deadlock situations and resume with smooth

trajectory. It is also claimed that the evolved controller can self-adjust the maxi-

mum cruising speed to ensure safe navigation. Other works on navigation using ER

approach has also been reported in [87, 88].

Another popular platform being used by ER researchers to test their

techniques in this field is legged robots. Early works in this area was inspired

by insects, where a neural controller was evolved for simulated hexapod robots

to walk in simple environments [89]. Figure 2.12 shows the proposed distributed

neural controller used for hexapod movement. Using a similar distributed neural

network, the research was further explored to implement the controller on a real

robot, which has been successfully executed on a flat surface. This has been tested

even with the existence of obstacles in the environment. In order to achieve a

‘stick’ insect gait controller, a more advanced approach was proposed by using

a different distributed architecture of a neural network, combined with a more

sophisticated mechanical design. Results from the experiment were promising as

the robot controller successfully generated a relatively smooth locomotion over an

extremely irregular terrain.

Various versions of legged robots have been developed. However, the

study to coordinate movements of a biped robot (i.e. a robot with two legs) could

be the most challenging research area in this field. Even a slight unevenness of the

floor can cause serious instability to the biped robot. Since the dynamics of a biped

system is nonlinear and difficult to analyze, it is not surprising that quite a number
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Figure 2.12: Distributed neural network for hexapod robot, copied from Beer et al. [89]

of research have adopted various AI techniques to generate biped gait [90, 91, 92].

One examples has been presented by In-sik L. et al. where a GA is used to generate

a stair walking trajectory of a biped robot which is similar to a human [93]. This

was done by optimizing seven design variables (which have been defined for human

gaits) to generate optimal locomotion patterns for a biped robot to go up and down

a stair. The effectiveness of their proposed method has been tested on a simulation

platform.

Multi-robot systems offer better reliability compared to single-robot sys-

tems based on the fact that it offers data redundancy and greater coverage of a

solution space. However, the main issue in the development of a multi-robot sys-

tem is to ensure collaboration of each individual system working together in the

same environment towards accomplishing a single task. Quite a number of research

have employed evolutionary algorithm in order to help in finding an optimal team-

coordination solution. An interesting example has been presented in [94], where
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a team of Unmanned Aerial Vehicles (UAVs) are required to perform an environ-

mental survey mission across an unknown region. In their implementation, each

UAV is developed using a neural controller. The weights of each neural controller

were evolved to develop a policy (i.e. a function for the robot controller). In this

research, N populations of neural network controllers were coevolved (i.e. multiple

populations evolved simultaneously) for N number of vehicles. In order to measure

the fitness function, the proposed approach has implemented ‘difference evaluation

functions’ where it quantifies each individual agents contribution to the team. This

way, the relative usefulness of each robot in the team can be determined. Based on

the experiment results, the proposed method (i.e. coevolution with different eval-

uation functions) outperformed the other two benchmark systems (i.e. coevolution

with global evaluation function, and hand-coded patrolling algorithm).

2.3.4 Evolutionary Approach in Behavior-based System

As shown in Figure 2.2, behavior modules and coordinator (i.e. action selection

mechanism) are the main components in the development of a behavior-based sys-

tem platform. Therefore, this section reviews several works that have employed EA

to evolve an elementary behavior of a robot system, and those that evolved action

selection components of a behavior-based system.

As discussed in Section 2.2, the behavioral modules of a behavior-based

system are usually composed by breaking down the overall systems objective into

simpler and smaller tasks. Therefore, each behavior is designed so that it can

generate an action in order to reach or maintain its own goal. This is done by

manipulating data from the sensory inputs in order to produce an output for robot

effectors. In general, each of the behavior modules is usually developed by hand

coded algorithm which requires many trials of parameters tuning. As an alternative,

ER researchers have explored an automatic way to develop the behavior modules.

Several publications have shown that a neural network and an EA can be employed
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to evolve an elementary robot’s behavior such as obstacle avoidance, edge following

and homing. Most implementations usually feed sensor data directly to the input

of the neural network, and the EA will alter either the weights, or both the weights

and the structure of the network until the robot exhibits the required behavior

[95, 96, 97, 98]. Another possible approach has been presented in [99]. In this

work, a GA is used to evolve 64-bit strings that encoded the mapping from eight

possible sensor-states to motor actions. Results from the experiments show that a

real LEGO Mindstorm robot was able to perform a tactile wall-following behavior

efficiently.

In the field of behavior-based robotic, many researches have been focused

on finding an efficient method to implement the ASM component. Deciding what

action to take at every time steps is crucial to ensure a behavior-based system is able

to work in its environment. Thus, quite a number of researches have explored the use

of EA in the development of ASM. A few examples have been discussed in Section

2.2.2. As for the work presented in [100], the author has employed GA to evolve

behavior coordination based on an FSA (a description of using an FSA for ASM

can be found on Section 2.2). To implement this, important parameters to design

an FSA have been used as the genotype representation. The FSA has been evolved

incrementally, where a functional controller is extended to a new functionality until

the desired system objective has been achieved. The proposed method has been

tested on a high lifting fork robot where the controller has performed well and

resulted in reliable cargo delivery behavior.

Rather than focusing on a development of a specific component in a

behavior-based system, Nolfi proposed a different approach. Nolfi claims that the

whole process in the development of a behavior-based system (i.e. the process of

breaking down the required behavior into subcomponents, the development of each

behavior modules, and the development of action selection mechanism) should be

accomplished by using learning or an adaptation technique. As presented in [101],

a type of a neural network known as ‘emergent modular architecture’ was trained
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for a mobile robot to clean an arena. Figure 2.13 shows the connections of a neural

network to implement the task.

Figure 2.13: An emergent modular neural network architecture, copied from Nolfi [101]

In this implementation, seven input neurons were used to feed data from

six IR sensors, and a barrier light sensor. The input neurons were connected directly

to 16 output neurons. The first four pairs of output neurons (represented by empty

circles) were coded for the speed of the left and right motors and for the triggering

of the ‘object pick-up’ and ‘object release’ procedures. The other four pairs (repre-

sented by full circles) were used to determine which two output neurons had control

over the corresponding robot’s effector (responsible for the selection mechanism).

The neural network was trained using a GA, and was found to perform efficiently

for picking up and releasing five target objects outside the arena without displaying

any incorrect behavior.

The work presented in [94] used a behavior-based architecture to develop

a multi-robot system. To do this, four Fuzzy Logic Controller (FLC) are utilized

for four different levels of hierarchy in a behavioral architecture for a multi-robotic

system (i.e. basic behaviors, behavior coordination, role building, and role assign-

ment). Since the design of an FLC usually require a lot of ‘trial and error’ fine

tuning, EA was used to optimize related fuzzy logic parameters. As reflected from

the presented results, the evolved fuzzy behavior-based system has performed an

efficient robot soccer system which is capable to attack and defend aggressively.



2.4. SUMMARY 43

2.4 Summary

The work in this thesis shares motivations and goals with a number of related fields

that can be categorised in two main areas: robot control and AI. This chapter

reviewed the most related lines of research from each of these fields in preparation

of introducing a new methodology proposed in this thesis.



Chapter 3

Genetically Evolved Action

Selection Mechanism (GEASM)

The proposed Genetically Evolved Action Selection Mechanism (GEASM) ar-

chitecture presents an alternative solution for behavior-based systems op-

erating in an unknown or dynamic environment. The main idea of this control

architecture is to utilize the versatility of an artificial neural network (ANN) to

imitate any transfer function that may represent an effective action selection mech-

anism (ASM). This is actually a huge advantage since ANNs are known to be able

to find a solution even if it is not linearly separable (e.g. XOR gate function) [78].

With an ANN engine at its core, the architecture requires a learning

algorithm that can browse through the huge pattern search space created by the

array of synaptic weights in the ANN for a solution that represents the most efficient

ASM functionality. For this, GEASM employs a genetic algorithm (GA), which is a

robust search heuristic [102, 103, 104] that uses natural evolution techniques—hence

the name.

44
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3.1 Overall View

Referring to Figure 2.2 shown in the previous chapter, GEASM attempts to impro-

vise both the behavior coordination procedure (i.e. the ASM) and the formulation

of that procedure. For the first part, an ANN is used as the behavior coordinator

module in GEASM. An important point that should be highlighted here is the di-

rect feed of sensor output into the ANN. Notice that this is somewhat similar to

the architecture used in evolutionary robotics (ER), which has been discussed in

Section 2.3. GEASM, on the other hand, maintains the need for behavior modules

and also uses their respective outputs as inputs to the ANN. Therefore, GEASM

could also be seen as a merger between behavior-based and ER approaches. A block

diagram of GEASM in a behavior-based system is shown in Figure 3.1.

Figure 3.1: The proposed control architecture using GEASM

As for the second part, a GA is used mainly to evolve the ANN towards

creating an effective ASM. In addition to that, due to the proposed connectivities

in GEASM architecture, the GA may also evolve the system towards emergent

behaviors [1], which are behaviors that were not thought of at design time, but

turn out to be essential to the system. It should be pointed out that since GA is
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mostly used in simulated offline training, it is not actually a ‘hardware’ component

in the GEASM architecture.

In order to implement GEASM, all the connected components (e.g. sen-

sors, actuators) need to have a clearly defined interface. The next section will

attempt to explain the functions of each component shown in Figure 3.1.

3.2 Behavior-based Control

A behavior-based control works through the integration of a set of interacting be-

haviors in order to achieve a desired system objective. Each behavior manipulates

data from sensory devices (e.g. camera, ultrasound, infra-red, tactile) to produce

an output for robot actuators (e.g. wheels, grippers, arm, speech). The synthe-

sis of behavior modules may differ between implementations depending on how a

behavior unit is defined and how a response action is encoded.

As pointed out in [1] and [25], there is no universally accepted description

of what a behavior module should be or how it should respond. This is only logical

since such system is historically an evolution of a reactive system that primarily

reacts to its environment, and since a system may have a different way of sensing

its environment, reactions will most certainly be different.

There have been attempts to define and implement a complex behavior

module that represents abstract behavior and produces high level action. In [4], a

‘go to home’ behavior has been defined, which produced a set of actions to allow a

robot to move from its current position to a predefined ‘home’ location. Clearly, this

complex behavior, known as motivational behavior, actually consists of multiple

movement phases for a mobile robot to execute. This is rather obvious since a

motivational behavior does not have any direct control over the actuators—instead,

it simply suppresses or inhibits the outputs of low level actions to the actuators.
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The most common method to implement behavior modules is to define

and implement simple behavior modules that is capable of supporting a system’s

primary objective. These simple behavior modules are usually designed based on

fundamental behaviors—for a mobile robot, those would be something like obstacle

avoidance. Consequently, these modules usually produce low level actions [37] such

as ‘drive forward’ and ‘turn right’.

In the proposed control architecture, each behavior is designed to propose

a robot’s next movement in terms of distance (how far to go forward or backward)

and angle (how much it should turn and which way). The distance parameter will

represent the strength or magnitude of the response, while the angle parameter

denotes the vector or direction of the response.

With multiple behavior modules modelled with different ‘functionality’,

conflicting actions or output parameters may occur, which presents a fundamental

issue in behavior-based systems. For example, let us consider a behavior-based mo-

bile robot that is executing a task that requires it to move towards a certain target

object. It then sensed both an obstacle and the target object, at the same time,

to be in front of it. In this situation, the behavior module that encourages it to

move away from obstacles may suggest to the robot to turn away, while another be-

havior module responsible for getting to the target object would suggest otherwise.

In principle, the suggestions from both behaviors are very useful for the robot to

make a decision on an appropriate action for controlling the robot’s actuator—in

this case, the motors that are controlling the robot’s wheels. As in any similar de-

cision making situation, to digest the suggestions from these two behavior modules

in producing an optimal action is not an easy task. This is where the behavior

coordinator or ASM is needed.

As pointed out in [1], the coordination function can be generally repre-

sented as Equation 2.2, which has been introduced in the previous chapter. Clearly,

this is the function that needs to be infused into the ANN’s neural connections. Var-

ious methods have been used to modify the weights of ANN’s neural connections
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(i.e. to train the ANN) [78, 105, 106]. In GEASM, GA is used, as will be explained

further later on.

Note that there is a gain value that is applied to the output of each

behavior modules before being fed into the coordination function. This is done so

that each behavior can be assigned a relative importance factor that represents its

significance towards the overall system response. However, in the proposed GEASM

architecture, response from each behavior will be directly fed to the ANN without

any scaling multiplier. This actually makes GEASM implementation a lot easier

since the ANN is expected to be trained to adapt a suitable value for this purpose

as well. Therefore, this eliminates the difficulties in assigning an appropriate gain

value which is probably different for every decision cycle.

Somewhat of an issue that needs to be addressed when applying an ANN

for robot control applications is the possibility of it operating in a random manner.

This is even more so when a GA is used to train that ANN because the GA will

generate a new candidate in every generation, which allows it to randomly traverse

into new regions of the search space. Because of this, applying GA to generate new

weights for the ANN controller during training produces an even higher possibility

for that random action to happen. Such actions could result in the robot moving

away from a clearly visible target or critically driving straight into obstacles. In

order to ensure that the robot does not make such critical error during training, a

suppressor module is introduced at the output of the ANN.

However, the main role of the critical error suppressor module is actually

to provide information of action selection errors generated by the ANN, which will

be used during training phase. It should be noted here that, while bumping into

obstacles may not be that critical if the robot platform has a robust mechanical

design, the error information gathered by this module would really help GA in

determining the performance level of that particular chromosome. The use of this

error information in GA will be discussed further in chapter 4. It is therefore

important to note that even when this module is not really needed and can be
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safely removed from the final system, it is a critical component in the training

phase of GEASM.

3.3 Core Design

The proposed architecture mainly revolves around two main tasks—creating a sim-

ple ANN engine as the ASM core and implementing a basic GA to train that ANN.

For the ANN engine, a Multi-Layered Perceptron (MLP) feed-forward neural net-

work has been chosen because of its simple architecture. This ensures that the

proposed architecture can actually be implemented on real robot platform. As for

implementing a basic GA, only the most fundamental genetic operators has been

selected for implementation and this will be discussed in the coming sub-section.

3.3.1 Multi-Layered Perceptron

Generally, an ANN is made up of highly interconnected processing elements called

neurons (which are also known as nodes in some text). The way these neurons

are interconnected with each other (i.e. its network topology) will define the type

of that particular ANN. The most simple and most commonly used topology, the

MLP feed-forward neural network, has been chosen to implement GEASM.

As shown in Figure 3.2 and as its name implies, an MLP neural network

is simply an ANN with multiple neuron layers connected in a feed-forward manner

(i.e. the output of each layer becomes input of the next layer). The neurons (also

known as perceptrons, hence the name MLP) in each layer is connected to all the

neurons in the next layer. An MLP normally consists of an input layer, an output

layer and one or more hidden layers, with at least two of them are processing layers.

The input layer is usually not a processing layer and will only be used to pass input

signals to the next layer. This is the reason why there is at least one hidden layer

in an MLP network.
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Figure 3.2: Multi-layered perceptron, redrawn after Haykin [78]

The number of neurons required in each layer may vary depending on the

complexity of target applications. For GEASM architecture, the number of input

neuron will be directly proportional to:

1. the number of behaviors multiplied by two (as each behavior will suggest a

value for distance and angle to control an actuator), and

2. the number of data manipulated from sensors that are used to perceive the

state of the environment.

As for the output layer, only two neurons are needed to produce the distance and

angle parameters required to control the robot’s movement.

Many works have proven that a single hidden layer with nonlinear activa-

tion function (e.g. sigmoidal function), is adequate in approximating any continuous

functions with a good accuracy [107, 107, 108]. Since GEASM is going for simple

implementation, only one hidden layer will be implemented. Deciding the number of

neurons for the hidden layer is trickier than the other two because there are no rules

for this. More neurons means better chances of adapting to complex functions, but

this also means a higher complexity network interconnections. Even though there

is no specific rule to determine the optimum number of hidden neurons, there are

some suggestions in the literature that can be used as a guideline [109, 110, 111].
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Further description related to number of hidden neurons will be discussed in the

next chapter.

The operations of an ANN, no matter how complex it may be, are defined

by the basic processing element in a neuron. Each neuron in a processing layer will

process an incoming input signal as illustrated in Figure 3.3. Theoretically, the

response or output of a biological neuron will only either fire or otherwise. Thus, it

is believed that it is the rate of firing, instead of the amplitude, which really conveys

the magnitude of the information. However, an artificial neuron normally uses the

magnitude of an output signal to relay the information.

Figure 3.3: Model of artificial neuron, redrawn after Haykin [78]

Incoming input signal Xi will be scaled by a weight value Wij (which

represents the connection strength of a synapse) that has been assigned for every

connection. Then, they are accumulated and fed into an activation function. The

summations of weighted inputs are given by Equation 3.1.

vj =
n∑

j=1

(XiWij) [78] (3.1)

yj =
1

1 + e−vj
[78] (3.2)
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In this work, the sigmoid function (as shown in Equation 3.2) has been

selected as the activation function of all neurons. This is simply due to the fact

that it provides a continuous linear region between two limits (as opposed to a

thresholding function), while acting as a limiting function that can filter noisy

inputs (similar to a thresholding function) [112].

The most interesting feature of an ANN that makes it valuable in many

systems is their ability to learn. This is done by modifying the weight value Wij of

interconnections between neurons using a learning algorithm. Learning algorithms

can essentially be categorized into supervised and unsupervised learning. In super-

vised learning, samples of input-output pairs will be provided to the ANN during

training phase. The learning algorithms in this category will approximate the target

function that can map the available input data to its correct output. As stated in

[79, 113, 114], such a learning approach requires a huge amount of training data. In

addition to that, as discussed in [115, 116, 117], the training data must be carefully

selected in order to ensure a successful learning process. In general, the training

data should represent as many conceivable solutions as possible, so that it covers

the whole spectrum of viable solutions.

On the other hand, unsupervised learning enables an ANN to learn with-

out having specific desired system responses (no explicit target outputs). The only

information provided to the neural network during its training are the observed in-

put patterns. The learning systems in this category mostly work based on statistics-

driven techniques that usually attempts to find key features of input data pattern.

Therefore, such a learning system is usually suitable for applications such as data

clustering, feature extraction, and similarity detection [118]. One thing that distin-

guishes the algorithms in this category from the ones in supervised learning is the

fact that an evaluation of a potential solution has to be done without any external

help.

For a robot control application that is executed in an unknown environ-

ment, the robot is exposed to various kinds of uncertainty. Clearly, for such an
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application, it is impossible to provide a complete example (i.e. input-output sam-

ples) in order to allow the ANN to successfully learn a function that represents the

desired functionality. Therefore, a variant of supervised learning method known as

reinforcement learning would be a great option for implementating GEASM. Rein-

forcement learning is very similar to supervised learning in the sense that a potential

solution can be evaluated to a certain extent. However, unlike supervised learning,

it does not need any ‘correct’ input-output data pairs—a potential solution is in-

stead evaluated using merit-based system. Each action taken during an evaluation

phase will be rewarded (or sometimes penalized) accordingly based on criteria de-

fined for a particular task. As an action is not directly corrected, reinforcement

learning also involves finding a balance between using current knowledge (exploita-

tion) and learning something new (exploration). Using the same approach, a GA

is used in GEASM to modify the weights of ANN in order to obtain the desired

function.

3.3.2 Genetic Algorithms

GAs are inspired by the principles of natural evolution techniques, which comprised

of basic genetic operators such as selection, crossover and mutation [119]. Simplicity,

robustness and the ability to search solutions for complex problems are the main

reasons that contribute towards the popularity of GA as a tool for optimisation

and machine learning. The process involved in GAs can generally be described as

shown in Algorithm 1.

Algorithm 1 A genetic algorithm

1: Generate the initial population of chromosomes
2: repeat
3: Test every chromosomes and assign a fitness value
4: Execute genetic operators to form a new generation
5: until a satisfying solution has been found

As shown in Algorithm 1, a GA requires a population of chromosomes,

each of which represents a possible solution to a particular problem. The initial
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population usually consists of randomly generated candidate solutions. In order to

evaluate these candidate solutions, an individual is created from each chromosome

(candidate solution) and put through a test in which the individual’s performance

will be assigned with a fitness value.

The jungle rule—‘Survival of the fittest’—will then be applied to the

population in an evolution process based on predefined genetic parameters. The

first parameter is the death rate, which specifies the percentage of chromosomes

that will be discarded from current population. This should, in theory, eliminate

chromosomes of individuals that did not ‘perform’ in the test. The second param-

eter is the birth rate, which specifies the number of new chromosomes that will

be added into the population. Obviously, the birth process involves creating new

chromosomes and thus presents a new issue—how should these new chromosomes

be created? A ‘natural’ way would be to create a new chromosome by ‘mating’ two

individuals, which are among the fittest in current population, through a crossover

process. This will logically increase the chances of producing better chromosomes

by randomly mixing the characteristics from each chromosome. Lastly, but cer-

tainly not the least, in order to increase diversity within the population and to

inhibit premature convergence, a mutation process can be applied to a portion of

the newly created chromosomes. The number of new chromosomes affected by this

is specified by the third parameter—mutation rate. GEASM proposes that the mu-

tation process is done by altering one or more—but not more than half—connection

weights in a chromosome. It is worthwhile to note that, in GEASM, the mutation

process is actually part of birth process, since it will be applied to the chromosomes

created using crossover process. This is to stress that the occurring mutation is

actually through natural evolution process and not one that is forced upon current

population.

As illustrated in Figure 3.4, the crossover process takes two fit chromo-

somes (i.e. known as parents) and divides each gene-string into two portions at a

randomly selected point inside the encoded gene-string. This produces two ‘head’
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Figure 3.4: Process of crossover

segments and two ‘tail’ segments. The two tail segments for the chromosomes are

then interchanged, resulting in two new chromosomes (i.e. known as childs or new-

borns).

The mutation process in GEASM is done with the following rules:

1. A random number of genes (with at least one gene) will be chosen to mutate

in each process. In order to ensure the information inherited from the parents

will be preserved, the maximum number of genes allowed to mutate is limited

to half of the gene size.

2. The mutation of the selected gene will be done by seeding it with a new

random value (i.e. floating point number) with opposite polarity from the

gene’s previous value (refer to Figure 3.5). This is to ensure that the new

value assigned will represent a truly different weight strength (and polarity)

of the respective connection.

Figure 3.5 shows a range of possible random values that will be generated

for a mutated gene, which is between min value and max value (i.e. the values can

be user-defined). The median of the two numbers will be used to separate the

entire range of the value into two opposite polarities. For example, if the chosen

range of possible random values are between -1 and 1, the median for the range

would be 0. Based on this example, if the new value generated is -0.25, and the

previous value is within the negative range, then the two values are in the same
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polarity region. Therefore, the polarity of the new value will be inverted using the

procedure defined in Algorithm 2. In this case, the new value assigned to the gene

would be 0.75.

Figure 3.5: Range of random values

Algorithm 2 Range of random values

1: if new value and previous value <median then
2: new value = max value - (new value - min value)
3: else
4: if new value and previous value >median then
5: new value = min value + (max value - new value)
6: end if
7: end if

Do note that if the new value and the previous value of the gene is at

the median value, a new random value from either polarity could be assigned.

In brief, using the three genetic operators—namely selection, crossover,

and mutation—a GA will be able to provide different results at different runs (i.e.

stochastic). This allows a GA to have the ability to cover a huge search space

(through random creations and crossovers) as well as being able to avoid the issue

of local minima (through random creations and mutations) [120, 121, 122, 123]. In

addition, instead of maintaining a single best solution applied by most conventional

optimisation techniques, a GA maintains a population of solutions. Because of

this, a better result may later be found among the population, possibly in other

regions of the search space. As shown in Algorithm 1, this process will be repeated,

generation after generation until acceptable solutions are found. Clearly, from the
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procedures described, GA can be a very effective method to explore the solution

space for optimising the weights of an ANN.

3.3.3 Using GA to Evolve a Neural Network

As mentioned earlier, in GEASM, the connection weights of the ANN are modified

using GA in order to resolve the formulation of an ASM. Therefore, a chromo-

some has been encoded to represent a set of connection weights between neurons

in consecutive layers (as illustrated in Figure 3.6), which are initially assigned with

random values in the range [-1.0 .. 1.0]. In order to get a better dynamic range, the

chromosomes need to be encoded with the connection weights values as it is—as

floating-point numbers— instead of the more commonly used bit strings. Mathe-

matically, the vector representing a chromosome can be written as:

U = (u1, u2, ..., uN),

where,

u1, . . . , uN are the connection weights of the ANN.

.

The chromosomes are then evaluated by creating individuals and putting

them through a test, usually in the form of a simulated mission environment. A

fitness value will be assigned to each individual and the population will be sorted

based on these fitness values. For a more practical approach, a fitness function

should be defined using data that is available in a real environment. Other than the

fact that this is a more ‘natural’ way to implement a bio-inspired system, using this

practical approach allows the possibility of this system to be trained in real-world

environment. Without relying on data that is only available from the simulator, the

system should be more adaptive and more robust to a changing environment where
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Figure 3.6: Chromosome representation

further evolution can be carried out if deemed necessary. This is consistent with

the findings in a survey done in [71], where the effects of using prior information

in creating a fitness function to be used in evolving robot controllers have been

analysed.

In this thesis, a generic fitness function is proposed as follows:

fitness = fErr ∗WErr + fEff ∗WEff (3.3)

fErr is the component that keeps track of decision errors and fEff is the component

that measures the performance of a solution to execute a given task.

Preliminary tests show that the fErr term is vital, especially in the early

generations, for a successful convergence of the genetic population towards a de-

sirable solution. This is because performance measurements cannot reliably dis-

tinguish the candidate solutions when most (if not all) of them failed to complete

their task. However, this component has to be carefully weighted so that it does not

inhibit the evolution of the genetic population, which could affect healthy growth
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towards target solution space. On the other hand, introducing fEff allows GA to

guide the evolution of middle generations towards finding optimum solutions based

on its performance for executing the given task. This is because when potential

solutions start to dominate the population, the probability of making errors will be

minimum and therefore the error component can no longer be reliably used to rate

the fitness of a solution. Although performance measurement is the determining

factor at later stages, it is important to maintain the error component for consistent

fitness evaluation because new solutions will still be introduced to the population.

In GEASM, both fErr and fEff are normalised values between 0 and

1. The normalisation is adapted to make the two variables comparable to each

other. WErr and WEff , weights for fErr and fEff components respectively, are

introduced into the equation in order to get a normalised fitness value. This also

allows the system to rate the importance of each component based on on-going

requirements. A more detail description of implementing GEASM on robot missions

will be discussed in Chapter 4.

3.4 Summary

This chapter has discussed in detail the methodology to implement GEASM in a

behavior-based system. Even though an MLP neural network and a basic GA have

been employed in order to resolve the difficulties in developing a suitable ASM,

several components of this framework are new. First, a control architecture is

proposed to integrate an ANN and a GA in a behavior-based system. Second, a

critical error suppressor has been introduced in the architecture in order to solve

part of the problems when implementing a GA for robot control applications. Also,

the output from the critical error suppressor will be used in the fitness function

definition. Since designing a fitness function for a specific robot control application

is not an easy task, a generic fitness function definition has been suggested in the

thesis. Finally, a new rule for mutation operator has been proposed to improve the
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search performance of the weights optimisation of a neural network. In order to

test the feasibility of the proposed method, the implementation of GEASM in robot

control will be discussed further in the following chapter.



Chapter 4

Implementation of Robot Control

Various aspects of implementing the proposed Genetically Evolved Action Se-

letion Mechanism (GEASM) on a behavior-based mobile robot platform will

be discussed in this chapter. That includes the selection of test environments and

parameters, which need to represent an unknown or dynamic environment. In such

environments, uncertainties may occur and might lead to problems associated with

estimation and execution of the control system—this is exactly the reason why

GEASM is proposed. In addition to that, the rationale of assigning suitable tasks

to be performed in those environments for the evaluation of GEASM, will also be

mentioned.

For testing in an unknown environment, quite a number of project opted

for tests based on robot navigation tasks [124, 43, 52, 125, 126]. Robot navigation

usually consists of three major competences: mapping, path planning and self-

localization. However, in order to test a mobile robot in an unknown environment,

these competencies are usually absent from implementation. This is done simply

to prove that a particular robot control implementation, which is usually based on

artificial intelligence (AI), can really perform navigation tasks without any ‘external’

guidance.

61
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Two navigation-related test applications have been selected to evaluate

GEASM: (1) search and exploration, and (2) target tracking. For the first test appli-

cation (i.e. a search and exploration task), a robot is required to find a target object

that may be located anywhere in the test environment. With randomly-placed ob-

stacles in the test environment, the robots will also need to avoid those obstacles

while searching for the target object. This should be sufficient in simulating an

unknown environment for a mobile robot platform [8, 52].

Meanwhile, in the second test application (i.e. target tracking), a robot

needs to continuously identify, locate, and follow a moving target object within

an acceptable distance. Due to the fact that both robot and target object are

free to move around the unknown environment, the target tracking mission can be

considered as the best mission scenario to simulate a ‘dynamic’ world [127, 128, 129].

With these two test applications in mind, a suitable experimental plat-

form needs to be determined next. Using genetic algorithm (GA) naturally requires

offline training (due to the need to maintain many candidate solutions), which in-

herently enforces the use of simulation platform. However, the project also sets

a future goal of implementing the system on real hardware mobile robot platform.

Because of this, the chosen simulation platform used in the test phase must support

hardware implementation.

4.1 Experiment Platform

As mentioned earlier, selecting a suitable test platform for GEASM will determine

the approach that needs to be taken to implement the whole system. Since there

is a need for hardware support, sensor selections will be limited by the ones offered

by the selected platform. Therefore, data processing requirements will only be

identified once a basic system has been finalized. This section will describe, in detail,

the experiment platform that will be used in evaluating GEASM as behavior-based

robot control system.
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4.1.1 Simulation Platform

A robot simulator can actually facilitate the process of designing and experimenting

a robot control system, sometimes by creating a very simple model of a platform and

its environment. Using simple models usually means that either most parameters

are abstract, or simple (and most of the time inadequate) mathematical models

are used in order to allow the system to be simulated on low-end hardware. It

is important to know that this will present a serious issue if and when the system

needs to be implemented on a real robot hardware. As stated by Nolfi and Floreano

[86], the problems in characterising the body of a robot and modelling the behavior

of a sensor and an actuator are the main contributions towards the gaps between

simulation systems and real robot systems.

In order to evaluate the effectiveness of GEASM as a robot control system,

a robot simulator software called EyeSim [130] has been employed. EyeSim is a re-

alistic mobile robot simulation system with 3D graphics, which provides adjustable

error models and allows multiple robots to operate in the same environment. The

main reason for using EyeSim is because the software exclusively supports Eye-

Bot platform—a family of mobile robot implementation based on Eyebot controller

board that is geared towards applications of image processing.

Using C/C++ programming language, the simulator has been designed

to support running programs created using the exact same source code that is

written for its equivalent robot hardware [130, 131, 132]. Quite a number of robot

applications have been successfully transferred from simulation to a real robot using

the EyeSim platform. One example has been reported in [133] where a robot control

system has been implemented for a robot soccer application. Utilizing the power of

object-oriented programming (OOP), the implementations for GEASM and the two

selected test applications has been written in C++, targeting the EyeBot mobile

robot platform. However, the experiments presented in the thesis will be mainly

based on software simulations. It is worthy to highlight that an obvious advantage
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of using a software simulation platform to experiment with the proposed method

is the execution time. While it may take minutes to complete a task on a mobile

robot, with proper modelling and abstractions, a software simulation system may

complete a number of trials in the same amount of time with acceptable accuracy.

Another advantage of using a simulation platform, such as EyeSim, for

this particular project is apparent due to the use of GA in training the artificial

neural network (ANN) engine in GEASM. Since GA maintains a population of

candidate solutions, the training process usually involves a huge number of trial

runs before GEASM can learn a particular strategy. A fast mode simulation offered

in EyeSim also adds an extra advantage to the testing phase, allowing more work on

exploring the evolutionary technique for robot control with more efficiency. Since

the aim of this research is to allow the overall control system to interact intelligently

in a dynamic or unknown world, using EyeSim is the perfect choice because it

allows a larger experiment space to be manipulated in creating various testing

environments.

4.1.2 Robot and Sensor Model

The target robot platform for GEASM is based on a wheeled robot known as Soc-

cerBot (shown in Figure 4.1). Similar to the other robots in the EyeBot family,

it is mainly equipped with two DC driving motors with differential steering and

an EyeCam camera for vision. Sensors such as shaft encoders, tactile bumpers or

infra-red (IR) can be added to the robot platform depending on the immediate

requirements of an assigned task. It should be noted here that, using EyeSim, each

sensor can be coupled with a user-customizable error model that allows a simula-

tion to be executed with a more realistic figures. This error model is actually used

to test GEASM’s system tolerance towards unexpected minor glitches within data

stream—more details on this will be discussed in the following chapter.

Deciding upon which sensor to use for evaluating GEASM also requires

some planning. It is easy to get trapped into the idea of simply putting every
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Figure 4.1: Snapshots of a real and its equivalent simulated EyeBot platform

available sensors onto the system, but other than costs involved, the data processing

time also needs to be considered. So, it is always best if a robot is equipped with only

sensors that are really needed by the task at hand. Since the tests mainly involves

moving around or following objects, the sensors must be able to give information

about its environment as well as any existing objects.

Consistent with the fact that the EyeBot platform promotes the use of

image sensors (i.e. camera), the target robot platform for implementing GEASM

will be fitted with a colour camera that should be able to provide any required in-

formation of its surroundings. For the purpose of this text, the customized platform

for GEASM will be referenced as GE-Bot. The use of image sensors on GE-Bot will

enable it to not only detect the presence of obstacles or target objects, but even

monitor any dynamic changes in an environment.

However, similar to human vision, a camera has limited scope in terms

of area coverage (i.e. field of view and line of sight). Because of this, GE-Bot will

also be equipped with IR sensors that should help improve the system’s awareness

towards physical obstacles that may cause the platform to behave erratically. Since

IR sensors are directional, GE-Bot will be using three of them—front, left and right.

Because of this, the resolution at which the IR sensors can detect obstacles is slightly

at a disadvantage and therefore it is important both sensors can complement each

other. A simple scenario that exhibits the importance of combining the two type

of sensors can be illustrated in Figure 4.2.

As shown in the figure, consider a scenario where the robot platform is

situated as such in the operating environment. Due to the directional nature of the
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(a) Dotted lines illustrate the output
from the IR sensors

(b) Display from the camera view

Figure 4.2: Robot is facing a targeted ball with obstacles around the robot

IR sensor, the front sensor will be informing the platform that there are no obstacles

in that direction—which is obviously false. Fortunately, with proper processing on

the image information provided by the image sensor, the obstacles in front of the

robot can be detected. On the other hand, due to the limited field of view inherent

in the image sensor, the existence of an obstacle on the left of the platform was not

detected by it—but was instead detected by the IR sensor on the left.

Some brief descriptions of the two sensors equipped on GE-Bot are as

follows:

1. EyeCam Camera: EyeCam is a digital camera that provides an image with a

resolution of 60x80 pixels with 24 bit colour per pixel. The EyeBot controller

is capable of extracting an image sequence of up to 30 fps (frames per second)

from the EyeCam. One advantage of using EyeSim is the ability to simulate

this on-board camera available on EyeBot plaform. This allows real-time

image processing to be performed in the simulation platform.

2. IR Distance Measurement Sensor: This sensor consists of an IR transmitter

and an IR receiver which are used to measure the distance of the nearest
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obstacle based on the reflected IR beam. A look-up table will be used to

transform the raw data values to the actual distance values. Since the sensor

is cheap and the size is small, this sensor can be freely positioned and oriented

around a robot. However, in this implementation, the sensors are mounted at

three positions (i.e. front, right and left), which are considered to be adequate

for the experiments required in this project.

4.1.3 Pre-processing of the Sensory Data

One of the reasons why many systems developers are not so keen on utilizing vision

sensors is due to the fact that processing requirements for such systems are very

demanding. In order to overcome this, some implementations opted for lower resolu-

tion or grayscale image processing, which clearly reduces the amount of input image

data. Another method that can be used to ease up the processing requirements is

to create abstract representations of the required information and use simple image

analysis to translate captured image data [134, 135, 136]. The simplest and most

commonly used information abstraction in image processing is by using colour to

represent specific object in the environment.

In this experimentation, the implemented system will be using ‘Colour

Object Detection’, which has been presented in [130], as the basis for GE-Bot’s

image analysis sequence. Generally, the object detection method (which is based

on hue-histogram algorithm) has been extended to gather more information on the

robot’s environment. The overall image analysis is done based on defining spe-

cific regions on the input image to represent useful information of the surrounding

environment. Figure 4.3 shows how this is done.

As shown in Figure 4.3, the image has been segmented to clearly define

four main regions representing the left-side region, the right-side region, the near

front-side region, and the centre front region of the robot’s view. The low horizontal

line is used to define the boundary for ‘near’ front side region, which indicates
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Figure 4.3: Pre-processing from camera image

whether the robot is near to the target object or an obstacle (walls). Similarly,

the other two vertical lines close to both sides of the image define boundaries for

the left, right, and centre regions. This segmentation method is used as the basis

for image analysis sequence used by GE-Bot to create abstract representation of its

surroundings.

The abstracted information used by GE-Bot is as listed below:

1. bview: This parameter represents the size of target object in the robot’s

view. This value is actually the maximum number of target object’s pixels

detected in a column of the camera’s image.

2. bpos: This parameter represents the direction of a target object in the robot’s

view with reference to the centre point. Thus, value of 0 in this case indicates

that the target object is exactly at the centre while negative and positive

values indicate that the target object is on the left and right side of the

robot’s view respectively. It is an offset value of the column used for bview.
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3. bnear: This parameter represents how near the target object is in the robot’s

view. It is the maximum number of target object’s pixels detected in the near

front region (under the horizontal line shown in Figure 4.3). In this case, the

maximum number will be chosen among three possible values: the right-side,

the centre, or the left-side within this region.

4. sideL: This parameter represents detected obstacle at the left-side of the

robot. It is the number of white pixels (representing an obstacle) detected at

the left side of the camera’s view, in the ‘near region’.

5. sideC: This parameter represents detected obstacle at the near front-side of

the robot. It is the number of white pixels (representing an obstacle) detected

at the near front-side of the camera’s view.

6. sideR: This parameter represents detected obstacle at the right-side of the

robot. It is the number of white pixels (representing an obstacle) detected at

the right side of the camera’s view, in the ‘near region’.

Table 4.1 demonstrates some examples of generated abstract data representing the

existence of a target object at various locations within the robot’s view.

In addition to the information from camera image, readings from the IR

sensors (i.e. located at three positions) will be encoded with either ‘1’ or ‘0’, which

represents the existence of an obstacle or otherwise. As shown in Figure 4.4, the

encoding is based on a pre-defined safe range between a robot and an obstacle.

4.1.4 Simulation Environment

As mentioned in the previous sub-section, the implementation of GEASM on Eye-

Sim revolves around data abstraction based on colour. The environment (i.e. world)

for the two missions is a green carpeted arena surrounded by white walls. There

can be other walls (or objects) within the arena to represent environmental ob-

stacles, which also enable the creation of maze-like worlds. The size of operating
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Table 4.1: Examples of data extraction from the camera image

Robot’s Environment Camera’s View Camera Sensory Infor-
mation

bpos = 0; bview = 22;
bnear = 0; sideL = 0;
sideC = 0; sideR = 0

bpos = -35; bview = 22;
bnear=0; sideL =0;
sideC=0; sideR=0

bpos = 40; bview = 16;
bnear= 0; sideL =0;
sideC=0; sideR=0

bpos = -3; bview = 56;
bnear= 60; sideL =0;
sideC=0; sideR=0

bpos = -1; bview = 30;
bnear=0; sideL =190;
sideC=41; sideR=0
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Figure 4.4: A snapshot of a program to encode the IR readings

environment used by the robots may vary depending on mission objectives and re-

quired complexity. In all missions, the performance of GEASM-based mobile robot

platform will be tested in various unknown environments where any information on

surrounding environment and object locations will not be available to the system.

4.2 From Theory to Implementation

In this section, the implementation of GEASM control architecture shown in Fig-

ure 3.1 will be further discussed for search and exploration and target tracking

mission. Among the first things to do in implementing the proposed system is to

develop behavior modules that is consistent with the available sensors. Sensor data

obtained from the robot’s camera (colour image), and IR sensors (located at the

left, right, and front of robot’s body) will be processed and used by the behavior

modules.

Three basic behavior modules have been defined separately for search and

exploration and target tracking missions respectively:
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Behaviors for Search and Exploration

1. Avoid obstacle: Manoeuvres the robot to avoid obstacles (based on input

from IR sensors and camera image)

2. Wander: Allows the robot to move in a random direction (slightly influenced

by results from camera image analysis)

3. Drive to Target: Drives the robot towards target object (based on the colour

object detection method [130])

Behaviors for Target Tracking

1. Avoid obstacle: Manoeuvres the robot to avoid obstacles (based on input

from IR sensors and camera image)

2. Predict: Predicts the next movement of the target object based on input

from the camera image

3. Track: Drives the robot to keep the moving target object in front within view

There are no specific rules for designing behavioral modules for a behavior-

based system. However, it is commonly defined in order to perform a particular

activity, representing a sub-task of an overall robot mission. Therefore, the three

defined behavior modules for each application are considered to be sufficient for a

behavior-based system to perform the respective missions.

For GEASM implementation, the processed data (output of behavior

modules) is then fed as input, along with direct sensor outputs, to the ANN, which

will act as the action selection mechanism (ASM) engine. As described previously,

the ANN will consider all information from the behavior modules and produces an

appropriate action (i.e. distance and angle) for the actuator to control the move-

ment of the robot. However, just like for any other system based on ANNs, a

sufficiently suitable action can only be generated after the ANN has gone through
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an acceptable amount of training. Without any prior information available to the

system, the ANN in GEASM architecture will be trained using GA.

In order for the GA to train the ANN, a generic fitness function has been

defined previously by Equation 3.3. For this specific implementation, the equation

is further refined with the error component, fErr, being defined by Equation 4.1.

As mentioned earlier, this term is used to represent decision errors (e.g. moving in

circle, driving into obstacles, stopping indefinitely) made by GEASM, which creates

a seemingly harmless action, but in reality does not contribute to the success of

overall mission. Such errors generated by the ANN engine in each decision cycle

is accumulated into ε(k). Naturally, the value for fErr is normalized within range

between 0 and 1.

fErr =

t−
∑

0<k≤t

ε(k)

t
0 < t ≤ τ (4.1)

where,

ε(k) error penalty value function;

k decision cycle;

t total time steps to execute the mission;

τ maximum time limit for robot to operate;

The defined fitness function can vary from one application to another via

the component fEff , depending on how the performance of a test platform executing

a particular task can be measured. The performance term, fEff , for search and

exploration; and target tracking is described in Equation 4.2 and Equation 4.3

respectively.

fEff =
τ − t

τ
0 < t ≤ τ (4.2)
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The component fEff for the search and exploration mission has been

defined as a measure of how fast the system can explore the environment and reach

the target object within a given time τ . This is simply done by measuring the

number of decision cycles needed to complete the task. Using decision-cycle count

instead of real time value is actually an advantage since the results can be translated

to platform with more processing power.

fEff =

∑
0<k≤t

P (k)

τ
0 < t ≤ τ (4.3)

where,

k decision cycle;

t total time steps to execute the mission;

τ maximum time limit for robot to operate;

P (k) tracking point function;

On the other hand, the component fEff for the target tracking mission is

defined by the ability of the system to keep the moving target that is being tracked

within its field of view. This is done by accumulating reward and penalty values for

P (k) in every decision cycle k. A reward is given to the system when it manages

to keep the target within its field of view—otherwise the system will be penalised.

Referring to Equation 3.3, weight values WErr and WEff should be set to

for each error and performance components respectively. In this thesis, the weights

WErr and WEff are both set to 0.5, which indicate that the contribution for fitness

values from both components (i.e. fEff , and fErr) are considered to be equally

important.

Table 4.2 shows the parameters used in the genetic evolution for optimis-

ing the weights of the ANN. In general, there are no universal parameter settings

for GA that can be used, as it may vary depending on the problems and approaches
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Table 4.2: Initial parameter settings for optimising the weights of a neural network

Parameter Value

Death rate 0.400
Birth rate 0.600
Mutation rate 0.400
Initial population 20
Gene type float
Min gene value -1.00
Max gene value 1.00

for implementing the GA itself. In this research, the roles for birth rate and death

rate have been tuned to control the population growth. Many researchers have

discussed the issue related to optimum population size and growth [137, 138, 139].

However, since the initial population consists of a set of randomly created chro-

mosomes, having a large population at this stage may not be necessary (i.e. as it

may lead to a longer training phase). However, when the population evolves, it is

ideal to have a larger number of candidate solutions so that the search space can

be sufficiently covered.

Based on tests for a simpler mission where a robot simply needs to move

straight to a target, it is found that having a starting population of 20 chromosomes

is adequate. This value is then used in a few other missions and has been found to be

an adequate initial population size as well. As explained earlier, the population size

is then allowed to continuously grow during the first ten generations by setting the

value for death rate and birth rate with 0.4 and 0.6 respectively. This effectively

translates into a 20% population growth. The size will then remain unchanged

in the following generations by setting the same value for death rate and birth

rate. Again, there are no rules for this and a value of 0.4 has been chosen based

on common logic. A value of more than 0.5 would create a relatively whole new

population set for each generation, and a value closer to zero would not generate

a population that is dynamic enough to cover a wide search space. This value of
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0.4 has been found to work well with many test missions. Similarly, a mutation

rate of 0.4 has been chosen to introduce a more diverse search pattern, while still

maintaining proven chromosome parts from fit parents in the crossover process.

To summarise, the GA presented here allows three groups of chromosomes

to exist in the population after an evolution: chromosomes of the fittest individuals

from the previous generation, unmutated newborns generated from the crossover

process, and mutated newborns (also from crossover process). Using the parameter

settings described earlier, the ANN implemented for each test applications has been

trained for 30 generations.

4.3 Justification of Selected Design Parameters

This section presents an elaboration on some of the design decisions made in order

to implement the proposed system. The first involves the determination of the

number of neurons required by the hidden layer in the neural network. Also, the

contribution of error component in both architecture and fitness evaluation will be

given a closer look. While the final item will be on the effect of manipulating the

weights of the parameters in the fitness function.

4.3.1 Size of Hidden Layer

This parameter basically determines the ability of the ANN to learn and perform

the required task. The hidden layer can be seen as the core processing elements of

an ANN, and therefore determines the complexity of the network. As with many

intelligent systems, a simple system is usually unable to look beyond simple logic.

In other words, if the number of hidden neurons is inadequate, the ANN may not be

able to recognise complex patterns. This is also known as an underfitting scenario.

At the other end of the spectrum, if the system tries to be too sophisticated it

will attempt to look for patterns in pure random data and may ultimately report
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false positives. This is expectedly known as overfitting. Based on this knowledge,

a balanced number of hidden neurons needs to be determined in order to produce

an ANN with satisfactory performance.

Some research has been proposing a dynamically adaptive neural net-

work that is capable of growing its hidden layer as needed. Algorithms like Cascade

Correlation [140] start with a minimal network, then add hidden nodes accord-

ingly during training. This can make experimental setup simpler and theoretically

produce better performance because the number of hidden nodes will always be op-

timised. However, one problem of using this technique is to decide when the ANN

should stop increasing its size. Although there is a possibility that the ANN could

be allowed to grow bigger for a better performance, it is also important to know

when to stop before overfitting occurs.

Alternatively, a more rigorous method known as pruning can be applied,

where the neural network is tuned during training by removing nodes whose weight

values are approaching zero. This is consistent with the fact that a zero-valued

weight represents a disconnected (and therefore, unneeded) synapse. This will un-

derstandably produce an even more optimised network but it comes with a huge

training commitments.

A more practical solution that is used by many (and sometimes considered

as the rule of thumb for this matter) is to use a trial-and-error method with logical

considerations by looking at the number of nodes in the input layer (incoming

signals) and those in the output layer (outgoing signal). A good starting point

would be to choose a size that is between the size of the input layer and the output

layer [141]. Other guesses include using a fraction of the total size of neighbouring

layers and a value that is up to twice the number of input nodes.

For the proposed system, a simple analysis has been made using the

search and exploration mission to find a suitable number of hidden nodes. The

system has been trained using 1, 5, 15, and 50 hidden nodes. The performance
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(best fitness) value of every generation in each scenario has been charted for 30

generations, as shown in Figure 4.5. The system with one hidden node demonstrates

underfitting scenario (not reaching acceptable fitness) while the system having 50

hidden nodes shows signs of overfitting (not achieving steady state). Both systems

with five and 15 hidden nodes show an acceptable fitness convergence pattern and

this is consistent with the first choice in the ‘rule of thumb’ described above, which

recommends taking a value between the size of the input layer and the output layer.

It is worthy to note here that, from the figure it can be seen that the system with

15 hidden nodes managed to converge faster compared to the one with five hidden

nodes.

Figure 4.5: Analysis of hidden node for feed-forward neural network

Although the proposed system is implemented using 15 hidden nodes in

most experiments, it should be highlighted here that having a smaller number of

hidden nodes would mean a less complex system and therefore be more practical

for a real hardware implementation.



4.3. JUSTIFICATION OF SELECTED DESIGN PARAMETERS 79

4.3.2 Error Term Contribution

As mentioned earlier, the error term for fitness evaluation was deemed necessary and

plays an important role in the success of genetic evolution of the proposed system.

It is important to note that the decision errors flagged by the system do not change

any output produced by the GEASM control architecture (except for critical errors

that are suppressed by the suppressor module shown in Figure 3.1). This ensures

that the fitness of a candidate solution is really valid with the platform running

its course of action whatever it may be. In any case, this section will attempt

to investigate the real contribution of the error term as proposed in the GEASM

control architecture.

A simple experiment has been conducted based on the search and explo-

ration mission training. The procedure is first done for the proposed ANN, while

in the second run, the ANN is stripped from all error-related modules including the

error suppressor module. In both instances, three sets of input data were used:

1. Sensory information (conventional ER approach);

2. Behavior suggestions (i.e. angle, and distance);

3. Sensory information and behavior suggestions (as proposed in GEASM archi-

tecture)

The experiment has been repeated using two different ANN hidden node

counts. First, the ANN is built with 15 hidden nodes (i.e. H=15). Next, the number

of hidden nodes is set with an equivalent number of the input nodes (i.e. H=I/P).

The results in Figure 4.6 show that the ANN with an error term can

converge to a satisfactory fitness value faster compared to the one without. This

is consistent with the fact that a learning process is usually more effective when a

teacher is available to point out mistakes (errors). Notice that the network without

an error term does not ‘perform’ at the early stage of genetic evolution (virtually
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(a) Without the error suppressor (H=15) (b) Without the error suppressor (H=I/P)

(c) With the error suppressor (H=15) (d) With the error suppressor (H=I/P)

Figure 4.6: The effect of the error suppressor

zero fitness). This is also expected since it is quite impossible for a randomly-driven

(no patterns in the first few generations) robot to achieve its goal. Without the

error term to evaluate its fitness, almost all genetic population may be assigned to

a virtually zero fitness value. From this experiment, it is clear how much the error

term contributes towards the success of the propose GEASM control architecture.

4.3.3 Weighting Fitness Components

As mentioned earlier, the weights of both components (i.e. WErr, and WEff in

Equation 3.3) used in fitness evaluation have been set to 0.5 each, which indicate

that both components are equally important. However, it is interesting to know

the effect of using other weight ratios for fitness evaluation. Note that WErr and

WEff are introduced to get a normalised fitness value, which limits the total of the

two weights to be within the range of 0 and 1. Figure 4.7 shows the trend of fitness

values during the training phase over 30 generations with the following WErr:WEff

weight ratio:



4.3. JUSTIFICATION OF SELECTED DESIGN PARAMETERS 81

1. 9:1 (i.e. WErr = 0.9; WEff = 0.1)

2. 7.5:2.5 (i.e. WErr = 0.75; WEff = 0.25)

3. 5:5 (i.e. WErr = 0.5; WEff = 0.5)

4. 2.5:7.5 (i.e. WErr = 0.25; WEff = 0.75)

5. 1:9 (i.e. WErr = 0.1; WEff = 0.9)

Figure 4.7: Best fitness value when training with different weighting fitness components

From the figure, it is clear that the best fitness values for all configurations

have converged to good results of around 0.80 after 30 generations. A closer look

into it shows that the systems with ‘unbalanced’ weight ratios (9:1 or 1:9) seem to

converge much faster (takes less than five generations). The systems with slightly

‘unbalanced’ weight ratios (7.5:2.5 and 2.5:7.5) converge after about 15 generations,

while the proposed balanced weight ratio only converges towards the end of the 30

generations’ evolution. This shows that the convergence rate of the best fitness

value seems to be affected by changing the weight ratios. However, it should be

noted that this is simply an evaluated fitness value, which may not indicate true

performance if the evaluation is flawed.

Another way to look at the performance is to view the path traces of the

robot while executing its mission scenario. This is shown in the Figure 4.8.
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(a) WErr:WEff is 1:9 (b) WErr:WEff is 1:9

(c) WErr:WEff is 5:5 (d) WErr:WEff is 5:5

(e) WErr:WEff is 9:1 (f) WErr:WEff is 9:1

Figure 4.8: Path traces of GEASM when training the system with various weight ratios
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From this new point of view, it is clear that while the evaluated fitness

value is achieved for weight ratios other than the balanced 1:1 ratio, the system

failed to successfully execute its mission. They are actually stuck in a ‘local minima’

solution, a problem which is common in gradient-based learning systems (some

texts may refer to this condition as ‘premature convergence’) [142, 143, 144, 145].

A quick assumption that can be made from this result is that in order for a GA

to successfully evolve its population towards a global solution, a properly selected

fitness evaluation method (in this case, its component) is of primary importance.

4.4 Considerations for Performance Comparison

In order to examine the effectiveness of GEASM in coordinating behaviors, priority-

based (arbitration type) and vector summation (command fusion type) methods

have been chosen for a performance comparison. Subsumption logic [10] uses a

priority-based (PB) method while motor schemas [146] architectures use a vector

summation (VS) technique. Both priority-based and vector summation methods

are among the classic, acknowledged techniques that are mostly discussed in the

field of behavior-based system. Furthermore, the two techniques are suitable for the

implementation of a low level ASM, which is part of the main focus of this research

work.

The block diagrams of priority-based and vector summation are illus-

trated in Figure 4.9. Notice that the same behavior definitions have been used in

all methods.

Using the priority-based method, each behavior has been assigned a pri-

ority value and an active flag. The active behavior with highest priority will control

the system by overriding the other behaviors in a decision cycle. The box in the

priority-based approach represents the override switch that could be implemented

with multiple stage multiplexers, in which the active flag of a behavior (when acti-

vated) will take over control from a lower priority behavior.
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(a) priority-based

(b) vector summation

Figure 4.9: Block diagrams of action selection mechanisms
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Figure 4.10: A snapshot of a program for implementing the priority-based method

In this experiment, a custom fixed-priority arbitration has been imple-

mented. Figure 4.10 shows a snapshot of a program to implement the priority-based

technique using C++ language. Even though a variable priority can be assigned

to the behaviors during the execution of the system, several conditions should be

considered. As stated in [147], to build a system that uses a variable priority, it

requires another mechanism to determine the priority ordering. The issue here is,

what is that mechanism? Another concern is how to ensure two or more different

behaviors will not be having a similar priority at a particular decision making cycle?

Since the priority can be shifted among the behaviors from time to time, building

such a system will become more complicated especially when relevant conditions

can not be outlined.

Unlike the priority-based method, vector summation will allow every be-

havior to contribute in producing the overall system output. At the robot’s current

location, each of the behaviors will produce an output vector indicating the re-

sponse or direction where the robot should move to satisfy each of its goals. As

shown in Figure 4.9(b), each of the output vectors (Ri) is multiplied with its be-

havior gain factor (Gi) and summed up with the rest to produce a single output

vector. In this thesis, the gain factor for every behavior has been defined as one per
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Figure 4.11: A snapshot of a program for implementing the vector summation method
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number of behaviors. In other words, the produced output vector is actually the

average response from all behaviors in the system. Therefore, for the case where

all the behaviors are suggesting the same response (i.e. identical in magnitude and

orientation), the output vector that controls the overall system is equivalent to the

vector suggested by each of the behaviors. The snapshot of a program to implement

vector summation is shown in Figure 4.11.

Applying GA for robotic application is closely related to the work in

evolutionary robotics (ER). Therefore, the effectiveness of the proposed method will

be also compared with a conventional implementation of ER (refer Figure F.1(b) in

Appendix F). This has been carried out to investigate the relationship between the

two techniques and to highlight any advantages of the proposed approach. In this

thesis, the conventional ER has been implemented using the same sensory input

and has been applied to the same fitness function definition during the training

phase.

4.5 Summary

This chapter has laid out the details for implementing GEASM architecture in

controlling a behavior-based robot for two different test applications: search and

exploration task, and target tracking missions. This includes the description on

how to define the fitness function for both test applications. An explanation on

parameters used when employing GA and ANN have also been discussed. In addi-

tion, preliminary studies have been conducted in order to investigate some of the

parameters used to evolve the ANN for GEASM. The outcome of these studies will

be used as the basis for the experimental setup for both test applications presented

in the thesis. The proposed approach is evaluated in various simulation scenarios,

and the results will be presented in Chapter 5.



Chapter 5

Results and Discussions

Using experiments mentioned in Chapter 4, this chapter examines the per-

formance of a Genetically Evolved Action Selection Mechanism (GEASM)

system, which is basically a mobile robot system utilizing GEASM as part of its

control architecture. The first two sections investigate the effectiveness of GEASM

system in the aforementioned test applications—search and exploration, and target

tracking. In both test applications, the mission environment is a finite-sized area

but is completely unknown to the mobile robot system. For each test application,

the measured performance of GEASM system will be compared against four other

implementations—priority-based (PB), vector summation (VS), and conventional

evolutionary robotic (ER).

The following section then investigates the capability of the GEASM sys-

tem to execute a robot mission under the existence of noise within its input sensors.

In addition to that, the use of the GEASM system as sub-modules in order to exe-

cute a higher level robot tasks is also explored.

88



5.1. SEARCH AND EXPLORATION 89

5.1 Search and Exploration

Figure 5.1 illustrates the simulated training environment designed to train the ar-

tificial neural network (ANN) controller for GEASM, which will then be used in

the search and exploration mission. Figure 5.2 shows the trend of fitness values

during training, captured over 30 generations. The solid line and the dotted lines

denote the best and average fitness values, respectively. In theory, the best or av-

erage fitness value of the population is expected to increase over generations, and

converge to the point where an optimal solution can be found. From Figure 5.2, it

is clear that the best fitness value has converged to a satisfactory value of around

0.83. Remember that the fitness value, in this case, will never reach 1.0 because

the time needed to get to the objective, t can never be zero (refer to Equation 4.2)

due to the nature of the task and initial mission environment.

Figure 5.1: The simulation training environment for search and exploration mission

The fully evolved GEASM system is then tested for a search and explo-

ration task in two simple environments as shown in Figure 5.3. When comparing

the GEASM system with PB, VS, and ER systems, it is observed that all the four

systems have performed the search and exploration task, approximately with a good

performance.

One thing to notice about this result is the fact that the output of all

control architectures seem to converge towards using wall following (WF) move-

ment pattern. WF robots, which can be implemented using simple logic, are quite
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Figure 5.2: Fitness value during the training phase

famous for applications involving maze-like environment. Consequently, on top of

comparing the GEASM system with the other three reference systems, the perfor-

mance of a mobile robot with simple WF behavior will be included in the following

two sub-sections. This is done in order to see the practicality of implementing the

proposed system over a simple rule-based algorithm. The rule for WF implemented

in this thesis is shown in Algorithm 3.
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(a) GEASM

(b) PB

(c) VS

(d) Conventional ER

Figure 5.3: Search and exploration in a simple environment
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Algorithm 3 Simple Wall Following - Left Hand Rule

1: Go straight to find a wall, then turn right
2: Keep following the left side of the wall
3: repeat
4: if (Front Path is Clear) AND (Robot is at a sufficient distance with the wall)

then
5: Go Straight
6: end if
7: else
8: if (Front Path is Clear) AND (Robot is quite far from the wall) then
9: Make a small turning to the left and move forward a little bit

10: end if
11: else
12: if (Front Path is Clear) AND (Robot is too near to the wall) then
13: Make a small turning to the right and move forward a little bit
14: end if
15: else
16: if (Front Path is Clear) AND (No wall detected at the left side) then
17: Turn 90 degree to the right and move forward
18: end if
19: else
20: if Robot sensed an Obstacles at the Front then
21: Turn 90 degree to the right
22: end if
23: until the termination criteria has met
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The results shown in Figure 5.3 also indicate that in order to really gauge

the performance of GEASM, the tests need to be redesigned to include other pa-

rameters or to use a more complex test environment. In the following sub-sections,

the performance of all the five systems (i.e. GEASM, PB, VS, ER, and WF) will

be tested to investigate their competency based on two specific parameters. The

first parameter is the exploration coverage, which basically should provide an indi-

cation of how well a system covers a finite-sized mission environment. The second

parameter is the efficiency in the execution of the search and exploration mission

in various environments.

5.1.1 Performance on Exploration Coverage

Figure 5.4 and Figure 5.5 are the test environments that are used to investigate

the exploration coverage of the five systems. The first environment is an extended

and enlarged version of the training environment, creating 10 segmented pathways

connected in a snake-like pattern. On the other hand, the second environment has

been designed to investigate the ability of a robot to explore an environment with 10

isolated rooms. In this experiment, a target object is not placed in the environment,

which effectively creates a need for the five systems to wander around, exploring its

mission environment.

Each system is given 1000 decision cycles or time steps (TS) to explore

as many paths or rooms as possible. Within the given duration, the route taken

by a robot is recorded and the identified number of paths or rooms covered should

indicate the overall coverage of mission environment. The number of TS taken to

fully cover the respective paths or rooms is then determined. As an example, for a

case where a robot keeps repeating a route through the same five paths or rooms

within the allocated 1000 TS, the robot is said to have covered 50% of the mission

environment. The number of TS taken by the robot to visit all five rooms the first

time is counted as the time required to cover the visited area.
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The experiments are executed with three different starting point ‘S’ (left-

most, centre and rightmost of the field - refer Appendix A). At each starting po-

sition, the robot is placed facing different directions. For each case, the mission is

repeated three times in order to assure consistency.

Table 5.1: Performance comparison of exploration coverage in two different environments

Environment Exploration GEASM PB VS ER WF

10 paths Average coverage (%) 99.00% 46.67% 48.89% 55.56% 100%
Average time (TS) 461 483 689 666 595

10 rooms Average coverage (%) 100.00% 38.89% 53.33% 32.22% 100%
Average time (TS) 679 489 763 450 674

Table 5.1 shows the average exploration coverage of the experiments in

the two worlds. Note that the average time (TS) presented in the table has been

rounded up into an integer value. Results in both cases presented in Table 5.1 show

that the GEASM system can give better exploration coverage in less exploration

time compared to PB,VS, and ER systems. Data from the experiment in the first

environment shows that the GEASM system robot successfully covered 99% of the

10 paths within 461 TS. As for the PB, VS, and conventional ER methods, the

robot only covered 46.67% of the 10 paths in 483 TS, 48.89% of the 10 paths in 689

TS and 55.56% of the 10 paths in 666 TS respectively. A similar pattern can be seen

in the data from the experiment for the second environment. GEASM system made

full coverage of the environment within 679 TS, while for PB, VS, and conventional

ER approach the robot could only cover 38.89% of the 10 rooms in 489 TS, 53.33%

of the 10 rooms in 762 TS and 32.22% of the 10 rooms in 449 TS, respectively.

Since the walls for the two environments are connected together, it is

guaranteed that a robot is able to visit all cells (i.e. rooms or paths) by keeping

one hand in contact with one wall. Results in Table 5.1 has confirmed this theory

with the WF system robot actually covered 100% of the two environments with

relatively good coverage time (i.e. 595 TS for 10 paths, and 674 TS for 10 rooms).
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(a) GEASM takes 474 TS to complete the exploration

(b) PB covered 60% of the area in 570 TS. It was trapped at the
left-most cell

(c) VS takes 988 TS to cover 80% of the 10 paths

(d) ER takes 783 TS to cover 100% of the 10 paths

(e) WF takes 400 TS to cover 100% of the 10 paths

Figure 5.4: Best path traces for exploration in 10-paths environment
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(a) GEASM takes 593 TS to complete the ex-
ploration

(b) PB covered only 5 rooms in 539 TS

(c) VS covered 7 rooms in 754 TS (d) ER covered 5 rooms in 390 TS

(e) WF Takes 613 TS to complete the explo-
ration

Figure 5.5: Best path traces for exploration in 10-rooms environment
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Figure 5.4 and Figure 5.5 show the best path traces extracted from the

recorded route taken by each of the five system platforms in the two test envi-

ronments. The figures clearly show that using PB and VS methods, the robot is

more likely to be trapped in local minima (can hardly move out from one cell to an-

other). As for the conventional ER method, the results are not consistent especially

when executing in an environment that is different from the training environment.

Even though the best path traces in Figure 5.4 have shown that the conventional

ER method is able to complete the exploration for all the ten paths, the average

coverage of this environment is quite low. As mentioned earlier, the 10 path en-

vironment is an extended version of the training environment. Since during the

training phase, the robot will be placed at the right-most position, and will wander

around the world to find the target object which is placed at the left-most cell, the

best solution of the trained system will control the robot to move from right to left.

This might be one of the possible reasons why the results show a good coverage

(i.e. 100% coverage) in the environment that is similar to the training environment

(i.e. 10 paths) with the initial robot position at the right-most position. However,

when the initial robot position is in the middle or at the left-most position of the

environment, the coverage area is decreased, leading to a lower average.

In the environment which is completely different from the training en-

vironment (i.e. 10 rooms), the conventional ER control system has consistently

produced a low percentage of rooms coverage. The best path traces for the three

positions for ER (in 10 paths environment) are shown in Appendix B.

In order to examine the quality of the exploration made by each method,

the worst path executed by all the five techniques (i.e. GEASM, PB, VS, ER, and

WF) in 1000 TS are presented in Appendix C. A further analysis is then conducted

between WF and GEASM on the same initial position where WF performed the

worst. Figure 5.6 and Figure 5.7 show the comparison of the path traces taken by the

two systems. From Figure 5.7 it can be seen that WF requires approximately double

the number of TS compared to the GEASM system in the 10 paths environment.
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This is because WF needs to visit all the nine paths twice, before it is able to

complete its exploration with the final cell. On the other hand, it is observed that

the GEASM system is able to explore its world whether the wall is at the right side

or the left side of the robot. This is the main contribution of a better exploration

coverage that has been achieved by the GEASM system in this environment. A

similar effect could be obtained by adding more rules to the existing WF algorithm.

However, it may take a few trials in determining the right rules and may require

some parameter tuning before a successful exploration can be achieved (e.g. how

much to turn, how much to go forward, what is the appropriate distance between

robot and wall, etc.).

(a) WF takes 715 TS to complete the explo-
ration

(b) GEASM takes 599 TS to complete the ex-
ploration

Figure 5.6: Comparing worst path traces of the WF system with GEASM in 10-rooms environment

5.1.2 Performance of Search and Exploration Mission

In this experiment, the systems that are being tested are put through some relatively

more complex mission environments in order to identify specific distinction between

their performance in a search and exploration mission. An execution time of 500 TS

has been set for each mission. For each system, the experiment has been repeated

ten times with different initial robot positions and random target object locations

(refer Appendix D).
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(a) WF takes 700 TS to complete the exploration

(b) GEASM takes 334 TS to complete the exploration

Figure 5.7: Comparing worst path traces of the WF system with GEASM in 10-paths environment

Figure 5.8: Number of successes for search and exploration missions in various environments
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Table 5.2: Area ratio of testing environment over training environment

Environment Height Width Area Ratio
(mm) (mm)

Training 1600 3200 1.000
10 rooms 2400 6000 2.812
10 paths 1600 10000 3.125
Scattered (Environment 1) 3500 4000 2.734
Loop (Environment 2) 3500 4500 3.076
Maze (Environment 3) 6300 6000 7.383

Figure 5.8 shows the number of successful search and exploration missions

performed by all the five systems in three different environments. From the result, it

can be summarised that the average percentage of successful missions for GEASM,

PB, VS, ER, and WF are 93%, 67%, 67%, 63%, and 37% respectively. From the

experiment, it is observed that the efficiency of all five systems can be degraded

by the structure of an environment. For example, while GEASM can consistently

accomplish its missions in Environment 1 and Environment 3, it has failed to com-

plete the mission in two different robot-target initial positions in Environment 2.

As for PB, VS, and ER, they have performed badly in Environment 3. Even though

results in the previous sub-section have shown that WF had performed excellently,

this time the system has failed in most of the environments that have been set for

the experiment.

Figure 5.9, Figure 5.10 and Figure 5.11 are examples of the path traces

that can be successfully executed by the five systems in the three environments.

During the experiments with GEASM, PB, VS, and conventional ER, it became

apparent that the GEASM system performed well in the exploration task. The

GEASM approach has the ability to operate in a world which is completely different

from the training environment. Table 5.2 shows the area ratio between the testing

and the training environments that have been implemented so far. From the table,

it can be seen that GEASM is capable of exploring an area up to about seven



5.1. SEARCH AND EXPLORATION 101

times larger than the area of the training environment. Moreover, the proposed

techniques have been tested in various types of environments where the width and

orientation of each cell are assorted.

One of the factors contributing to the success of GEASM in this mission is

the emergent behavior, which is often found in a behavior-based system. A behavior

can emerge as a result of local interactions between the system components [148].

As illustrated in Figure 5.9(a), Figure 5.10(a) and Figure 5.11(a), it seems that the

robot is performing the WF behavior. This could be due to the interactions between

the system and its environment data (i.e. data from sensors). It can also occur as a

result of the interactions of the three basic behaviors (i.e. Avoid obstacle, Wander

and Drive to Target). Further information on emergent behavior can be found

in [149, 2].

The result for GEASM in Environment 2 is then to be further investi-

gated. Figure 5.12 shows the path traces of the two scenarios in Environment 2,

where the GEASM is unable to complete the search and exploration mission. From

the figures, it can be clearly observed that the main factor of the mission’s failure is

due to the WF behavior which emerged from the system’s interaction. As stated in

[150], WF is commonly implemented when a robot is exploring an unknown area.

Therefore, the trained system actually presents a relevant outcome to its current

situation. However, in general, WF works best when it is executed in a maze where

the walls in the maze are connected together. However, if the wall is not ‘simply

connected’ (e.g. the start and endpoints are in the centre of the structure), the

chances for the robot to go around their ring (keep repeating moving in a loop) are

higher. This reduces the probability of reaching the overall system objective. In

this case, the robot may not be able to find the target object due to the inefficiency

to explore its world.

However, it is important to note that the GEASM is not trained for

WF As long as during the exploration, a target object is spotted in the robot’s

view, the robot will release the WF behavior and execute a suitable behavior (e.g.
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(a) GEASM (b) PB

(c) VS (d) ER

(e) WF

Figure 5.9: Search and exploration: Environment 1
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(a) GEASM (b) PB

(c) VS (d) ER

(e) WF

Figure 5.10: Search and exploration: Environment 2
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(a) GEASM (b) PB

(c) VS (d) ER

(e) WF

Figure 5.11: Search and exploration: Environment 3
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Drive to Target behavior) to reach the target object safely. This explains why

the GEASM is able to perform consistently in Environment 1, even though the wall

is not connected together like the maze in Environment 3.

(a) Position 1 (b) Position 2

Figure 5.12: Execution of GEASM in Environment 2

Even though it is claimed that the success of the GEASM system in

this mission is due to the WF behavior (i.e. the emergent behavior), it is very

surprising that the WF system has failed in this mission in almost two thirds of the

test environments. The movement of a robot with the WF system is then further

investigated. From the observation, it is found that the unsuccessful mission for the

WF system in Environment 1 and Environment 2 is due to the response made by

the WF system when the robot has suddenly not been able to sense any walls on

its left side. Based on Algorithm 3, in such a situation, the robot will move forward

and make a small turning in order to find the wall again. While the algorithm

works best in 10 paths and 10 rooms environments as presented in the previous

sub-section, the WF has failed to deal with irregular shape and scattered obstacles

in Environment 1 and Environment 2. Figure 5.13 shows an example of a scenario

that could lead to the unsuccessful mission.

Theoretically, the WF system should be able to perform well in Environ-

ment 3, as the walls are fully connected like a maze. However, in most cases, it
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Figure 5.13: A scenario where the WF approach is unable to complete a mission.
Sub-figures (a)–(d) show a sequence of movements when the robot is unable to detect a wall
on its left side.
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is discovered that the WF system requires a longer TS (i.e. more than 500 TS) to

complete the mission, while in some specific cases it simply fails indefinitely (refer

Appendix E). This is mainly because the WF system, being a rule-based system,

stays true to its rule by keeping its path close to the walls, which consequently made

its field-of-view ineffective for search purposes and therefore requiring more TS (or

it simply fails). This also expectedly indicates that a WF system is only suitable

for a maze environment with single-lane-sized corridors. It is also worthy to note

here that the ‘simple’ WF rule does not necessarily mean that the implementation

will be simple. Some implementations add multiple conditions to cater for various

possible dynamics of an unknown environment, while others simply turn to AI for

similar implementation [151, 152, 153, 154].

5.2 Target Tracking

This section investigates the efficiency of the proposed system to carry out the

second task—the target tracking mission. Figure 5.14 shows the trend of fitness

values during the training phase over 30 generations for the target tracking task.

From Figure 5.14, it is clear that the best fitness value has converged to a good

result of around 0.90.

The trained system has been tested in several scenarios. Figure 5.15 shows

the path traces of a single robot, tracking a target object in a simple environment

using four different systems (i.e. GEASM, PB, VS, and conventional ER). In this

simple environment, the target tracking mission is being carried out without the

existence of any obstacles. From the results it is observed that the four systems are

able to execute the tracking mission, approximately with equal performance.

The four systems are further tested in a more difficult scenario. In this

case, the target tracking mission is executed either in the environment consisting

several obstacles, or the target robot made a sudden changes in its movement during

the execution of the mission. For both scenarios the chances to miss the target
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Figure 5.14: Fitness value during the training phase

are higher. From the results shown in Figure 5.16, Figure 5.17, Figure 5.18 and

Figure 5.19, it can be observed that there are inconsistencies in the execution of the

target tracking task for PB, VS and conventional ER systems. The performance for

each of the systems in the environments will be further discussed in the following

subsections.

5.2.1 Performance of Classical ASM Approaches

Figure 5.16, Figure 5.17, Figure 5.18 and Figure 5.19 shows that PB and VS systems

performed rather poorly in more complex environments. The path traces have

reflected that PB and VS methods failed to accomplish any tracking missions within

those environments.

One of the major problems with the PB method is the loss of information

and knowledge from the suppressed behaviors. The effect of this problem can be

highlighted particularly in cases where the robot needs to consider suggestions from

behaviors with different goals in order to achieve the overall system objective. As
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Figure 5.15: Path traces for GEASM, PB, VS, conventional ER: simple environment

Figure 5.16: Path traces for GEASM, PB and conventional ER: Scenario 1
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Figure 5.17: Path traces for VS: Scenario 1

Figure 5.18: Path traces for GEASM, PB, VS and conventional ER: Scenario 2
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Figure 5.19: Path traces for GEASM, PB, VS and conventional ER: Scenario 3

Figure 5.20: Active behavior during the execution of the PB system: Scenario 1
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Figure 5.21: Active behavior during the execution of the PB system: Scenario 2

Figure 5.22: Active behavior during the execution of the PB system: Scenario 3
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reflected in Figure 5.20, Figure 5.21 and Figure 5.22, once Avoid Obstacle behav-

ior is activated (i.e. as it has the highest priority), the behavior will dominate the

control system. The obstacle avoidance is being carried out without considering the

other expected actions, especially the suggestion from Track behavior. Therefore,

it can decrease the performance of target tracking and the chances for losing the

target becomes higher. It is also observed, for a situation where the complexity

of the environment has increased (e.g. due to the existence of more obstacles), the

probability of failure to reach the main goal will be increased too. Note that the

obstacles will be sensed when the robot is too close to walls or it is too near to

the target robot. As revealed in Figure 5.16, Figure 5.18 and Figure 5.19, the PB

technique has failed to complete the tracking task in the three environments. A

similar result has been reported in [8]. In their experiments, the behavior arbitra-

tion technique is unable to accomplish any navigational task due to the activation

of Obstacle Avoidance behavior. Once the behavior has taken control of the

system, the suggested action from the other two behaviors (i.e. Go to Target,

and Route Follow) have been neglected, causing the system to fail in getting to a

target position.

Even though the previous argument concludes that the arbitration tech-

nique is not the solution for target tracking when it is executed in a complex envi-

ronment, command fusion technique may not be the answer for this mission either.

Principally, a command fusion technique such as the VS method, has the ability of

coping with conflicting actions from the behavioral outputs. However, since both

the robot and the target can dynamically move around in the environment, the

chances for losing the target are very high. Therefore, it is very crucial to design a

robot system that can maintain the overall system objective (i.e. keep locating the

target object) during the execution of this mission. With the dynamic changes in

the environment and the unpredictable next action of the target object, finding a

fair representation of information for all contributing behaviors can be very diffi-

cult. Results in Figure 5.17, Figure 5.18 and Figure 5.19 have shown that the VS

method has failed to complete the mission in the environment.
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When the results for the VS method are further analysed, it can be ob-

served that the robot has failed to continue locating the target object when the

system is confronted with conflicting behaviors (particularly, the suggestions from

Track behavior and Avoid Obstacle behavior). For an example, in Figure 5.17,

when the robot is at position ‘A’, the camera image has detected the target object

at the left side of robot’s camera view. At the same time, the left infra red sensor

of the robot has detected an obstacle (because the robot is too near to the target

object). Clearly, in such a scenario, the Track behavior will suggest the robot to

move towards the target (i.e. turn left), while the Avoid Obstacle behavior will

suggest the robot to move away from the obstacle (i.e. turn right). Using the VS

method, these two distinct actions have led the robot to overtake the target object.

This explains why the path for the target object has changed as the target object

needs to stop from moving forward while the robot is overtaking it. Obviously, this

is not the desired action for this mission. Even though, theoretically, this effect can

be reduced by multiplying vectors of each behavior with an appropriate gain (refer

to Equation 2.2), the inconsistency in the tracking performance of the VS system

in the three environments have suggest that the gain value for each of the behav-

iors can vary during the execution of the mission. Clearly, in order to successfully

implement a VS method for this mission, another mechanism is required in order to

determine in which scenario the gain value should be changed and what gain value

should be assigned to each behavior.

5.2.2 Performance of Evolutionary Neural Network Approaches

The proposed GEASM approach is expected to provide adequate means in dealing

with multiple goals to reach the main objective. In order to analyse the relation-

ship between the system output and the suggestion from each behavior, a Mean

Squared Error (MSE) calculation has been applied. MSE can be used to quantify

the amount by which the behavioral input will differ from the system output. For

this application, an MSE of zero for a behavior will indicate full contribution from
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that behavior action to the system output. The behavior with the smallest MSE

will play the largest role in controlling the system. Figure 5.23, Figure 5.24 and

Figure 5.25 show that on average the major function of the system output has been

conducted mainly by the Track behavior. This indicates that in a typical condition,

the GEASM has functioned as an arbitration ASM (e.g. PB method), where action

has been selected from one behavior (i.e. Track) to control the robot movement.

However, at certain intervals it can be seen that the system is compromising the

behaviors’ input especially from Avoid obstacle and Track to output an appro-

priate action for that current situation. As revealed in Figure 5.24 and Figure 5.25,

the graph will fluctuate more frequently when the robot is executing the task in an

environment that is surrounded by more obstacles. Clearly in this case, behavior

integration is the key success for the completion of the task.

Figure 5.23: MSE between the output of behavioral module and the GEASM system: Scenario 1

Using conventional ER methods shows promising results when the object

being tracked does not make any sudden changes in its movement pattern. This

can be seen in the results shown in Figure 5.18 and Figure 5.19 where the object

being tracked makes no sudden changes due to the obstacles in the environment.

Observing the result for other environments, it is obvious that the method is unable
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Figure 5.24: MSE between the output of behavioral module and the GEASM system: Scenario 2

Figure 5.25: MSE between the output of behavioral module and the GEASM system: Scenario 3
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to produce the same results once the object being tracked makes a sudden movement

(i.e. the first corner of a triangle-shaped movement pattern). However, it does show

some effort to retrace the object after a while. One of the reasons behind this

scenario is that the evolved system has not dealt with such a situation during its

training phase. This explains why the current research trend in ER inclines towards

on-line training—this should help the system to continuously adapt to an unseen

scenario while executing a given task.

5.3 Performance of the GEASM System under

Image Noise

The results presented so far have been executed in noise-free simulated environ-

ments. However, in order to test the reliability of any system when executing in

a real world, it is important to consider environment noise that may be integrated

within the system’s input signals.

Even though the nature of a noise is usually unknown and hard to calcu-

late, the existence of a statistical model can be used to reflect the existence of the

noise in a sensor model [132, 155]. There are several noise models that have been

implemented for the EyeSIM simulator. Figure 5.26 shows the interface of error

model that can be introduced to the EyeBOT sensor model.

Considering most of the input data is processed from the camera image,

the proposed system has been developed to tolerate a certain degree of image noise

without requiring any further training process. Figure 5.27 shows the maximum

percentage (i.e. increment by 10%) of image noise that a GEASM system can toler-

ate in order to run its system successfully. In the experiment, the GEASM system

is executed in three different environments for the search and exploration task (la-

belled as 1,2,3), and target tracking mission (labelled as 4,5,6). As reflected from

the bar chart, the proposed system can consistently achieve the system’s goal even if
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Figure 5.26: The interface of error model in the EyeSIM simulator
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Table 5.3: Time steps to complete a search and exploration task under salt-and-pepper noise

Salt&Pepper Noise (% ) Environment 1 Environment 2 Environment 3

0% 100 125 309
25% 111 126 823
40% 305 211 1347

it is executed under the existence of 40% salt-and-pepper noise, and the existence of

90% Gaussian noise. Adding the noise to the system at greater than this level may

lead the system to produce undesirable behavior such as continuous reversing from

the current position, or moving in a loop. This is only logical since the process of

abstracting environment data from such distorted input would be unreliable—which

denies any sensible control decisions. Figure 5.28 shows the snapshot of a camera

view in three different scenarios: noise free, salt-and-pepper noise, and Gaussian

noise.

Figure 5.27: The maximum percentage of image noise that GEASM can tolerate

Result from the bar chart (Figure 5.27) suggests that the system is more

sensitive to salt-and-pepper noise. This is because, the white pixel has been used
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Figure 5.28: Robot’s view without noise, with salt-and-pepper noise, and with Gaussian noise

to represent the wall (i.e. obstacle), which is very crucial in the abstraction of en-

vironment obstacles. In the previous section, the results presented for search and

exploration mission have demonstrated that the emergent behavior (i.e. WF behav-

ior) have been in control, most of the time. Since the walls have been constructed

using white pixels, it is expected to see some degradation in the exploration perfor-

mance when the system is executed under this noise. As reflected from the result

in Table 5.3, a larger number of TS is needed to complete the mission for a higher

percentage of salt-and-pepper noise that is added to the system input. In addition,

it is also observed that the smoothness of the path traces have been decreased, due

to the existence of these additional black and white pixels (refer to Figure 5.29).

Unlike the search and exploration mission, the major function of the

system output for the target tracking mission has been dominated mostly by the

Track behavior. Since the target is tracked based on yellow pixels, it is observed

that the tracking mission can still be achieved with a good performance under the

presence of 40% salt-and-pepper noise (refer to Figure 5.30). However, as stated

earlier, a higher percentage of the noise will lead to undesirable behavior produced

by the system’s output. Beyond this level, the noise will cause the system to keep

avoiding the obstacles rather than following the target object.



5.3. PERFORMANCE OF THE GEASM SYSTEM UNDER IMAGE NOISE121

(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 5.29: Search and exploration: execution under salt-and-pepper noise.
Path traces on the left side are at 25% salt-and-pepper noise.
Path traces on the right side are at 40% salt-and-pepper noise.
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Figure 5.30: Target tracking of the GEASM system under 25%, and 40% of salt-and-pepper noise

Figure 5.31: Target tracking of the GEASM system under 60%, and 90% of Gaussian noise
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(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 5.32: Search and exploration: execution under 90% of Gaussian noise
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Similar to the results presented in the bar chart, the path traces in Fig-

ure 5.31 and Figure 5.32 have demonstrated that the GEASM is less sensitive to

Gaussian noise. Missions in both applications can be executed with acceptable

performances even when 90% of the noise has been added.

5.4 Re-utilising the GEASM System

One of the main drawbacks in implementing an evolutionary neural network ap-

proach is the time required to evolve the ANN until a desired system is obtained.

However, as presented in the previous sections, GEASM is able to tolerate dynamic

structures within mission environments (that are different from its training envi-

ronment), and is able to cope with up to a certain degree of image noises, without

requiring further training phase. In this section, more scenarios on how a fully

evolved GEASM system can be utilised for other robot missions will be discussed.

It has been mentioned in the previous chapter that the data going into the

behavior modules and the ANN in GEASM are actually abstract information. One

advantage for using this approach in extracting information from the sensors is that

the trained system can be reused and applied for various criteria of target object

or obstacles. In simple words, the ANN is trained to search for a target object—

the fact that the yellow colour has been selected to represent a target object is

transparent to the system. This way, if another colour is used to represent the

object, or any other information abstraction is used for that matter, the system

does not need to be re-trained. As shown in Figure 5.33, the path traces have

reflected that changing the criteria of a target object has not degraded the overall

performance of the system. In fact, a similar result may be observed if other image

processing methods (e.g. feature detection) are applied.

It is important to note that the experiments conducted previously have

required the robot system to make a suitable decision for a low level action. How-

ever, when a clear sequence can be outlined between a set of high level behavior and



5.4. RE-UTILISING THE GEASM SYSTEM 125

(a) Target object: a yellow ball (sphere shape)

(b) Target object: a red can (cylinder shape)

(c) Target object: a blue wall (rectangle shape)

Figure 5.33: Search and exploration performance when changing the target object’s criteria
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its triggered signal, a Finite State Machine (FSM) approach can be implemented

for a higher level robot control system. This section will explore the use of an

FSM, utilizing a fully evolved GEASM system in implementing a higher level robot

control application—foraging.

Figure 5.34: Implementing a foraging system using FSM

Figure 5.34 shows the FSM diagram of the overall system. As shown in

the figure, the main system is made up of multiple sub-systems— each of which is

capable of executing a part of the overall mission. Using FSM approach, at any

given time, the system will be in a discrete state that is programmed to activate

one of the sub-systems. The description of each sub-systems linked to each state

can be further described as follows:

1. STATE 1: This is the state in which the main system is trying find a yellow

target object. For this, a fully evolved GEASM system— trained for search

and exploration in Section 5.1—will be activated.

2. STATE 2: is a sub-system developed using a rule-based method which will

be activated to control the gripper to acquire the target object.
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3. STATE 3: is a fully evolved GEASM system—trained for search and ex-

ploration in Section 5.1 which will be activated to find home (i.e. coloured

with blue). It is important to note that the similar GEASM system has been

implemented for this state without requiring a further training phase even

though the shape and the colour of the target object in STATE 3 (i.e. home)

are different from STATE 1 (i.e. yellow target object).

4. STATE 4: is a sub-system developed using a rule-based method which will

be activated to release the object from the gripper, and move away from the

home area.

From Figure 5.34 it can be seen that the foraging system starts with

STATE 1, allowing the robot system to explore the environment searching for a

yellow target object. As shown in the figure, the system will remain active at this

state until the the target object is directly in front of the robot. When this happens,

the main system changes state to STATE 2, and the robot starts to acquire the

target object by controlling its gripper. Once the robot has successfully gripped the

target object, a transition from STATE 2 to STATE 3 will occur. In STATE 3,

the robot starts another search and exploration mission, but this time, it looks for

a pre-defined home location. Once the robot has successfully brought the target

object to its home location, STATE 4 will be invoked to release the target object

and move away from the home area. Once the gripper is empty, the system will be

put back into STATE 1. This is also true in cases where the robot accidentally

dropped the target object in the middle of its way to home—the empty gripper will

always trigger a transition from STATE 3 to STATE 1.

Figure 5.35 is the simulation setup to test the proposed foraging system.

Unfortunately, the sub-system for gripper control is not available and therefore can-

not be implemented. Consequently, in order to allow this experiment to continue,

this sub-system will always successfully complete its task—this is simulated by al-

lowing the system to simply pass through STATE 2 and STATE 4. It should be
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noted that this does not, in any way, invalidate the experiment on the main system.

Evidently, as shown in Figure 5.36, the foraging system has been found to be able

to perform its task successfully.

Figure 5.35: Initial environmental setup for a foraging application

Figure 5.36: All target objects have been successfully placed at the home area

Similar to the foraging system, a self-recharging system can be simulated

using the same approach. In this application, a robot will keep following a moving

target robot until its battery level has reach a critically low level. At this point,

the robot system should find a battery station to recharge its battery before it is

able to execute the target tracking task again. As illustrated in Figure 5.37, it is

assumed that only two states will be involved in the development of the system.
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By default, the system will remain active in STATE 1, where the main

system activates a fully evolved GEASM system trained for target tracking. How-

ever, when the battery level has reached a pre-defined minimum level, the main

system changes state to STATE 2, and the robot starts to find a battery station.

For this, a fully evolved GEASM system—trained for search and exploration—will

be invoked. The system will remain at STATE 2 until the battery has been fully

recharged, and the system will be put back into STATE 1.

It is important to highlight that a new state can always be added to

the current system. The requirement to add more states in the system may vary

depending on the implementation of each robot application. For an example, in

order to create a more complete implementation of the system, a state STATE

3 that allows the robot to be attached perfectly at the battery recharging station

can be added into the main system. In this case, a sub-system which implements a

docking algorithm can be used and will be activated when the robot has found the

charging station.

Figure 5.37: Implementing an autonomous battery recharging system using FSM

In short, similar to many other ER approaches, the proposed method is

unable to eliminate the limitation of using an evolutionary algorithm (EA)—the

time required for training a neural network until a desired robot control system

has been achieved. However, as presented in this section, the evolved GEASM can

be used for many other robots’ missions without any further training phase. This

flexibility offered by the GEASM is worthwhile as the robot control system can be

re-utilised in many ways.
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5.5 Discussion

Whether it is an arbitration, or a command fusion, the ASM plays an important

role in an implementation of a behavior-based system. Depending on the robot’s

current situation and task, the system might need to employ a different category

of ASM during the execution of the system. However, there are no general rules

that can be used as a guideline to determine what type of ASM is best employed

at every decision cycle. This issue will become more complicated when the robot

system is operating in an unknown, dynamic environment as the desired action will

become more unpredictable. In this research, a GA is used to modify the weights

of an ANN in order to generate a suitable ASM for the execution of a behavior-

based system, which may vary based on a given task. The proposed technique is

employed without the requirement of implementing any existing ASM. Once the

ANN is trained using GA with a satisfactory fitness value, the genetically evolved

ASM (i.e. GEASM) will be able to produce appropriate actions: either by selecting

an action of one behavior (i.e. arbitration type), or by combining suggested actions

from several or all behaviors (i.e. command fusion).

From the experiments that have been carried out in Section 5.1, and

Section 5.2, it is observed that the GEASM method has the ability to perform

the action selection mechanism as arbitration, or command fusion depending on

its current situation. The system will change its type of ASM in order to achieve

the overall system goal. As an example, for a search and exploration application,

without the existence of a target object within the robot views, the trained system

will produce a WF behavior. This behavior has emerged as a result of fusing the

information from the three basic behaviors (i.e. Avoid Obstacle, Wander, Drive

to Target) and its environment. However, in a situation where the target object is

clearly within the robot’s view (i.e. without any obstacles in front of it), the system

will absolutely select Drive to Target behavior and release the WF behavior in

order to reach system objective. Another example that reflects the ability of the
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Table 5.4: Summary on percentage of success in the execution of robot missions

Mission GEASM PB VS ER

Search & exploration 93% 67% 67% 63%
Target tracking 100% 25% 25% 75%

proposed system to change the type of ASM during the execution of its task has

been suggested through the MSE analysis in a target tracking application. The

results have demonstrated that most of the time Track behavior is selected for

controlling the robot movement. The integration of the basic behaviors is mostly

executed in a situation where the robot is surrounded by obstacles.

In Equation 2.2, it can be seen that besides the coordination function

C (i.e. method of ASM), the gain gi plays an important role in providing useful

information to the coordination function. Whether the coordination function is an

arbitration category, or it is a command fusion type, the gain will be used to set the

relative importance of the behavioral components. Even though a suitable gain has

been initially assigned to each of the behaviors, still the system may need to change

the gain value during the execution of the robot’s task. This may be necessary

in order to ensure the overall system objective can be achieved or maintained. If

this is the case, other mechanisms are required to determine what value for each

gain should be assigned in each situation. Within GEASM, this mechanism will be

handled by the ANN and GA. As shown in Figure 5.23, Figure 5.24 and Figure 5.25,

the MSE plot shows that most of the time, the TRACK behavior will dominate

(i.e. MSE equal to 0) the system’s control. However, at certain intervals, it can

be seen that there are requirements to consider actions suggested from the other

behaviors as well. The inconsistency in the fluctuation of the MSE plot within these

intervals suggest that the gain assigned to each of the behaviors has varied. Clearly,

depending on the robot’s current situation, the proposed system has been assigned

with a suitable gain in order to achieve the overall system objective.
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Table 5.4 shows the percentage of success in the execution of search and

exploration, and target tracking missions presented in Section 5.1.2, and Section 5.2

respectively. As reflected in the table, GEASM is able to perform successfully in

both missions with a good percentage number, far better than the other compared

control systems. However, it is worthwhile to note that there are still possibilities

that the compared systems are able to perform better in the test environments. As

discussed previously, gain in Equation 2.2 is an important parameter toward the

success of a behavior-based system. Therefore, in this case, a higher percentage of

success may be observed for PB and VS methods if the systems have been assigned

with an appropriate gain. Unfortunately, there is no straightforward method to

determine the appropriate gain value for each robot task. A number of experiments

need to be carried out before an optimal initial gain can be manually tuned. As

mentioned in the earlier paragraph, the initial gain may no longer be appropriately

applied to the control system due to some changes in the interaction between sys-

tem’s behaviors and its environment. Clearly, in this case, the requirement to have

a different set of gains for the behavioral modules becomes higher for the system

to be executed in different environment scenarios. In all experiments conducted

for this project, a fixed gain has been assigned to each of the behaviors during the

execution of the robot control systems. This might be the reason why PB, and VS

are able to perform only in some of the test environments, presented in the thesis.

Since the approach of the proposed method is closely related to the work

in evolutionary robotic fields, a comparison with conventional ER has been made.

In evolutionary robotics research, the aim of this field is to develop a suitable robot

control system automatically. Using this technique, the decomposition of behavioral

modules, and the development of coordination mechanisms will be merged during

the training phase via a self-organising process (refer Appendix F). Since the scope

to train the robot system is wider than the proposed technique (i.e. training only for

a coordination mechanism), conventional ER may require a longer training phase in

order to get a better performance. As shown in the previous results, the performance

of conventional ER experiments are lower with the respect to GEASM.
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Physical damage is one of the main problems that has been highlighted

by ER researchers when implementing GAs in robot control systems. The critical

error suppressor introduced in the proposed control architecture has partially lifted

this problem. The major role of the critical error module in this thesis is to ensure

that the robot does not get into a serious error state due to the random value

generated especially at the early stages of the training phase. In addition, this

critical error module is used in the fitness evaluation. A generic fitness function has

been defined in Equation 3.3, where the information manipulated from the critical

error suppressor is used to measure fErr component.

Even though the success of implementing EAs (e.g. GA) relies signifi-

cantly on a good fitness function definition, no specific rule has been outlined on

how to design it. Therefore, the proposed generic fitness function will indirectly

reduce the problem of defining an appropriate fitness function. On top of that, as

mentioned in the earlier chapter, the fErr term has the ability to converge the ge-

netic population towards a desirable solution, particularly in the early generations.

The information from the critical error suppressor can distinguish the candidate

solutions especially when most (if not all) of them failed to complete their tasks.

When using GA for any applications, the formulation of the fitness func-

tion is of critical importance. Many aspects of designing a fitness function with

various examples, particularly in the robot control area, have been discussed in

[71]. The surveyed research has compared the amount of prior information being

used to successfully evolve a specific controller to perform a given task. For a more

practical approach, fitness functions should be defined using data that is available

in a real environment. Without relying on data that is only available from the simu-

lator, the system will be more adaptive and more robust to a changing environment

where further evolution can be carried out (if necessary) on a real robot platform.

In the implementation, the proposed fitness function has been created

based on the availability of parameters on actual robots. For example, although



134 CHAPTER 5. RESULTS AND DISCUSSIONS

the distance-to-object parameter can actually be calculated in a simulation envi-

ronment, it has not been used in the proposed fitness function. This is because

the actual robot that was simulated would not know where the object is in a real

mission, unless the robot is fitted with something like a global positioning system

(GPS) device and the object’s position is a known parameter. With a more realistic

fitness function, the system should be able to adapt better to the real environment.

In addition to that, the system can actually acquire training data whilst executing

a mission that can be used to update the genetic population for ASM solutions.

Even though this platform has been designed with the possibility of running an

on-line training (if needed) to adapt with the environment changes, the results of

the GEASM system show that further training is unnecessary. Based-on the results,

it can be safely concluded that the GEASM system is very adaptive to its mission

environment, and is able to produce appropriate output during the execution of its

task.

5.6 Summary

The results for testing GEASM system and its respective benchmark systems has

been presented. The trained system has successfully demonstrated its functionality

as an action selection mechanism. Results have also shown that the proposed ASM

has a high competency in integrating multiple control signals suggested by the

behaviors in the system. In fact, the trained system has the ability of changing

the type of action selection mechanism either to integrate the behaviors (command

fusion) or to select one from several behaviors (arbitration) during the execution

of its task. GEASM managed to switch the type of ASM being carried out based

on its platform’s current situations. Overall, the results presented in the two test

applications executed in unknown environments have shown that the system was

able to accomplish the missions efficiently. Moreover, the presented results have

shown that GEASM is able to tolerate up to a certain degree of image noises.
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Summary and Future Work

This chapter concludes the thesis with an overall summary and some discus-

sions on possible extensions of the presented work.

6.1 Thesis Summary

The action selection mechanism in a behavior-based system presents a very inter-

esting problem for intelligent systems to solve. Producing a viable action that can

generally satisfy primary mission objectives while preserving information gathered

by system behaviors can be very tricky. However, a solution to such problems can

usually be identified by searching for a familiar pattern in the problem at hand.

As with many other pattern recognition problems, using a neural network

to identify an optimised action selection mechanism can be very effective—especially

when no deterministic algorithm can be used. A neural network has the capability

to identify a pattern even when the solution set is not clearly segmented (not linearly

separable—e.g. the XOR problem). While selecting an action from multiple sources

mostly tends to favour one (winner-take-all scenario), a neural network may be able

to find a middle ground between the suggested actions.

135
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The presented evolving neural network for the action selection mechanism

in behavior-based systems utilises genetic algorithm as its learning mechanism. An

issue with other commonly used learning algorithms based on the gradient-descent

method (e.g. back-error propagation) is the possibility of converging towards local

minima (a solution for only a small part of the bigger problem). Genetic algorithms

can theoretically cover the whole solution space and avoid the local minima issue.

The most important component in ensuring the success of a genetic evo-

lution is the determination of fitness value for the current weights in the neural

network. This usually depends on an application but in this thesis, it has been gen-

eralised into a function of two distinct components: performance and error. The

first component is an obvious choice, but performance indicators can sometimes

be inaccurate, especially in simple tasks. This fact has influenced the addition of

the second component. The error component can help in separating false results

by looking at a result from another point of view. For example, the performance

indicator for a mobile platform that simply circles around when executing a search

behavior may be relatively high because it does not come across any obstacle. How-

ever, this clearly will not help in searching a large area and therefore, a suitable

error definition for movements in a circle can help in producing a more balanced

indicator for the system.

In general, based on simulation results, the proposed method has exe-

cuted selected robot control missions with good performance. Analysis shows that

the genetically evolved action selection mechanism (GEASM) can switch its coordi-

nation method from either the selection of one primary behavior or the integration

of multiple behaviors with suitable gains, in order to produce appropriate robot

action. In addition to that, the GEASM may have also produced capabilities that

are only synthesizable by looking at the dynamic parameters in a real environment.

Realistically, to implement such an action selection mechanism module using rule-

based coding can be quite costly, if not impossible, especially considering all the

uncertainties in an unknown environment.
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6.2 Key Findings

Using genetic algorithms as the learning method has been proven to be quite suc-

cessful, but it is clear that the process itself is rather time consuming. However,

if a general purpose solution that requires no further training can be found, this

constraint becomes non-relevant. In any case, a system that does not need any rules

to be defined for it to operate in an unknown environment can surely be considered

‘intelligent’. This is consistent with the use of behavior-based systems to imitate

real biological systems.

Controlling the population size during training is also an important factor

in genetic algorithms. Specifying birth rate allows new solution candidates to be

considered. This is important in providing a possibility of escaping the local minima

trap. Meanwhile, specifying a death rate allows purging of solution candidates that

do not perform at all, but this must be controlled so that most of the existing

population can have enough chances to prove their capabilities. Including mutation

capabilities among the newborns is another reason why the genetic algorithms can

usually overcome the local minima trap. This gives the general population a chance

in exploring new possible solutions.

Inserting critical error detection in the implementation of the behavior-

based mobile robot model is made necessary by the fact that randomly created

weights can produce damaging movement. For example, the neural network may

produce an output like moving forward even when there is a wall in front. This is

logical and is actually quite necessary from a learning point of view so that it can

cover all possible solution space. This is one of the main reason why the genetic

algorithm is said to be able to avoid the local minima issue. However, it is important

to remember that this random input may result in an invalid or erratic movement.

The generic fitness function used in the presented system is only based on

two components—performance and error. This is possible since the chosen applica-

tions are still relatively simple and utilise a minimum number of inputs. For a more



138 CHAPTER 6. SUMMARY AND FUTURE WORK

complex mission with more than one performance indicator, a suitable weighting

policy needs to be defined for each performance. The contribution from the er-

ror component may need to be made dynamic and gradually changed while going

through the learning process. This is simply because the error component may

inhibit the output (when the contribution is too high) or may not help at all (when

the contribution is too low) in separating the false positive results.

As stated in Equation 2.2, each behavior is usually assigned a gain value

that represents the importance of that particular behavior towards the overall sys-

tem response. A simple Mean Squared Error (MSE) analysis in a target tracking

task (discussed in Chapter 5) following manual observations in search and explo-

ration mission simulations has shown that in the proposed architecture, this value

actually needs to be continuously changed based on the system environment. This

confirms early assumptions that it is very difficult, if not impossible, to manually

design such a system based on pre-determined rules and decision logic.

The proposed system is meant for a vision-based mobile robot platform.

The method used to extract data from the captured image is based only on simple

image processing—pixel counting. This results in a modest processing time for a

relatively small field of view. With a more reliable vision-based platform, powered

by a more powerful hardware, the system can be a powerful intelligent system for

a more complex task.

It is also important to highlight the advantages of GEASM model which

have been observed from the results presented in Chapter 5. The first advantage is

the generalization capability that has been demonstrated by the proposed GEASM

system during simulation. When implementing ANN for any application, it is im-

portant to observe the ability of the neural network to handle unseen data (i.e.

generalization capability). One of the main prerequisite for a neural network to

avoid poor generalization is to be able to provide sufficient data during its training

phase. Alternatively, as proposed in GEASM, a genetic algorithm can be used to

train the neural network engine without the need for any training data. Conducted
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experiments have shown that GEASM is able to outperform the other systems that

have been used as comparisons. Thus, it is safe to claim that GEASM has a good

generalization capability as it is able to operate in various unknown environments

even it is trained without any prior data.

It is also observed that GEASM system is able to exploit hand-designed

behaviors in order to synthesize new elementary behaviors that are needed in current

scenario. For example, in search and exploration task, three behavioral sets (i.e.

Avoid obstacle, Wander, Drive to Target) have been defined to execute the mission.

During the exploration of an environment, instead of executing one of the behavioral

sets mentioned earlier or generating an arbitrary cumulative action, the proposed

GEASM system actually performed a well-known wall following behavior to search a

target object. It is important to note that a wall following is commonly implemented

when a robot is exploring an unknown area, especially in a maze-like environment.

From this observation, it is clear that GEASM has the capability to synthesize any

behavior as needed.

Finally, it has been found that GEASM can be a more effective ASM

when compared to the other two systems: PB (arbitration type) and VS (command

fusion type). One of the strength in GEASM is its capability to switch the type of

ASM either to select one behavior from many (i.e. arbitration), or to combine the

suggestions from several behaviors (i.e. command fusion), depending on its current

situation. As discussed and presented in Chapter 5, this feature is the key success

for GEASM to successfully perform the two tasks.

6.3 Limitation and Future Work

When working with any simulation software, one question is surely unavoidable—

will a developed system still work in a different simulation software with a different

simulation model. Different mobile robot simulation software may have different

data models representing the same hardware. To analyse this, some ground work has
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actually been done to accommodate the possibility of implementing the same system

on a different mobile robot simulation software. This could give some practical

feedback, while expanding the range of possible mission scenarios for the system to

train.

The presented work has only so far been tested on a simulator. Although

the code can theoretically be directly transferred to a real robot implementation,

there are some things that still need extra attention. For example, the movement

model used in the simulator may not be accurate and therefore presents an error in

the trained system. Another foreseen issue is the fact that actual robot hardware

sometimes has a different executable binary compared to a simulation executable

binary even when it has the same C code. This may not be critical, but it still

presents a possible error. So, one of the things that needs to be done in the next

stage is to actually implement this on real hardware and analyse the performance

of the real system.

All the experiments presented here have been executed on a single robot

system. However, the more interesting question in robotics research is how well

a team of robots can work together on the same task and environment. One of

the advantages offered by a multiple robot system is the flexibility and robustness

through parallelism and redundancy. On the other hand, one problem that will

surely need detailed attention would be the communication issue—how a robot can

(or needs to) relay (or exchange) information with another robot in the team. The

performance of a behavior-based system in a multiple-robot scenario is certainly

something that can be further investigated.

Genetic algorithms have traditionally been using offline training due to

the huge storage and computing power requirements. With a more powerful pro-

cessing hardware and significant sized non-volatile flash memory, it would be nice

to find out if this system can be evolved online—while executing ‘training’ missions.

This would make the system even more robust and very similar to any naturally

‘intelligent’ biological system.
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On a smaller scale, studies on the effect of genetic parameters used in the

system (i.e. birth/death/mutation rate) would help in understanding the evolution

process. Variations in the weight value of fitness calculation should also be an

interesting case study.
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162 APPENDIX A. INITIAL ROBOT POSITION AND DIRECTION

(a) Robot at the most left of the 10-paths

(b) Robot at the center of the 10-paths

(c) Robot at the right of the 10-paths

Figure A.1: Three initial positions in 10-paths environment
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(a) Robot at the most left of the 10-rooms

(b) Robot at the center of the 10-rooms

(c) Robot at the right of the 10-rooms

Figure A.2: Three initial positions in 10-rooms environment



Appendix B

Best Path Traces for Conventional

ER Approach

164



165

(a) Robot’s initial position is at the most left of the 10-paths

(b) Robot’s initial position is at the center of the 10-paths

(c) Robot’s initial position is at the most right of the 10-paths

Figure B.1: Conventional ER approach in 10-paths environment
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(a) GEASM

(b) PB

(c) VS

(d) Conventional ER

(e) WF

Figure C.1: Worst exploration coverage in 10-paths environment



168 APPENDIX C. WORST EXPLORATION COVERAGE

(a) GEASM (b) PB

(c) VS (d) Conventional ER

(e) WF

Figure C.2: Worst exploration coverage in 10-rooms environment
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170 APPENDIX D. ENVIRONMENTAL SETUP

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

(e) Position 5 (f) Position 6

Figure D.1: Initial position: Environment 1
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(a) Position 7 (b) Position 8

(c) Position 9 (d) Position 10

Figure D.2: Initial position: Environment 1 (... continued)



172 APPENDIX D. ENVIRONMENTAL SETUP

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

(e) Position 5 (f) Position 6

Figure D.3: Initial position: Environment 2
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(a) Position 7 (b) Position 8

(c) Position 9 (d) Position 10

Figure D.4: Initial position: Environment 2 (... continued)



174 APPENDIX D. ENVIRONMENTAL SETUP

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

(e) Position 5 (f) Position 6

Figure D.5: Initial position: Environment 3
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(a) Position 7 (b) Position 8

(c) Position 9 (d) Position 10

Figure D.6: Initial position: Environment 3 (... continued)
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(a) WF unable to complete in 500TS (b) GEASM has complete its mission in
245 TS

(c) WF unable to complete in 500TS (d) GEASM has complete its mission in
411 TS

(e) WF unable to spot the target object
during its exploration

(f) GEASM has complete its mission in
178 TS

Figure E.1: Path traces of GEASM and WF in an environment where WF has failed.
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(a) Behavior-based

(b) Evolutionary Robotic (ER), redrawn after Nolfi and Flo-
reano [25]

(c) GEASM

Figure F.1: A comparison of three robot control architectures
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