
Large-Scale Simultaneous
Localization and Mapping for

Teams of Mobile Robots

Robert George Reid

esis presented for the degree of
Doctor of Philosophy

School of Electrical, Electronic and Computer Engineering
The University of Western Australia

July 2016

Last updated: 26th July 2016

The latest version of this manuscript and accompanying videos
are available on-line at http://reid.ai/thesis

© 2016 Robert George Reid

https://reid.ai/thesis

In loving memory of my mother

Abstract

Localization and mapping are core requirements for teams of mobile robots to cooperate
autonomously in everyday environments. From emergency search and rescue, to precision
agriculture and space exploration, there are many applications where it is advantageous
to deploy teams of robots without relying on external localization or a priori maps, and
instead using on-board sensors only. This problem, called Simultaneous Localization And
Mapping (SLAM), has been well-studied for individual robots. While many single-robot
SLAM solutions have been adapted to teams of robots, highly-centralized architectures
are typically proposed that fail to address real-world problems such as intermittent and
lossy communications, and particularly in the case of large-scale deployments.

For robust deployments of autonomous teams of robots, a decentralized multi-robot SLAM
(MR-SLAM) solution is required; one that allows teams of robots to operate for extended
periods independent of a central server by sharing SLAM data and performing loop clo-
sures on-board. Several decentralized architectures have been described in the literature,
however none have demonstrated MR-SLAM with the mapping fidelity required for both
indoor and outdoor deployments at large scales. State-of-the-art large-scale MR-SLAM
systems have demonstrated up to 15 robots exploring a 500×500meter urban environment
at the 2010 Multi Autonomous Ground-robotic International Challenge (MAGIC). While
these systems were centralized, their Decoupled Centralized Architectures (DCA) allowed
individual robots brief periods of limited autonomy. Without the ability to share SLAM
data or close loops on-board, however, architectures like DCA are unable to provide teams
of robots with extended operations or high-level autonomy independent of a central server.

This thesis contributes in three areas: 1) The design of a MR-SLAM architecture that
combines a novel hybrid-decentralized pose-graph SLAM technique with a unique submap-
based approach; this architecture distributes pose graph optimization and global map
building across all robots, enabling decentralized teams to operate autonomously for
extended periods. 2) Highly-parallelized algorithms that enable efficient global occupancy
gridmap fusion and efficient submap correlations that generate multimodal constraints;
together these algorithms allow the proposed architecture to be realized on commodity
hardware. 3) Continuous Mode Blending Optimization (COMBO), a novel technique
that enables pose graphs with multimodal constraints to be optimized using traditional
nonlinear least squares; this allows complex environments and effects such as perceptual
aliasing to be modeled more accurately.

These contributions have been demonstrated on-line at the MAGIC challenge, and more
recently with three merged challenge datasets replayed in real-time— these are the largest
multi-robot datasets described in the literature, with heterogeneous teams of 10, 14 and
23 robots exploring over 3.1 km, 6.1 km and 8.3 km of total odometry, respectively. Results
include global occupancy gridmap fusion at over 20Hz, with globally-referenced mapping
accuracies of ±0.27m, ±0.62m and ±0.35m, without using Global Positioning System
(GPS) sensors. The proposed submapping technique compresses sensor data approxi-
mately 50 fold, reducing communications bandwidth requirements to averages of 1.2KB/s,
2.2KB/s and 2.4KB/s. Submap constraints with multimodal Gaussian distributions
are generated in real-time and desirable convergence properties are demonstrated using
COMBO. The total computation, storage and communications requirements are shown to
scale linearly, enabling future deployments orders of magnitude larger.

By distributing the MR-SLAM back-end so that all robots are able to build their own
copies of the global gridmap, the proposed architecture enables teams of robots to operate
autonomously without continuous communications to a centralized server. This dis-
tributed approach is highly scalable, since each robot includes the computational resources
it requires to process its own sensor data and maintain its own registration to the global
pose graph. The proposed hybrid-decentralized and distributed MR-SLAM architecture
provides robust localization and mapping capabilities for large-scale deployments of au-
tonomous robots in real-world conditions. This approach enables many applications
where teams of robots need to cooperate in GPS-denied environments, with imperfect
communications and without a priori maps.

Contents

List of Figures vii

List of Tables xi

List of Abbreviations xiii

Acknowledgments xv

1. Introduction 1
1.1. Robots . 1

1.1.1. Trends in Robotics . 2
1.1.2. Mobile Robots . 3
1.1.3. Simultaneous Localization and Mapping 4

1.2. Multi-Robot Systems . 6
1.2.1. MRS Architectures . 6
1.2.2. Multi-Robot Localization . 7
1.2.3. Multi-Robot SLAM . 7

1.3. State of the Art . 8
1.3.1. Academic Research . 9
1.3.2. Localization-Only Systems . 10
1.3.3. Multi-Robot Simulations . 11
1.3.4. On-line MR-SLAM Systems . 11
1.3.5. Technology Maturity . 14

1.4. Potential Multi-Robot Applications . 14
1.4.1. Search and Rescue . 16
1.4.2. Military and Law Enforcement . 16
1.4.3. Agriculture and Farming . 17
1.4.4. Mining and Resource Extraction . 18
1.4.5. Space Exploration and In-Situ Resource Utilization 18

1.5. Notation . 19
1.6. Publications . 19
1.7. Thesis Structure . 20

i

Contents

2. Review: Simultaneous Localization and Mapping 23
2.1. Problem Statement . 23

2.1.1. Data Association . 24
2.1.2. Full SLAM . 24
2.1.3. Loop Closures . 25
2.1.4. Example Problem . 26

2.2. Poses and Transformations . 26
2.2.1. Rigid-Body Transformations . 27
2.2.2. Transform Compositions . 28
2.2.3. Homogeneous Coordinate Transforms 30

2.3. Environment Mapping and Parameterization 31
2.3.1. Environment Mapping Sensors . 32
2.3.2. Lidar Measurement Noise . 34
2.3.3. Lidar Sensor Model . 36
2.3.4. Map Parameterization and Storage 37
2.3.5. 2-D vs. 3-D Maps for Wheeled Robots 42

2.4. Motion Models and Localization . 43
2.4.1. Mobile Robot Motion Models . 43
2.4.2. Ego-Motion Estimation with Odometry Sensors 45
2.4.3. Global Pose Estimation with External Localization 50
2.4.4. Map-Based Robot Localization . 52

2.5. SLAM Algorithms . 55
2.5.1. SLAM Assumptions . 56
2.5.2. Full SLAM Graphical Model . 56
2.5.3. Bayesian Filter-Based SLAM . 57
2.5.4. Graph-Based SLAM . 66
2.5.5. Submapping Techniques . 78

2.6. Problem Review . 80

3. Review: Large-Scale Multi-Robot SLAM 83
3.1. Definitions . 83
3.2. Multi-Robot SLAM . 84

3.2.1. Problem Statement . 84
3.2.2. Architectures . 85
3.2.3. Previous Work . 87

3.3. Large-Scale SLAM . 93
3.3.1. Large Areas and Trajectories . 93
3.3.2. Large Teams of Robots . 94
3.3.3. Large Average Node Degree . 96

ii

Contents

4. Hybrid-Decentralized and Distributed Multi-Robot SLAM 97
4.1. Introduction . 97

4.1.1. Research Contributions . 98
4.1.2. Dependencies . 98
4.1.3. Requirements . 99
4.1.4. Assumptions . 100

4.2. System Architecture . 101
4.2.1. High-Level Decisions and Rationale 101
4.2.2. Software Components and Deployment 102

4.3. Conceptual Design . 103
4.3.1. Graph-based SLAM with Submaps 103
4.3.2. Coordinate Frames . 106
4.3.3. Submap Life Cycle . 106
4.3.4. Submap Uniqueness . 107
4.3.5. Submap Gridmap Representation . 108
4.3.6. Firewalling Pose Uncertainty . 109
4.3.7. Loop Closures with Submaps . 110
4.3.8. Robust Wireless Communications . 110
4.3.9. Hybrid-Decentralized Pose Graphs 111

4.4. Logical Design . 117
4.4.1. Local SLAM Front-end . 118
4.4.2. Mapbuilder Back-end . 124
4.4.3. Mapbuilder GUI . 129

4.5. System Verification . 132
4.5.1. Flexible Global Localization . 132
4.5.2. Consistent Coordinate Frames . 133
4.5.3. Heterogeneous UGVs . 133

5. Efficient Occupancy Gridmap Fusion and Matching 135
5.1. Introduction . 135

5.1.1. Research Contributions . 136
5.1.2. Graphics Processing Units . 136
5.1.3. Programming Model . 137

5.2. Submaps as Textures . 137
5.3. GPU-based Occupancy Gridmap Fusion . 139

5.3.1. Problem Statement . 139
5.3.2. Previous Work . 139
5.3.3. Naive Algorithm . 140
5.3.4. Proposed Algorithm . 141
5.3.5. Implementation . 142

iii

Contents

5.3.6. Additional Output Gridmaps . 144
5.4. GPU-based Multimodal Constraint Generation 145

5.4.1. Problem Statement . 145
5.4.2. Previous Work . 145
5.4.3. Multimodal Constraint Generation 147

6. Robust Multimodal Pose Graph Optimization 151
6.1. Introduction . 151

6.1.1. Research Contributions . 152
6.1.2. Motivation . 153
6.1.3. Problem Statement . 157

6.2. Background . 157
6.2.1. Unimodal Constraints . 157
6.2.2. Multimodal Constraints . 158

6.3. Previous Work . 159
6.3.1. Robust Loop Closures . 159
6.3.2. Robust Unimodal Constraint Optimization 159
6.3.3. Robust Multimodal Constraint Optimization 160

6.4. Robust Multimodal Pose Graph Optimization 162
6.4.1. Continuous Mode Blending . 162
6.4.2. Blending Coefficients . 163
6.4.3. Convergence Properties . 164
6.4.4. Constraint Jacobians . 166
6.4.5. Least Squares Optimization . 167
6.4.6. Robust Multimodal Constraints . 168

7. Results 169
7.1. Hybrid-Decentralized and Distributed MR-SLAM 169

7.1.1. MAGIC Challenge . 169
7.1.2. Distributed Occupancy Gridmap Comparison 170
7.1.3. Distributed Pose Graph Comparison 170

7.2. Large-Scale Real-Time Multi-Robot SLAM 176
7.2.1. Old Ram Shed Challenge . 178
7.2.2. MAGIC Challenge Phase 1 . 184
7.2.3. MAGIC Challenge Phase 2 . 190

7.3. Robust Multimodal Pose Graph Optimization 197
7.3.1. Multimodal Gaussians in R1 . 197
7.3.2. Multimodal Gaussians in R2 . 198
7.3.3. Multimodal Gaussians in SE (2) . 200

7.4. Discussion . 204
7.4.1. Accuracy . 204

iv

Contents

7.4.2. Scalability . 205
7.4.3. Robustness . 208
7.4.4. Perceptual Aliasing . 209
7.4.5. Usability and Cognitive Load . 210
7.4.6. Comparison to Recent Work . 211
7.4.7. Multimodal Pose Graph Optimization 214

8. Conclusion 217
8.1. Summary . 217
8.2. Research Contributions . 218
8.3. Future Work . 220
8.4. Final Thoughts . 223

A. MRS Architecture and UGV Design 225
A.1. WAMbot MRS Architecture . 225

A.1.1. Software Architecture . 226
A.1.2. Communications Architecture . 227
A.1.3. Ground Control Station . 228
A.1.4. UGV Hardware Design . 229

A.2. Team Michigan UGV Front-End Design . 230
A.3. University of Pennsylvania UGV Front-End Design 232

B. MAGIC Challenge Datasets 233
B.1. Overview . 233
B.2. Challenge Datasets . 235

B.2.1. Old Ram Shed Challenge . 235
B.2.2. Phase 1 Dataset . 235
B.2.3. Phase 2 Dataset . 236
B.2.4. Phase 3 Dataset . 238

B.3. Post-Challenge Dataset Notes . 238

Bibliography 241

v

List of Figures

1.1. Introduction: Past and future trends in robotics 2
1.2. Introduction: Mobile robot vacuum cleaners 4
1.3. Introduction: SLAM and robotic vacuum cleaners 4
1.4. Introduction: Multi-robot system taxonomy 7
1.5. MRS of quadrotor robots flying in formation 11
1.6. MRS from the 2003 DARPA SDR program 12
1.7. MAGIC challenge: Photos of finalists’ robots 14
1.8. MAGIC challenge: Photos from Phase 2 . 15

2.1. Example Problem: A robotic vacuum cleaner 25
2.2. Rigid-body transformations in R2 . 27
2.3. Measurement transformations using SE (2) 31
2.4. Mapping in 3-D with a servo-actuated lidar 35
2.5. Example problem: Mapping with lidar sensor noise 37
2.6. Example problem: Occupancy gridmap with two lidar scans 40
2.7. Example problem: Occupancy gridmap with all lidar scans 41
2.8. Example problem: Mapping with odometry 46
2.9. Odometry: Accumulated noise . 47
2.10. Odometry: Linearization errors . 49
2.11. Localization: Visual place recognition . 53
2.12. Localization: Global map-based technique 54
2.13. SLAM: Graphical model for landmark-based maps 56
2.14. SLAM: Graphical model for a Bayes filter 57
2.15. SLAM: Sliding window monocular visual SLAM 65
2.16. SLAM: Factor graph for an occupancy gridmap 68
2.17. SLAM: Factor graph with loop closure . 69
2.18. Example problem: Loop closure constraints from scan matching 70
2.19. Example problem: Residual error in a loop closure constraint 71
2.20. SLAM: Optimization algorithm convergence 76

3.1. MR-SLAM: Venn diagram of different architectures 86

4.1. Mapbuilder: Architecture and software deployment diagram 103

vii

List of Figures

4.2. Mapbuilder: Graph-based SLAM with submaps 104
4.3. Mapbuilder: Submap constraint spring analogy 105
4.4. Mapbuilder: Local SLAM front-end sample submaps 109
4.5. Mapbuilder: Decentralized pose graph case study 115
4.6. Mapbuilder: Logical design . 118
4.7. Mapbuilder: Message types . 119
4.8. Mapbuilder: Local SLAM Lidar Prefilter . 121
4.9. Mapbuilder: Graphical user interface screen-shot 130

5.1. Occupancy gridmap fusion: bilinear filtering 140
5.2. Occupancy gridmap fusion: rasterization . 142
5.3. Multimodal constraint generation: example output with multiple modes . . 146
5.4. Multimodal constraint generation: example with a single mode 148

6.1. Motivation: Multimodal constraint with complex overlapping modes 152
6.2. Motivation: Multimodal constraint with multiple overlapping modes 154
6.3. Motivation: Multimodal constraint with perceptual aliasing 155
6.4. Motivation: Multimodal constraint with perceptual aliasing resolved 156
6.5. COMBO: 1-D convergence of isolated modes 165
6.6. COMBO: 1-D convergence of highly-overlapping modes 166

7.1. MAGIC challenge: Judge’s map . 171
7.2. MAGIC challenge: WAMbot challenge day results 171
7.3. Results: Distributed MR-SLAM test at UWA 173
7.4. Results: Hybrid-Decentralized MR-SLAM MAGIC Phase 3 174
7.5. Results: Hybrid-Decentralized MR-SLAM MAGIC Phase 3 (zoom) 175
7.6. Results: Old Ram Shed Challenge global gridmaps 180
7.7. Results: Old Ram Shed Challenge time-based plots 181
7.8. Results: Old Ram Shed Challenge performance plots 182
7.9. Results: Old Ram Shed Challenge histogram plots 183
7.10. Results: MAGIC challenge Phase 1 gridmaps 185
7.11. Results: MAGIC challenge Phase 1 gridmaps (cont.) 186
7.12. Results: MAGIC challenge Phase 1 time-based plots 187
7.13. Results: MAGIC challenge Phase 1 performance plots 188
7.14. Results: MAGIC challenge Phase 1 histogram plots 189
7.15. Results: MAGIC challenge Phase 2 gridmaps 191
7.16. Results: MAGIC challenge Phase 2 gridmaps (cont.) 192
7.17. Results: MAGIC challenge Phase 2 time-based plots 193
7.18. Results: MAGIC challenge Phase 2 performance plots 194
7.19. Results: MAGIC challenge Phase 2 histogram plots 195
7.20. Results: COMBO convergence in 1-D for “slip or grip” problem 197

viii

List of Figures

7.21. Results: COMBO convergence in 1-D for complex overlapping modes . . . 198
7.22. Results: COMBO convergence in 2-D . 199
7.23. Results: Pose graphs for Manhattan Small dataset 202
7.24. Results: Pose graphs for Manhattan Large dataset 203
7.25. Discussion: Global gridmap accuracy . 204
7.26. Discussion: Robustness to moving objects in the environment 209
7.27. Discussion: Old Ram Shed Challenge sample submaps 212
7.28. Discussion: Global occupancy gridmap comparison 214

A.1. WAMbot MRS: Software architecture . 227
A.2. WAMbot MRS: Deployment at MAGIC challenge 228
A.3. WAMbot MRS: HMI screen-shot . 229
A.4. WAMbot MRS: UGV hardware design . 230
A.5. UGV front-end: Penn and TM’s mobile robots 231

B.1. MAGIC challenge: Pre-challenge map . 234
B.2. MAGIC challenge: Team Michigan challenge day results 235
B.3. MAGIC challenge: Old Ram Shed Challenge photos 236
B.4. MAGIC challenge: Phase 2 photos . 237
B.5. MAGIC challenge: Phase 2 panorama . 237
B.6. MAGIC challenge: Corrupt submaps from Phase 2 238
B.7. MAGIC challenge: GPS errors throughout Phase 2 239

ix

List of Tables

1.1. MAGIC challenge results . 13
1.2. Mathematical notation . 22

2.1. SLAM: Key problems and research contribution areas by chapter 81

3.1. MR-SLAM: Comparison of MR-SLAM architectures 88
3.2. MR-SLAM: Timeline comparing previous work 93
3.3. MR-SLAM: Summary of large-scale algorithms and implementations 95

5.1. GPU-based occupancy gridmap fusion algorithm 143
5.2. GPU-based multimodal constraint generation algorithm 149

7.1. Results: MAGIC challenge dataset summary 176
7.2. Results: Mapbuilder performance on MAGIC challenge datasets 196
7.3. Results: Simulated multimodal SE (2) pose graph dataset summary 201
7.4. Results: Convergence and timing for Manhattan Small dataset 201
7.5. Results: Convergence and timing for Manhattan Large dataset 201
7.6. Discussion: Pose graph optimization timing comparison 213

B.1. MAGIC challenge: phase summaries . 234

xi

List of Abbreviations

COTS Commercial Off-The-Shelf

DARPA Defense Advanced Research Projects Agency

DCA Decoupled Centralized Architecture

DDF Decentralized Data Fusion

DDS Data Distribution System

DOF Degrees Of Freedom

EIF Extended Information Filter

EKF Extended Kalman Filter

FOV Field Of View

GCS Ground Control Station

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HMI Human Machine Interface

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IPC Inter-Process Communication

ISR Intelligence, Surveillance and Reconnaissance

MAGIC Multi-Autonomous Ground-robotics International Challenge

MAS Multi-Agent System

MAV Micro Aerial Vehicle

MCL Monte Carlo Localization

xiii

List of Abbreviations

MDA Model-Driven Architecture

MEMS Micro Electro Mechanical Systems

MOG Mixture of Gaussians

MR-SLAM Multi-Robot Simultaneous Localization and Mapping

MRS Multi-Robot System

OOI Objects Of Interest

Penn University Of Pennsylvania

PR Place Recognition

RASR Reconnaissance and Autonomy for Small Robots

RBPF Rao-Blackwellized Particle Filter

RF Radio Frequency

RMSE Root Mean Squared Error

SGD Stochastic Gradient Descent

SLAM Simultaneous Localization and Mapping

SOA Service-Oriented Architecture

TM Team Michigan

TOF Time of Flight

TRL Technology Readiness Level

UGV Unmanned Ground Vehicle

USAR Urban Search and Rescue

WAMbot Western Australian MAGIC Robot

xiv

Acknowledgments

There are many people who have helped with my research over the last few years. I
would like to express my sincerest gratitude and appreciation to my supervisors, Prof.
Thomas Bräunl and Dr. Adrian Boeing. Thank you for your endless support, guidance
and motivation during my candidature, and for your feedback on this manuscript. Thank
you also to Keith Godfrey for your support and feedback.

Adrian, thank you for bringing the WAMbot team together and your tireless efforts
that enabled us to compete in the 2010 Multi-Autonomous Ground-robotic International
Challenge. Thanks go to the entire team, whose extensive efforts allowed us to compete
on the international stage and achieve fourth place. Particular thanks to the core team
members: Adrian Boeing, Michael Fazio, Adam Gandossi, Nicholas Garel, Aidan Morgan,
Frank Ophelders and Kevin Vinsen. Thanks also to Anthony Attwood, Brian Frisch,
Chang Su Lee, Mark Boulton, Martin Masek, Sam Lopes and Sushil Pangeni. Together all
of your efforts produced a team of robots that helped to validate my research contributions.
Acknowledgements also to our sponsors, particularly Thales and DSTO, who made it
possible to field a team of robots at the challenge.

Sincere gratitude to Prof. Daniel Lee, Alex Kushleyev and the rest of the University of
Pennsylvania team for sharing their challenge datasets and hosting my visit to the GRASP
lab in 2011. Thank you also to Prof. Edward Olson and the rest of Team Michigan for
sharing their challenge datasets.

Endless thanks to my family for all their love, support and words of encouragement from
afar. Finally, my deepest and sincerest gratitude to my wife, Lauren. Your patience and
unconditional support has made this possible.

xv

1 Introduction

This thesis describes my research work in Simultaneous Localization and Map-
ping (SLAM) algorithms and system architectures that enable teams of robots
to cooperate in real-world environments. This chapter motivates my research
in multi-robot SLAM (MR-SLAM) and describes the significance of this area.
Section 1.1 starts by summarizing key trends in robotics and introduces the
SLAM problem. In Section 1.2 I introduce cooperative multi-robot systems
(MRS), and the MR-SLAM solutions that they require. Section 1.3 provides
an overview of current MRS and MR-SLAM capabilities and introduces the
MAGIC challenge, which provided the initial motivations for my research in
this area. Finally, Section 1.4 explores potential applications of these tech-
nologies and considers how they could enable real-world deployments of large
teams of robots in the near future.

1.1. Robots

Humans have been fascinated by robots for millennia. The earliest descriptions of clock-
work machines and automata that could serve and entertain people can be found in ancient
Greek and Chinese texts [1]. Over the last few decades, modern microelectronics have
enabled robots to permeate many aspects of our lives: from household appliances and toys
that are both helpful and entertaining, to industrial machines that help drive economic
growth and rovers that explore other planets.

1

Chapter 1 Introduction

1980

1960

Industrial
Robotic Arm

Curiosity Rover
NASA JPL

A
u
to

n
om

y
(C

om
p
le

xi
ty

)

Reconfigurable
Arm e.g. Baxter

Autonomous
Cars

Willow Garage

PR2 Robot

Autonomous
Spacecraft

Mobility (Interactivity)

Boston Dynamics
Big Dog

Telepresence
Avatars

iRobot Roomba
Vacuum

Neato XV-11
Vacuum

1990

2010

2020

2000

Autonomous
UAV Swarms

Military
UAV Drones

Smart Dust

Automated
Mining

Today

Drive-by-wire
Vehicles

Figure 1.1. Trends in robotics: An anecdotal representation of the past and possible future
directions in robotics. Over recent decades (blue), the frontiers of robotic technology have
seen levels of autonomy and mobility increase, with corresponding increases in complexity and
interactivity. While this trend is likely to continue, future robotic technologies (green) are likely
to be increasingly connected, sharing information and cooperating to form complex multi-robot
systems.

1.1.1. Trends in Robotics

The growth in robotic technologies has been accompanied with increased capabilities such
as autonomy and mobility. The graph in Figure 1.1 combines these and plots several
examples. While somewhat anecdotal, it suggests that autonomy and mobility, along with
attributes such as complexity and interactivity, have increased steadily in recent decades.
It is easy to imagine this trend continuing into the near future, where many robots from
science fiction could become a reality. Technology “futurists” such as Brooks [2] and
Kurzweil [3] have predicted that robotic systems, and their role in our everyday lives, will
grow exponentially.

The two main forces driving these advancements are economics and safety. Often referred
to as the “three Ds”: dirty, dangerous and dull, many tasks performed by humans are either
dangerous, such as bomb disposal, or highly repetitive, such as welding in an industrial
factory. Robots are often well suited to these types of tasks, because they can be more

2

1.1 Robots

consistent and are relatively expendable. Robots have historically been designed to replace
humans in these dirty, dangerous and dull tasks, which means they are often designed with
human-like capabilities.

While this approach has proven to be effective, the exponential growth predicted by
Kurzweil et al. is more likely to be realized when we start deploying robots that cooperate
in teams. Just as teams of humans can be more productive than individuals, teams of
robots have the potential to be more productive also. Figure 1.1 lists several examples of
near-future robotic systems that could benefit significantly from cooperative behaviors.

Teams of cooperative robots, or multi-robot systems (MRS), have the potential to provide
capabilities with no human equivalent. High bandwidth communications, for example, will
allow robots to quickly and accurately share knowledge, which will introduce many novel
efficiencies. Consider, for example, a team of robots that shares maps of their environment:
this sharing will enable individual robots to plan and navigate efficiently to places they
have never previously visited.

In recent years the term “cloud robotics” has been used to describe MRS that share
knowledge using a centralized server, often over the Internet [4, 5]. While cloud-based
robotics concepts are still in their infancy, future developments are likely to focus on
increasingly decentralized and distributed approaches. My research focuses on the latter,
decentralized MRSs, and more specifically on architectures that enable teams of distributed
robots to share spatial knowledge.

1.1.2. Mobile Robots

It is useful to distinguish between robots that are immobile, such as a robotic arm in a
factory, and robots that are mobile, such as a self-driving car. This research is concerned
with the latter, mobile robots. We use the term to describe a self-propelled robot that
can move kinematically between locations in its environment. We refer to the robot’s
combined position and orientation as its pose.

Mobile robots can refer to robots that move over ground, underwater, through air and
in micro-gravity environments. While my research can be applied to any of these envi-
ronments, the focus of this work is primarily concerned with mobile robots that remain
in contact with the ground. The term unmanned ground vehicles (UGVs) is often used
more specifically to describe ground-based mobile robots, however I use the two terms
interchangeably.

Mobile robots move through large and potentially dynamic environments, making percep-
tion much more difficult than industrial robots with limited working environments and

3

Chapter 1 Introduction

Figure 1.2. Two mobile robot vacuum cleaners: The iRobot Roomba 560 (left) and the Neato
XV-11 (right). Image courtesy of Evan Ackerman, IEEE Spectrum.

rigid operating parameters. Mobile robots require additional sensors, better perception
and higher degrees of autonomy to operate in frequently changing real-world environments.

When explaining my research to others I have often used the iRobot Roomba as an
example of a mobile robot (Figure 1.2, left). The Roomba is a robotic vacuum cleaner with
two differentially driven wheels (Section 2.4.1). It alternates between wall-following and
random driving modes, sensing the environment by bumping into objects. While watching
a Roomba it is apparent that their randomized motions are inefficient, and that they do
not model their environment or know where they are in it. The long-exposure photograph
in Figure 1.3 (a) is an example of a random path driven by a Roomba. Contrast this with
the way a human would perform the same task— we implicitly build an internal model of
the environment, and keep track of our location and where we have already vacuumed.

1.1.3. Simultaneous Localization and Mapping

Navigating unknown environments requires a solution to the “Simultaneous Localization
and Mapping” (SLAM) problem. The SLAM problem can be posed in the metaphorical

(a) The iRobot Roomba’s random navigation
will eventually cover the entire area.

(b) The Neato XV-11 navigates using SLAM,
which allows it to vacuum more efficiently.

Figure 1.3. SLAM enables more efficient robotic vacuums: The paths taken by two
commercial robots are shown in these long-exposure photographs. Images courtesy Evan Ackerman.

4

1.1 Robots

chicken-and-egg sense; for a robot to know its current location it needs an accurate map,
however to incrementally build an accurate map it needs to know its location within the
map. The two questions, “where am I?” (localization) and “what does the world look like?”
(mapping) are intrinsically coupled by probabilistic uncertainties that must be answered
simultaneously.

Handling these uncertainties requires a rigorous probabilistic framework and the ideal
solution is often described as the full SLAM solution [6]. The SLAM problem is combi-
natorial, and in all but the simplest cases the full SLAM solution requires exponentially
increasing computational resources (it is NP-complete) [7, 8]. Thus all practical SLAM
algorithms, including my research contributions, exploit combinations of heuristics and
approximations to run in polynomial time.

The SLAM problem has been the focus of considerable research since the late 1980s [9,
10, 11], and several broad approaches have been described for solving it. Thrun and
Leonard provide a tutorial-style overview of these approaches in [12]. SLAM algorithms
generally trade between computational complexity, storage, accuracy, robustness and real-
time execution. Chapter 2 gives an in-depth review of the SLAM problem and the different
classes of solutions.

A robust SLAM algorithm is essential for any mobile robot to navigate safely through an
unstructured environment. The SLAM algorithm frequently defines a global coordinate
frame for the robot to operate in; one that is generally used by all high-level functionality,
such as navigation, path planning, exploration, object identification, object tracking and
object manipulation. These dependencies make the SLAM algorithm a core part of
any mobile robot architecture, and unrecoverable failures highly undesirable. Any robot
disoriented by a SLAM failure is likely to fail to perform its task, or worse, may endanger
humans, itself, or the environment.

While various SLAM algorithms have been demonstrated in laboratories, it is more difficult
to produce robust solutions in real-world unstructured environments. Wheel slippage, for
example, can produce noisy and biased odometry measurements, while Global Positioning
System (GPS) sensors often produce very noisy and biased global localization. Robust
real-world SLAM becomes even harder when these random and systematic sensing errors
occur in environments that have redundant geometries or moving objects.

Consumer products using SLAM techniques have only recently begun appearing on the
market. The Neato XV-11 vacuum is one example that was designed to compete with the
Roomba described in Section 1.1.2; both products are shown in Figure 1.2. The XV-11
performs SLAM with an inexpensive lidar scanner [13] to dynamically build a map of its
environment. Using this internal map the XV-11 is able to localize itself and navigate

5

Chapter 1 Introduction

while recording where it has already cleaned. The long-exposure photograph in Figure 1.3
demonstrates the purposeful navigation that SLAM enables on the XV-11.

1.2. Multi-Robot Systems

While cooperative teams of robots can often complete tasks more efficiently than unco-
operative ones, this ability does not generally exist in consumer robots today. Multiple
robot vacuum cleaners, for example, are unlikely to clean the entire floor of a large house:
a team of Roombas will bump into each other and their paths will overlap inefficiently;
and while a team of XV-11s may navigate efficiently, each robot will attempt to clean the
entire floor once. Such a cleaning task could be manually divided by barriers, however
any failures would result in only partial task completion. This household example hints
at some of the core problems that must be solved by MRS. For a thorough review refer to
[14, 15] and [16].

1.2.1. MRS Architectures

Current MRS research can be grouped loosely into two different architectures that are
based on the method of coordination; the first approach uses a large number of simple
and inexpensive robots operating in uncoordinated swarms. In these biologically inspired
systems each robot responds only to its local environment with no formal task allocation;
each robot performs simple tasks and any high-level abilities are often considered emergent
behavior [17]. Using the robot vacuum example, an uncoordinated group of Roombas
might eventually clean every room in a large house, however they would be inefficient and
would require a large team to ensure coverage.

The second coordination approach, and the focus of this research work, involves strongly
coordinated behaviors between relatively complex robots with higher fidelity sensors and
actuators [18]. Task allocation is performed explicitly in a strongly-coordinated MRS,
where each task is divided into subtasks that are dynamically allocated and re-allocated
in response to changing conditions or failure. In the case of robotic vacuuming, the task
may be optimally divided according to traffic or dirt distribution rather than floor area.
Optimal task allocation is an active area of research [19, 20, 21].

Farinelli et al. [18] reviewed a large number of cooperative MRS and arranged them in a
taxonomy according to the level of knowledge sharing, method of coordination and type
of organization (Figure 1.4). Using Farinelli’s terminology, this thesis is concerned with
cooperative MRS where each robot is aware of its team members, and the team is strongly
coordinated using structured communication.

6

1.2 Multi-Robot Systems

Figure 1.4. Multi-robot system taxonomy: Types of cooperation, levels of knowledge sharing,
methods of coordination and types of centralization are shown. Boxes highlighted in red indicate
the MRS considered in this research. Image from Farinelli et al. [18]

1.2.2. Multi-Robot Localization

Robust localization estimates are required for a team of robots to navigate an environment
and perform cooperative tasks. While relatively precise localization is possible with
systems such as real-time kinematic GPS (RTK-GPS) or marker-based tracking (e.g.
Vicon), these and similar systems are expensive, require external infrastructure, and only
work in limited environments (Section 2.4.3). For rapid MRS deployment in unstructured
or mixed indoor/outdoor environments, the localization system needs to be either partially
or fully contained within each robot.

If an existing, a priori, map is available, it is often possible for robots to localize themselves
in the map using on-board sensors (Section 2.4.4). Such localization-only approaches are
brittle, however, particularly when the environment can change. Moving the furniture in a
house, for example, could make a robot vacuum’s a priori map unusable. Furthermore, in
some environments, such as the site of a natural disaster or the surface of another planet
it may not be possible to obtain detailed maps before deployment.

1.2.3. Multi-Robot SLAM

The most flexible way to localize a MRS is with an architecture that enables individual
robots to localize themselves at the same time as building a shared global map of the
environment. This is the multi-robot SLAM (MR-SLAM) problem, a natural extension of
the single-robot SLAM problem introduced in Section 1.1.3.

7

Chapter 1 Introduction

A robust solution to the MR-SLAM problem must be designed into the core of any coordi-
nated MRS that is deployed into unstructured real-world environments, since navigation,
task allocation and high-level cooperative behaviors all require mapping and localization
information. The MR-SLAM problem is the focus of this research work, and is described
in detail in Chapter 3.

Robust real-world MR-SLAM solutions are considerably more complex than the single-
robot case due to their distributed nature. MR-SLAM solutions for coordinated MRS are
more than a collection of single-robot SLAM algorithms: localization requires each robot to
be registered in a single global coordinate frame that is consistent, while mapping requires
large volumes of sensor data to be fused on-line. In real-world deployments, MR-SLAM
solutions must also contend with shared wireless communications that are lossy and have
varying latencies and bandwidth. The distributed nature of MR-SLAM introduces several
unique problems that require careful architectural considerations, these are described in
detail in Chapter 3.

Several problems encountered in single-robot SLAM become more frequent and computa-
tionally complex in MR-SLAM. When a group of robots explore an environment together,
sensing the environment from slightly different vantage points, the data association prob-
lem (Section 2.1.1) becomes more difficult, while loop closures (Section 2.1.3) occur almost
constantly between robots. These loop closures create large sequences of constraint cycles
(Section 3.3.3), which can cause a combinatorial increase in computational complexity.

In Chapter 4, Chapter 5 and Chapter 6 I describe solutions to many of these MR-SLAM
problems. These solutions are combined into a hybrid-decentralized distributed software
architecture called Mapbuilder, which provides a robust MR-SLAM system for on-line
deployments into large-scale urban environments. The Mapbuilder MR-SLAM system is
demonstrated in Chapter 7.

1.3. State of the Art

Several MR-SLAM system prototypes have been demonstrated in coordinated MRS over
the last two decades; however none have matured sufficiently to be packaged in commercial
products or deployed by the military. In 2008 Thrun and Leonard wrote:

“ Multi-robot SLAM has benefited greatly from substantial recent interest;
nevertheless the existing methods have not yet matured to a level where
they can be used by non-experts in the field. ” [12]

As of 2015, only a handful of consumer products have been released with on-board SLAM
solutions. In each case, such as the robotic vacuums discussed previously, only single-robot

8

1.3 State of the Art

SLAM is performed. While many MRS have been deployed in warehouses [22] and at mine
sites [23, 24], they typically localize themselves within a priori maps using GPS, beacons
or visual bar codes. Extensive searches of the literature and the Internet did not find any
examples of MR-SLAM deployed outside of research laboratories.

MRS designs are typically complex systems of systems, and they integrate a wide range
of technologies. These in turn require engineers with a wide range of skills, from me-
chanical and electrical design, software engineering, control systems, state estimation
and communications, to knowledge of high-level technologies such as perception, path
planning, and computer vision. Research in this area is by nature multi-disciplinary,
which, when combined with the cost of sensors and robotic hardware, makes MRS and
MR-SLAM research expensive. To minimize costs, researchers typically make assumptions
and simplifications that limit the scope of their systems, and as a result the state of the
art is progressing on several frontiers as outlined in this section.

The current interest in MRS can be illustrated by the MRS-focused workshops held in
conjunction with major robotics conferences over the last few years. For example:

• ICRA 2013 “Towards Fully Decentralized Multi-Robot Systems”
• ICRA 2014 “The Centrality of Decentralization in Multi-Robot Systems”
• IROS 2014 “The Future of Multiple-Robot Research”

1.3.1. Academic Research

Many MRS research projects have been described in the literature over the last two
decades, e.g. [25, 26, 27, 28, 29, 30, 31]. These projects have demonstrated a range of
low-level capabilities such as cooperative SLAM, exploration, object identification, object
tracking and object manipulation. Researchers have demonstrated strategies for optimal
task allocation in MRS [19] and integrating heterogeneous robot types [29, 32, 33]. For a
wider review refer to [14, 34].

Research projects can be divided into off-line systems that collect sensor data first and
process it later, and on-line systems that perform MR-SLAM and other tasks while
deployed in real-time. In the last two decades, the majority of MRS publications have
been validated off-line, thus avoiding computation and communications limitations. Off-
line systems are often prototyped using Matlab, for example, which eases implementation
and validation. In contrast, the work described in this thesis executes on-line and with
limited computational resources.

MRS research can also be divided by the target environment. Indoor laboratory-based
research generally avoids many of the irregularities, hostilities and sources of noise found
in real-world environments. Indoor research in laboratories can be performed with simpler

9

Chapter 1 Introduction

research platforms with limited mobility and less expensive sensing: complete packages
such as the TurtleBot are available for USD $1,400 [35].

The research described in this thesis is primarily concerned with MRS that can be deployed
in outdoor urban environments; environments that are more harsh and unpredictable and
that often require more capable and expensive sensors. The minimum cost of a UGV
deployed at the MAGIC challenge in 2010, for example, was USD $11,500 (Section 1.3.4.2).
Servicing UGVs and repairing hardware failures requires a level of human support that
scales with the number of UGVs. Hardware and labor costs combine to ensure that
academic research in large-scale outdoor MR-SLAM is expensive.

1.3.2. Localization-Only Systems

This section describes several recent projects that demonstrate MRS behaviors using
localization-only approaches. While these projects currently lack MR-SLAM solutions,
they demonstrate capabilities that could inspire novel and/or commercially valuable ap-
plications if MR-SLAM was integrated.

The “Swarmanoid” project by Dorigo et al. [33] is particularly notable as it combines many
low-level capabilities with a team of heterogeneous robots. In 2011 they demonstrated a
cooperative MRS that climbs a book case to retrieve a book. Other work shows a flying
quadrotor micro aerial vehicle (MAV) overseeing small UGVs while they cooperate to
climb a ramp. While impressive, their work uses radio and infra-red sensors to provide
localization, while making no attempts to map the environment or perform SLAM.

In [36], Lindsey et al. demonstrated a team of quadrotors MAVs cooperatively building 3-D
structures, while in [37], Kushleyev et al. demonstrated a MRS of 20 quadrotors executing
trajectories in tight formations (Figure 1.5). In both cases the robots lacked on-board
sensing and the MRS relied on external localization by a Vicon system and centralized
control. Integrating a robust SLAM solution into these systems remains an open research
problem. Since 2012 other researchers have demonstrated results with on-board visual
SLAM [38], including fusing maps from multiple MAVs as an off-line step [39, 40].

Structured and controlled environments allow localization-only MRS approaches that are
simpler and more robust. Several commercial systems have been described in recent years.
A logistics MRS designed by Kiva Systems [22], moves storage units around a warehouse
while localizing with bar codes printed on the floor (the company was purchased for USD
$775 million in 2012). In the mining industry, several companies are using fleets of semi-
autonomous trucks to haul ore. These trucks navigate using external localization sensors
only, such as RTK-GPS or radio beacons [24].

10

1.3 State of the Art

Figure 1.5. MRS of quadrotors MAVs: 20 nano quadrotor MAVs flying in a 5×4 grid formation.
Two of the cameras used for external localization can be seen mounted to the wall. Image courtesy
of Alex Kushleyev and KMel Robotics.

1.3.3. Multi-Robot Simulations

The hardware and maintenance costs described in Section 1.3.1 have encouraged the
development of a multitude of software packages that simulate robots. While simulations
have been used to validate many MRS and SLAM algorithms, the fidelity of their models
vary widely and none capture the complex dynamics and sensor behaviors observed in the
real world.

The most well-cited open-source tools that can simulate a MRS with hundreds of robots is
Player and Stage [41, 42]. These tools model the environment in 2-D, however, a deficiency
that is addressed by the Gazebo project [43], which simulates 3-D environments including
physical interactions. Another notable open source 3-D simulator is USARsim [44], which
is used for the RoboCup rescue virtual robot competition [45]. Other MRS simulations
such as ARGoS [46] and the EyeBot Simulator [47] are described in the literature. The
various simulators differ widely in terms of their fidelity and ability to reproduce accurate
real-world physics.

1.3.4. On-line MR-SLAM Systems

In the last two decades, two significant research programs in coordinated MRS have been
funded with grants from both government and industry: the Software for Distributed
Robotics (SDR) program in 2003, and the Multi-Autonomous Ground-robotics Interna-
tional Challenge (MAGIC) in 2010. Both programs focused on intelligence, surveillance
and reconnaissance (ISR) missions.

11

Chapter 1 Introduction

(a) Howard et al.’s MRS at Fort A.P. Hill, Virginia
[29, 50, 51]. Image courtesy of Andrew Howard.

(b) Konolige et al.’s “Centibots”
[28, 27, 49]. Image © SRI Int.

Figure 1.6. Two MRS from the 2003 SDR program: Both teams of robots autonomously
explored and mapped a 45×25 m2 indoor environment with minimal human intervention.

1.3.4.1. SDR Program

Funded by DARPA, the SDR program produced two notable MRS with MR-SLAM [48]:
Fox et al.’s “Centibots” [28, 27, 49], and Howard et al.’s MRS [29, 50, 51]. Each team
designed and assembled a large MRS, shown in Figure 1.6. Their robots autonomously
explored and mapped a 45×25 meter indoor environment with minimal human interaction,
and then in a second phase they performed an ISR task.

While both Fox et al. and Howard et al. demonstrated an impressive number of robots,
100 and 80 respectively, the on-line MR-SLAM and exploration were only performed by
three and four robots, respectively. There was a clear delineation between robots that
performed MR-SLAM and robots that performed ISR with localization only [20]. For
comparison, in the work presented here, 23 robots perform MR-SLAM while exploring
and mapping an area more than 20 times larger.

1.3.4.2. MAGIC Challenge

MAGIC was a USD $1.2 million competition held in November 2010. Five competitors
demonstrated multi-robot UGV systems in real-world conditions, including some of the
most convincing MRS research to-date. A brief overview of the challenge is given here,
refer to Finn et al. for a more in-depth account [52]. The competitors and results are listed
in Table 1.1, along with their UGV counts and relevant publications. Figure 1.7 shows a
photo of each of the competitors’ UGVs.

The challenge motivated the research work I describe in this thesis, while providing most
of the datasets used to prepare the results in Chapter 7. I was one of a handful of
core team members in the Western Australian MAGIC robot team (WAMbot), having

12

1.3 State of the Art

spent many months working closely with the MRS and UGVs. While I was heavily
involved in both software and hardware development, and the final challenge event, my
primary contribution was the Mapbuilder hybrid-decentralized and distributed MR-SLAM
system that I describe throughout this thesis. More information on the challenge test
environments and our team’s MRS design is given in Appendix A.

The main objective of the MAGIC challenge was to advance robotic technologies by
encouraging the development of MRS that could perform autonomous ISR missions. High-
level challenge tasks included identifying and neutralizing both static and moving objects
of interest (OOIs) with limited interaction from human operators. The challenge allocated
3.5 hours to explore three phases that became progressively more difficult. Over 200 pages
of rules and amendments described a complex set of requirements for the MRS [52].

To accomplish the ISR mission, each MRS required a MR-SLAM system that could provide
global localization for a team of five or more UGVs while they explored and mapped a
500×500 meter urban environment. The MR-SLAM system had to provide maps with
sufficient detail to enable the UGVs to navigate from unstructured outdoor environments,
through doorways and into buildings without GPS. Figure 1.8 shows two photos from the
second phase of the challenge, where multiple buildings, large sparse spaces, sand-pits and
ditches created a difficult environment for UGVs to navigate. The MR-SLAM system had
to be robust, allowing UGVs to continue operating with intermittent communications,
while providing both operators and judges with global maps and localization information.

Prior to the challenge, real-world MR-SLAM had not been demonstrated at such a “large
scale” (Section 3.2 reviews other systems in the literature and Section 3.3 considers the
definition of “large scale”). The results I present in Chapter 7 combine multiple challenge
datasets from Team Michigan (TM), the University of Pennsylvania (Penn) and WAMbot
to demonstrate real-time MR-SLAM on datasets larger than any previously described.

Place Team Abbrev. UGVs Publications

1st Team Michigan (US) TM 14 [53, 54, 55, 56, 57]
2nd University of Pennsylvania (US) Penn 9 [58, 59, 60]
3rd Recon. & Autonomy For Robots (US) RASR 8 [61, 62, 63]
4th Team WAMbot/MAGICian (Aust.) WAMbot 7 [64, 65, 66, 67, 68]
5th Cappadocia/ASELSAN (Turkey) Capp 5 [69]

Table 1.1. MAGIC challenge results: Five teams competed in the final challenge in November
2010. Our team, WAMbot/MAGICian, placed fourth.

13

Chapter 1 Introduction

1.3.5. Technology Maturity

Using the US Department of Defense and NASA definitions for Technology Readiness Level
(TRL) [70], it is interesting to evaluate the maturity of the state of the art in coordinated
MRS and MR-SLAM solutions. As noted at the start of this section, there are no systems
that are regularly deployed in unstructured real-world environments (TRL 9). Researchers
have proven various subsystems, however very few complete “systems of systems” have
been demonstrated.

The cooperative MRSs described in this section vary between TRL 4 (components vali-
dated in a laboratory) and TRL 5 (components evaluated in relevant environments). Based
on results described in publications, the 2003 SDR program could be considered TRL 51

2
or TRL 6 (integrated system in relevant environment). While the SDR program validated
two complete MRSs, the test environments were indoors and not unlike a laboratory [51].

Using the same classification, the MRS presented at the MAGIC challenge could be consid-
ered between TRL 6 and TRL 61

2 . While the phases of the challenge were representative of
increasingly hostile urban environments, the environment was far from an operational one
(required for TRL 7 or above). The MRS deployments at the MAGIC challenge raised
many interesting questions and suggested that work is still needed before they can be
rapidly deployed in real world (TRL 9).

1.4. Potential Multi-Robot Applications

So far, this chapter has introduced a range of capabilities that MRS and MR-SLAM can
provide, i.e. the “technology push” for my research work. In this section, I describe several
potential real-world applications enabled by these capabilities, i.e. the “market pull” for
MR-SLAM systems like Mapbuilder.

Figure 1.7. MAGIC challenge finalists: From left to right, 1st: Team Michigan (US),
2nd: University of Pennsylvania (US), 3rd: Reconnaissance & Autonomy for Small Robots (US),
4th: Team WAMbot/ MAGICian (Australia), 5th: Cappadocia/ASELSAN (Turkey).

14

1.4 Potential Multi-Robot Applications

(a) Oblique aerial photo of Phase 2. This area is approximately 23% of the total challenge area.
Photo courtesy Google Maps, 2011.

(b) Panorama at the start of Phase 2. The field-of-view (A-B) is indicated on the aerial photo above.

Figure 1.8. MAGIC challenge: Many results presented in this thesis are from this 170×150 meter
section of Phase 2. The large sparse spaces, sand-pits and drains made UGV mobility, SLAM and
navigation difficult.

15

https://maps.google.com/?ll=-34.947268,138.58838&spn=0.001614,0.002064&t=h&z=20

Chapter 1 Introduction

Many potential applications are simple adaptations of existing single-robot ones; additional
robots may complete a task more efficiently or provide valuable redundancy. This is the
case for the robotic vacuum cleaner example from Section 1.2, where the benefit from
deploying a coordinated team of robots is similar to hiring a team of people.

Potential applications may arise in the future, however, that have no human analog. With
communication rates that are orders of magnitude faster than human language, the concept
of “cloud robotics” or “hive minds” may create previously unparalleled possibilities [4, 5].
The discussions in this section are restricted to MRS that are designed to assist humans.

1.4.1. Search and Rescue

Natural disasters, such as the 2011 earthquake off Sendai in Japan, and the resulting
destruction of buildings can create unstructured environments for which no a priori maps
exist [71, 72]. A fast Urban Search and Rescue (USAR) response is necessary, however
the time available to gather situational awareness, generate maps and search for survivors
is often very limited. Damaged or collapsed buildings and rubble piles, may be unstable
or have chemical or nuclear leaks that are hazardous to human rescuers.

Many types of USAR robots have been developed for these situations, however they are
currently much less capable than humans. In real-world deployments, USAR robots are
slowly teleoperated by one or more human operators. Programs such as the recent DARPA
Robotics Challenge [73] suggest that increasing autonomy, mobility and manipulation are
high priorities in this area. A review of recent USAR robot research is given in [74].

Large-scale disasters could potentially benefit from teams of USAR robots that can be
rapidly deployed. Current approaches using teleoperation, however, would require propor-
tionally sized teams of human operators. While studies such as [75] suggest that operators
could teleoperate more than a single robot, they are quickly overloaded cognitively. To
scale to larger teams of USAR robots, increased autonomy is required, which therefore
requires robust MR-SLAM solutions.

In the near future, on-line MR-SLAM solutions will enable USAR robot teams to collab-
oratively survey disaster sites and provide valuable situational awareness to human first
responders [76]. As sensors and robot platforms reduce in size, it is feasible that teams
of small, highly-mobile robots could descend into a collapsed building, locating survivors
while mapping the rubble to help plan rescue attempts. These systems would require
robust MR-SLAM solutions.

1.4.2. Military and Law Enforcement

There are many potential applications for MRS in military and law enforcement. Mobile
robots are ideal for tasks such as reconnaissance, surveillance and bomb disposal. These

16

1.4 Potential Multi-Robot Applications

robots are currently teleoperated individually, and have limited autonomy, much like the
USAR robots described in the previous section. The scale and duration of missions are
often limited by the endurance of both the robots and their human operators.

It is suggested that the majority of military operations in the future will occur in complex
urban environments [77]. Heterogeneous teams of autonomous UGVs and MAVs could
be well-suited to these types of ISR missions. Exploration and mapping tasks can be
subdivided between multiple robots, while surveillance tasks can benefit from increased
coverage and persistence. Multiple robots provide more “eyes” on a target area and redun-
dancy allows robots to be swapped out. The MAGIC challenge described in Section 1.3.4.2
demonstrated these ISR capabilities and more.

Many scenarios in urban warfare can be dangerous to both humans and robots. This
danger may be increased if a priori maps and GPS localization are relied on exclusively.
Explosions can dramatically change the structure and appearance of an environment, while
active radio frequency (RF) jamming or spoofing can make GPS localization unreliable or
misleading [78, 79]. A robust MR-SLAM solution is ideal for providing localization and
mapping for heterogeneous deployments of UGV and MAV teams.

UGV and MAV teams could rapidly explore and map hostile environments that are not
in direct line of sight. These over-the-hill ISR missions could provide rich situational
awareness that might help to save human lives. There are other applications beyond ISR
missions, however the requirements for the underlying MR-SLAM solution remain the
same.

1.4.3. Agriculture and Farming

MR-SLAM systems could enable increasing levels of autonomy in agriculture. Innovations
in agricultural are being motivated by increasing labor costs and decreasing profit margins.
The desire to improve efficiencies has encouraged precision agriculture, or micro-managing
crops based intra-field variability.

Various technologies have already been applied to increase efficiency and leverage economies
of scale. Semi-autonomous drive-by-wire systems have been navigating machinery around
fields for the last two decades [80, 81]. These systems rely on external GPS localization,
often augmented to centimeter-level accuracy with RTK-GPS. They are typically used in
large fields that have been carefully prepared to remove any hazards. These localization-
only systems lack the spatial awareness that could allow them to respond to changing
situations autonomously. SLAM could provide updated maps of the environment that
would enable autonomous tractors to steer around newly discovered obstacles.

In the near-future, MR-SLAM systems could share mapping and localization data between
different types of machinery in real-time. This sharing could allow even more autonomous

17

Chapter 1 Introduction

behaviors to be realized, including close-proximity operations, such as the loading and
unloading of materials and produce [82].

The increased availability and decreased cost of fixed-wing and quadrotor MAVs are
creating new opportunities for remote sensing of soil and crop conditions [83]. Fleets
of MAVs could perform detailed surveys [84, 85], while in the distant future MR-SLAM
systems could allow collaborative localization and mapping between these MAVs and
machinery on the ground.

Intensive agricultural industries, such as fruit and vegetable growing, often have highly
dynamic environments. Humans, machinery and other moving objects, combined with
frequently changing terrains, require robust SLAM solutions [86]. In these environments
a MR-SLAM solution could enable teams of robots to cooperate while sharing knowledge
of the changing environment.

1.4.4. Mining and Resource Extraction

Rising labor costs and the desire to increase safety have encouraged increased automation
in the mining industry over the last two decades [87]. In above-ground open-pit mines,
semi-autonomous trucks are already using drive-by-wire techniques with external localiza-
tion, such as RTK-GPS, and lidar for obstacle detection. GPS signals become intermittent
when descending into pits and other time-of-flight RF systems, such as Locata [88], are
sometimes used. Mining typically involves moving large quantities of rock and ore around,
which alters the environment over time. MR-SLAM solutions could allow teams of trucks
to share their maps of while providing robust localization despite changing environments
and intermittent GPS.

Accurate localization in underground mines is harder since GPS signals are completely
denied and rough roads produce noisy wheel-based odometry. Some mine sites use external
range-only localization with Ultra Wideband (UWB) beacons [89], however such infras-
tructure is difficult to install and maintain in harsh underground environments. Single
robot SLAM solutions have been investigated in a range of underground applications
[90, 23], including high-speed autonomous tramming [24]. A MR-SLAM solution could
allow multiple autonomous vehicles to localize accurately relative to each other, while
sharing maps. This capability could dramatically increase efficiency if it enabled vehicles
to operate in closer proximities. Researchers are also developing mining-specific search
and rescue robots [91].

1.4.5. Space Exploration and In-Situ Resource Utilization

NASA has explored the surface of Mars with four rovers over the last two decades.
Sojourner landed in 1997, Spirit and Opportunity in 2004, and Curiosity has been exploring

18

1.5 Notation

since 2012 [92, 93]. Using cameras, the latter rovers have navigated autonomously for
many kilometers [94, 95, 96]. While the scientific data returned from these missions is
unprecedented, the launch and operational costs are high. Autonomous functions are
limited to minimize risk, and no on-board SLAM is performed.

Multi-robot space exploration has been proposed many times over the last few decades.
Leitner provides a review of these MRS in [97]. In [98], Brooks argues that for the same
launch cost, a team of tens or hundreds of smaller robots could maximize surface coverage.
The lower cost per robot, restricted life expectancy, and large communications delays all
favor using more autonomy instead of teleoperation [99]. MR-SLAM could help to enable
increased autonomy.

Decreasing launch costs and increasing autonomy in MRS may enable a range of space-
based industries in the near future. In-situ resource utilization could become common-
place, where water ice and rare elements are mined from the surface of asteroids, comets,
the Moon and perhaps even Mars. While these environments are hostile to humans, teams
of robots could mine resources cooperatively. Without the Earth-bound GPS network, or
real-time communications to Earth, these MRS will require robust MR-SLAM solutions.

1.5. Notation

Throughout this thesis I use the mathematical notation from Bishop’s seminal text [100],
and for state estimation the notation from Bar-Shalom et. al. [101]. A summary of the
notation used is given in Table 1.2.

1.6. Publications

Contributions described in this thesis have been peer reviewed and published in the Journal
of Field Robotics:

• A. Boeing, M. Boulton, T. Bräunl, B. Frisch, S. Lopes, A. Morgan, F. Ophelders, S.
Pangeni, R. Reid, K. Vinsen, N. Garel, C. S. Lee, M. Masek, A. Attwood, M. Fazio,
and A. Gandossi, “WAMbot: Team MAGICian’s entry to the Multi Autonomous
Ground-robotic International Challenge 2010,” Journal of Field Robotics, 2012.

They have also been published in several peer-reviewed conference papers:

• A. Boeing, M. Boulton, T. Bräunl, B. Frisch, S. Lopes, A. Morgan, F. Ophelders,
S. Pangeni, R. Reid, K. Vinsen, N. Garel, C. S. Lee, M. Masek, A. Attwood, M.
Fazio, and A. Gandossi, “Team MAGICian,” in Land Warfare Conference, 2010.

19

Chapter 1 Introduction

• R. Reid and T. Bräunl, “Large-scale multi-robot mapping in MAGIC 2010,” in
IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2011.

• A. Boeing, T. Bräunl, R. Reid, A. Morgan, and K. Vinsen, “Cooperative Multi-
Robot Navigation and Mapping of Unknown Terrain,” in 2011 IEEE Conference on
Robotics, Automation and Mechatronics (RAM), 2011.

• R. Reid, A. Cann, C. Meiklejohn, L. Poli, and T. Bräunl, “Cooperative Multi-
Robot Navigation, Exploration, Mapping and Object Detection with ROS,” in IEEE
Intelligent Vehicles (IV), 2013.

While these publications are co-authored, any SLAM-related sections are easily separated
as my individual contributions. My contributions to these publications are superseded by
this thesis, which expands upon each considerably.

1.7. Thesis Structure

This thesis is comprised of eight chapters and two appendices:

Chapter 1. Introduction: This introductory chapter motivates my research work in
MR-SLAM. It summarizes key trends, introduces the SLAM and multi-robot SLAM
problems, reviews current capabilities and introduces several potential application areas.

Chapter 2. Review: Simultaneous Localization and Mapping: This chapter describes
the single-robot SLAM problem and the main approaches for solving it with a focus on
pose-graph SLAM. It also describes map parameterizations, sensors and their models.

Chapter 3. Review: Large-Scale Multi-Robot SLAM: This chapter introduces the main
MR-SLAM problems and key system architectures. It reviews 15 years of MR-SLAM
literature and summarizes large-scale systems that have been demonstrated.

Chapter 4. Hybrid-Decentralized and Distributed Multi-Robot SLAM: This chapter
describes research contributions that form an on-line MR-SLAM system. It includes the
system architecture and design, requirements, assumptions, conceptual and logical design.

Chapter 5. Efficient Occupancy Gridmap Fusion and Matching: This chapter describes
two algorithmic contributions: one parallelizes the fusion of submaps into global gridmaps,
the other parallelizes correlative submap matching to search for multimodal constraints.

Chapter 6. Robust Multimodal Pose Graph Optimization: This chapter describes
continuous mode blending optimization (COMBO), a contribution that allows robust
multimodal Gaussian constraints to be optimized using existing pose graph techniques.

20

1.7 Thesis Structure

Chapter 7. Results: This chapter presents results demonstrating my research, including:
on-line hybrid-decentralized and distributed MR-SLAM, real-time large-scale MR-SLAM
and multimodal pose graph optimizations. The chapter closes with an in-depth discussion.

Chapter 8. Conclusion: This chapter summarizes the key aspects of the MR-SLAM
problem that my research addressed. It highlights my contributions and their significance,
describes directions for future work, and considers the broader implications of my work.

Appendix A. MRS Architecture and UGV Design: This appendix describes three MRS
and UGV front-end designs (experimental setups) that were used to demonstrate research
contributions.

Appendix B. MAGIC Challenge Datasets: This appendix describes the various datasets
recorded at the MAGIC challenge. These are the test environments used to demonstrate
my research contributions.

21

Chapter 1 Introduction

Symbol Meaning

x = (x1, x2, . . . , xN)T The system state represented as a vector (bold type)

xt ' x and xt=0 ' x0 Subscripts are omitted when inferred by context

A, Σ Matrices (bold type)

diag(x) Matrix with vector x along the diagonal

x The exact or actual value of (x1, x2, . . . , xN)T

x̂t An estimate for x at time t

x̄t A prediction for x based on x̂t−1

y = (y1, y2, . . . , yM)T A measurement of the system state

ỹ = y− ȳ The residual in the measurement prediction ȳ

p (r | z) Probability distribution of r given z

N (u|û,Σu) Gaussian distribution with mean û and covariance Pu

‖e‖2Σ Mahalanobis distance D2 = eTP−1e

R2 2-D Euclidean space

SE (2) Special Euclidean group of 2-D transforms (Section 2.2)

se (2) Lie algebra corresponding to SE (2) (Section 2.2)

� and � Pose composition operators (Section 2.2)

Table 1.2. Mathematical notation

22

2 Review: Simultaneous
Localization and Mapping

This chapter describes the SLAM problem, and reviews the main approaches
for solving it. Section 2.1 introduces the problem, while Section 2.2 presents
the mathematical transformations necessary to manipulate robot poses. In
Section 2.3 I discuss mapping, including various map parameterizations, sen-
sors and sensor models, while in Section 2.4 I explore localization, including
robot motion models, odometry and various global and relative localization
sensors. Section 2.5 reviews the main probabilistic approaches for solving
the SLAM problem, with a focus on graph-based SLAM and submapping
techniques. Section 2.6 concludes by summarizing key aspects of the problem.

2.1. Problem Statement

Navigating an unknown environment requires a solution to the SLAM problem. The
problem has two parts; the first addresses the question “where am I?” (localization), while
the second addresses the question “what does the world look like?” (mapping). The
two questions are intrinsically coupled by probabilistic uncertainties and they must be
answered simultaneously. The problem can be expressed in the metaphorical chicken-and-
egg sense; for a robot to know its location it needs an accurate map of its environment,
however to build an accurate map a robot need to know its location in the environment.

23

Chapter 2 Review: Simultaneous Localization and Mapping

At the heart of the SLAM problem is the fact that real-world sensors are noisy, thus
measurements of either the robot’s pose or the environment are subject to uncertainty
and bias. We often characterize this measurement noise with Gaussian distributions,
which allows the robot’s pose and environment map to be jointly parameterized using
multivariate normal distributions. Thus the chicken-and-egg coupling between localization
and mapping is captured probabilistically with estimates of mean and covariance matrices.

This probabilistic representation is typically maintained using a Bayes filter, such as the
Extended Kalman Filter (EKF) [101]. The EKF was introduced in the state estimation
literature in the 1960s [102]; its application to the SLAM problem is described in detail in
Section 2.5.3. Using state estimation approaches to describe the SLAM problem, however,
trivializes many important aspects as simple data association problems. This chapter
describes these important aspects, including data association, along with various solutions
that have been described in the literature.

2.1.1. Data Association

Data association is a key aspect of the SLAM problem [103, 104]. In its simplest form it
estimates pairings between sensor measurements and objects in the environment. While a
typical SLAM sensor, such as a lidar scanner, can take thousands of measurements of the
environment per second, they generally produce insufficient information to solve for these
pairings directly. Figure 2.1 shows an example scan from a lidar scanner; while each scan
may capture detailed range and bearing measurements, they only hint at the shape of the
environment since no information is available that explicitly pairs each laser pulse to the
object it was reflected from.

With an ever-present uncertainty in robot pose, we typically do not know the exact
direction a sensor is pointing. This uncertainty, coupled with our inability to identify which
object each measurement comes from, creates uncertainties and potential ambiguities in
the measurement-to-object pairings, –or– the data association problem.

2.1.2. Full SLAM

The “full” SLAM problem aims to jointly estimate the entire history of a robot’s poses
and a map of the environment while considering the data associations pairing each mea-
surement to objects in the map. Uncertainties in data associations, however, make the
“full” SLAM problem combinatorial in nature and computationally intractable— consider
that any update to either the robot’s pose or the map requires every data association
to be re-evaluated. Section 2.5.2 explores the “full” SLAM problem in more detail.
It is NP-complete [7, 8] and all practical algorithms described in the literature exploit

24

2.1 Problem Statement

w

t,it,i

t

(a) Perspective view (b) 2-D top view

Figure 2.1. Example problem: A robotic vacuum cleaner drives around a room containing two
couches and two tables. In (a) measurements zt,i from a lidar scanner are shown extending from
the robot in red. Each lidar return measures the mean range to the objects overlapped by the
corresponding red ellipse. In (b) the robot’s exact path is shown in blue. The lidar measurements
z4,i, from t = 4, are shown in red.

approximations and heuristics to run in polynomial time. Since it is too expensive to re-
evaluate every data association decision, many algorithms make initial decisions, and then
irreversibly “bake” them into the current estimate to achieve polynomial time complexity
and maintain on-line execution.

In Chapter 4 I describe a submapping technique that “bakes” the most certain data
associations into the map, while retaining the ability to re-evaluate the most uncertain of
data associations on-line and in polynomial time. These highly-uncertain data associations
are often called loop closures, and the ability to re-evaluate them becomes important when
solving the multi-robot SLAM problem.

2.1.3. Loop Closures

A robot that follows a long path, while measuring its progress with on-board sensors, will
accumulate pose uncertainty due to sensor noise. If the robot keeps visiting new places,
the pose uncertainty will continue to grow without bound. When the robot re-visits a
place it has previously been, a loop closure events occurs [103, 104]. Loop closures are a
type of data association that are crucial to SLAM, since they allow accumulated errors to
be corrected and robot pose uncertainties to be reduced.

25

Chapter 2 Review: Simultaneous Localization and Mapping

Candidate loop closures are typically detected and verified over repeated observations, and
then integrated into the current SLAM estimate. Large areas of a SLAM map may be
altered by loop closure events, and some SLAM algorithms handle these changes more
effectively than others (Section 2.5).

In multi-robot SLAM, loop closures occur more frequently since robots that are driving
in the same environment with overlapping sensors are likely to identify their pose in the
other robots’ maps. In some MRS architectures (Section 3.2.2) this can create hundreds
of loop closures per minute, while potentially causing widespread structural changes to
the map. This research work shows how high rates of loop closures and large map changes
can be accommodated efficiently and in real-time.

2.1.4. Example Problem

To illustrate the SLAM problem in the context of mobile robots I introduce an example
problem that is used for the remainder of this chapter. The problem, shown in Figure 2.1,
is inspired by our Neato XV-25 robotic vacuum cleaner.

A small mobile robot drives around a furnished room. The floor is relatively flat and
by using a planar approximation the robot’s pose is represented by the 2-D translation,
[xr, yr]T , and angular heading, φr. In 2-D Euclidean space the full pose is given by
r = [xr, yr, φr]T . As the robot drives through the environment, sensors on the wheels
measure its odometry, ut−1

t , which describe the incremental changes in the robot’s pose
between successive time-steps, t. The robot uses a scanning lidar sensor to navigate around
several pieces of furniture in the room. At each time-step the lidar records Mt range and
bearing measurements, ztt,i = [r, θ]T , to objects that are within the lidar’s range.

Many practical details are ignored in this example by assuming that the sensors are cali-
brated and that their acquisition is instantaneous and synchronized. The robot produces
a discretized representation of its journey by recording the set of odometry measurements
u and lidar scans z, at T regular time intervals. The mathematical operators required to
manipulate these poses and measurements are introduced next.

2.2. Poses and Transformations

While the mathematics required to manipulate robot poses (coordinate frames) and odom-
etry (rigid-body transformations) can be simplified into a set of formula, it is more flexible
and robust to define them using a Lie group, SE (n), and its associated Lie algebra, se (n).
Lie groups are frequently used in robotics for 2-D or 3-D problems in Rn Euclidean space,
where n = 2 or n = 3, respectively. Refer to Ivancevic, [105], Murray et al., [106], or
Fulton and Harris, [107], for in-depth treatments of these mathematical representations.

26

2.2 Poses and Transformations

Figure 2.2. 2-D rigid-body transformations: A robot drives from pose ra to rb. During this
drive it measures the incremental pose change, or odometry, uab = [xu, yu, φu]T . Both poses describe
local coordinate frames in the world frame W, while uab describes a rigid-body transformation.

My research work is primarily concerned with mobile robots moving over large terrains
that are approximately flat (locally-planar). This motivates us to approximate robot
poses in a 2-D Euclidean space using the Lie group where n = 2, or the special Euclidean
group SE (2), and its associated algebra, se (2). In the following sections I introduce two
transform operators, ⊕ and �, that are used throughout my thesis to manipulate robot
pose and odometry. These operators were first defined by Smith et al. in [108].

2.2.1. Rigid-Body Transformations

2.2.1.1. Rigid-Body Transformations in R2

Referring to Figure 2.2, a robot starts at pose ra and drives to pose rb, producing an
incremental odometry measurement uab = [xu, yu, φu]T . An observer standing at ra would
see a change in the robot’s pose of xu meters forward, yu meters to the left and a rotation
of φu degrees anti-clockwise (using a right-handed coordinate system). This incremental
motion, uab , is a rigid-body transformation represented as an element of se (2).

Every measurement in Euclidean space is made with respect to a base coordinate frame.
The odometry transform above, uab , is made with respect to the pose ra. Throughout
this thesis superscripts, like ‘a’ in uab , are used to indicate the base frame. In general,
transform uab is read as “the transform to frame rb, as measured from the base frame ra.”

While I have made a clear distinction between robot poses and odometry, they are in fact
both rigid-body transforms in R2. By defining a fixed world coordinate frame, W, the
pose at time t can be written as a relative transform, rWt , similar to odometry transforms.
Here rWt is the transform to pose rt, as measured from the world frameW. For clarity the
superscript is dropped since robot poses are only ever defined with respect to the global
frame.

27

Chapter 2 Review: Simultaneous Localization and Mapping

The 3-vector representation of a transform, uab = [xu, yu, φu]T , is minimal since its com-
ponents directly define the 3 degrees of freedom of any Euclidean transform in R2. This
compact representation as an element of se (2) is not easy to manipulate, however, which
motivates the use of the Lie group SE (2).

2.2.1.2. Rigid-Body Transformations in SE (2) and se (2)

Any rigid-body transformation in R2, such as the odometry transform uab = [xu, yu, φu]T ∈
se (2) can be represented by a unique 3×3 matrix, Ta

b ∈ SE (2) [106]. We use the
exponential map to convert uab 7−→ Ta

b , which is expressed as Ta
b = exp (uab). The

transform can be broken into a translational component, tab = [xu, yu]T , and a 2×2 rotation
matrix Ra

b , which belongs to the special orthogonal group, SO (2):

Ra
b =

[
cos (φu) − sin (φu)
sin (φu) cos (φu)

]
∈ SO (2) (2.1)

The transform uab maps into its SE (2) representation Ta
b :

Ta
b = exp (uab) =

 Ra
b tab

0 1

 =


cos (φu) − sin (φu) xu

sin (φu) cos (φu) yu

0 0 1

 ∈ SE (2) (2.2)

Similarly the robot pose, ra = [xa, ya, φa]T , maps into its SE (2) representation TWa :

TWa = exp
(
rWa
)

=

 RWa tWa
0 1

 =


cos (φa) − sin (φa) xa

sin (φa) cos (φa) ya

0 0 1

 ∈ SE (2) (2.3)

For any well-formed matrix transform Ta
b ∈ SE (2) the inverse mapping, or the logarithmic

map, is trivially defined: Ta
b 7−→ uab , where uab = log (Ta

b) ∈ se (2).

2.2.2. Transform Compositions

2.2.2.1. Transform Compositions in SE (2) and se (2)

Following the notation of Smith et al. in [108], I define the transformation composition
operator ‘�’, which is used extensively throughout this thesis. Referring to Figure 2.2, a
robot moving from a known pose, ra, to a new pose, rb, produces an odometry measure-
ment, uab . We can calculate the new pose, rb, using transform composition:

rb = ra � uab ∈ se (2) (2.4)

28

2.2 Poses and Transformations

While this appears like a 3-vector addition, composition is not a linear operation, an
important fact that affects every aspect of SLAM described throughout this thesis. Using
the SE (2) matrix form, transforms can be composed easily using matrix multiplication1:

TWb = TW
�a

T�a
b ∈ SE (2) (2.5)

Using this expression, we can compose the transforms in minimal se (2) form by chain-
ing the exponential and logarithmic maps. Substituting the SE (2) matrix forms from
Equation 2.2 and Equation 2.3, the new pose can be expressed in its minimal form [109,
110]:

rb = ra�uab = log [exp (ra) · exp (uab)] =


xa + cos (φa)xu − sin (φa) yu
ya + sin (φa)xu + cos (φa) yu
φa + φu

 ∈ se (2) (2.6)

The composition operator extends to large kinematic chains of transforms. In Figure 2.3
the final pose, r3, can be composed by chaining first pose and subsequent odometry
measurements: rW3 = rW

�0
⊕ u�0

�1
⊕ u�1

�2
⊕ u�23. Transform compositions are non-commutative,

justifying a rigorous use of subscripts.

2.2.2.2. Transform Inversion in SE (2) and se (2)

The transform inversion operator ‘�’, provides the transform inverse uba = �uab . If the
forward transform is given by Ta

b = exp (uab) ∈ SE (2), then the inverse transform is
conveniently given by the matrix inverse:

exp (�uab) = [Ta
b]
−1 =

 Ra
b tab

0 1

−1

=

 [Ra
b]T − [Ra

b]T tab
0 1

 ∈ SE (2) (2.7)

Similar to Equation 2.6, by chaining the exponential and logarithmic maps, the inverse
transform �uab , can be represented in its minimal form:

�uab = log
(
[exp (uab)]

−1
)

=


− cos (φu)xu − sin (φu) yu

sin (φu)xu − cos (φu) yu
−φu

 ∈ se (2) (2.8)

2.2.2.3. Transform Subtraction in SE (2) and se (2)

Referring to Figure 2.2, if a robot drives a known distance, uab , arriving at the known pose,
rb, its initial pose, ra, can be calculated. From Equation 2.5: the relationship rb = ra�uab ,

1For rigor in large compositions, the designators for the intermediate frames can be struck-out in matching
pairs, e.g. robot pose frame �a in TWb = TW

�a
T�ab .

29

Chapter 2 Review: Simultaneous Localization and Mapping

represented in SE (2) is TWb = TWa Ta
b . Multiplying both sides by the inverse transform,

[Ta
b]
−1, and rearranging gives TWa :

TWa = TWb [Ta
b]
−1 ∈ SE (2) (2.9)

Taking the log of both sides, similar to Equation 2.6, and substituting Equation 2.7, maps
the unknown initial pose, TWa = exp (ra), back to the minimal form:

ra = rb � (�uab) ' rb � uab
= log

[
exp (rb) · [exp (uab)]

−1
]

=


xb − cos (φb − φu)xu + sin (φb − φu) yu
yb − sin (φb − φu)xu − cos (φb − φu) yu
φb − φu

 ∈ se (2) (2.10)

We can express transform subtraction with the notation ra = rb � uab , without loss of
generality. As with other operations in se (2), this is not a linear operation.

2.2.3. Homogeneous Coordinate Transforms

To build maps, measurements made by a moving robot need to be transformed into
common coordinate frames so they can be fused. It is considerably easier, and less error-
prone, to transform measurements using SE (2) representations and matrix operations.
Measurements are first converted into their homogeneous form [111], by concatenating
each vector with a ‘1’, and then transformed by post-multiplying with a SE (2) transform.

A robot at pose ra takes measurements zaa,i = [xi, yi, 1]T , represented in homogeneous
coordinates. After driving a small distance, measured by odometry to be Ta

b = exp (uab) ∈
SE (2), the robot takes additional measurements, zbb,i. The two sets of measurements can
be compared by transforming the second set into the first coordinate frame, ra, with:

zab,m = Ta
bzbb,i (2.11)

When using SE (2) transforms the homogeneous coordinates will remain normalized and
the trailing ‘1’ is truncated when no longer required.

It follows that measurements can also be transformed through chains of rigid-body trans-
formations. Using the example in Figure 2.3, a robot starts at the known pose r0 and
makes 3 short drives, measured to be u0

1, u1
2 and u2

3. After each drive it records measure-
ments to the nearby trees, z1

1,i, z2
2,i and z3

3,i, respectively. Using transform composition
the final pose, r3, can be formed by chaining the first pose and subsequent odometry

30

2.3 Environment Mapping and Parameterization

Figure 2.3. Measurement transformations using SE (2): A robot drives from pose r0 to r1, r2
and r3 (local coordinate frames), measuring odometry transform u0

1, u1
2 and u2

3. From each pose,
rt, it makes measurements, ztt,i, to the objects in the environment.

measurements: rW3 = rW0 ⊕ u0
1 ⊕ u1

2 ⊕ u2
3. In a similar manner, substituting the SE (2)

matrix forms from Equation 2.2 and Equation 2.3, the measurements taken from the 3
poses can be transformed into the global frame, W, via:

zW1,i = TW0 T0
1z1

1,i

zW2,i = TW0 T0
1T1

2z2
2,i

zW3,i = TW0 T0
1T1

2T2
3z3

3,i

More generally, if a robot starts from an initial pose, such as r0 = [0, 0, 0]T , and explores
its environment while recording odometry ut−1

t and measurements ztt,i, it can transform
all measurements from time τ into a global frame W, via:

zWτ,m = TW0

(
τ∏
t=1

Tt−1
t

)
zττ,i (2.12)

Using Equation 2.12 it is possible to build a global map by plotting all measurements zWτ,Ii
for τ = 1...T . However, without SLAM the noisy odometry will inevitably cause the map
to diverge as it grows. Figure 2.8 demonstrates this on page 46.

2.3. Environment Mapping and Parameterization

To navigate robustly through unknown and unstructured environments, robots need to be
able to perceive and model their environment. This motivates us to build SLAM systems
that can build accurate maps using only on-board sensors. Before showing how SLAM can
incorporate measurements from noisy sensors and odometry, it is important to characterize
the noise, its effects and potential sensor failure modes. This section describes the mapping
part of SLAM; the various sensors and parameterizations that are used to measure and

31

Chapter 2 Review: Simultaneous Localization and Mapping

represent the environment. In probabilistic form the entire map m, given by all of the
robot poses, r, and all measurements, z, is expressed as:

p (m | r, z) (2.13)

2.3.1. Environment Mapping Sensors

Sensors that detect the environment from mobile robots typically provide 1, 2 or 3
degrees of freedom (DOF) measurements that can be either range-only, bearing-only or
combinations of both. Sensors that directly observe and estimate the environment are
typically more useful in mobile robotics since they do not require robot motion. Common
sensors types include:

Sonar sensors: such as ultrasonic transducers were frequently used by SLAM researchers
in the 1980s and 1990s. Either servo-mounted or fixed arrays of transducers were often
fitted to mobile robots and were considered inexpensive [11, 110]. Using echo-location
techniques, much like bats or dolphins, ultrasonic transducers produce range and bearing
measurements. However, the primary -3 dB lobe in their sensitivity pattern is often as wide
as 30 degrees, making bearing measurements noisy. Range estimates are calculated from
time-of-flight (TOF) measurements that are registered when the received signal surpasses
a fixed threshold. This signal gating produces foreshortening and lengthening effects as the
angles of incidence to surfaces are varied. Spurious measurements also occur as a result of
specular effects, multipath returns, confusion from side-lobes and cross-talk errors [112].

Lidar sensors: “light radar” sensors2 have been used increasingly in SLAM research
since the late 1990s [114, 115], displacing sonar as commercial off-the-shelf (COTS) prices
have decreased. Like sonar, most lidar sensors acquire range measurements by measuring
the time-of-flight, however they use light rather than sound resulting in faster and more
accurate measurements. When packaged with a rotating mirror, a typical scanning lidar
(sometimes called a scanning laser range finder) can make thousands or millions of planar
range-bearing measurements per second. Beam divergence effects, combined with varying
reflectivity of target objects, introduce many potential sources of measurement noise and
bias. Lidar measurement models are of particular interest in this research and are discussed
in the following section. Many researchers have servo-mounted scanning lidar sensors in
either nodding [116, 117] or sweeping [118] configurations to produce full 3-D scans at
1 Hz or slower. The 3-D field of view comes at the cost of increased complexity (servo
temporal synchronization) and decreased coverage in critical directions.

Multi-plane lidar: sensors integrate multiple lidar into a single scanning unit such that
full 3-D scans can be acquired at high rates. The Velodyne HDL-64E combines 64 lidar

2The term “lidar” was introduced by astronomer James Ring in [113].

32

2.3 Environment Mapping and Parameterization

units and typically scans at 10 Hz, with a 26.8◦ vertical field of view (FOV). Multi-plane
lidar were widely used in the 2007 DARPA Urban Challenge [119], and more recently in
Google’s Autonomous car [120]. In 2015, the least expensive 32-plane lidar that would be
practical for mobile robotics costs USD $30,000. Perhaps due to this cost, I could not find
any multi-robot SLAM research in the literature that uses multi-plane lidar.

Time-of-flight cameras: include a range of techniques that capture range measurements
on a 2-D sensor array. Horizontal and vertical FOVs and resolutions vary widely. Flash
lidar sensors employ an array of avalanche photo-diodes and counters, typically in a 128×
128 array. Due to cost they are mostly used in space applications [121]. Photonic Mixer
Devices (PMDs), such as the Swiss Ranger, use modulated infrared light to measure
ranges over a 2-D pixel array, and have been used in a number of robotics experiments
[122]. While less expensive, PMDs typically only work indoors due to their limited output
power. Outdoor ambient light is generally too intense for TOF cameras to achieve sufficient
signal-to-noise ratios with both useful ranges and FOVs.

Camera sensors: can also be used passively for mapping, where pixels from a calibrated
camera and lens are considered as 2-D bearing-only measurements. By identifying and
tracking objects between sets of camera images where the baseline (relative SE (3) transfor-
mation) is known, ranges can be estimated. Well-established stereo vision techniques use
two cameras with a fixed baseline; image feature correspondences are identified between
images using epipolar geometry, [111], and ranges are calculated where image disparities
have been measured. Passive approaches suffer from many failure modes, from depth
holes in image areas with no visual features, to self-similar scenes that create perceptual
aliasing ambiguities [123]. Single cameras can also be used passively, by tracking 2-D image
features across camera motion. However the baseline between images must be estimated
from odometry which gives rise to the well-studied monocular SLAM problem [124, 125].
There is increasing research in high-level perception, where cues such as the relative size
of an object can be used to estimate image scale, and hence depth [126].

Structured lighting: techniques overcome the common issues with passive vision by pro-
jecting coded patterns of light into the environment. Scenes are imaged with a calibrated
camera and the coded light patterns allows correspondences (a local data association prob-
lem) to be solved more easily. Ranges are calculated using triangulation using techniques
established in the 1980s [127]. Modern RGB-D cameras, such as Microsoft’s Kinect, are
inexpensive COTS products that use structured lighting techniques to output full color
images with depth measurements, often referred to as RGB-D. In these sensors, an infrared
(IR) laser and diffraction grating projects a speckled pattern into the scene. The pattern
is subsequently imaged by a camera and IR filter and depth measurements triangulated
[128]. Impressive mapping results have been demonstrated indoors, e.g. Kinectfusion [129],

33

Chapter 2 Review: Simultaneous Localization and Mapping

however, similar to many TOF cameras their limited output power prevents them from
being used in sunlight and outdoors.

Radar sensors: have seen limited, but increasing, use in SLAM research. Recent studies
with millimeter-wave and ultra-wide band radar have shown promise, [130, 131, 132],
however there are numerous sources of noise that must be handled robustly. Radar sensors
measure range using either TOF or frequency modulation of RF signals, and typically make
360◦ range-bearing measurements in a single plane. Their signals can often penetrate
through dust, smoke and rain since they operate with longer electromagnetic wavelengths
than lidar. Radar sensors have a wider beam divergence than lidar, however, making data
association harder, and like sonar they are highly sensitive to a target’s surface properties
and incidence angle. Specular reflections, from metallic objects in particular, can cause
many spurious returns [130].

2.3.2. Lidar Measurement Noise

Lidar sensors are currently one of the most reliable options for robotic SLAM in both
indoor and outdoor environments. The results presented in this thesis are based on several
different COTS scanning lidars mounted on various mobile robots (see Appendix A for
details). Scanning lidar sensors often exhibit similar sources and types of noise that can
be loosely modeled as Gaussian [133].

The Hokuyo UTM-30LX is a typical COTS scanning lidar that uses an infrared laser. It
acquires 1080 range measurements with 0.25◦ angular resolution at 40 Hz, with σ = 30 mm
range error [133]. Similar to wave-guides in sonar sensors, lenses can only help to minimize,
but not prevent, beam divergence and various other sources of noise. The UTM-30LX has
a beam arc-width (along the scan direction) of 0.8◦. At the maximum range of 30 meters
this creates an elliptical laser spot size of 400 mm.

As each laser pulse diverges, it traces a volume that is approximately conical. If any
part of this conical volume intersects an object, some of the reflected light may return
through the lidar’s lens. Once the lidar’s receiver front-end has collected enough light
(i.e. gating to a threshold) it registers the return and calculates the distance. This signal
gating introduces range foreshortening and lengthening effects. Each of the noise sources
described here occur in various datasets and affect the results presented in this thesis:

Angle of incidence: if a lidar pulse hits a surface perpendicularly, the entire laser wave
front is reflected at the same time. As the angle of incidence increases, however, part of the
wave front is reflected sooner and the received signal will trigger the threshold either sooner
or later depending on the front-end detector design. As the angle of incidence approaches
90 degrees, a common configuration for horizontally mounted lidar, the lidar pulses travel

34

2.3 Environment Mapping and Parameterization

Figure 2.4. Lidar-based mapping in 3-D: In this work I mounted a servo-actuated “nodding”
lidar on a quadrotor. With careful spatial and temporal calibration, lidar measurements are
registered to images from a camera. The resulting 3-D lidar point clouds are colored like those
generated by an RGB-D sensor, however the system can operate in direct sunlight. Left: a 3-D
point cloud self portrait (perspective projection). Range noise can be seen in the lidar measurements
that graze my arm and head. Center: lidar intensity measurements used for calibration (polar
projection). Right: image from the wide FOV camera used to colorize the point cloud.

almost parallel to the ground. These “ground-grazing” returns are extremely sensitive to
the robot’s pitch, variations in the surface and other noise. In this configuration, even
a non-moving robot can produce lidar measurements with meters of range noise. These
ground-grazing returns can present a challenge for SLAM with a horizontally-mounted
lidar.

Boundary effects: are closely related to grazing returns, spurious returns can occur
at the boundary of objects, where the elliptical wave front may intersect part of one or
more objects as it travels. The resulting range measurement is often averaged and a
spurious measurement is created “hanging” in empty space between objects. Figure 2.4
demonstrates this effect.

Object surface properties: cause the amount of reflected laser light to varies greatly.
A highly specular object, such as a mirror or still water, will reflect most of the laser light
and will often return measurements to more distant objects (at the incorrect bearing). The
more diffusely an object reflects light, the better it can be measured over a wider range
of angles and distances. Objects that absorb infrared light (typically appearing black to
humans) can often fail to reflect enough light, limiting measurement ranges. Further, in
some lidar sensors white objects can appear slightly closer than black objects, since the
receiver threshold is triggered slightly sooner [133].

Ambient light: Most commercial lidar sensors use infrared notch filters to increase the
signal to noise ratio. While this allows them to function outdoors, strong ambient light,
such as direct sunlight, will decrease their range. When the reflected light from a lidar
pulse is not strong enough to trigger a measurement, a typical sensor model assumes
there is free-space up to some fraction of the sensor’s maximum range. This free-space
assumption should vary depending on the ambient light levels, however without additional
sensors, it is not possible to determine when missing lidar measurement are due to actual
free space, or excessive ambient light.

35

Chapter 2 Review: Simultaneous Localization and Mapping

Temporal synchronization: when mounted on a moving robot, a lidar’s origin will
move as the rotating sensor completes each scan. Moving at 1 ms−1, for example, a 40 Hz
lidar will produce up to 25mm of skew if left uncompensated. Compensation can be
performed using a continuous motion model, such as [134], however this requires rigorous
synchronization and timestamping of sensor data. Figure 2.4 shows a colored 3-D point
cloud generated from a lidar mounted on a fast moving servo-motor, with a global shutter
camera and microsecond-level synchronization.

2.3.3. Lidar Sensor Model

Like all sensors, lidar range measurements are noisy. For each lidar measurement, only
range, bearing and, in some models, intensity values are returned. Without knowledge of
the surface properties of objects in the environment, or exact knowledge of a lidar sensor’s
movement through the environment, we lack the necessary information to estimate how
much noise may be included in a return, or which of the error modes described in the last
section may have occurred. In [135], Thrun et al. describe various models for sensor noise.

To demonstrate the challenges encountered in lidar-based mapping, I first describe a
high-fidelity lidar model. This model is important, since it helps to explain the errors
introduced when it is simplified later. The high-fidelity lidar model assumes a constant
angular beam divergence that includes bearing uncertainty, and Gaussian noise in the
range measurements. Combined, the range-bearing uncertainties for each lidar return are
approximated with a 3-D uncertainty volume that has an ellipsoid shape. If we consider a
horizontally mounted lidar, these uncertainty volumes can be projected into a horizontal
plane, such that each return is modeled as a 2-D uncertainty ellipse.

Using this model, Figure 2.5 (a) shows two lidar scans with the 3-σ uncertainty ellipses
for each measurement plotted. The width of the uncertainty ellipses increase linearly
with range due to beam divergence. Large parts of the lidar measurements’ 3-σ ellipses
overlap free-space so that object boundaries are not well defined. In Figure 2.5 (b) many
lidar scans are superimposed using Equation 2.12, while assuming no odometry noise. The
structure of the environment can be discerned, however, the robot’s noisy view is apparent.
While it is possible to use this diverging sensor model to build maps by fusing uncertainty
ellipses [136], it is computationally expensive.

In practical mapping systems we often treat the lidar scanner as an ideal sensor. The
ideal sensor model defines two geometric features for each valid lidar return: 1) a narrow
and non-diverging ray of free-space that spans from the sensor’s origin to the object it hit,
and 2) a 3-D point object at the range indicated by the return, which may belong to the
surface of a larger object. While this model is computationally less expensive, it introduces
systematic errors that the resulting maps do not describe probabilistically. Ruhnke et al.
demonstrate the differences between the ideal model and a high-fidelity model in [136].

36

2.3 Environment Mapping and Parameterization

(a) Lidar scans from t = 30 and t = 48.
Laser pulses diverge, increasing the bearing
uncertainty to more distant objects.

(b) Superimposing all lidar measurements
demonstrates the noisy view the robot sees
of its environment.

Figure 2.5. Mapping with a diverging-beam model: For the robot and lidar sensor in the
example problem, this 2-D top view shows exact robot poses (no odometry noise) as blue triangles,
while lidar measurements and 3-σ uncertainty ellipses are projected in red.

Measurements within a single scan from a scanning lidar are typically modeled as inde-
pendent, given the robot’s position, i.e:

p (z | r,m) =
M∏
i=1

p (zi | r,m) (2.14)

This model is optimistic, since jitter in the scanner’s angular encoder could produce
correlated errors, however in practice these errors are very small [135].

2.3.4. Map Parameterization and Storage

The primary motivations for SLAM and map building are to enable robots to navi-
gate through the environment and execute tasks, while optionally providing situational
awareness to a human operator. The choice of map parameterization is driven by these
motivations, along with other factors such as the types of sensors available. In this section
I use lidar scanners to introduce various map parameterizations, however note that these
parameterizations can be used with many of the sensor types described in the previous

37

Chapter 2 Review: Simultaneous Localization and Mapping

sections. Both 2-D and 3-D parameterizations are considered here, with a brief comparison
given in Section 2.3.5.

To perform on-line SLAM with sensors that acquire millions of measurements per minute,
map data must be parameterized and stored in a spatial database that allows efficient:

1. Storage: transforming and merging new sensor measurements into the map.

2. Retrieval: extracting spatial data from the map, e.g. for robot navigation.

3. Matching: comparing spatial data to perform data association.

4. Updates: global/structural map modifications after loop closure events.

The efficiency of these operations are considered for the various parameterization and
storage techniques in the following sections.

Data association is one of the most critical parts of any SLAM implementation, and the
efficiency when matching and aligning either pairs of lidar scans, lidar scans with maps, or
pairs of maps, varies widely between parameterizations and storage techniques. The cost
when applying global/structural map corrections during loop closures can vary widely,
since some techniques require the entire database to be rebuilt.

2.3.4.1. Points With Scan Matching

The simplest map parameterization is collect all of the lidar points and store them in
a spatially-efficient data structure. One such structure is the quadtree, which provides
O (logn) storage and retrieval time complexity [137]. While quadtrees are efficient for
storage and retrieval, they can be slow when used for matching and during structural
updates.

Scan matching describes a range of algorithms that match and align batches of lidar points.
A frequently used scan matching algorithm is Iterative Closest Point (ICP) [138, 115]. ICP
forms a non-convex optimization problem that frequently becomes stuck in local minima,
thus many variants have been described in the literature. Iterative Closest Line (ICL) [139]
matches points to high-level features, often avoiding creating local minima, however this
regularization introduces errors (ICL is not well-suited to curved surfaces) while adding
computational complexity. Both ICP and ICL involve highly-repetitive searches for point
correspondences that are often redundant. In multi-robot SLAM, overlapping lidar points
can quickly become dense, and the O (logn) retrieval time will eventually prevent on-line
operation. Lidar point maps can be relatively large to store, which makes them expensive
to transmit over a wireless network, and inefficient if redundant points are not removed.

38

2.3 Environment Mapping and Parameterization

2.3.4.2. Landmark-based Mapping

Many environments can be simplified into sets of high-level landmarks that are sometimes
referred to as features. Landmark-based maps typically reduce the volume of sensor data,
while making data associations less computationally expensive. The popular Victoria
Park dataset, used widely in landmark-based SLAM research [140, 141, 142, 143], contains
data from a horizontal lidar scanner that is driven around hundreds of trees. The first
processing stage identifies groups of lidar points that form curves (tree trunks). These tree
observations are parameterized by the trunk center, zt,i = [x, y]T , and radius. Observations
are either matched to existing landmarks, or inserted into the map as new landmarks. This
data association problem is well defined, and efficient techniques have been developed to
handle matching in the presence of ambiguities [144].

High-level landmark parameterizations are chosen to match the shape of objects in the
environment, and while compelling results have been demonstrated on the Victoria Park
data-set, it is not an everyday environment. Urban environments frequently have flat
surfaces that are better parameterized as line segments. As such, line features have
been studied extensively, however they introduce systematic errors when describing en-
vironments with curved surfaces [145]. While the large dimensionality reduction makes
landmark-based maps very efficient for storage, retrieval, matching and structural updates,
they make the first stage in the SLAM pipeline entirely responsible for accurately detecting,
segmenting and matching landmarks. Furthermore, this data reduction typically prevents
segmentation and data association decisions from being reconsidered at a later time.

2.3.4.3. Occupancy Gridmaps

Gridmaps are used extensively throughout this research work to describe 2-D environments
with arbitrary geometry. They were first described in the 1980s by Moravec and Elfes, in
the context of sonar-based mapping [146, 147]. As the name suggests, the environment
is divided into a grid, with equal-sized cells. Gridmap storage and computation costs
increase with the inverse square of the cell size, and the size must be carefully selected
to suit both the robot and environment geometry. The robot in the example problem
(Section 2.1.4) drives through a 90 cm doorway, while it is 50 cm in diameter. A 10 cm
cell size leaves enough margin to enables navigation through the doors, making this room
about 80 × 100 cells. Gridmaps for this problem are shown in Figure 2.6 and Figure 2.7.

The map, m, is partitioned into w × h cells, mi, such that:

m =
w×h∑
i

mi (2.15)

39

Chapter 2 Review: Simultaneous Localization and Mapping

Figure 2.6. Occupancy gridmap: Two lidar scans from the example problem, at t = 30 and t = 48,
projected from exact robot poses (no odometry noise). Left: 2-D top view. Right: Occupancy
gridmaps with two lidar scans fused. For each grid cell mi: Gray: Unknown p(mi) = 0.5. Black:
Occupied p(mi) = 1. White: Free p(mi) = 0.

Each grid cell, mi, encodes the current belief, or probability, that an object exists at that
particular location in the environment. Following convention, [135], all cells in a map
are initialized to an unknown state where p (mi) = 0.5. As sensor data is added to the
map, occupied cells tend towards p (mi) = 1, while cells that are free-space tend towards
p (mi) = 0.

The ideal gridmap would maintain the full posterior distribution over all cells, given
the uncertain robot path and noisy measurements, as represented in the probability
distribution in Equation 2.13. Even with a modest 80 × 100 cell gridmap, however, the
posterior explodes in complexity. In practice we approximate the posterior distribution
by treating the robots path, r, as exact and each cell, mi, as an independent variable:

p (mi | r, z) (2.16)

Thus, the state of each cell is given only by the measurements that cross its path. To
ease computation we typically iterate over measurements and ray trace the path each one
took, updating grid cells according to the sensor model. Normally, only range-bearing
sensors that have well-defined sensor models are used with gridmaps. While sonar sensors
have wide beam divergence and require complex models [147], the ideal model suffices for

40

2.3 Environment Mapping and Parameterization

Figure 2.7. Occupancy gridmap: All lidar scans from the example problem, projected from exact
poses. The door is visible at the bottom right, while an unmapped area remains at the top. Left:
2-D top view. Right: Occupancy gridmaps. For each grid cell mi: Gray: Unknown p(mi) = 0.5.
Black: Occupied p(mi) = 1. White: Free p(mi) = 0.

most lidar scanners (Section 2.3.3). Ray tracing lidar measurements involves updating
the cells from the sensor’s origin along the ray to each range-bearing measurement. Both
of these 2-D coordinates are likely to be irrational (floating point) numbers and they are
first rounded to the nearest grid cell. Treating the gridmap as an image, the ray is drawn
using a line rasterization algorithm, such as Bresenham’s [148].

By treating neighboring cells as independent, each cell can be considered a binary Bayes
filter [135]. To simplify cell updates, and avoid numerical issues when p (mi) is 0 or 1, a
log odds ratio (log p(mi)

1−p(mi)) is used to accumulate the likelihood that each cell is occupied.
Cells are updated using addition and subtraction, which further encourages the treatment
of gridmaps as images.

Figure 2.6 shows an empty gridmap that has been updated with two lidar scans from
the example problem. The gray unknown cells have been updated to indicate the known
free-space in white, and occupied cells in black. Large areas close to these scans remain
unknown. In Figure 2.7 these areas are filled when all of the lidar scans are added. In the
lower right an open door is clearly visible, and an area with bad coverage remains in the
top left.

41

Chapter 2 Review: Simultaneous Localization and Mapping

It is important to note that gridmaps are an approximation, since spatial data is rounded
to the nearest cell. For the ideal lidar sensor model, half a cell-width of noise will be add
to each return. In practice this rounding has little noticeable effect, since the noise in a
typical lidar sensor and the rounding on a 10 cm gridmap are of similar magnitude.

The example in Figure 2.7 compresses 2,700 lidar measurements into a gridmap with
8,800 cells (23% reduction in memory use). However, as additional lidar scans are added
to the gridmap, memory usage does not increase unless the map boundary expands.
Measurements are added to the gridmap in O (n) linear time, and cell states retrieved
in O (n) time also. At the cost of adding a small amount of noise, gridmaps are very
efficient at storage, retrieval and matching.

In Equation 2.16 the uncertainty in the robot pose, r, was ignored in the posterior distribu-
tion p (mi | r, z). In practice this uncertainty increases as a robot explores, suggesting that
gridmaps should appear increasingly “blurry” along the robot’s path. I could not find any
examples in the literature where this blurring is performed on gridmaps, perhaps, histori-
cally, because it would have been computationally expensive (this is revisited as potential
future work in Chapter 8). Instead, gridmaps typically show a crisp representation of the
environment that becomes increasing misaligned along the robot’s path (see Figure 2.8
on page 46). Loop closures can correct these misalignments, however at relatively high
computational cost.

Gridmaps can become computationally expensive during loop closures and other batch
updates, since large structural changes can require the gridmap to be rebuilt from scratch.
While ray tracing a single measurement is inexpensive, the cost of large structural updates
can become considerable when maps grow large. This cost is compounded when multi-
robot SLAM uses gridmaps, since loops are closed much more frequently (Section 2.1.3).

2.3.5. 2-D vs. 3-D Maps for Wheeled Robots

My research work focuses on 2-D map parameterizations, however it is interesting to briefly
consider the cost and utility of 3-D maps. Several parameterizations exist that store map
data in compact 3-D structures. Similar to the quadtrees described in Section 2.3.4.1,
the octree data structure [149] can be very efficient when storing and retrieving 3-D data.
Octrees, however, are also relatively slow when used for matching and structural updates,
and would quickly become a bottleneck in a 3-D multi-robot SLAM implementation.

Trajectory planning in 3-D volumes is much more computationally demanding than in
2-D maps. In the case of mobile robots that move in constant contact with the ground,
this additional computation is difficult to justify. The pose is typically restricted to a 2-D
manifold in 3-D space, and although pitching and rolling is possible (i.e. full SE (3)), the
pose in most environments is parameterized adequately by SE (2).

42

2.4 Motion Models and Localization

The volume of space a trajectory planner must consider for robot collisions is restricted
to positive and negative height obstacles, e.g. walls and cliffs, respectively. It is ad-
vantageous to project these obstacles into 2-D navigation cost maps and perform all
trajectory planning in the dimensionally reduced space. The gridmap fusion technique
described in Section 5.3 can augment 2-D gridmaps with navigation cost maps, which
enables considerable efficiencies.

2.4. Motion Models and Localization

Estimating a robot’s pose within a fixed reference frame forms the localization part of
the SLAM problem. The complexity of the localization solution depends on the desired
accuracy and external factors in the robot’s environment; a GPS and compass may be good
enough for some robots, however a robust system should not be stymied by inaccurate,
intermittent or jammed sensor data.

This section introduces robot motion models, and three approaches for the robotic lo-
calization. The first two approaches use sensors designed for pose estimation: on-board
odometry that measures relative pose changes, and external sensors that provide globally-
referenced pose estimates. The third approach uses mapping sensors, such as lidar, along
with maps to estimate pose. In this section I continue to use a planar-world assumption
with mobile robots moving in R2 with SE (2) transforms.

2.4.1. Mobile Robot Motion Models

If it was possible to know the exact pose of a robot at an instant in time; subsequent
motion and noisy measurements would always introduce uncertainty into future poses. It
is important to have a motion model that predicts how a robot’s pose will change over
time, and, importantly, how the pose uncertainty will grow. Typical motion models use
either wheel rotation measurements, commanded motion or assumptions about vehicle
dynamics. They describe the distribution:

p (rt | rt−1,ut) (2.17)

For wheeled robots, the motion model is dominated by the mechanical design of the drive
mechanism. Refer to Bräunl [47], or Dudek and Jenkin [150] for a review of different drive
types. Motion models for each are given in [151].

2.4.1.1. Differential Drive Motion Model

The mobile robots used in my research work all have differential drives [47, 150]. Differen-
tially driven robots are actuated by two drive motors and are non-holonomic, that is, they

43

Chapter 2 Review: Simultaneous Localization and Mapping

are under-actuated compared to their three degree-of-freedom configuration space. Differ-
ential robots, such as the robotic vacuum cleaners described in Section 1.1.2, can follow
arbitrary curves and turn in place, making them well-suited to cluttered environments.

Following the example in Section 2.1.4, we assume the robot stays in contact with the
ground (a 2-D manifold in 3-D space) and parameterize its SE (2) pose with r = [xr, yr, φr]T ∈
se (2). The motion model estimates incremental changes to this pose, or:

ût−1
t = �rt−1 � rt =

[
x̂u, ŷu, φ̂u

]T
(2.18)

By convention, the hat on û indicates an estimate. Motion models using wheel rotation
measurements and dead reckoning are briefly described here:

Wheel measurements: most commercial robots measure the rotation of each wheel
(parameterized θL and θR). Rotational velocities can be estimated with ωL = ∆θL

∆t and
ωR = ∆θR

∆t , where the accuracy depends on the encoder resolution. Estimates are often
generated by embedded processors, with filtering at rates up to 100 Hz or more. Across
a small time period ∆t, and small distance, it is reasonable to assume that ωL and ωR

remain constant. A differential drive robot’s ego-motion is given by:

ûtt+1 =


ρ sin φ̂u

ρ− ρ cos φ̂u
φ̂u

 ∈ se (2) (2.19)

Where the change to the robot’s heading, φ̂u, for drive wheels having equal radii, R, and
wheel separation L, is:

φ̂u = R

L
(ωR − ωL)∆t (2.20)

While the robot drives around a smooth arc with radius:

ρ = L (ωR + ωL)
2 (ωR − ωL) ∀ ωR 6= ωL (2.21)

In the trivial case where the robot is driving straight, the incremental ego-motion estimate
is ûtt+1 = [Rω∆t, 0, 0]T and ω = ωR = ωL. A differentially driven robot is assumed to not
slide sideways, thus as ∆t is made smaller the component ŷu tends towards zero.

Dead reckoning: predicts the future state of the robot with a dynamic model. A typical
model assumes constant linear and angular velocities, thus for equal time intervals:

ûtt+1 = ût−1
t (2.22)

44

2.4 Motion Models and Localization

In this model, accelerations are generally treated as zero-mean Gaussian noise [124]. This
assumption is well-formed for differential drive robots, since the velocity components
ṙ =

[
ẋr, ẏr, φ̇r

]T
∈ se (2) correspond directly to constant angular wheel velocities. The

zero-mean noise assumption is challenged during sustained constant accelerations, such as
when control torques are applied by the motors. Note that motion models like these are
frequently inaccurate.

2.4.2. Ego-Motion Estimation with Odometry Sensors

Odometry sensors are incorporated in mobile robots to help estimate a robot’s relative
motion. They typically augment the motion model to estimate changes to a robot’s
pose, i.e. the ego-motion utt+1 = �rt � rt+1. Relative motion sensors are distinct from
global (absolute) sensors, such as GPS, which are discussed in Section 2.4.3. Every sensor
produces measurements that are corrupted by noise, this section describes a few common
odometry sensors and their noise models.

2.4.2.1. Odometry Sensors

Wheel encoders: measure relative wheel rotations,∆θL and∆θR. Encoders are typically
fixed to either the motor or gearbox output, with design choices often trading angular
resolution with maximum speed. Rotational velocities are estimated with ω = ∆θ

∆t , however
resolution and sampling effects often produce noisy measurements that require digital
filtering. Using Equation 2.19 wheel encoders can only estimate planar motion in SE (2).
Wheel-based odometry assumes there is no slippage between wheels and the terrain. In
practice, mobile robots frequently overcome static and rolling friction, and when one or
more rolling wheels slip, or “skid”, large odometry errors can occur. Terrain slope, friction
and other properties can vary, even between individual wheels. Differential drive robots
with four wheels often experience large odometry errors when turning, since wheel-slip is
required to actually turn [150].

Rate gyroscopes: measure rotational velocities, or rates. They are a key component of
Inertial Measurement Units (IMUs), where three orthogonal rate “gyros” measure rotation
in 3-D, Ω = [Ωroll,Ωpitch,Ωyaw]T . Integrating the rate measurements produces rotation
estimates in SO(3) [152], where typical fiber optic gyros drift about 0.1◦ per minute [153],
and less-expensive micro-electro-mechanical system (MEMS) gyros drift about 5◦ per
minute. MEMS rate gyros are sensitive to temperature and drift over time, requiring
bias parameters to be estimated on-line.

Accelerometers: measure linear accelerations. They are also key components in IMUs,
typically arranged in orthogonal sets measuring a = [ax, ay, az]T . Typical MEMS ac-
celerometers are both noisy and have biases that drift over time. Translational motion

45

Chapter 2 Review: Simultaneous Localization and Mapping

Figure 2.8. Occupancy gridmap: All lidar scans from the example problem projected from
odometry estimates accumulated with noise. Left: 2-D top view showing lidar measurements
superimposed. Blue: the robot’s true path. Green: the robot’s noisy path based on odometry.
Right: In the corresponding gridmap the structure of the environment can be discerned, however
large misalignments are visible.

can be estimated through double integration, however meaningful estimates are difficult
with accelerometers alone. Accelerometers also provide globally-referenced pitch and roll
information, described in Section 2.4.3.

Visual odometry: (VO) solutions estimate motion in SE(3) using one or more cameras.
Visual optical-flow, and/or 2-D feature tracking produces estimates for ego-motion. VO
forgets the environment as it passes out of view, differentiating it from visual SLAM, e.g.
[124]. By restricting motion estimation to SE(2), efficient VO solutions exist for single
cameras [125]. VO is computationally expensive, while degenerate scenes and camera
motions can cause it to fail or give spurious translation estimates [154]. It is also affected
by environmental issues such as dust, insufficient light, or sunlight blinding the camera.
I have included VO in this list because it works like a passive odometry sensor and is
complementary to the sensing modalities above.

2.4.2.2. Odometry Noise Models

The actual path driven by a robot will never match what was commanded due to errors
such as wheel slippage. Motor controllers typically use the same odometry sensors for
position feedback, and thus the estimate û =

[
x̂u, ŷu, φ̂u

]T
is the ego-motion the robot

thinks it underwent in the real world.

46

2.4 Motion Models and Localization

a) b) c) d) e) f)

Figure 2.9. Accumulated odometry noise: Robot paths for six simulated drives corrupted
with various types and amounts of odometry noise. For each drive, a) through f), 200 paths have
been simulated using Monte Carlo sampling, with 3-σ covariances shown as dashed ellipses. In
each case, the odometry estimate û = [x̂u, ŷu, φ̂u]T = [4, 0, 0]T describes the motion we think the
robot underwent, here four meters directly forwards. Drive a) simulates typical paths that are
well-modeled by Gaussian noise Σu = diag(σ2

x, σ
2
y, σ

2
φ), b) simulates twice the Gaussian noise, as

if the surface type was slipperier. Drive c) simulates 3 × σφ higher heading noise, d) simulates a
bias in the heading, caused by a flat left tire. Drive e) simulates a large yaw mid-drive, as if the
left wheel had slipped on some leaves, while, f) simulates robust yaw control using wheel encoders
fused with gyroscope data.

The error between this odometry estimate and the actual ego-motion, ũ = û−u, is often
modeled as a zero-mean Gaussian process, i.e. ũ ' N (0,Σu). The odometry estimate
û = u + ũ can be written in the standard form:

û = N (u|û,Σu) (2.23)

= 1
(2π)3/2 |Σu|1/2

exp
(
−1

2(u− û)TΣ−1
u (u− û)

)
(2.24)

This is typically estimated from raw sensor measurements using Equation 2.19. The
multivariate normal distribution is generally assumed to be uncorrelated, with covariance
matrix Σu = diag

(
σ2
x, σ

2
y , σ

2
φ

)
. Other models exist to characterize odometry noise, such

as triangular distributions or sample-based distributions [135]. The normal distribution is
used in the majority of SLAM algorithms because it is relatively simple to manipulate.

While the odometry noise covariance may be small, a large number of measurements are
often integrated over a robot’s entire path, where considerable errors can accumulate. For
a robot starting at pose r0, the pose estimate r̂τ at time τ is:

r̂τ = r0 �
τ−1∑
t=0

ûtt+1 (2.25)

47

Chapter 2 Review: Simultaneous Localization and Mapping

Here the summation Σ applies the composition operator, �, repeatedly. Accumulating
pose error is demonstrated using the example problem in Figure 2.8. After driving in a
loop around the room, the robot’s gridmaps show considerable misalignment.

Figure 2.9 uses Monte Carlo sampling to further demonstrate odometry errors. Here a
simulated robot is commanded to drive four meters. Six drives, a) through f), are corrupted
with various types and amounts of odometry noise. Each drive is sampled 200 times, and
the range of accumulated errors are very apparent in the spread of the actual poses after
driving. In each case the odometry estimate indicates the robot has driven exactly four
meters forward. In a) the paths are sampled from the normal distribution, N (u|û,Σu),
while b) experiences twice this noise (4×Σu). In both cases the distribution of final poses
fits a normal distribution well, with the points lying inside their 3-σ covariance ellipse.
This suggests the Gaussian noise model is adequate in some circumstances.

2.4.2.3. Odometry Linearization Errors

When odometry measurements are repeatedly composed, as in Equation 2.25, their co-
variances are composed also. The accumulated estimate, û, in the normal distribution
N (u|û,Σu), can be calculated in closed form using the composition operator ‘�’. The
covariances, however, require a linearization step when composed:

Σu1�u2 = JTu1Σu1Ju1 + JTu2Σu2Ju2 (2.26)

Where the Jacobians Ju1 = δ(u1�u2)
δu1

and Ju2 = δ(u1�u2)
δu2

, are defined in [110].

As covariances are composed using Equation 2.26, each linearization step introduces a
small error that is accumulated along the robot’s path. The linearization shrinks the
covariances slightly, artificially reducing the estimated uncertainty. The effects of this
are well understood [155], and have been shown to prevent classic SLAM solutions from
scaling to large areas [156, 157]. As the heading noise, σφ, decreases, the linearization
errors decrease also; this motivates the search for more robust odometry (Section 2.4.2.5).

Figure 2.10 extends each of the sampled paths in Figure 2.9 by simulating a further four
meter drive. The exaggerated heading noise in c) now reveals a distinct “banana” shaped
distribution in the final poses. A similar non-Gaussian distribution is visible for b) also.
In all cases, as the paths grow, the normal distribution will always become over-optimistic
at representing pose uncertainty.

For these simulated drives, the Gaussian distribution, N (u|û,Σu), was sampled to gener-
ate the random distribution of paths. To show the linearization error, the expected robot

48

2.4 Motion Models and Localization

a) b) c) d) e) f)

Figure 2.10. Accumulated linearization errors: Linearization errors will accumulate for any
robot that composes noisy odometry estimates in SE(2). The six simulated drives from Figure 2.9
have been extended by four meters. Red ellipses: the 3-σ covariance ellipses can no longer
describe the emerging “banana” shaped distributions of actual robot poses. Black ellipses: after
20 odometry compositions the accumulated pose uncertainties are greatly underestimated due to
linearization errors.

path and its uncertainty can be calculated by composing odometry, û, using Equation 2.25,
and the covariances, Σu, using Equation 2.26. The expected path and 3-σ pose uncertain-
ties are plotted in Figure 2.10 in black. Based on odometry, the uncertainty is dramatically
underestimated in a), b) and c).

Linearization errors can be minimized by reducing heading uncertainty [110], with either
a global pose sensor (Section 2.4.3) or by re-localizing in an existing map (Section 2.4.4).
While SLAM algorithms (Section 2.5) can constrain heading uncertainty (and thus lin-
earization errors), heading uncertainty in SLAM will always accumulate as a robot drives
further from its origin, and thus linearization errors will always be introduced. In section
Section 4.3.6 I show how submapping approaches can effectively isolate local linearization
errors from the global SLAM solution.

2.4.2.4. Odometry Failure Modes

Common odometry issues can be caused by failures in the robot hardware, incorrect
calibration and irregularities in the environment. Drives d) and e) in Figure 2.9 and
Figure 2.10, show examples where the zero-mean Gaussian noise model fails to match
reality. In each case the odometry suggests the robot has driven straight forwards. Drive
d) shows a positive bias in φ̂u that could be caused by a flat tire or damaged encoder.
Simple calibration issues, such as an incorrectly measured distance between wheel centers,
or a misalignment can add large biases also.

Uneven and irregular surfaces, or interference from debris such as pebbles or leaves, can
cause differential slippage between wheels. In Figure 2.10 e), for example, the robot yaws
suddenly mid-drive, as if the wheels had slipped on some leaves. Large odometry errors

49

Chapter 2 Review: Simultaneous Localization and Mapping

like these are not well-modeled by Gaussian noise, and are difficult to model in general.
In Section 4.3.6 I describe a method for handling sudden spikes in pose uncertainty.

2.4.2.5. Robust Odometry

Robust odometry solutions fuse data from multiple sensors to reduce errors and correctly
handle failure modes. For example, an unexpected change in heading from a single wheel
slipping or an under-inflated tire could be detected by the yaw axis in a gyroscope. With
an appropriate failure detector and sensor fusion, for example [158, 159], the first five
drives in Figure 2.10 could reject the heading drift and appear similar to drive f).

Odometry sensors with complementary strengths and weaknesses can be paired to improve
robustness. With a single camera observing a distant scene, for example, it is difficult
to distinguish between rotations and translations, whereas an IMU can directly observe
rotations and disambiguate. For example, in [160] Li and Mourikis describe a robust
algorithm that uses camera images and IMU data to produce ego-motion estimates,
however while their algorithm’s accuracy is impressive, odometry errors still accumulate
over time.

2.4.3. Global Pose Estimation with External Localization

Externally referenced sensors produce pose estimates with respect to the environment. A
GPS receiver is a common example, producing globally-referenced latitude, longitude and
altitude estimates. Often the environment is augmented with infrastructure, such as GPS
satellites, RF beacons or visual markers that have been pre-localized within a chosen global
frame. Alternatively, measurements can be made to existing landmarks and phenomena
that have previously been measured and mapped, such as the Earth’s magnetic field.

External localization techniques produce pose estimates with respect to the chosen global
frame. In some cases they only observe partial pose information, such as heading from
a magnetometer, or pitch and roll from an accelerometer. Measurements from multiple
sensors are generally fused to produce complete pose estimates, including uncertainties.
These techniques are often complex, and similar to the odometry sensors described in
Section 2.4.2, they produce noisy measurements and have a variety of failure modes. A
few common external localization sensors are described in this section, along with their
noise and failure modes.

2.4.3.1. Externally Referenced Localization Sensors

GPS: receivers have become both inexpensive and commonplace for terrestrial navigation.
They estimate globally-referenced latitude, longitude and altitudes (3 DOF pose) with

50

2.4 Motion Models and Localization

varying accuracies depending on the arrangement of the satellites. Their numerical solvers
produce covariance estimates, often expressed as a dilution of precision (DOP) [161], that
indicate a Gaussian error model. GPS errors are frequently non-Gaussian, however, and
multiple sources of error exist. Variations in the ionosphere cause biases of 5 to 15 meters
that change slowly over the course of each day. Satellite orbit (ephemeris) errors and
clock drifts induce additional biases of 4 or more meters [162]. The pose is estimated
from RF range measurements to 4 or more satellites. In urban environments, intermittent
primary signals, and secondary reflections (multipath errors, see Appendix B) can cause
large transient errors in the pose estimate. These biases and large step errors make robotic
navigation with GPS problematic, especially with large teams of robots operating in urban
environments and over many hours. The RF signals from GPS satellite are very low power,
and in a military context they are susceptible to both hostile jamming and spoofing [78, 79].

Differential GPS (DGPS): solutions use signals broadcast from fixed base stations to
correct for the ionosphere, ephemeris and clock drift errors. DGPS requires a separate
communications channel to correct for errors in real-time, introducing an additional point
of failure. Correction signals can reduce errors to below one meter, however they are only
valid in the vicinity of the base station [162].

Real-time Kinematic GPS (RTK-GPS): solutions also rely on base station infras-
tructure and a second communications channel. Rather than sending pose correction
signals, they send carrier-phase, or per satellite pseudo-range data that RTK-GPS receivers
integrate to produce pose estimates accurate to 1-2 centimeters [162]. There are some
interesting possibilities described in the literature where carrier-phase data is incorporated
into the SLAM algorithm to estimate relative motion with similar accuracies, but without
the RTK-GPS base station [163, 164].

Magnetometers: measure external magnetic fields. Three magnetometers are often
used in an orthogonal configuration to estimate orientation with respect to the Earth’s
geomagnetic field vector, a configuration that is often integrated into MEMS IMUs. The
geomagnetic field is relatively weak, however, and magnetometers are highly susceptible to
stray magnetic fields, particularly in urban environments. Ferrous materials can become
magnetized over time and hidden metal objects, such as reinforcing bars in concrete, often
cause magnetometer measurements to be too unreliable for robotics applications.

Accelerometers: can estimate a globally-referenced “down” vector from the local gravi-
tational field when used in orthogonal configurations on ground-based robots. Stationary
robots can use this “down” vector to estimate pitch and roll and hence the local slope of
the terrain. These accelerometer measurements can only constrain two of three DOF of
orientation, which means they cannot estimate a robot’s heading on flat terrain. Non-
stationary robots can filter multiple sensors to estimate pitch and roll while driving,
however inexpensive MEMS sensors are likely to produce noisy estimates.

51

Chapter 2 Review: Simultaneous Localization and Mapping

External tracking: systems estimate pose using external infrastructure that has been
previously installed and localized in a global frame. These off-board systems use a wide
variety of sensing techniques and are typically complex. The tracking sensors are mounted
externally distinguishing them from the map-based localization techniques discussed in
Section 2.4.4. Common examples include Vicon suits (shown in Figure 1.5), where visual
tracking to reflective IR markers produces 6 DOF pose estimates at 200 Hz with sub-
centimeter accuracy. Less expensive visual tracking solutions use visual fiducial markers,
such as [165, 166]. RF-based systems use radio beacons detected by many fixed receivers
to produce range-only measurements. Given surveyed receiver locations, 3 DOF pose
estimates can be produced. It is important to note that these external tracking systems
required infrastructure to be installed and the site surveyed before use, a limitation if
rapid or large-scale deployment is desired.

2.4.4. Map-Based Robot Localization

Section 2.3 describes various sensors that robots can use to measure their environment,
and several map parameterizations used to represent it. These can be combined with
motion models and odometry to provide map-based localization. Map-based localization
describes techniques that use maps and on-board sensors to estimate the posterior pose
distribution:

p (rt | rt−1,ut, zt,m) (2.27)

Where rt is the current pose, given the previous pose, rt−1 , odometry, ut, sensor mea-
surements, zt, and map, m. The maps may be given a priori, or built on-line as part of
a SLAM session. Furthermore, the problem can be separated into incremental and global
variations, depending on the prior knowledge of the robot’s pose.

2.4.4.1. Incremental Map-Based Localization

The incremental, or local problem involves tracking and estimating a robot’s pose with
respect to its map. In an iterative predict-update cycle, the robot’s pose is first estimated
from its previous pose using its motion model. Observations are then predicted from this
pose using the map and the sensor’s measurement model. By comparing the predicted
and actual observations, the estimator updates the robot’s pose. This is a subset of the
SLAM problem, where both pose and map are estimated together. Various Bayesian
approaches to the SLAM problem are described in the next section. They can be reduced
to localization-only estimators by fixing the map parameters.

52

2.4 Motion Models and Localization

Figure 2.11. Visual place recognition: Visual odometry (VO) and visual place recognition (PR)
from a flying quadrotor MAV. After completing a 200 meter loop, PR found 10 potential matches
to previously seen images. Results from my unpublished research. Video courtesy Cybertech.

2.4.4.2. Global Map-Based Localization

The global map-based localization problem attempts estimate a robot’s pose in an existing
map, without any prior knowledge of its pose. It is also described in the literature as
relocalization or the “kidnapped robot” problem [167, 168, 135]. For a mobile robot in
SE (2), this is potentially a large configuration space. Environments often have minimal
defining geometry (e.g. a straight corridor with no doors), or self-similar geometry that
create perceptual aliasing ambiguities (e.g. multiple identical offices that open onto a
corridor) [123]. Global relocalization algorithms typically track multiple hypotheses,
often over large distances, until sensor data can confirm a single pose hypothesis (or
null hypothesis).

Monte Carlo Localization (MCL): is a Bayesian formulation where the pose prob-
ability distribution is represented by a set of weighted hypotheses (samples) [168, 169].
In an iterative predict-update cycle each sample is treated similar to the local problem
above. As the robot moves, the samples are updated and sensor observations are predicted
from the map. By comparing the predicted and actual observations, the samples’ weights
are updated according to the likelihood that the pose fits the observations. The samples
representing the posterior distribution are re-sampled, and if a single hypothesis remains
the global pose has been found.

Visual place recognition (PR): algorithms generate pose estimates from camera im-
ages. PR decomposes camera images into sets of 2-D visual features, or bags-of-words, that
are inserted into a large database. A query image, possibly taken by a lost robot, is de-
composed into a bag-of-words and compared against the database, from which candidates
matches are retrieved [170, 171, 172, 173]. The visual words can be biased according to

53

Chapter 2 Review: Simultaneous Localization and Mapping

Figure 2.12. Map-based localization using visual fiducials: One of NASA’s SPHERES
robots, [175], floating in a zero-g aircraft. ALVAR visual tags allow accurate on-board map-based
localization [174]. Image courtesy NASA Ames and Google ATAP.

their occurrence to encourage positive matches, however many matches are often returned.
These multiple hypothesis are passed through geometry checks and motion models where
they are culled as the robot continues to drive. PR only works in environments that have
sufficient visual richness, and from locations and vantage points that are close to those
that have previously been observed [172]. Figure 2.11 shows an example of PR running
on a quadrotor after a 200 meters loop has been flown.

Fiducial markers: at the core of global relocalization is a data association problem.
By augmenting a robot’s environment, the data association problem can be made much
easier (some examples are given in Section 2.4.3). Visual fiducial markers are described
here since they are passive, provide perfect data association and have become popular
over the last decade [165, 166, 174]. These 2-D bar codes, also called augmented reality
tags (ARtags), are uniquely identifiable and include checksums for self-validation. A set
of multiple visual fiducials, fixed around a robot’s environment, create a landmark-based
map that can be used for highly-accurate map-based localization. Figure 2.12 shows an
environment augmented with 7 ALVAR tags [174]. Using an image from a calibrated
camera the robot’s full 6 DOF pose can be estimated accurately within the limited volume
of its workspace.

2.4.4.3. Detecting and Verifying Loop Closures

When exploring a new environment with SLAM, a robot will typically alternate between
growing its map by visiting new areas, and closing loops by revisiting previously seen
areas. Loop closure detection is another form of the data association problem, introduced
in Section 2.1. In SLAM sessions where sustained exploration grows the map without
any loop closures, odometry noise can accumulate into very large pose uncertainties.

54

2.5 SLAM Algorithms

When attempting to close loops, these uncertainties and map search areas are similar
to the global relocalization problem from the previous section. Degenerate and ambiguous
geometry frequently requires loop closure hypotheses to be tracked until they can be
verified with additional sensor data. Visual PR approaches, described in the previous
section, have shown considerable promise in generating candidate loop closures given
uncertain or nonexistent pose priors [176].

2.5. SLAM Algorithms

The SLAM problem was introduced in Section 2.1, along with the data association and
loop closure problems, two key aspects that distinguish SLAM from a simple state es-
timation problem. Section 2.2 provided the mathematical framework for working with
poses and measurements. Section 2.3 described sensors and parameterizations used to
build maps of the environment, i.e. p (m | r, z), while Section 2.4 described sensor models
for robot motion and localization, i.e. p (rt | rt−1,ut). These concepts were combined in
Section 2.4.4 to enable map-based localization, i.e. p (rt | rt−1,ut, zt,m). In probabilistic
SLAM the map becomes a part of the estimation problem; a variable that is jointly
estimated and refined along with the robot’s pose, i.e:

p (r,m | r0,u, z,) (2.28)

Where the joint distribution of robot poses, r, and the entire map, m, are given from the
history of odometry, u, sensor measurements, z, and starting pose r0.

SLAMmaps are built from millions of sensor readings, matched against each other in a data
association step that depends entirely on the current pose estimations. Evaluating and
re-evaluating these data associations, while simultaneously estimating and updating the
entire history of robot poses, describes the “full” SLAM problem. These data associations
are combinatorial, and the problem is NP-complete [7, 8]. It is interesting to note that
even with given data associations, a naive full SLAM algorithm scales at O((T +M)3),
for a trajectory length T and M map landmarks [177].

This section introduces the main approaches described in the literature for solving the
SLAM problem. Each approach exploits various approximations and heuristics to run
in polynomial time; they trade between computational complexity, storage, accuracy,
robustness and real-time execution. While introducing the various approaches, I also
note how well they scale to large environments and if they have been extended to the
MR-SLAM problem.

55

Chapter 2 Review: Simultaneous Localization and Mapping

u1
z0,1

u2
z1,2

u3

r0 r1 r2 r3

z2,2

m1 m2

ut

rt

zt,i

mi

z1,1 z2,1

m3

z3,3z2,3

rt-1

zt,3

Figure 2.13. Graphical model for landmark-based SLAM: The red and blue boxes contain
variables estimated in the SLAM state. The green box indicates measurements. Arrows indicate
dependencies, or causal relationships. Robot pose estimates, rt, depend on the previous pose, rt−1,
and odometry, ut. Map landmark estimates, mi, combined with the robot pose, cause the sensor
measurement distributions zt,i.

2.5.1. SLAM Assumptions

While the full SLAM problem is unsolvable for non-trivial environments, approaches
described in the literature frequently produce useful results in real-world environments.
Two common assumptions reduce the complexity of the problem:

1. Static environment: maps do not vary over time; moving objects are segmented
and treated as outliers that do not appear in the map.

2. Sensor data is integrated sequentially: robots move predictably, such that
motion models can predict where a robot is likely to be, allowing the search for data
associations, to begin close to the global optimum.

2.5.2. Full SLAM Graphical Model

The full SLAM Bayesian network, or graphical model, is introduced here as it is used to
illustrate the structure of the simplifications employed in various SLAM algorithms. A
thorough overview of graphical models in given by Bishop in [100]. Figure 2.13 provides the
graph for the full SLAM probability distribution in Equation 2.28. This graph represents
a landmark-based SLAM problem. It captures the robot pose, rt, and map landmarks,
mi, which together form the SLAM state estimate (appearing in the red and blue boxes).
Observations, including odometry measurements, ut, and sensor measurements, zt,i, ap-
pear in the green box. The structure of the graph indicates the dependencies between
the various probability distributions. The arrows are most interpreted as causation, or
“having an influence”. For example, in Figure 2.13 the estimate of rt is directly influenced
by rt−1 and ut.

56

2.5 SLAM Algorithms

m1 m2

ut

rt

zt,i

mim3

rt-1

zt,3

Figure 2.14. Graphical model with recursive Bayes filtering: At each time step t a predict-
update cycle marginalizes out the previous pose rt−1 (red), and updates the state estimate based
on current measurements, ut and zt,i. Historical poses, measurements and data associations (gray)
are “baked” into the state estimate.

The structure of the lower part of the graph in Figure 2.13 depends entirely on the path
the robot drives, its sensor range and the shape of the environment. It is worth noting that
in landmark-based SLAM the measurement dependencies, p (zt,i |mi, rt), are the output
of the data association step (see Section 2.3.4.2). This is a simple example— in a typical
SLAM problem there are many orders of magnitude more landmarks and measurements.

2.5.3. Bayesian Filter-Based SLAM

2.5.3.1. Recursive Bayesian Filter SLAM

The first solutions to the SLAM problem were described in the 1980s by Smith and
Cheeseman [9], based on established state estimation techniques [102]. The SLAM problem
was treated as an on-line estimation problem using recursive Bayesian filters. In this
approach the Bayes filter performs an iterative prediction→update cycle that integrates
new sensor data, while marginalizing out the previous robot pose estimates, rt−1. A
graphical model that describes SLAM with Bayes filters is shown in Figure 2.14, where
old measurements and marginalized poses are grayed-out. The approach aims to maintain
on-line performance by minimizing the growth of the state variable. It models the SLAM
problem as a first-order discrete-time Markov chain, where the future is assumed indepen-
dent of the past, given the current state. A Bayes filter for SLAM with an odometry-based
motion model is given below, while Chen provides a more general tutorial for Bayes filters
in [178].

The state at time t is parameterized by concatenating the robot pose estimate, rt, and
the M map landmark estimates, mi, into a stochastic state vector, xt:

xWt = [rt,m1,m2, · · · mM]T (2.29)

57

Chapter 2 Review: Simultaneous Localization and Mapping

Coordinates are typically maintained in the global frame, W, however the superscript is
omitted for brevity. The map landmarks, mi, are assumed static, and so are not given
a time subscript, however their positions are recursively estimated by the filter. Each
iteration of the filter performs two steps: a prediction, followed by an update that produces
a posterior state estimate:

Prediction: the current state is predicted using the prior belief p (xt−1 | z0:t−1,u0:t−1),
the latest odometry measurements and the robot’s motion model (Section 2.4.1):

p (xt | z0:t−1,u0:t)︸ ︷︷ ︸
Prediction

=
ˆ
p (xt | xt−1,ut)︸ ︷︷ ︸

Motion model

p (xt−1 | z0:t−1,u0:t−1)︸ ︷︷ ︸
Prior

dxt−1 (2.30)

Here, using the law of total probability, the prior belief is marginalized out to form the
prediction, p (xt | z0:t−1,u0:t). The prediction incorporates only odometry measurements
and any assumptions made in the motion model (for example constant velocities).

Update: the prediction is updated using the sensor model and Bayes rule:

p (xt | z0:t,u0:t)︸ ︷︷ ︸
Posterior

= η p (zt | xt)︸ ︷︷ ︸
Sensor model

p (xt | z0:t−1,u0:t)︸ ︷︷ ︸
Prediction

(2.31)

Here, p (zt | xt) is the sensor model, or observation model. It describes the likelihood of
an observation given the current state of the system. The normalization term, η is given
by η−1 = p (zt | z0:t−1,u0:t). This term does not depend on x and in practice this term is
not calculated; rather the posterior distribution is normalized to one [135].

In a Bayes filter the posterior state estimate at time t becomes the prior for the next
iteration at t+1 in Equation 2.30. The filter is a framework for recursive state estimation.
Several realizations are given in the following sections.

2.5.3.2. Extended Kalman Filter SLAM

The Kalman Filter (KF) is a well-known realization of a Bayes filter, first described in
1960 [102, 101]. The Kalman filter typically uses a multivariate Gaussian distribution to
represent the system state, xt, with the assumption that the motion and sensor models
are linear. In SLAM, however, these models are typically nonlinear and some form of
linearization is required [179, 6].

The Extended Kalman Filter (EKF) linearizes the nonlinear models using a Taylor Series
expansion around the current state estimate. The multivariate Gaussian is expressed in
terms of the state variable’s expected value x̂t = E (xt) and its covariance Σt:

58

2.5 SLAM Algorithms

xt = N (xt|x̂t,Σt) (2.32)

= 1
(2π)k/2 |Σt|1/2

exp
(
−1

2 (xt − x̂t)T Σ−1
t (xt − x̂t)

)
(2.33)

Here k is the dimension of the state variable, xt. The covariance, Σt, is a square k × k
block matrix that is positive-semidefinite:

Σt =


Σr Σr:m1 · · · Σr:mM

ΣT
r:m1 Σm1 · · · Σm1:mM
...

...
ΣT
r:mj ΣT

m1:mM · · · ΣmM

 (2.34)

As with the general Bayes filter, the EKF iterates a predict-update cycle. A brief overview
of the filter is given here using mathematical notation that is used throughout the rest of
this thesis. Thrun et al. present EKF SLAM in depth in [135], chapter 10, while Paz et
al. give an informative view of the matrix block structure in [180].

Prediction: the state prediction, x̂t|t−1, is estimated using the motion model, and the
posterior estimate from the last time step:

x̂t|t−1 = f (x̂t−1,ut) (2.35)

Σt|t−1 = Ft−1Σt−1FT
t−1 + Qt−1 (2.36)

In a typical EKF SLAM implementation with static map landmarks, the motion model
f (x̂t−1,ut) updates robot pose using odometry given by Equation 2.19. Using pose
composition the motion model gives: x̂t|t−1 = x̂t−1 � ut−1

t . The covariance estimate
Σt|t−1 is enlarged by the motion model’s Jacobians Ft−1 = δf

δx̂t−1
, given in the appendix

of [110], and the process noise Qt−1. The process noise results from the motion model,
which is assumed to be additive, and is typically the same as the odometry noise.

Update: the predicted state is updated using the measurement residual, ỹt, the difference
between the sensor measurements, zt, and the measurements predicted by the sensor model
h(x̂t|t−1):

ỹt = zt − h
(
x̂t|t−1

)
(2.37)

St = HtΣt|t−1HT
t + Rt (2.38)

Kt = Σt|t−1HT
t S−1

t (2.39)

59

Chapter 2 Review: Simultaneous Localization and Mapping

The residual covariance, St, indicates how certain we are that the sensor model is going
to match the actual measurements. Here the sensor model’s Jacobians Ht = δh

δx̂t|t−1
apply

another linearization, and the sensor model noise is incorporated through the covariance
Rt. The Kalman gain, Kt, and the measurement residual are used to calculate the
posterior estimate:

x̂t = x̂t|t−1 + Ktỹt (2.40)

Σt = (I−KtHt) Σt|t−1 (2.41)

The posterior x̂t contains updated estimates for the state vector in Equation 2.29, which
includes both the robot’s pose and M landmarks.

The errors introduced by linearizing and accumulating the odometry are described in detail
in Section 2.4.2.3. At each time-step the EKF marginalizes out the previous estimate,
x̂t−1, which effectively “bakes” the most recent linearization errors and data associations
into the state. While repeated observations of static landmarks can help constrain pose
errors that accumulate due to linearization and odometry errors, EKF SLAM will always
underestimate uncertainties and eventually become inconsistent [155, 156]. Alternative
formulations for EKF SLAM have been proposed over the last decade. Castellanos et al.
proposed a robot-centered coordinate system to delay the inconsistency [155, 181]. This
parameterization has gained wider adoption [182, 125].

The unimodal representation of the posterior means that data associations must be de-
cided, marginalized and “baked-in” at every time-step, with no opportunity to track
alternate hypotheses. Recognizing that a single data association error can cause EKF
SLAM to become immediately inconsistent, significant research has gone into efficiently
detecting and validating correspondences. Neira and Tardós’ joint compatibility branch
and bound (JCBB) [144] and Bailey’s combined constrained data association (CCDA)
[142] are two approaches that search the combinatorial solution space efficiently. The
residual covariance in Equation 2.38 provides useful hints where to actively search for
landmark matches, and their relative spatial arrangement [183, 184].

EKF SLAM scales with O
(
M2), where M is the number of landmarks in the map [142,

104]. While sparse Jacobians and limited sensor range allows for some optimizations, the
covariance Σt becomes increasingly dense, limiting on-line execution to several hundred
landmarks [180]. Specialized implementations using FPGAs have been demonstrated with
1800 features [185], however this solution scales with silicon size, which is ultimately still
limited.

To scale to larger map sizes, EKF SLAMmaps can be broken into many smaller “submaps”
(Section 2.5.5). Several EKF-based submapping techniques have been described, including

60

2.5 SLAM Algorithms

decoupled stochastic mapping [186], postponement [187] and compressed EKFs [141],
which while suboptimal, maintain on-line performance by restricting map updates to the
landmarks around the robot. The map joining algorithm by Castellanos et al. is more
consistent [181], however like the other techniques, the global state and covariance updates
are still O

(
M2), ultimately limiting global map size. Piniés et al. describe CI-Graph, a

landmark-based submapping approach that uses conditional independence to efficiently
subdivide an EKF [188]. Paz et al.’s divide-and-conquer technique uses a hierarchical
composition that amortizes the O

(
M2) cost, resulting in linear time EKF SLAM in some

situations [180]. Section 2.5.5 describes how EKF submaps have also been used as the
basis for graph-based SLAM techniques.

While EKF techniques can be used for multi-robot SLAM, submapping is generally re-
quired to maintain on-line operation. The additional computational cost depends on the
robot’s sensor overlap and landmark density. For highly-overlapping configurations, none
of the previously described techniques scale more efficiently than O

(
M2). Williams et

al. apply their constrained local submap filter to a multi-robot simulation [189, 190].
Madhavan et al. describe a two robot EKF localization approach, however the mapping is
not performed simultaneously [26]. Zhou and Roumeliotis describe a landmark-based EKF
SLAM solution where both robots’ maps are merged after each rendezvous [191]. A few
years after the nonlinearity and inconsistency problems were well documented [155, 156],
Huang et al. demonstrated the same issues in multi-robot EKFs and proposed a solution
that applied more conservative uncertainty reduction [192].

Ultimately the O
(
M2) scaling problem restricts large-scale multi-robot EKF deployments.

Regardless of the type of landmarks used, EKFs are relatively limited in the size of the
environment and accuracy of the geometry they can map. In light of this, I am surprised
that researchers have continued to publish EKF-based SLAM solutions, a view shared by
others [193].

2.5.3.3. Unscented Kalman Filter SLAM

Julier and Uhlmann’s Unscented Kalman Filter (UKF) is briefly described here since it
very elegantly addresses the linearization errors in the EKF [194]. First described in
2000, the UKF propagates a small set of samples, or sigma points, through the nonlinear
motion and measurement models, to recover approximate estimates with covariances.
The UKF avoids the need to calculate Jacobians and is no more complex than the EKF
[195]. It has been shown to produce much smaller linearization errors in many difficult
problems, including monocular SLAM [196]. UKFs, however, suffer from the same O

(
M2)

scaling issues as the EKF, and the approximations eventually cause the filter to become
inconsistent [156].

61

Chapter 2 Review: Simultaneous Localization and Mapping

2.5.3.4. Covariance Intersection SLAM

Julier and Uhlmann introduced Covariance Intersection (CI) into the Bayesian fusion
literature in the late 1990s [197]. CI is a conservative approach to data fusion that combines
two estimates when the correlations between them are unknown. Two Gaussians, with
distributions N (µa,Σa) and N (µb,Σb), are fused into a single Gaussian, N (µc,Σc), using
the CI rule:

Σ−1
c = βΣ−1

a + (1− β) Σ−1
b (2.42)

µc = Σc

(
βΣ−1

a µa + (1− β) Σ−1
b µb

)
The coefficient β is bound by the interval [0, 1] and is typically optimized to meet some
desired uncertainty criteria. In [198] Julier and Uhlmann demonstrate CI-SLAM using
a modified form of the Kalman filter, where CI is used to minimize computational by
removing covariances.

2.5.3.5. Extended Information Filters

The Extended Information Filter (EIF) is the mathematical inverse of the EKF. It was
first applied to the SLAM problem by Thrun et al. in 2002 [199], who had the insight
to replace the covariance matrices with their information form. Sometimes called the
canonical form, the multivariate Gaussian state vector, x̂t, and its covariance, Σt, are
replaced by the information vector, ŷt = Σ−1

t x̂t, and information matrix, Ωt = Σ−1
t ,

respectively.

In the information form, new measurements become simple block additions that can be
performed in linear time [200]. This avoids the O

(
M2) cost that the EKF incurs when

performing measurement updates, however the information matrix grows in size. The stan-
dard EIF algorithm marginalizes previous poses, which gradually makes the information
matrix dense. Thrun et al. describe the Sparse EIF (SEIF), which includes a constant-
time sparsification step that approximates the information matrix to maintain sparseness
over long-term operation [199]. While impressive results have been demonstrated with the
SEIF, e.g. [201], the limitations of landmark-based maps remain.

Eustice et al. described the Exactly Sparse Delayed-State Filter (ESDF) [200], which
maximizes sparseness in the information matrix by not marginalizing out old poses. They
describe a “view-based” approach that aligns groups of measurements acquired from a each
pose (Section 2.3.4.1). The map is not explicitly parameterized in the ESDF, avoiding the
limitations of landmark-based maps.

ESDFs have been shown to scale to large map sizes. Mahon et al. demonstrated an ESDF-
based visual SLAM system mapping a 150×150 meter area on-line. Their final map had

62

2.5 SLAM Algorithms

2,200 poses covering a 2.2 km trajectory [202]. Multi-robot SEIF SLAM was demonstrated
by Thrun and Liu in [203], however they only showed the Victoria Park dataset [140] cut
into 8 pieces.

While EIF updates can be performed in O (M) linear time, it becomes expensive to recover
the covariances that are used in data association. In the SEIF and ESDF, it has been
shown how the information matrix’s sparseness can been exploited to avoid the O

(
M3)

cost of matrix inversion [201, 200].

Like the EKF, however, the various forms of EIFs linearize the motion and sensor models
around current estimates. These approximations are “baked” into the information matrix,
which can eventually lead to inconsistencies [200]. It is interesting to note that the ESDF’s
sparse information matrix is closely related to the Hessian matrix in the pose-graph SLAM
formulations used throughout this research (Section 2.5.4). The pose graph formulations
differ in their continuous re-linearization of measurements.

2.5.3.6. Tree-Based Filter SLAM

Closely related to the SEIF, Paskin’s Thin Junction Tree Filter (TJTF) [204] uses variable
contraction to maintain sparsity in SLAM constraints. First described in 2002, the filter
builds an approximation of the SLAM state with a tree structure that is periodically
“thinned” by contraction. This process, like the sparsification of SEIFs is supported
theoretically by the weakening of links between distant landmarks [205]. Like SEIFs,
TJTFs operate in O (M) linear time, however they can approximate global maps without
matrix inversion.

Several years later, Frese described the closely related “Treemap” algorithm [206]. Treemap
uses a hierarchical local-global map representation similar to EKF submapping approaches,
however global updates are performed in O

(
K3 logM

)
, where K is the number of local

landmarks. It has been demonstrated on some impressive simulated datasets, including a
sparse 350×350 meter area in which it took 21 ms to close a loop with 48,700 poses and
over a million landmarks [207].

To the best of my knowledge there are no real-world multi-robot demonstrations of tree-
based filters in the literature. In the case of 2-D lidar-based SLAM this may be due to
the limited representations that landmark-based maps offer in real-world environments.

2.5.3.7. Particle Filter SLAM

Particle filters overcome many of the limitations of the filter-based SLAM solutions de-
scribed so far. Nonlinear motion models and multimodal distributions can be represented

63

Chapter 2 Review: Simultaneous Localization and Mapping

by a set of samples that allows multiple hypotheses to be tracked [208, 209]. Recog-
nizing that map landmarks are conditionally independent given the robot’s pose, Rao-
Blackwellized Particle Filters (RBPFs) factorize the SLAM problem by separating the
robot’s complete trajectory, r0:t, from the map m:

p (r0:t,m | z0:t,u0:t)︸ ︷︷ ︸
Posterior

= p (m | r0:t, z0:t)︸ ︷︷ ︸
Map

p (r0:t | z0:t,u0:t)︸ ︷︷ ︸
Trajectory

(2.43)

Equation 2.43 allows the map p (m | r0:t, z0:t) to be efficiently computed from a complete
trajectory estimate. The trajectory, p (r0:t | z0:t,u0:t), is then estimated with a particle
filter, where each particle represents a complete trajectory (and hence complete map).
The particles are subsequently weighted according to how well the measurements agree
with the map, and resampled to approximate a continuous distribution. RBPFs differ
from the previously described filter-based solutions, rather than marginalizing old poses
in the filter update, the entire trajectory is filtered.

The richness of a RBPF’s multimodal distribution is controlled by the number of particles,
often between 10 and 100. The computational cost is linear in the number of particles,
thus most research effort has focused on minimizing particles while maintaining accurate
posterior distributions.

In 2002 Montemerlo et al. demonstrated FastSLAM, a landmark-based RBPF SLAM
implementation where the independent landmarks, p (mi | r0:t, z0:t), are trivially estimated
with a set of 2-D EKFs [210, 211, 212]. They demonstrated SLAM updates in O (N logM)
time, where N is the number of particles. FastSLAM has been demonstrated on several
large datasets, including the Victoria Park dataset where it was 25 times faster than an
EKF.

Unfortunately, the number of particles required to maintain accurate posterior distri-
butions increases with the map size, the complexity of the environment and number
of robots. In recent work Grisetti et al. demonstrated large-scale RBPF SLAM using
lidar scan matching instead of landmarks [213]. They showed impressive results over a
1.7 km trajectory through a 250×250 meter area in real-time. For several datasets they
search for the minimum number of particles required to produce topologically correct
maps, and confirm that larger and more complex environments require more particles.
Each time the particles are weighted and resampled information is lost and randomness
is introduced. Even with thousands of particles, a growing RBPF map will accumulate
errors and eventually become inconsistent [157].

Attempts to use RBPFs for multi-robot SLAM have met limited success due to the large
number of particles required to avoid inconsistencies. Howard demonstrated multi-robot
SLAM with RBPFs in a 45×25 meter area, first with the robots’ initial poses known, and

64

2.5 SLAM Algorithms

Figure 2.15. Visual SLAM with a sliding window filter: Visual SLAM on a quadrotor.
Left: photo at take-off. Right: 3-D visualization with camera poses are shown as green pyramids,
marginalized landmarks are blue dots, while currently estimated landmarks are shown in green.
Right Inset: wide FOV camera view showing epipolar lines [111]. These images are from other
research not included in this thesis.

then unknown [50]. In the latter case, each robot performed single robot SLAM until a
rendezvous, at which point the particles and maps were transformed and merged. Any
inconsistencies in the individual robots’ maps results in an inconsistent global map after
merging. Fox et al. used RBPFs in a MR-SLAM implementation, however only to estimate
the initial relative poses [214, 27].

The minimum number of particles required for MR-SLAM is likely to be proportional to
the number of robots. This gives a minimum computation cost of O (RN logM), where R
is the number of robots. While the additional computation could be distributed over these
R robots, it remains difficult to merge globally consistent maps. Carlone et al. describe
such a distributed RBPF approach, however present limited results with two robots in a
small 20×10 meter environment [215].

2.5.3.8. Sliding Window Filter SLAM

Most filter-based SLAM algorithms, such as the EKF, minimize complexity by marginal-
izing out previous poses. This is done at the cost of accuracy when compared to the
full SLAM solution of T poses. Recognizing that most of the quadratic computational
complexity comes from theM map landmarks, sliding window filter (SWF) approaches aim
to increase accuracy by adding the K most recent poses to the filter also. If M � K, the
additional cost is minimal. Sibley et al. demonstrate a SWF with stereo visual odometry in
[216]. WithK = 1 their approach performs the same as an EKF, while forK = T the SWF
approaches the full SLAM solution. This work is important as it provides a continuum
between filtering-based approaches and the graph-based smoothing approaches described
in the next section.

65

Chapter 2 Review: Simultaneous Localization and Mapping

Newman et al. show impressive SLAM results using the SWF on the 2.2 km New College
mobile robot dataset [217]. Bibby and Reid describe reversible data association within
SWF with K = 6, demonstrating the ability to revisit data associations over the limited
time window [218]. Mei et al. describe relative SLAM in [219, 220], a stereo vision system
that that avoids creating a global coordinate frame and optimizing large loop closures. A
“double window” constant time visual SLAM algorithm is described by Strasdat et al. in
[221], where the inner window is a SWF.

2.5.4. Graph-Based SLAM

Graph-based SLAM techniques use maximum likelihood estimation (MLE) to find the best
configuration of a robot’s pose history that aligns sensor observations. In graph-based
techniques, robot poses form variable nodes in a graph, joined by probabilistic factors
or constraints that determines the spatial relationship between them. Often referred
to as factor graphs, these graph-based representations have been shown to scale well to
both large-scale SLAM and multi-robot SLAM. Graph-based SLAM techniques are used
extensively in this research work. This section gives a historical account of graph-based
SLAM techniques, reviews current work and then describes, in detail, how to optimize
graphs with MLE.

One of the most compelling reasons to use graph-base approaches is that they constantly
re-linearize around their current estimate, unlike filters such as the EKF and EIF that
“bake” linearization errors into their state. Performance is generally closer to the ideal
full SLAM solution (Section 2.5.2), however graph-based approaches still include approx-
imations to operate in polynomial-time.

One such approximation is to omit the map itself from estimation, and only optimize the
history of robot poses. These so-called pose graphs leverage an approximation frequently
used in SLAM: that measurements are conditionally independent given the robot’s pose.
For relatively accurate sensors, such as lidar scanners, this approximation holds well, so
that the majority of uncertainty can be attributed to the robot’s pose. The notion that
observations from the same pose produce a particular “view” of the environment led to
pose graph methods being introduced as “view-based” mapping [202, 222].

While the constraint factors in graph-based SLAM implicitly encode posterior distribu-
tions, obtaining the full joint posterior distribution for the entire graph is very expensive.
Instead, graph optimization algorithms produce a single maximum likelihood estimate
[135], and marginal covariances are only recovered if and when required [223].

66

2.5 SLAM Algorithms

2.5.4.1. Previous Work

There are several historical approaches to graph-based SLAM. The key computation
typically requires linearizing a nonlinear least-squares problem, and solving it with a first
or second order method. Consistent pose estimation (CPE) was first introduced in 1997
by Lu and Milios [224]. Their method directly inverted square matrices with a O(T 3) cost.
Gutmann and Konolige demonstrated on-line incremental CPE with loop closure in small
environments [225]. Graph-based SLAM was first demonstrated with multiple robots by
Howard et al. in 1999, [226, 227]. Section 3.2.3 provides a review of previous work specific
to MR-SLAM.

In 2006, Thrun and Montemerlo coined the term Graph SLAM for their EM-based large-
scale urban mapping work in [228]. Their landmark-based approach was demonstrated
off-line with a 600×800 meter dataset. At around the same time the SLAM community
began considering graph-based methods as viable on-line alternatives to EKF and other
filtering approaches.

There are two main methods for solving the least-squares optimization problem [229];
first order gradient-based iterative methods, and second-order direct methods are briefly
described here:

Iterative methods: many gradient-based approaches have been proposed, including
Howard et al. who used Gauss-Seidel relaxation [230]. Konolige demonstrated Preconju-
gate Gradient Descent (PCG) in large loopy environments with O (T log T) time complex-
ity [231]. Folkesson and Christensen described a trajectory-only iterative gradient descent
optimization in [232]. Olson et al. demonstrated a modified SGD algorithm that converges
quickly from poor initial estimates [233, 109].

Direct methods: insights into the structure of factor graphs, combined with better
solvers, have led to dramatic increases in the efficiency of direct methods. Researchers
noted structural similarities with the bundle adjustment (BA) problem from photogram-
metry and computer vision [234]. In 2006 Dellaert and Kaess described Square Root
SAM [7], which compared various factorization that exploited sparsity in the batch least-
squares optimization problem. Their incremental Smoothing and Mapping (iSAM) work
[235, 236], used sparse QR matrix factorizations to demonstrate on-line SLAM with costs
varying from O(T) to O(T 2).

Further efficiencies were demonstrated by Konolige et al., who introduced Sparse Pose
Adjustment (SPA) [237], which uses fast Cholesky factorization. In 2011 Kümmerle et al.
released a generic graph-based optimization framework called g2o, which is more efficient
than both SPA and iSAM on many types of SLAM problems [238].

67

Chapter 2 Review: Simultaneous Localization and Mapping

mi

w h

r0 r1 r2 r3 rtrt-1
u1
0 u2

1 u3
2 ut

t-1

z0 z1 z2 z3 zt-1 zt

Figure 2.16. Factor graph for occupancy gridmap SLAM: Full SLAM factor graph with plate
notation [100], the map is represented by an occupancy gridmap with cells, mi. Variable nodes are
large circles, while factor nodes are squares. Robot poses, rt, are variable nodes that are separated
by either odometry factors, ut−1

t , or measurement factors, zt.

Kaess et al. recently described iSAM2 [239], which introduces a Bayes Tree structure
that is more efficient than Cholesky factorization on most single robot problems. It is not
known how this approach performs in large MR-SLAM problems, especially when multiple
distributed robots are producing frequent structural changes across the entire pose graph.
Hybrid iterative-direct methods have been demonstrated [229], along with submapping
approaches, which are discussed in Section 2.5.5. Research in graph-based SLAM has
been greatly assisted by the release of the open source frameworks described here3. The
main factorizations and optimization techniques are described in the rest of this section.

2.5.4.2. Factors Graphs

Factor graphs are bipartite graphical models [240, 100] that are well suited for describing
graph-based SLAM problems. Figure 2.16 shows a full SLAM factor graph with an
occupancy gridmap of cells mi. Factor graphs have two node types: variable nodes
and factor nodes. Graph edges joining variable nodes are always separated by a single
factor node. In graph-based SLAM, robot pose estimates, r̂t, are separated by factors (or
constraints) generated from either odometry or sensor measurements.

Factors can have arbitrary probability distributions, however in this section we only
consider unimodal Gaussians (Chapter 6 describes a solution for multimodal Gaussians).
Bayesian graphical models, such as the one in Figure 2.13, are easily converted into factor
graphs. Dellaert provides a tutorial in [241].

3Available on-line: http://www.openslam.org

68

http://www.openslam.org

2.5 SLAM Algorithms

r0 r1 r2 r3 rtrt-1

c3t
u10 u21 u32 utt-1

Figure 2.17. Factor graph with a loop closure: A pose-graph SLAM estimation problem where
the robot poses, rt, are the variable nodes, separated by either odometry factors, ut, or loop closure
factors, cjk. A typical pose graph has many more loop closures.

2.5.4.3. Pose Graphs

Pose graphs are a type of factor graph where only the robot’s poses are estimated. The
map, mi, and raw sensor measurements, zt,i, from Figure 2.16 are marginalized out of
the estimation, resulting in the minimal graph shown in Figure 2.17. In a pose graph,
robot poses, rt, are linked either by odometry constraints, ut−1

t (Section 2.4.2), or loop
closure constraints, cjk (Section 2.4.4). Pose graphs are compact representation, which
makes them well suited for large environments with multiple robots and frequent loop
closures.

As an example, Figure 2.18 shows a single loop closure in the example problem described in
Section 2.1.4. Lidar scans acquired at the exact poses r3 and r49 are aligned with a scan-
matching algorithm based on ICP (Section 2.3.4.1). This relative SE (2) measurement
becomes the Gaussian constraint c49

3 = N (c49
3 ,Σ49,3) when combined with covariance

estimate Σ49,3. A similar loop closing factor, ct3, is shown in Figure 2.17. Techniques for
generating robust loop closure constraints are discussed in Section 5.4.

2.5.4.4. Spatial Constraint Factors

Spatial constraint factors encode distributions over the variable nodes they are connected
to. In pose graphs, these factors represent SE (2) spatial constraints. Odometry mea-
surements, ut−1

t = [xu, yu, φu]T , are added as factors joining poses rt−1 and rt with the
distributionN (ut−1

t ,Σu). Similarly, loop closing constraints, cjk = [xc, yc, φc]T form factors
joining poses rj and rk with the distribution N (cjk,Σj,k). Spatial constraint factors define
a “virtual” sensor model:

z (rj , rk) = �rWj � rWk (2.44)

The sensor model in Equation 2.44 predicts the constraint measurement based on the
current pose estimates rWj and rWk .

Figure 2.19 shows an enlarged view of the example problem at the moment the single
loop closure is detected. Before optimization, the green robot poses r3 and r49 are the

69

Chapter 2 Review: Simultaneous Localization and Mapping

c493

Figure 2.18. Loop closure constraints: A loop closure is found in the example problem. Blue
triangles are the exact robot pose, green triangles are estimates, red ellipses are lidar measurements.
Left: t = 3. Right: t = 49. After completing a loop of the room, a large amount of odometry
noise has accumulated. Note the similarity between the two lidar scans (red): the loop closure
constraint c49

3 is the estimated transform required to align them.

noisy pose estimate based purely on accumulated odometry. The virtual sensor model,
z (r49, r3) = �r49 �r3, predicts the constraint transform, which includes this accumulated
noise. If the pose graph is well-formed, after a few iterations of the optimizer the constraint
and sensor model prediction should be approximately equal, i.e. c49

3 ≈ �r49 � r3 and the
accumulated pose errors reduced.

During the maximum likelihood optimization, the spatial constraints act like springs. Each
constraint pushes and pulls on the poses it connects to, attempting to make the relative
SE (2) transform equal the constraint, i.e. z (rj , rk) ≈ cjk. The error between the sensor
model prediction and the measured constraint defines the residual error function:

ej,k = e(rj , rk, cjk) = cjk − z (rj , rk) (2.45)

Careful attention must be paid to ensure the residual is defined in the same frame as
the constraint, i.e. in rj . During optimization the magnitude of the residual corresponds
to the amount the constraint spring has been stretched or squashed from neutral. The

70

2.5 SLAM Algorithms

r3

r3r49
r49

c493

e493

Figure 2.19. Residual errors in loop closure constraints: The example problem at the moment
the loop closure is detected. Noisy pose estimates, r3 and r49, are shown in green. A “virtual”
sensor model predicts the constraint transform f (r49, r3) = �r49 � r3 based on the noisy poses.
After optimization the prediction, �r49 � r3, and the constraint measurement, c49

3 , should be
approximately equal, i.e. the residual error, e49

3 , in red should be minimized.

strength of the spring, or its reaction force, is defined by the covariances Σj,k, which if
well modeled produce the residual distribution:

N (ej,k,Σj,k) = 1
(2π)3/2 |Σj,k|1/2

exp
(
−1

2eTj,kΣ−1
j,kej,k

)
(2.46)

2.5.4.5. Constraint Cost Function

Maximum likelihood estimation attempts to find the best pose graph configuration that
satisfies all constraints simultaneously. Using the spring analogy from the previous section,
the pose graph reaches an optimum (local or global) when all of the spring forces and
torques are balanced and the poses are stable. Constraint residual errors cannot be
compared directly because they have different spring strengths (covariances). Instead,
each constraint is assigned a cost function that is the Mahalanobis distance squared [242]:

D2 = eTj,kΣ−1
j,kej,k = ‖ej,k‖2Σj,k

(2.47)

In the special case where Σj,k = diag(σ2
x, σ

2
y , σ

2
φ), the cost function becomes the normalized

Euclidean distance squared, i.e. ‖ej,k‖2Σj,k
∼ x2

j,k

σ2
x

+ y2
j,k

σ2
y

+ φ2
j,k

σ2
φ
. An intuitive interpretation

of Equation 2.47 is that the constraint cost is the sum of the residual’s components after
being squared and normalized by the covariance. Extending this to the spring analogy:
the constraint cost is how much the spring has been deflected, normalized by the spring’s
stiffness. Each constraint’s cost provides a measure of how well its residual fits inside

71

Chapter 2 Review: Simultaneous Localization and Mapping

its covariance. Constraint costs are expected to exhibit a chi-squared distribution of
dimension 3, or χ2 (3).

In SLAM, the 99.7% confidence interval, or 3-σ uncertainty bound, is often treated as a
significant boundary between inliers and outliers. For SE (2) constraints this 3-σ boundary
forms an ellipsoid-shaped volume in R3, where the boundary is given by ‖ej,k‖2Σj,k

=
χ2

0.997 (3) ≈ 14.16. To complete the spring analogy; a stiff spring equates to a small 3-σ
covariance ellipsoid, while a more flexible spring has a larger 3-σ ellipsoid.

Similar to other SLAM algorithms, we assume that no correlations exist between measure-
ments, and therefore constraint residuals and their costs are uncorrelated also. In reality
there are sources of error that can produce correlated residuals. A slightly misaligned
lidar scanner, for example, will produce biases in the headings indicated by all constraints.
While biased measurements will affect pose graph convergence, in practice, there are often
much larger sources or errors, such as odometry as discussed in Section 2.4.2.

2.5.4.6. Joint Probability Distribution

Pose graph optimization is generally performed using a maximum likelihood estimator on
the joint probability distribution. Thus, the joint probability distribution, x, for all T
robot poses and constraints is formed first. We start by stacking the pose estimates to
form the state vector:

x = [r0, r1, r2, r3 · · · rT]T (2.48)

Similarly, the constraints are grouped into two vectors, odometry u =
[
u0

1,u1
2,u2

3 · · · uT−1
T

]T
and loop closures c =

[
cjk · · ·

]T
. For conciseness, we redefine the constraint residual as a

function of the entire state vector. For a single loop closure constraint:

e(x, cjk) =
def

e(rj , rk, cjk) = cjk − z (rj , rk) (2.49)

Since odometry and loop closure constraints have independent Gaussian distributions, the
joint probability distribution for all poses, x, can be described as a product of factors:

p (x|u, c) =
T∏
t=1

N
(
e(x,ut−1

t),Σu

)
︸ ︷︷ ︸

Odometry Constraints

×
∏

cj
k
∈C

N
(
e(x, cjk),Σj,k

)
︸ ︷︷ ︸

Loop Closure Constraints

(2.50)

Recognizing that odometry and loop closures are both measurements of spatial constraints
that use the same residual function, we combine them here into a single vector to simplify
presentation:

72

2.5 SLAM Algorithms

z =
[

u
c

]
= [z0, z1, z2 · · · zi · · · zN]T (2.51)

Where each constraint, zi, is one of the N combined odometry and loop closure constraints
in the pose graph. The joint probability distribution from Equation 2.50 reduces to:

p (x|z) ' p (x|u, c) (2.52)

=
∏
i

N (e(x, zi),Σi) (2.53)

2.5.4.7. Nonlinear Least-Squares Form

This section derives the nonlinear least-squares form of the pose graph optimization prob-
lem. Pose graph optimization, or inference on factor graphs [100], is generally performed
using maximum likelihood estimation (MLE). In the case of 2-D SLAM, with a pose graph
of SE (2) constraints, this amounts to finding the configuration of poses that minimizes
the sum of all individual constraint costs ‖ej,k‖2Σj,k

from Equation 2.47.

We first initialize the state vector, x0, from Equation 2.48 with the best estimate available.
This is often achieved by fixing the first pose to zero and calculating the entire trajectory
of poses by accumulating odometry measurements as in Equation 2.25. For a multi-robot
pose graph, x0 can be initialized using a spanning tree that incorporates loop closure
constraints between robots.

By definition [238], the maximum likelihood estimate of x is:

x∗ = argmax
x

p (x|z) (2.54)

Where p (x|z) is the joint probability distribution from Equation 2.53. Equation 2.54 is
converted to its negative log likelihood form by substituting and taking the logarithm:

x∗ = argmax
x

log [p (x|z)] (2.55)

= argmax
x

log
[∏
i

N (e(x, zi),Σi)
]

(2.56)

= argmax
x

∑
i

log
[

1
(2π)3/2 |Σj,k|1/2

exp
(
−1

2eTj,kΣ−1
j,kej,k

)]
(2.57)

' argmin
x

∑
i

[1
2eTj,kΣ−1

j,kej,k
]

(2.58)

' argmin
x

∑
i

‖e(x, zi)‖2Σi
(2.59)

73

Chapter 2 Review: Simultaneous Localization and Mapping

In this frequently-used simplification, the logarithm cancels the exponential in the normal
function to give the least-squares form in Equation 2.59 [100]. We now stack the N

constraint residuals and their covariances:

e(x) =


e (x, z0)
e (x, z1)

...


3N×1

Σ =


Σ0 0 · · ·
0 Σ1 · · ·
...

... . . .


3N×3N

(2.60)

This allows us to express the least-squares form in Equation 2.59 even more compactly:

x∗ = argmin
x
‖e(x)‖2Σ (2.61)

Thus the maximum likelihood of a pose graph is estimated by finding the value for x∗ that
minimizes ‖e(x)‖2Σ, or the sum of all constraint costs simultaneously.

2.5.4.8. Gauss-Newton Algorithm

The Gauss-Newton algorithm is frequently used to find the maximum likelihood estimate
of a pose graph using the least-squares form in Equation 2.61. Gauss-Newton is an iterative
optimization algorithm that aims to reduce the total residual cost ‖e(x + δ)‖2Σ by solving
for an incremental step δ.

The residual error e (x + δ) is nonlinear and so it is approximated by a first-order Taylor
series expansion around x:

e (x + δ) ' e (x) + Jδ (2.62)

Here J is the Jacobians of the constraint residuals stacked, i.e.:

J =


J0

J1
...


3N×3T

(2.63)

Where each Jacobian, Ji, is a sparse block matrix with non-zero blocks for the poses rj
and rk that it connects:

Ji = δe(x, zi)
δx

∣∣∣∣
x

=

 0 · · · 0 δe(x, zi)
δrj︸ ︷︷ ︸

Pose rj

0 · · · 0 δe(x, zi)
δrk︸ ︷︷ ︸

Pose rk

0 · · · 0

 (2.64)

74

2.5 SLAM Algorithms

These Jacobians are derived in [243]. The least-squares form in Equation 2.61 becomes:

x∗ = argmin
x
‖e (x) + Jδ‖2Σ (2.65)

Combining this with Equation 2.47, the problem is linearized and expanded:

x∗ = argmin
x

(e (x) + Jδ)T Σ−1 (e (x) + Jδ) (2.66)

= argmin
x

δTJTΣ−1J︸ ︷︷ ︸
H

δ + 2e (x)T Σ−1J︸ ︷︷ ︸
b

δ + e (x)T Σ−1e (x)︸ ︷︷ ︸
k

(2.67)

Equation 2.67 is quadratic in the term δ, with the quadratic form, δTHδ+ 2bδ+ k. Thus
the incremental step, δ, is found by solving the normal equation for this quadratic, or the
linear system:

Hδ = −b (2.68)

Where:

H = JTΣ−1J (2.69)

b = e (x)T Σ−1J (2.70)

The incremental step δ in Equation 2.68 can be solved for by many different techniques,
for example Cholesky decomposition [100]. In each iteration, the maximum likelihood
estimate is calculated by applying the incremental step δ:

xk+1 = xk + δ (2.71)

If the previous estimate, xk, was near a minima in the cost function, the new cost,
‖e(xk+1)‖2Σ, is likely to be less. The algorithm is iterated until convergence or a maximum
iteration count is reached.

The matrix H = JTΣ−1J is an adjacency matrix, where the non-zero elements indicate
the pairs of poses in x that are coupled by constraints. Similar to information matri-
ces (Section 2.5.3.5), H is sparse, positive-semidefinite and symmetric. Each constraint
contributes four non-zero blocks to H: two blocks on the diagonal for each pose, and
two off-diagonal blocks between the poses [243]. The matrix H is additive; as additional
constraints connect poses they accumulate information, or their covariances decrease.

The linear system in Equation 2.68 is often solved directly using sparse Cholesky decompo-
sition. The structure of the problem is well understood, and highly efficient direct solvers

75

Chapter 2 Review: Simultaneous Localization and Mapping

x
0

x

y

Objective Function and Optimizer Descent Path

x*

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

3

4

5

6

7

8

9

10
Gradient Descent
Newton’s Method

x
0

x

y

Objective Function and Optimizer Descent Path

x*

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

4

6

8

10

12

14

16

18

20

22
Gradient Descent
Newton’s Method

Figure 2.20. Convergence properties: Convergence for different optimization algorithms varies
depending on the shape of the cost function. Here gradient descent and Newton’s method are
compared for a 2-D cost function ‖x‖2

Σ. Both circular (left) and ellipsoidal covariances (right) are
common in pose graphs. Gradient descent converges slowly, and while Newton’s method converges
quicker, it may get stuck at saddle points [234]. Figure courtesy Niko Sünderhauf [244].

are available. Modern software libraries, such as CSparse, use memory storage techniques
that maximize cache hits in modern processors [237, 238]. The structure of H and its
symbolic decomposition are constant during each optimization, and as such are reused for
efficiency.

2.5.4.9. Review of Optimization Algorithms

Several iterative and direct optimization algorithms are described here. Each takes a differ-
ent approach to calculating the incremental step δ, used in the state update Equation 2.71.
The ‖e(x)‖2Σ cost function in pose graph SLAM creates a large non-convex and nonlinear
solution space. As described in Section 2.2.2.1, and similar to the other SLAM algorithms
in Section 2.5.3, nonlinearity in the SE (2) constraints hampers convergence. Additionally,
we typically cannot satisfy all constraints simultaneously, which results in local minima
and no guarantee of convergence to the global optimum. Each algorithm has different
complexity and convergence properties that generally relies on the initial state, x0, starting
within some basin of convergence near global optimum.

Gradient descent: there are many iterative first-order algorithms that attempt to
minimize cost by taking λ-sized steps in the negative gradient direction:

δ = −λb (2.72)

Large steps can jump over valleys in the cost function, resulting in worse solutions. Thus
the step size, λ, is chosen using a line search algorithm. Gradient descent can be slow to

76

2.5 SLAM Algorithms

converge, Figure 2.20 shows two examples where the shape of the cost function and step
size greatly affect gradient descent’s rate of convergence.

Gauss-Newton: the Gauss-Newton algorithm was derived in the previous section. It is a
modification to Newton’s method that does not require second derivatives to be calculated.
The Hessian H = δ2e(x)

δx2 in Gauss-Newton is approximated by H = JTΣ−1J given in the
quadratic form, δTHδ + 2bδ + k, in Equation 2.67. The incremental step, δ, is found by
solving the linear system:

Hδ = −b (2.73)

Gauss-Newton is a direct, second-order method that converges quickly for simple least-
squares problems. It typically converges faster than simple gradient descent methods,
however can converge to saddle points [234].

Levenberg-Marquardt (LM): combines the guaranteed convergence of gradient descent
and the speed of Gauss-Newton. The incremental step, δ, is found by solving the linear
system augmented by the tunable damping factor λI:

(H + λI) δ = −b (2.74)

As the damping factor is increased, λ→∞, the algorithm tends toward gradient descent,
while reducing it, λ → 0, reverts to Gauss-Newton. Step control is a complex topic
[234]. Typically if the cost after an iteration, ‖e(xk + δ)‖2Σ, is lower, λ is decreased,
whereas if the cost is higher, the update is rejected and λ is increased. As λ increases,
LM switches to gradient descent to ensure convergence [111]. LM is widely used in pose
graph optimizations due to its convergence properties [237, 238], and is used extensively
throughout this research work.

Incremental smoothing and mapping (iSAM): is a direct second-order method.
Kaess et al. use a QR matrix factorization to exploit the Hessian’s sparsity, without
explicitly forming the normal equations [235, 236]. Even though QR factorization is con-
siderably slower than Cholesky [7], iSAM can reuse the factorization to provide an efficient
incremental algorithm. Periodic re-linearization of the Jacobians and re-factorization of
the Hessian are performed in batch updates, producing similar solutions to Gauss-Newton.

Hierarchical pose graphs (HOG-Man): Grisetti et al. estimate the structure of the
pose graph by sparsifying it into a hierarchy varying from a very coarse pose graph to the
original [245]. HOG-Man optimizes each level of the hierarchy separately, performing small
Cholesky factorizations with Gauss-Newton on each level, enabling efficient incremental
local updates.

77

Chapter 2 Review: Simultaneous Localization and Mapping

Stochastic gradient descent (SGD): Olson et al. demonstrated an iterative gradient
descent algorithm that converges quickly from poor initial estimates [233, 109]. By
randomly optimizing individual constraints, SGD “pulls” the pose graph around randomly,
and can “hop” over local minima. The step size, λ, is slowly decreased so the estimate is
encouraged to settle into the global minimum. Olson reduces the step size using λ = λ0

t .

2.5.5. Submapping Techniques

Submapping techniques exploit the structure of the SLAM problem to reduce computa-
tional cost and increase scalability. They divide the SLAM map into multiple partial
submaps, which results in an approximation the full SLAM solution. The SLAM algo-
rithms described in Section 2.5.3 provide insights into the structure of the SLAM problem.
The success of constant-time sparsification in the Sparse EIF [199], and periodic thinning
in the Thin Junction Tree Filter [204] suggest that parts of the full SLAM joint probability
distribution can be simplified without introducing large errors.

A similar structural insight is used in submapping approaches: spatially close map features
tend to be conditionally independent given the robot’s pose, resulting in local distributions
that are complex. These locally complex relationships tend to be less significant when
considering the global structure of a SLAM map, however, making them well-suited
for grouping into submaps. Thus the full SLAM joint probability distribution can be
approximated by many independent local submaps that have poses joined by probabilistic
constraints.

In a submapping system, a SLAM front-end constructs many small, local, submaps in
approximately constant time. Each submap defines its own local coordinate frame, an im-
portant distinction compared to other hierarchical approaches described in Section 2.5.3.
The submaps are embedded in a global frame and they are joined by a pose graph of
SE (2) constraints that are optimized by a graph-based SLAM back-end to construct global
maps. This modern graph-based submapping approach is described in more detail in
Section 4.3.1. The approach enforces independence between submaps, an approximation
that provides great efficiency in practice with minimal loss in accuracy (Chapter 7).

Prior to the development of efficient graph-based SLAM techniques (Section 2.5.4), ap-
proaches based on submapping were necessary to perform on-line SLAM at large scales.
Bosse et al. first described their submap-based Atlas Framework in 2003 [246, 247, 248].
Their system enabled a robot to drive several loops in a 250×200 meter environment.

Despite the success of Atlas-like submapping systems, in the decade since, many SLAM
researchers have continued pushing towards the “gold-standard” of full SLAM solutions,
describing techniques that globally optimize every pose, lidar scan and, in some cases,

78

2.5 SLAM Algorithms

every lidar return [136]. For multi-robot SLAM systems that need to operate on-line
and at large scales, however, these solutions are too computationally intensive, and it is
impractical to transmit billions of lidar measurements over RF communications.

My research work builds on the core submapping concepts described in the Atlas Frame-
work, adding several contributions that enable distributed multi-robot SLAM at large
scales (Chapter 4). The remainder of this section describes several key submapping
approaches described in the literature.

Atlas Framework (2003): Bosse et al. described Atlas as a “hybrid metrical/topological
approach” [246, 247, 248]. In the Atlas submapping approach, submaps of bounded size
and complexity are created using an EKF. Submaps are linked by SE (2) constraints,
and the back-end optimizes their poses using nonlinear least squares. New loop closure
constraints are validated using cycle verification to ensure they are in agreement. Atlas
has been demonstrated with both lidar and sonar sensors, and with both landmark-based
maps and scan matching. To minimize the number of submaps, Atlas allows robots to
re-enter and update previously created submaps. When extending Atlas to multi-robot
SLAM, however, this capability restricts it to operating in highly-centralized manner only.
Section 4.3.3 explains why Atlas is not well-suited to decentralized multi-robot SLAM.

Hierarchical SLAM (2005): Similar to Atlas, Estrada et al. describe a two level map
representation that includes independent local maps and a graph-based global constraint
map [249]. They also use an EKF to build local maps, noting that the accumulated
linearization errors were bounded. Estrada et al. allow previous submaps to be re-entered,
and the submap EKFs to be updated; an operation likely to introduce inconsistencies when
crossing coordinate frames. Unlike Atlas, Hierarchical SLAM optimizes graph cycles.
Their approach has been demonstrated on-line in a 100×100 meter environment with
large loop closures. In 2009 Estrada described a centralized MR-SLAM adaptation [250],
demonstrating it on the Victoria Park dataset divided into 6 pieces.

Tectonic Smoothing and Mapping (2007): Ni and Dellaert describe their batch
smoothing and mapping (SAM) approach in [251, 252]. They divide landmark-based
maps into submaps, and perform small pose graph optimizations in each local frame.
Importantly, they describe how grouping landmarks into rigid submaps, like tectonic
plates, also groups the relative constraint linearizations. A global optimization of the
SE (2) poses of these submaps avoids need to re-linearize measurements within submaps.
In [251] they describe “out-of-core” optimization, where submaps can be paged to disk so
that the entire SLAM problem does not need to fit in memory.

HMT-SLAM (2008): Blanco et al. describe a submapping approach called “hybrid
metric-topological” SLAM [253]. Their approach builds local submaps using RBPF’s,
and while it was not designed to output global maps, their submaps can be arranged

79

Chapter 2 Review: Simultaneous Localization and Mapping

into a global frame using their topological relationships and optimized with pose graph
techniques. Their approach is unique since it can create multimodal constraints between
submaps, however they are not used in pose graph optimization. Submap sizes are selected
based on the sensor’s properties such as noise and field of view; an approach also used in
my research work (Section 4.4.1.3).

2.6. Problem Review

This chapter has introduced the SLAM problem and described its key aspects, such as
data associations and loop closures, in detail. Table 2.1 summarizes these into various
problem areas, along with references to relevant publications that address them. The
problems with unique aspects that are directly addressed by my research contributions
are indicated by chapter.

80

2.6 Problem Review

Area Problem Relevant Publications Thesis

Data
Association

Constraints/correspondences: baked-in or reversible [144, 142, 254, 255, 218, 223] Ch 4, 6
Perceptual aliasing: corridors, repeating structures [123, 183, 256, 184, 257] Ch 5, 6
Non-static environment, moving object tracking [218, 258, 259] Ch 4
Multimodal constraints, multi-hypothesis [104, 260, 117] Ch 5, 6

Loop
Closing

Large loops: detecting, minimizing false positives [261, 256, 262, 263]

Visual place recognition [176, 170, 171, 217, 172, 173]

Localization

Motion models: odometry noise and failure modes [151, 135, 47, 158, 150]

Coordinate frame: global, robo-centric, relative, submaps [181, 220, 264, 247, 251] Ch 4
Global: GPS denied or intermittent [79, 164] Ch 4
Global: aerial image priors [265, 266, 267] Ch 4
Relocalization: kidnapped robot, place recognition [268, 27, 269, 261, 166, 174]

Mapping
Measurement models: sensors, accuracy and noise [135, 130, 136, 128, 133, 134]

Structure: metric, topological, submapping [140, 145, 149, 135] Ch 4
Map parameterization: landmarks, gridmap, point clouds [137, 129, 140, 135, 149] Ch 5

Bayesian
Estimation

Estimator choice: EKF filter, RBPF, pose graph [9, 6, 209, 212, 135, 193]

Nonlinearities in motion models and constraints [194, 110, 195, 135, 181]

Consistency, optimistic covariance estimates [155, 156, 157]

Computational complexity, memory usage [180, 185, 188, 193, 216]

Pose
Graphs

Nonlinear least-squares optimization, sparse factorization [224, 228, 233, 235, 245, 237]

Optimization convergence, convexity, approximations [233, 270, 271, 272, 273]

Graph simplification, bounding complexity [204, 207, 264, 274, 275, 263]

Robust constraints, constraint cycles [250, 263, 244, 276, 117, 277] Ch 5, 6
Multimodal optimizations, non-Gaussian distributions [57, 117, 278] Ch 6

Submapping

Spatial constraint estimation [279, 280, 281, 282] Ch 5
Map data fusion, simplification, deduplication [247, 56, 53] Ch 5
Consistent global estimation, conditional independence [283, 284, 188]

Optimal submap size, overlap [253] Ch 4

Large
Scale

Large areas, large trajectories [207, 229, 172, 266, 66, 53] Ch 4, 5
Highly cyclic graphs, high average node degree [236, 53, 239] Ch 4
Long time scales, life-long mapping across seasons [217, 275, 285, 172, 263]

Multiple
Robots

Relative pose initialization [203, 27, 191, 50, 286, 31] Ch 4
Real-world robust deployable systems [287, 53, 64, 58, 61] Ch 4
Wireless comms noise, drop-outs, bandwidth, latency [288, 289, 290, 291, 53] Ch 4
Decentralized data fusion, state estimation [292, 288, 293, 85, 294] Ch 4
Distributed processing, map building [292, 295, 296, 297, 298] Ch 4, 5
Continuous loop closures, dense graphs [236, 53, 299] Ch 4
Robust constraints, pose graph convergence [300, 301, 302] Ch 6

Table 2.1. Key SLAM problems and research contributions by chapter: Key problem
areas are listed here along with relevant publications that have been referenced in this thesis. My
research work was deployed into real-world environments as part of a working MR-SLAM system,
therefore it had to solve most of these problems. Problems with unique aspects directly addressed
by this research work are indicated by chapter.

81

3 Review: Large-Scale
Multi-Robot SLAM

Multi-robot SLAM introduces a unique set of problems in addition to the
single-robot problems described in Chapter 2. The complex distributed nature
of MR-SLAM ensures that its solutions are not trivial extensions to existing
single-robot SLAM algorithms. After providing some definitions in Section 3.1,
Section 3.2 outlines the key MR-SLAM problems, introduces several high-
level system architectures and reviews the MR-SLAM literature. Section 3.3
summarizes SLAM systems that have been demonstrated at large scales, and
concludes by considering how MR-SLAM algorithms scale.

3.1. Definitions

Throughout this thesis I use the term “SLAM algorithm” to describe the math used for
probabilistic estimation. Here I introduce the term “SLAM architecture” to indicate a
high-level design abstraction and “SLAM system” to describe a particular instance of a
SLAM architecture and algorithm.

For any on-line SLAM architecture it is convenient to divide the system’s functionality
into front-end and back-end roles. This terminology was used by Karlsson et al. in [303],
and it has become widely used in the literature, e.g. [243, 237, 221, 53]:

83

Chapter 3 Review: Large-Scale Multi-Robot SLAM

• Front-end: runs on each robot where it acquires raw sensor data, often performing
preprocessing on it. The front-end may simply filter sensor and odometry data
to remove noise, compress redundant data, or to perform data association, e.g.
[27]. More complex front-ends use a local SLAM algorithm to fuse sensor data,
transmitting only compressed data with probabilistic estimates, e.g. [53, 58].

• Back-end: executes a MR-SLAM algorithm that maintains a probabilistic model of
the robots and environment. The back-end fuses global maps and produces real-time
localization data for other components of a MRS, such as global path planners. The
back-end role is typically more computationally intensive than the front-end.

For brevity, the acronym UGV will be used to describe the unmanned ground robots
that participate in a MRS, while the term ground control station, or GCS, will be used to
describe the computers that interact with the MRS. Collectively, UGV and GCS computers
are referred to here as the participants in a MRS.

In the context of MR-SLAM in the following discussions, the term large scale is used
to describe demonstrations where the sum of accumulated distances driven by all UGVs
is greater than 5 km. The accumulated distance is not the only factor that determine
the complexity of the MR-SLAM problem, however, and the definition of “large scale” is
considered more thoroughly in Section 3.3.

3.2. Multi-Robot SLAM

3.2.1. Problem Statement

While the multi-robot SLAM problem is a natural extension to the single-robot SLAM
problem introduced in Chapter 2, its distributed nature makes it considerably more com-
plex when deployed at the core of a coordinated MRS. The MR-SLAM problem requires
more than a collection of single-robot SLAM algorithms: each robot needs to be localized
in a single global coordinate frame, while large volumes of sensor data needs to be fused
into maps in real-time. MR-SLAM problems frequently described in the literature include:

• Consistent coordinate frames: locally smooth coordinate frames for sharing
global or relative spatial information.

• Global map merging: taking sensor data acquired by multiple UGVs and fusing
into a single global or windowed map.

• Relative pose initialization: identifying SE (2) transforms between UGV coordi-
nate frames, particularly after rendezvous when starting from different locations.

• Decentralized data fusion: enabling UGVs to perform MR-SLAM independently.
• Global convergence: ensuring optimization is robust to outliers and local minima.

84

3.2 Multi-Robot SLAM

For real-world deployments, the spatially and computationally distributed nature of the
MR-SLAM problem introduces many unique aspects that require careful architectural
considerations, including:

• Wireless communications: working with networks that are potentially intermit-
tent and lossy, often with high-latencies and low-bandwidth.

• Data reduction: parameterizing and compressing large quantities of sensor data
to enable efficient wireless communication and data fusion.

• Distributed computation: dividing SLAM algorithms and their computation over
all UGV computers.

• Distributed map building: producing global or windowed maps on all UGV and
GCS computers as needed.

• Continuous loop closures: handling dense and cyclical spatial constraints caused
by multiple UGVs exploring together.

• Map divergence: preventing the distributed copies of global maps from becoming
too different.

• Double counting: preventing overconfidence by ensuring measurements are only
fused into the global map once.

• Mutual observations: exploiting information from direct observations between
UGV during rendezvous.

• Heterogeneous teams: integrating sensor data from different UGV designs.
• Race conditions: avoiding timing-related problems due to latencies and messages

arriving out of order.

Many of these problems are complex, ensuring that MR-SLAM is not a trivial upgrade
over single-robot SLAM.

3.2.2. Architectures

For a stand-alone UGV, such as a household vacuum cleaner, the SLAM front-end and
back-end roles and their associated data flows all occur within a single on-board CPU,
leaving little scope for architectural variation. When multiple UGVs are considered,
however, multiple additional distributed CPUs are available and architectural decisions
must be made that determine where the back-end roles are performed and what data
should flow over the wireless communications.

The MR-SLAM architectures described in the literature fall somewhere between centralized
and decentralized, with many variations in-between. Similarly, the computation of a
MR-SLAM algorithm can be performed on a centralized server, or distributed over all
computers in a MRS. To avoid ambiguities that exists in the early literature, four broad
classes of architecture are defined below, their relationship is illustrated in Figure 3.1.

85

Chapter 3 Review: Large-Scale Multi-Robot SLAM

Centralized

Decoupled
Centralized

Decentralized

Distributed
Computation

Distributed
Map Building

This
research

work

Figure 3.1. MR-SLAM architectures: Venn diagram showing different classes of MR-SLAM
architectures spanning from centralized to decentralized. Not all architectures that distribute
MR-SLAM computation are able to build distributed copies of the global map. For reference, the
hybrid-decentralized architecture designed for my research provides fully distributed computation
and map building. It is described in Chapter 4, and shown here in green.

• Centralized architectures: have a single computer at the GCS with a promoted
role. Each UGV runs a minimal front-end that transmits all sensor data to this
centralized computer, which runs a single MR-SLAM back-end algorithm that fuses
the data from all UGVs. While this minimizes computation and storage requirements
on each UGV, it requires considerable wireless communications bandwidth for each
UGV. UGVs have limited spatial abilities and must be micro-managed by the GCS,
so that even a minor communications issue will paralyze the UGV team.

• Decoupled centralized architectures (DCA): have a single centralized com-
puter at the GCS, however each UGV maintains its own local coordinate frame
that is locally smooth and independent of the back-end [29, 53, 58]. Each UGV
front-end defines a decoupled coordinate system that uses a local filter to produce
pose estimates from lidar scan matching and odometry. The UGV front-ends do
not perform loop closures, ensuring that pose estimates in the local frame vary
smoothly over time. Moore et al. describe the merits of this approach in [304], while
Mei et al. survey several other relative SLAM coordinate systems approaches in
[220]. We adopt Olson et al.’s terminology from [53], when referring to this approach
as DCA. In DCA, a single MR-SLAM back-end runs on the centralized computer
where it fuses preprocessed data from all UGVs. DCA requires part of the front-end
SLAM computation to be distributed to each UGV, however it allows the front-
end’s computational requirements to be bounded by limiting the size or complexity
of the filter (e.g. a SWF from Section 2.5.3.8). A significant benefit of DCA is that
individual UGVs can continue to perform limited operations independent of the GCS

86

3.2 Multi-Robot SLAM

during brief communications outages. Without loop closures, however, this ability
is limited by the rate at which odometry errors accumulate.

• Distributed architectures: describe algorithms or computation that is divided
into parts and executed across a network of multiple computers. When a MR-SLAM
architecture is distributed, the various parts of the MR-SLAM algorithm are exe-
cuted on different computers in the MRS (both UGV and GCS computers). The
simplest distributed architectures shift as much of the front-end SLAM computation
onto the UGVs as possible (e.g. DCA), or use the UGVs to search for local loop
closures. More complex architectures run distributed instances of the MR-SLAM
back-end on each computer, allowing computation to be more evenly distributed.
While this enables individual UGVs to produce their own copy of the map, or search
for global loop closures independent of the GCS, it requires some, or all, of the
MR-SLAM data to be distributed across the MRS computers. This data distribution
may be expensive for wireless networks without broadcast capabilities.

• Decentralized architectures: describe systems that have no centralized con-
troller and where all participant computers are equal. Thus in a decentralized
MR-SLAM architecture, all UGVs perform MR-SLAM independently by executing
local instances of the back-end. Each UGV maintains a copy of the global map
and state estimates, however they may be incomplete, and typically no single UGV
is aware of the complete network topology [288, 293]. While this independence
provides robustness to many types of MRS failures, it comes at a cost of redundant
computation and risk of global map divergence due to incomplete state information
and overconfidence due to double-counting. Implementations with point-to-point
communications require each UGV to retransmit SLAM data to every other UGV,
e.g. [288]. Decentralized architectures may enable UGVs to plan paths and perform
complex tasks without continuous communications with the GCS, however these
paths may be globally suboptimal due to incomplete information.

Table 3.1 summarizes the advantages and disadvantages of these architectures, such as
tolerance to failures and comparing capabilities such distributed map building and UGV
navigation independent to the GCS.

3.2.3. Previous Work

This section reviews previous work, with a focus on large-scale MR-SLAM systems that
are comparable to my research. This review is split into three parts: the decade before
the 2010 MAGIC challenge, the MAGIC challenge, and the few years since. The section
concludes with a timeline and summary of comparable systems in Table 3.2.

87

Chapter 3 Review: Large-Scale Multi-Robot SLAM

Centralized
Decoupled
Centralized

Decentralized
Hybrid-

Decentralized
(This work)

Distributed global map building 6 6 6 3

Distributed back-end computation 6 Partly 3 3

Tolerant to failure at GCS 6 6 3 3

Decentralized local UGV navigation 6 3 3 3

Decentralized global UGV navigation 6 6 6 3

Avoids map divergence 3 3 6 3

Avoids double counting 3 3 Some 3

Tolerant to comms interference 6 Limited 3 3

Comms relative bandwidth Very High Low High Low

Comms est. KB/s for n UGVs 100n n n(n− 1) n

Front-end: filter or local SLAM 6 3 Optional 3

Back-end: MR-SLAM algorithm GCS only GCS only UGV & GCS UGV & GCS

UGV processor/memory requirement Low/Low Med/Low High/High Med/High

GCS processor/memory requirement V.High/High High/High High/High High/High

References [305, 31] [27, 53, 58] [288, 290, 296] [66, 64]

Table 3.1. MR-SLAM architecture comparison: Capabilities and performance estimates
for various levels of centralization. Relative estimates for communications, processor and
memory requirements are given for a lidar-based UGV configuration that uses point-to-point
communications. The hybrid-decentralized architecture is shown here for reference, it is described
in detail in Chapter 4.

3.2.3.1. 1999-2009

While MR-SLAM was first described in the early 1990s [306], it was not until the late
1990s that it was first demonstrated. Howard and Kitchen described their Cooperative
Localization and Mapping (CLAM) system in 1999 [227], which performed MR-SLAM
using two robots. Vision-based front-ends transmitted range and bearing data to a cen-
tralized server. A single back-end used nonlinear least squares to optimize the trajectory to
best fit the observations. This was an early description of a graph-based SLAM algorithm
(Section 2.5.4.1).

Graph-based approaches were considered too expensive for the next several years, and
instead the filter-based approaches that were popular for single-robot SLAM were shoe-
horned into MR-SLAM systems. Filter-based approaches, their limitations and scalability
issues are reviewed in Section 2.5.3. Filters like the EKF, for example, are not well-suited
for distributing over multiple computers in a MR-SLAM system, and typically require
a highly-centralized architectures. Submapping approaches with periodic map-merging
have been demonstrated [189], however for large areas and large teams of UGVs these
approaches are still limited by either the quadratic nature of the filter, or inconsistencies
resulting from “baked-in” nonlinearities [192].

88

3.2 Multi-Robot SLAM

In 2003 Makarenko and Durrant-Whyte demonstrated Decentralized Data Fusion (DDF)
producing an occupancy gridmap for two UGVs [295, 293]. Originally designed for net-
works of sensors, DDF is a Bayesian data fusion technique; a comprehensive review is
given by Liggens et al. in [292]. DDF has been demonstrated with graphical models
(Section 2.5.2) in [296]. Sukkarieh et al. describe the application of DDF in the ANSER
Project in [288], where four MAVs perform MR-SLAM using monocular cameras and
landmark-based maps. The architecture they describe is fully decentralized, using infor-
mation filters (described in Section 2.5.3.5) to share and fuse estimates. To avoid double-
counting measurements they use channel filters to track information that has already
been shared. To avoid duplicating information they use the information filter’s convenient
property that information can be removed by subtraction. In recent flight tests the
team has demonstrated impressive results, including on-line MR-SLAM with two MAVs
[85, 307].

One of the earliest mentions of distributed and decentralized graph-based MR-SLAM is
by Konolige et al. in 2003 [308]. The UGVs in their MRS broadcast their lidar scans so
that each UGV could build a local copy of the map using scan matching [224]. They
demonstrated five UGVs operating on-line, however noted a quadratic increase in compu-
tation time. This work was a precursor to their distributed “Centibots” MR-SLAM system
[28, 27, 49], designed for the DARPA SDR program in 2003 (described in Section 1.3.4). In
their MR-SLAM architecture the front-end on each UGV transmitted odometry and lidar
scans every 50 cm of motion. They described groups of UGVs moving in cliques, where one
UGV was promoted to the MR-SLAM back-end role. The promoted UGV performed the
expensive pose graph optimization and transmitted updates back to the remaining UGVs
where distributed, local, copies of the map were generated. This impressive MR-SLAM
system was demonstrated in a 45×25 m2 indoor environment with three UGVs [27]. It
also demonstrated robust relative pose initialization between pairs of UGVs using particle
filters.

Howard et al. also demonstrated a MR-SLAM system in the 2003 DARPA SDR program
[29, 51]. They described an architecture with separate local and global coordinate frames,
similar to DCA (Section 3.2.2). Each UGV’s front-end performed lidar scan matching with
a SWF, transmitting lidar scans and decoupled pose estimates to the GCS. A centralized
MR-SLAM back-end aggregated lidar scans from 3-10 m traverses into small local maps, or
submaps. The back-end assembled these submaps into a pose graph which was optimized
with MLE. Global occupancy-grids were produced at the centralized back-end. Howard
et al. demonstrated four UGVs mapping in the SDR program. They tolerated noisy
communications, with the exploration algorithm actively filling holes in the global map
with other UGVs. They demonstrated relative pose initialization using mutual visual
observations between pairs of UGVs.

89

Chapter 3 Review: Large-Scale Multi-Robot SLAM

Several key papers on single-robot pose-graph SLAM were published in 2006, including
Thrun and Montemerlo’s Graph SLAM [228], Olson et al.’s iterative Stochastic Gradient
Descent [233], and Dellaert and Kaess’ Square Root SAM [7]. In the years since, several
graph-based MR-SLAM algorithms have been described. Many of these were demonstrated
off-line with either prerecorded datasets or in simulations— likely due to the high cost of
MR-SLAM research (Section 1.3.1). While many of these works describe algorithms that
have been demonstrated on-line, they were often evaluated in centralized architectures,
therefore avoiding many significant MR-SLAM problems by assuming perfect communi-
cations with zero-latency, no losses and infinite bandwidth.

Andersson and Nygårds described a landmark-based MR-SLAM algorithm that used SAM
[305, 286]. Their method allowed MR-SLAM without initial knowledge of relative poses
and handled map merges after a rendezvous. They demonstrated a centralized algorithm
with two UGVs in a 12×6 meter environment. In [309], Chang et al. describe a MR-SLAM
algorithm that generated topological/metric maps. Their highly-centralized submapping
approach generated gridmaps after an off-line pose graph optimization. Estrada et al.
described hierarchical MR-SLAM and demonstrated it off-line on the Victoria Park dataset
divided into six parts [249, 250]. Pfingsthorn et al. implemented a manifold-based approach
using a pose graph [310]. While they demonstrated their MR-SLAM system with the
USARsim simulator (Section 1.4.1), they did not demonstrate loop closures in real-world
datasets.

3.2.3.2. 2010 MAGIC Challenge

While five teams competed at the MAGIC challenge (refer to Section 1.3.4.2), only three
of the teams demonstrated MR-SLAM systems that they later described in publications:
Team Michigan (TM) [53, 54], University of Pennsylvania (Penn) [58, 311] and Team
WAMbot [66, 64]. The latter is my research work that is described throughout this thesis.

Lee et al. demonstrated Penn’s nine-robot MRS at the MAGIC challenge; their MR-SLAM
system is described in [58, 311]. Their architecture was centralized however it used
DCA to enable limited UGV operations independent of the GCS. They distributed all
front-end SLAM computation to the UGVs, where they used Rao-Blackwellized particle
filters (Section 2.5.3.7) to perform local SLAM and build 2-D occupancy gridmaps. The
front-ends used a sliding window to remove old data and limit the accumulation of
drift/errors in these gridmaps. To minimize communications bandwidth, only deltas to
these gridmap cells were transmitted to the GCS. Their communications did not provide
acknowledgements or delivery guarantees, however, and losses could cause parts of the
global map to diverge from local maps. Their MR-SLAM back-end is described as pose-
graph SLAM, however to the best of my knowledge, it was not implemented. Penn’s global

90

3.2 Multi-Robot SLAM

maps, shown in [58] and [311], were generated from their datasets as an early part of my
research work. More detail on their MRS architecture is given in Appendix A.

Olson et al.’s MR-SLAM system [53, 54], was designed to meet the same large-scale
requirements as my research work, and is the most comparable. Their system was demon-
strated on-line during the MAGIC challenge with 15 UGVs. Similar to Penn, Olson et al.
used DCA to enable limited UGV operations independent of the GCS. The UGV front-
ends performed localization in decoupled frames using a local SLAM algorithm with a
“forgetful” 15 second sliding window. They used a servo-actuated “nodding” lidar scanner
to acquire 3-D point clouds that were flattened into 2-D point clouds. Each 1.25 second
scan was quantized and compressed into a “maplet,” similar to a 2-D lidar scan. A single
MR-SLAM back-end at the GCS assembled a centralized global map, and while lossy
communications meant this map was often incomplete, the UGV’s forgetful front-ends
helped to ensure that map divergence did not paralyze the MRS. Their MR-SLAM back-
end treated the maplets like 2-D lidar scans, performing scan matching for all 15 UGVs.
Odometry and scan matching constraints were formed into a centralized pose graph that
was optimized using Gauss-Newton (Section 2.5.4.7) and solved with Cholesky decompo-
sition. They implemented a graph simplification algorithm that identified and removed
redundant constraints [53], and a caching scheme to reduce redundant computation during
gridmap building [56]. More detail on their MRS architecture is given in Appendix A.

3.2.3.3. 2010-2015

Since the MAGIC challenge, several authors have described MR-SLAM systems that are
less-centralized. In [294, 298], Leung et al. describe a decentralized MR-SLAM approach
that uses checkpoints to maintain synchronization of a distributed map. Their approach
ensures each UGV’s checkpoints are the same as the equivalent centralized estimate. While
they demonstrate five UGVs (N = 5) building 2-D landmark-based maps, their approach
is only evaluated in a 15×8 meter room with M = 15 landmarks. In highly-overlapped
experiments, the computational complexity of their EKF-based approach scales with
O
(
N4 +N3M

)
, suggesting a complexity that is unlikely to scale to large areas or large

teams of overlapping robots. Their 2-D landmark-based maps minimize communications
requirements, however they lack the fidelity to describe most real-world environments.

Cunningham et al. described a distributed smoothing and mapping approach (DDF-SAM)
that uses pose-graph SLAM to build small local graphs [297]. They condense local graphs
into submaps and announce them to neighboring UGVs. Each UGV caches the condensed
graphs and re-shares them, potentially sharing graphs between UGVs that are not in
direct communications range. They demonstrate DDF-SAM on-line in a 100×100 m 2-D
simulation and on Freiburg datasets [312], in both cases they use a single computer and
avoid communication losses. In more recent work they demonstrate DDF-SAM using

91

Chapter 3 Review: Large-Scale Multi-Robot SLAM

RANSAC [313] to match local graphs and an updated design that prevents double-counting
of information [314, 315]. Similar to Leung et al., their 2-D landmark-based maps lack the
detail needed to describe real-world environments.

Kim et al. describe a centralized MR-SLAM system that uses iSAM (Section 2.5.4.1) to
build pose graphs with lidar scan matching [31]. They solve the initialization problem by
anchoring UGVs in separate coordinate frames and relating them with SE (2) constraints
after a rendezvous. Their centralized architecture has been demonstrated processing
datasets in real-time (but not on-line), and in one dataset they show a quadrotor MAV
and UGV team building a gridmap in a 45×60 m area. The detected rendezvous using
a camera and checkerboard, while they assumed perfect communications and unlimited
bandwidth. Kim et al. describe improved initial convergence using anchors. For on-
line systems, however, the ongoing cost of their coordinate transforms become expensive.
Observations between UGVs’ frames are coupled by the anchor variables, which adds
additional non-zero elements in the Hessian matrix (Section 2.5.4.8). With this increased
fill-in, Kim et al.’s anchoring approach would becomes expensive in MR-SLAM datasets
with large numbers of loop closure constraints.

Several other systems with centralized architectures have been described over the last
few years. While none have demonstrated MR-SLAM at scales larger than the MAGIC
challenge, there are a few notable systems that address aspects of the communication
problem. Guivant et al. describe the compression and transmission of 3-D SLAM data
with a centralized server in [316]. Their well-designed system was initially designed for
the MAGIC challenge, however it was not demonstrated in a MRS or at large scales.
Dellaert et al. present simulations of a highly-centralized “map-server” design in [317].
They describe a submapping approach that they plan to use for MR-SLAM in a “cloud-
based” centralized design. Other cloud-based designs have been described more recently
by Riazuelo et al. [4] and Mohanarajah et al. [5].

Using an accumulated distance greater than 5 km as a threshold for large-scale MR-SLAM
(Section 3.1), the only systems that have demonstrated detailed global maps at large
scales were demonstrated at the MAGIC challenge [53, 54, 58, 311, 66, 64]. Similarly,
the only system that has demonstrated fully-decentralized and distributed MR-SLAM at
large scales was the DDF-based ANSER system [288, 85, 307], however it produced sparse,
landmark-based, maps. These sparse maps, while large, lack the fidelity to represent real-
world environments. Table 3.2 summarizes and compares the systems reviewed in this
section.

92

3.3 Large-Scale SLAM

Capabilities: K
on

ol
ig
e
et

al
. (

SD
R
)

H
ow

ar
d
et

al
.
(S
D
R
)

A
nd

er
ss
on

an
d
N
yg
år
ds

Es
tr
ad

a
et

al
.

Su
kk

ar
ie
h
et

al
.
(A

N
SE

R
)

O
lso

n
et

al
.
(T

M
, M

A
G
IC

)
Le

e
et

al
.
(P

en
n,

M
A
G
IC

)
Le

un
g
et

al
.

C
un

ni
ng

ha
m

et
al
.
(D

D
F-
SA

M
)

R
ei
d
et

al
.
(T

hi
s
w
or
k)

Multi-robot teams 3 3 3 3 3 3 3 3 3 3

On-line, real-time 3 3 3 6 3 3 3 3 3 3

Large scale 6 6 6 6 3 3 3 6 6 3

Detailed map representation 3 3 6 6 6 3 3 6 6 3

Avoids map divergence 3 3 3 3 6 3 3 3 6 3

Distributed map building 3 6 6 6 6 6 6 3 6 3

Distributed computation 6 6 6 6 3 6 6 3 3 3

Decentralized back-end 6 6 6 6 3 6 6 3 3 3

Details:
Pose graph back-end 3 3 6 3 6 3 3 6 3 3

Occupancy gridmaps 3 3 6 6 6 3 3 6 6 3

Submapping 6 3 6 3 6 6 6 6 3 3

Year 2004 2004 2008 2009 2009 2010 2010 2011 2013 2015

Relevant publications [27,
28]

[29,
51]

[305,
286]

[249,
250]

[85,
307]

[53,
54]

[60,
58]

[294,
298]

[297,
315]

[66,
64]

Table 3.2. MR-SLAM timeline: Significant MR-SLAM systems and their capabilities. Here,
the term “large scale” describes a system that has been demonstrated with more than 5 km of
continuous driving. My research work is shown for reference also.

3.3. Large-Scale SLAM

In Section 3.1 I used the accumulated distance driven by UGVs as a proxy for the scale
and complexity of a SLAM problem. This provides an incomplete view, however, since the
map extents, map resolution and trajectory loopiness are also important in determining
the scalability of a SLAM solution. This section explores the state of the art in large-scale
SLAM.

3.3.1. Large Areas and Trajectories

A comprehensive literature survey found many examples of “large scale” being used
to describe SLAM algorithms. In 2000, a 9×3 meter area was considered large scale
[186], while in the years since the term has been used to describe increasingly larger
demonstrations. Table 3.3 summarizes the most significant publications over time. Over
the last five years, many researchers have shifted their focus away from lidar to vision-based

93

Chapter 3 Review: Large-Scale Multi-Robot SLAM

SLAM systems such as Mei et al.’s RSLAM [220] and Cummins et al.’s FABMAP [172].
While they have demonstrated large trajectories, 142 and 1000 kilometers respectively,
their SLAM outputs are sparse and lack the detailed information necessary for robot
navigation.

For a MRS that operates in close proximity, SLAM must produce metrically accurate
maps that are detailed enough for UGVs to plan paths through operational areas while
navigating around each other. The extents of these maps are ultimately determined by
the UGV range (e.g. speed, battery capacity and RF communication strength), while the
resolution of these maps is determined by the footprint of the UGV and the smallest
obstacles it could encounter (e.g. doorways or posts). Section 2.3.4 justifies the use of
large gridmaps for MRS operations.

As summarized in Table 3.3, in 2003 the largest on-line MR-SLAM system that produced
metrically-accurate gridmaps was demonstrated with four UGVs in a 45×25 meter indoor
environment [51]. In 2010, a UGV and MAV pair were demonstrated in a 45×60 meter area
[31], while at the MAGIC challenge up to 14 UGVs were demonstrated in a 210×150 meter
mixed indoor/outdoor environment [53]. For the MAGIC challenge, where the ~50 cm
UGVs had to navigate through doorways, the required mapping resolution was about
0.1 meters. Combined with the extents of the operational area (500×500 meters), this
defined gridmaps of 5000×5000 cells; an order of magnitude larger than any other single
or multi-robot SLAM system described in the literature.

It is interesting to note that global gridmaps output by these “large-scale” SLAM systems
are unlikely to be useful beyond a certain size. For example, while my research work can
produce 1,600×1,600 meter gridmaps at 0.1 meter resolution, it is questionable whether
such maps would be useful in high-level tasks. Path planning in large gridmaps quickly
becomes computationally expensive, and a city-scale MRS would instead use a hierarchical
approach: global topological abstractions (i.e. road maps) for high-level planning, and
smaller submaps for local fine-grained planning. This extension to my research is proposed
in Chapter 8.

3.3.2. Large Teams of Robots

Section 3.2.1 outlined how the transition from single to multi-robot SLAM creates addi-
tional challenges. For state-of-the-art pose graph solutions, such as [53], the computational
cost, memory storage and communications bandwidth requirements scale between O(n)
and O(n2) for n UGVs that are constantly exploring. As discussed in [53], communica-
tions bandwidth is likely to be the factor limiting team size, particularly for lossy RF
communications with large latencies.

94

3.3 Large-Scale SLAM

Name Test Environment SLAM Algorithm
Leonard and Feder, DSM
2000 [186]

9×3 m tank, 1
100 scale AUV, sonar,

93 landmarks
Landmark-based, EKF divided into
decoupled overlapping submaps

Hahnel et al.
2003 [209]

28×28 m, Intel Research Lab,
491 m loopy trajectory

Lidar scan matching, FastSLAM/RBPF,
100 particles, real-time

Bosse et al. Atlas,
2003 [246, 247, 248]

250×200 m, MIT Killian Court,
1,453 m trajectory, several loops

Lidar scan matching, 115 EKF submaps,
global pose graph, cycle verification

Konolige et al. Centibots,
2006 [28, 27]

45×25 m indoor, Fort AP Hill,
DARPA SDR, 3 mapping robots

Lidar scan matching, pose graph
optimization, multi-robot

F

Howard et al.
2006 [29, 50]

45×25 m indoor, Fort AP Hill,
DARPA SDR, 4 mapping robots

Lidar scan matching, pose graph
optimization, multi-robot

F

Frese et al. Treemap,
2006 [207]

350×350 m, 4× simulated 100 story
buildings, 3,708,301 poses

Landmark-based, hierarchical graph,
many independent floors, large cliques

Thrun and Montemerlo,
2006 [228]

600×800 m, Stanford University,
100,000,000 landmarks

Landmark-based, pose graph, off-line
EM-based optimization

Estrada et al. Hierarchical
SLAM, 2005 [249, 250]

100×100 m indoor/outdoor, 735 m
trajectory, 3 loop closures

Landmark-based, MR-SLAM, EKF
submaps, graph-based global opt.

Kaess et al.
2007 iSAM [235, 236]
2012 iSAM2 [239]

250×300 m, Sydney University
Victoria Park, trees only, 4 km
trajectory, 6968 poses, 8 loops

Landmark-based SAM, pose graph, QR
factorization, 7× real-time, library used
in many other publications

Ni et al. Tectonic SAM
2007 [251, 252]

4,856 poses, 18,000 landmarks,
simulated block-world

Landmark, pose graph, batch SAM,
submapping, out-of-core processing

Piniés et al. CI-Graph
2008 [284, 318, 188]

300×300 m, 1,365 m trajectory,
9-loops, 34,173 trinocular images

Landmark-based, EKF visual SLAM,
conditionally independent submaps

Blanco et al. HMT-SLAM
2008 [253]

250×150 m, University of Malaga,
2 km trajectory, 5,000 poses

Topo-metric, submapping, RBPF,
landmark or gridmap, optional global

Konolige and Agrawal,
FrameSLAM, 2008 [264]

10 km crusher dataset, two 5 km
off-road loops, 42,000 images

Visual SLAM, pose graph, skeleton
graph marginalization, real-time

Dellaert et al. SPCG,
2010 [229]

35×25 km, central Beijing, 25,474
poses, 28,624 constraints

Hybrid pose graph, conjugate gradient
descent, direct methods on subgraphs

Kim et al.
2010 [31]

45×60 m, indoor loading dock,
UGV and quadrotor MAV

Multi-robot, lidar scan matching, iSAM,
multiple relative pose graphs

F

Cummins et al. FABMAP,
2011 [170, 172]

1000 km roadways urban and rural,
103,256 camera images

Topological, visual appearance-based
PR, SURF features, bag-of-words

Sibley et al. 2009 [319]
Mei et al. 2011 [220]

142 km roadways, 850,000 images,
multiple transport modalities

RSLAM continuous relative poses, no
global frame, visual PR, real-time

Kümmerle et al. g2o
2011 [266, 238]

220×200 m, 890 m trajectory,
indoor/outdoor, 445 3-D scans

Lidar scan matching, pose graph,
gridmaps, MC localization with aerial.

Olson et al. 2012
[53, 54, 55, 56, 57]

500×500 m, MAGIC 2010,
indoor/outdoor urban, 14 robots

On-line, multi-robot pose graph,
“maplets”, centralized MR-SLAM

F

Mapbuilder, Reid et al.
(this research work)
[66, 320, 64, 67]

500×500 m, MAGIC 2010,
indoor/outdoor urban, 23 robot
heterogeneous team

On-line, multi-robot pose graph,
gridmap, submapping, distributed,
hybrid-decentralized

Table 3.3. Large-scale SLAM demonstrations: Various systems described in the literature as
“large scale” from 2000 to 2015. Test environments have, on average, been getting larger and
loopier. Several systems that are only demonstrated in simulations have been excluded along with
sparse vision-based systems since 2011. Very few MR-SLAM systems have been demonstrated
on-line in real-world environments. For reference, stars (F) highlight the systems that are most
comparable with my research work.

95

Chapter 3 Review: Large-Scale Multi-Robot SLAM

“Very large scale” was used to describe the teams of UGVs deployed in the 2003 SDR
program [28], see Section 1.3.4. While they demonstrated 100 UGVs localizing in a
map, the initial MR-SLAM was only performed with four UGVs. The largest large-scale
demonstrations of strongly coordinated MRS occurred at the MAGIC challenge: Olson et
al. deployed 14 UGVs [53], while Lee et al. deployed 9 UGVs [311].

3.3.3. Large Average Node Degree

In state-of-the-art pose graph solutions (Section 2.5.4), the optimization cost grows ap-
proximately linearly when exploring new map areas. New poses are joined into the graph
with a single odometry constraint and optionally one or more local loop closures, such that
the average node degree remains approximately constant. When multiple UGVs explore
together, many more local loop closures occur between the UGVs, creating local cliques of
densely-constrained poses. Section 2.5.4.8 discusses how the Hessian matrix, H = JTP−1J
gains two new non-zero blocks for each additional constraint. While teams of overlapping
UGVs contribute to increased Hessian fill-in, while exploring new map areas the matrix
structure typically grows along the block-diagonal and is relatively easy to reorder and
factorize.

Large loop closures occur in pose-graph SLAM when previously explored areas are revis-
ited: these loop closures cause step increases in optimization cost because they add non-
zero blocks further away from the Hessian’s diagonal. Each large loop closure makes it
increasingly difficult to find an optimum variable ordering and factorize the Hessian. Even
with state-of-the-art matrix factorization approaches, this remains an NP-hard problem
[239]. Teams of UGVs are more likely to create pose graphs with higher average node
degrees and Hessian structures that are difficult to factorize, particularly when they
are exploring in groups and frequently performing large loop closures. This creates an
additional “large-scale” MR-SLAM problem. Techniques for simplifying pose graphs and
reducing the average node degree have been described in [204, 207, 274], however only in
the context of single-robot SLAM.

96

4 Hybrid-Decentralized and
Distributed Multi-Robot
SLAM

Several research contributions are described in this chapter that combine to
form a novel hybrid-decentralized and distributed MR-SLAM system called
Mapbuilder. The Mapbuilder MR-SLAM system enables decentralized teams
of robots to build distributed global gridmaps and navigate large urban areas.
My research is presented as a system architecture and design document for
Mapbuilder: Section 4.1 starts with the high-level requirements and assump-
tions, while Section 4.2 outlines the high-level architecture, including design
rationale. In Section 4.3 I describe the conceptual design, which includes
a submapping technique and algorithms that enable decentralized and dis-
tributed MR-SLAM, while Section 4.4 presents the logical design describing
each of the distributed software components and their interactions with other
components. Section 4.5 verifies that the design addresses key requirements.

4.1. Introduction

The research work in this chapter was motivated by the MAGIC challenge (Section 1.3.4.2),
and the need for a distributed MR-SLAM system that could enable teams of UGVs to be
rapidly deployed in urban environments. Referring to Table 3.2, the previous state of the
art did not include systems that could produce maps at large scales and with sufficient
detail for UGV navigation, while being sufficiently decentralized to allow UGV operation
independent of the GCS.

97

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

4.1.1. Research Contributions

Together, the research contributions in this chapter describe a novel MR-SLAM system
architecture and design that distributes the MR-SLAM back-end functionality over all
UGV and GCS participant’s computers. Contributions include:

1. Distributed MR-SLAM back-end: allows computationally expensive MR-SLAM
algorithms to be distributed over all UGV and participant computers. The back-end
design adapts to the available computational resources (Section 4.4.2).

2. Distributed global map building: allows each participant to build its own local
copy of the global occupancy gridmap. This distributed spatial awareness enables
decentralized global MRS operations (Section 4.3.1).

3. Hybrid-decentralized pose graphs: enables cliques of participants to operate
independent of the GCS. Submap pinning and priority-based filters ensure that local
pose graph copies converge to the global solution (Section 4.3.9).

4. Immutable submapping: minimizes overall system complexity, in particular,
making the distributed and decentralized parts of the design both simple and robust.
Immutable, or “read only,” submaps, retain the ability to re-evaluate the most uncer-
tain data associations (loop closures), while minimizing communications bandwidth
(Section 4.3.3).

5. Human-in-the-loop MR-SLAM: increases mapping accuracy and convergence
by allowing a human operator to interact with the pose graph and submaps in real-
time. This is essential in real-world environments where Gaussian assumptions do
not always hold (Section 4.4.3).

Together these highly-coupled contributions form a functional MR-SLAM system— in-
stead of describing them separately, this chapter is presented as a design document for the
Mapbuilder system architecture. The Mapbuilder system architecture is presented here in
a top-down manner: System Architecture (Section 4.2), Conceptual Design (Section 4.3),
Logical Design (Section 4.4) and System Verification (Section 4.5). Results demonstrating
these contributions are given in Chapter 7.

Before describing the Mapbuilder system, however, this section outlines various high-
level dependencies, requirements and assumptions that helped to bound the scope of the
research problems addressed in this work.

4.1.2. Dependencies

Section 1.2.3 suggested that any coordinated MRS that is deployed into unstructured
environments should be built on top of a MR-SLAM system. The Mapbuilder MR-SLAM

98

4.1 Introduction

system was initially designed as a core component of the WAMbot MRS, and their
requirements are closely related. The WAMbot MRS is described in detail in Appendix A.
Most notable is its distributed architecture, which required a distributed MR-SLAM
architecture also. Figure A.1 on page 227 shows a deployment diagram indicating how
Mapbuilder integrates with the WAMbot MRS.

In a distributed MRS deployment, multiple software components on each participant’s
computer will depend on Mapbuilder’s localization and mapping outputs in real-time.
Typical dependencies at the GCS include global path planners, task allocation, high-
level autonomy, and Graphical User Interfaces (GUIs) for operator situational awareness
and control. On each UGV dependencies include global and local path planners, local
navigation, and local autonomy algorithms such as exploration.

4.1.3. Requirements

Mapbuilder’s high-level functional requirements, including those from its various depen-
dencies, can be summarized:

• Input all SLAM-related sensor data.
• Output occupancy gridmaps in real-time (global or windowed).
• Output localization data in real-time.
• Convert UGV local coordinates into global coordinates, e.g. OOI observations.
• Convert global coordinates into UGV local coordinates, e.g. operator commands.
• Edit underlying map structure, e.g. to correct for UGV sensing errors.

Similarly, Mapbuilder’s low-level functional requirements are:

• Distributed map building: produce global or windowed maps on all participants.
• Decentralized map state: allows independent operation of small cliques of UGVs.
• RF communications: tolerant to intermittent and lossy communications.
• Heterogeneous: operates with different types of UGVs.
• Single-level environments: no overlapping terrain such as bridges.
• Height obstacles: detects and maps ramps, positive and negative hazards.
• Consistent coordinates: local and global frames for commands and observations.
• Flexible global localization: GPS-denied localization and aerial map georeferencing.
• No clocks: real-time computer clocks are not accurately synchronized.

Mapbuilder’s performance requirements are:

• Real-time: delivers maps and updates to local processes at > 1Hz.
• Limited CPU usage: less than 25% of each UGV’s processing power.
• Low bandwidth: limited to 1KB/s per UGV.

99

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

• Duration: 3.5 hours maximum, 3 km total odometry per UGV.
• Gridmap resolution: 10 cm, allowing a 50 cm UGV to navigate a 70 cm doorway.
• Large areas: 500×500 meter operational boundary.
• Large teams: 3-23 UGVs deployed into the same global map.
• Large overlaps: UGV sensor data densely overlapping in high-traffic areas.
• Robust to sensor noise: corrects loop closures of paths up to 250m long.
• Unstructured environments: indoor and outdoor; arbitrarily cluttered or sparse.
• Robust to moving objects: tolerates OOIs and humans moving at up to 6 km/h.

These requirements could be considered quite generic for a MRS that is deployed into
large-scale urban environments.

4.1.4. Assumptions

Mapbuilder is designed for “one-time” deployments into complex, unstructured, environ-
ments where unexpected problems or unmodeled errors are both likely to occur, and likely
to result in mission failure. Therefore, while Mapbuilder is designed to handle >99% of
MR-SLAM data automatically, we assume that a human operator at the GCS will correct
occasional errors using a GUI. For UGV sensor configurations that primarily use 2-D lidar
and wheel odometry (see Appendix A), non-Gaussian errors combined with ambiguities
in lidar scan matching make these errors much more likely (discussed in Section 6.1.2.2).

To bound the scope of my research work, I made the following assumptions so I could
focus on the core aspects of the distributed and decentralized MR-SLAM problem:

1. Global UGV pose initialization: UGVs are assumed to start in the same area,
either outdoors or indoors with regular building geometry, e.g. roof structure and
eaves. If GPS-based bootstrapping fails the operator can use the Mapbuilder GUI
to add ground-truth constraints that align 2-D lidar data with aerial imagery.

2. Aerial image priors: matching 2-D lidar data to aerial imagery is a complex visual
perceptual problem that is addressed in other works such as [265, 266, 267]. Here I
assume that a trained operator can visually identify areas that are suitable to match
(the Mapbuilder GUI automates extracting and aligning geometry).

3. Global UGV relocalization: UGVs are assumed to drive continuously through
the environment and are never “kidnapped” or manually transported. Map-based
relocalization has been addressed in many publications (see Section 2.4.4.2).

4. Gaussian odometry errors: odometry errors accumulated along small loops are
assumed to not exceed a few meters. Small loops can be closed automatically by
matching 2-D lidar data.

100

4.2 System Architecture

5. Unmodeled and non-Gaussian odometry errors: large unexpected errors are
corrected by an operator. To help close large loops, the operator can add ground-
truth constraints that align 2-D lidar data to either aerial imagery or other lidar
data. Operators can delete submaps corrupted by non-Gaussian wheel slippage
(Section 4.4.3).

6. Long-term deployments: only short-term deployments are assumed such that
on-line operation is only required for 3.5 hours.

4.2. System Architecture

Mapbuilder is a hybrid-decentralized and distributed MR-SLAM system that is a solu-
tion to the MR-SLAM problems listed in Section 3.2.1, while satisfying the high-level
requirements in Section 4.1.3, and given the assumptions made in Section 4.1.4.

4.2.1. High-Level Decisions and Rationale

When designing a MR-SLAM system, there are several high-level architectural decisions
that are affect all aspects of the lower-level design and implementation. This section
summarizes and explains these decisions.

2-D occupancy gridmaps: ManyMRS software components that depend on MR-SLAM,
particularly path planners and exploration algorithms, require detailed maps that can
accurately describe open spaces, solid obstacles and unmapped areas of the environment.
Mapbuilder is built around occupancy gridmaps because they are well-suited to unstruc-
tured environments (Section 2.3.4), and they explicitly describe unmapped areas. While
the architecture described here could work with landmarks or line features, most high-
level consumers would first convert them to gridmaps anyway. Occupancy gridmaps offer
various implementation advantages that are explored in Chapter 5.

Graph-based: Mapbuilder’s architecture leverages the graph-based SLAM techniques
described in Section 2.5.4; they are central to its robustness, flexibility, and on-line perfor-
mance. Pose graph data structures, formed by spatial constraints joining poses, provide
a clean interface that is well-suited for incorporating SLAM data from multiple heteroge-
neous robots simultaneously. Unlike recursive Bayesian filters, poses and constraints can
be added and removed from anywhere on the graph structure at any time. Large-scale
loop closures and other alterations to the graph are possible1, such that data associations
and linearization errors are not “baked-in” into the estimate.

1Note that in practical implementations care must be taken to limit the size of errors in newly added
constraints. Large step changes can cause numerical instabilities during optimization.

101

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

Distributed MR-SLAM back-end: The need to be robust to both intermittent and
complete communication loss requires the Mapbuilder back-end to be distributed across
all participants. For a MRS to handle intermittent communications, each UGV requires
the ability to plan its own paths and operate in a decentralized manner without continuous
low-level control from the GCS. This decentralized planning, in turn, requires each UGV
to build and update its own local copy of the global gridmap (global maps are generally too
large to be downloaded from a centralized server, particularly at the large scales considered
here and after large structural changes). Distributed map building requires participants
to run their own back-ends that maintains a local copy of the pose graph structure and
submap data. While this introduces redundant computation, it also introduces the ability
to distribute other back-end computation across participant computers.

Decentralized MR-SLAM back-end: With the same fully-functional MR-SLAM back-
end running on each UGV, decentralized data fusion (DDF) can be performed on the
distributed copies of the pose graph. This enables cliques of UGVs to continue functioning
independent of the GCS during extended communications outages. With each back-end
optimizing its own local pose graph, however, there is a risk that the various pose graphs
could diverge catastrophically (a single dropped constraint message could produce very
different global maps). A novel hybrid decentralized approach is described in Section 4.3.9
that is tolerant to lossy communications and minimizes the chance of divergence.

Wireless mesh communications: To enable the decentralized operation of cliques of
UGVs, independent of the GCS or wireless infrastructure, Mapbuilder is designed to be
deployed over a multi-hop wireless mesh network (described in Appendix A). To provide
fault-tolerant message delivery, it uses a data distribution system (DDS) [321]. The
DDS middleware provides a publisher-subscriber framework that enables robust real-time
communications with variable quality-of-service (QoS) policies.

Submapping: Submaps, described in Section 2.5.5, are a key aspect of Mapbuilder’s
design that enables distributed map building and computation. They minimize MR-SLAM
communications bandwidth by compressing dozens of lidar scans into a single 2-D occu-
pancy gridmap. Submap gridmaps are a minimal representation that is very efficient for
storage and transmission. Chapter 5 explores how they can be efficiently aligned and fused
into global maps.

4.2.2. Software Components and Deployment

Mapbuilder’s graph-based MR-SLAM algorithm is divided into front-end and back-end
roles as defined in Section 3.1. The Mapbuilder system architecture defines three software
components that are introduced briefly here:

102

4.3 Conceptual Design

Wireless Mesh,
DDS, UDP &
UDP Broadcast

Mapbuilder Back-end

Mapbuilder GUI

Ground Control Station (GCS)Unmanned Ground Vehicles (UGVs)

1

2

3

Mapbuilder Back-end

Mapbuilder GUI

Mapbuilder Back-end

Local SLAM

Mapbuilder Back-end

Local SLAM

Mapbuilder Back-end

Local SLAM

Figure 4.1. Mapbuilder architecture and software deployment diagram: Instances of the
Local SLAM component execute on each UGV, processing sensor data. Instances of the Mapbuilder
back-end execute on all participants (UGV and GCS computers) where it produces distributed
copies of the global map. The Mapbuilder GUI software is used by operators at the GCS.

• Local SLAM: implements the SLAM front-end. Instances execute on each UGV
where they use a single-robot SLAM algorithm to process sensor data and build
submaps. Submap and constraint data is broadcast efficiently across the wireless
mesh network (Section 4.4.1).

• Mapbuilder Back-end: implements the MR-SLAM back-end. Instances are ex-
ecuted on participants that require real-time mapping and localization data. Each
instance stores a local copy of all submaps and constraints. Local pose graphs
are periodically optimized and submaps fused to build global maps. The back-end
searches for new loop closure constraints between submaps (Section 4.4.2).

• Mapbuilder GUI: implements a point-and-click user interface that allows opera-
tors to view the global map and interact with the pose graph. The GUI executes
on one or more GCS computers where it enables operators to view and precisely
manipulate individual submaps (Section 4.4.3).

Figure 4.1 shows a typical deployment diagram that illustrates the distributed nature of
the architecture. The same Mapbuilder back-end software component executes on each of
the UGV and GCS computer participants.

4.3. Conceptual Design

This section provides a conceptual overview of the Mapbuilder MR-SLAM system.

4.3.1. Graph-based SLAM with Submaps

To provide distributed copies of the global gridmap on every UGV and GCS participant,
this design divides the global gridmap into overlapping submaps. Each submap defines a

103

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

rigid, locally Euclidean, occupancy gridmap and a SE (2) pose, pWa , that describes where it
is located in the global frame,W. This approach to multi-robot mapping can be explained
with a table top analogy: if a submap is like a playing card with a gridmap printed on it,
then each UGV lays down a sequence of overlapping cards as it explores (this is illustrated
in Figure 4.2). Even a small team of UGVs exploring an area will build a large pile of
overlapping cards, often dozens of layers high.

Submaps are key to Mapbuilder’s ability to provide distributed map building; once each
submap gridmap and its pose have been broadcast across the network, any back-end can
fuse them to produce local copies of the global gridmap. This submap fusion searches
for consensus in overlapping gridmaps to determine whether each of the global gridmap’s
cells are occupied, free or unknown. While fusing multiple distributed copies of the global
gridmap introduces redundant computation, making this computation efficient is easier
and less expensive than the alternative, which is to repeatedly broadcast or incrementally
update global maps from a centralized server. Chapter 5 describes how submaps can
be efficiently fused into global gridmaps in real-time, making distributed mapping with
submaps possible.

Each submap’s pose, pWa , is constrained by one or more SE (2) spatial constraints (refer
to Section 2.5.4.4). Sets of constraints, C =

{
cab · · · cWa · · ·

}
, join submaps to form large

pose graphs that are mathematically equivalent to those described in Section 2.5.4. Two
types of constraints are used: the first, cab , joins submaps with the residual error function
eab = cab − (�pWa � pWb), given in Equation 2.45. The second, ground truth constraints,
cWa , align submaps in the global frame with the residual error function eWa = cWa − pWa .
These pose graphs are optimized with the maximum likelihood techniques, described in
Section 2.5.4.7 and Section 4.4.2.3.

W

p0

p1

p2

p3
p4

p5

r5t

Figure 4.2. Graph-based SLAM with submaps: A single UGV (red) creates a sequence of
overlapping submaps while driving (blue). Each submap contains a gridmap, where the pose pWa
indicates the gridmap’s origin. The UGV in this example is currently in the right-most submap
near pW5 . The UGV’s time-varying pose in the submap frame is r5

t , which in the global frame is
rWt = pW5 � r5

t .

104

4.3 Conceptual Design

Extending the table-top card analogy, constraints are like mechanical springs that join
pairs of submaps, causing them to slide and rotate into alignment (illustrated in Figure 4.3).
Occasionally called relaxation in the literature [230], pose graph optimization, is analogous
to releasing the submaps and their interconnecting network of springs and allowing them
to slide and relax into the lowest energy state (where all the spring forces and torques are
balanced). In a pose graph, this is equivalent to simultaneously minimizing the sum of all
constraints’ residual errors.

New constraints are created either by the SLAM front-end (odometry fused with lidar scan
matching, Section 4.4.1), or when the MR-SLAM back-end identifies spatial alignments
(correlation between gridmaps, Section 5.4). New ground-truth constraints are either
created when an operator uses the GUI to drag submaps into alignment (Section 4.4.3),
or when the operator matches submaps to aerial imagery (Section 4.4.3.2). Ground-truth
constraints can also be created from GPS measurements, typically with large covariances.

Several authors have described graph-based SLAM approaches that use submapping (re-
viewed in Section 2.5.5), however, no submap-based MR-SLAM solutions have been de-
scribed that can build detailed maps at large scales and in real-time. From the previous
work summarized in Table 3.2, Howard et al.’s MR-SLAM system [29, 51] is the closest to
the design described here, however their system was not distributed, relied on a centralized
server and was only demonstrated at a small scale.

This submapping technique is highly effective for distributed MR-SLAM, particularly
when closing large loops: every distributed copy of the global gridmap can be updated
using minimal communications bandwidth by broadcasting only changes to the pose graph.
To the best of my knowledge, building distributed global maps by fusing submap gridmaps
has not previously been demonstrated. In early work, Makarenko and Durrant-Whyte

W

p0

p1

p2

p3
p4

p5

W c0

c10

c21
c23

c34 c45

Figure 4.3. Submap constraints: Constraints are analogous to mechanical springs that connect
pairs of submaps. During optimization they slide and rotate each submap’s pose, pWa , until all
forces and torques balance. This pose graph has a single ground-truth constraint, cW0 , which locates
the first submap in the world frame. The five subsequent submaps have their positions determined
by the relative constraints cab .

105

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

built decentralized gridmaps with DDF in [293], however their simulations used external
localization and did not perform SLAM.

4.3.2. Coordinate Frames

Pose graph optimization estimates each submap’s pose in a global Euclidean coordinate
frame, W. This frame is necessarily Euclidean, since we use SE (2) pose compositions and
optimization. The frame’s origin can be arbitrarily selected for rapid deployment, however
for precise georeferencing against orthorectified aerial imagery we uses a UTM grid [322].
Other globally-referenced coordinates, such as latitude and longitude [323], are converted
to coordinates in the selected UTM grid.

Each submap defines a local coordinate frame that is anchored to its origin and located
in the global frame at the submap’s pose, pWa . Each locally-Euclidean submap coordinate
frame is then used for all UGV-related operations. For example, the UGV pose, rat , is
always broadcast relative to the current submap pose, pWa . Since each submap is created
with the UGV at its origin, the UGV’s submap pose is always initialized to zero, i.e.
ra0 = [0, 0, 0]T . The UGV’s time-varying pose in the global frame is then given by the
composition rWt = pWa � rat . This configuration is also shown in Figure 4.2. The Local
SLAM front-end on each UGV defines and maintains its own sequence of submaps, and
hence it is responsible for defining these local submap coordinate frames.

4.3.3. Submap Life Cycle

A key design concept is that submaps become immutable, or “read-only,” once they are
closed. By preventing UGVs from re-entering old submaps, the aspects of the architecture
that enable distributed MR-SLAM are greatly simplified, while robustness is increased.
Submaps exist in one of two states:

• Open: submaps are currently being built by a single UGV; or

• Closed: submaps are immutable and cannot re-entered by any UGV.

Each UGV’s Local SLAM front-end creates a continuous sequence of new submaps. The
front-ends maintain a single “open” submap that the UGV currently occupies, connected
to a sequence of older “closed” submaps that were previously completed. While submaps
may physically overlap, each UGV only occupies a single submap at any moment in time.

Each Local SLAM front-end uses a single-robot SLAM algorithm to build submaps (various
algorithms are reviewed in Section 2.5). The front-ends continuously perform local SLAM,
resetting the map and pose uncertainty to zero when each new submap is started. The

106

4.3 Conceptual Design

submap closing criteria is described in Section 4.3.6. For reference, the WAMbot UGVs
create new submaps every ~3 meters of travel.

While a closed, immutable, submap’s gridmap contents cannot be changed, its pose may
still be updated at any time. Thus once a closed submap has been broadcast across the
network, any instance of the MR-SLAM back-end can update the submap’s pose and fuse
it into a global gridmap2. This allows the back-end to be designed with the assumption
that a closed submap’s gridmap contents will never be updated, enabling many efficiencies
explored in Section 5.2. This distributed architecture’s robustness and simplicity comes
at the cost of increased computation and storage requirements. Chapter 5 shows how this
additional cost can be offset with an efficient parallelized implementation.

To the best of my knowledge, the use of immutable submaps has not been described
in the literature. Several submapping techniques were reviewed in Section 2.5.5. Early
approaches, such as Bosse et al.’s Atlas [246], aimed to minimize pose graph complexity
by limiting the number of submaps created. Bosse et al. described a graph traversal
technique that allows UGVs to re-enter submaps that had been created earlier. Although
their approach would work for centralized MR-SLAM, it does not extend cleanly to a
decentralized MR-SLAM solution. Consider, for example, multiple UGVs driving in the
same submap: decentralized updates would require an implementation of DDF for each
submap, while lossy communications would introduce the potential for map divergence
within a single submap and the potential for various race conditions; all complex engi-
neering challenges. Mapbuilder uses immutable submaps to avoid these complex timing
issues and race conditions.

4.3.4. Submap Uniqueness

Every submap created by the Local SLAM front-ends is assigned a universally unique
identifier (UUID). These UUIDs are used in all MR-SLAM messages to uniquely identify
submaps. This uniqueness is critical to the Mapbuilder design concept, since two submaps
with same UUID would cause the distributed pose graphs to diverge catastrophically.
While a convenient human-readable UUID scheme might be to concatenate each UGV’s
unique identifier with an incrementing counter, e.g. “WAMbot_4_Submap_53”, collisions are still
likely. Despite disk-based data persistence, battery failures and unexpected power cycling
can still produce duplicate UUIDs.

To avoid problems, Mapbuilder uses a standard approach to generating UUIDs [324].
Each UUID is a 128-bit number carefully generated to avoid collisions. A random example,
represented in hexadecimal, is “5984ca82-b665-11e4-8ab6-6f95453c7342”. Using Version 1 UUIDs,

2If an object moves and the static-world assumption is broken, overlapping submaps may disagree. These
disagreements are resolved when they are fused by the back-end (see Section 5.3).

107

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

uniqueness is guaranteed if each participant’s computer has a unique IEEE 802 MAC
address and the system clock increases monotonically.

4.3.5. Submap Gridmap Representation

The primary reasons to use submapping techniques are to minimize bandwidth, storage
and redundant processing across the distributed MR-SLAM back-end. To achieve this,
each UGV’s front-end reduces the flood of incoming sensor data into a sequence of inde-
pendent submaps joined by constraints. Submaps need to represent the “full” dataset as
closely as possible, since the redundant sensor data is discarded.

In this architecture submaps represent the environment with gridmaps, however it is worth
rationalizing this decision by considering other minimal representations. The simplest data
reduction approach is to decimate lidar scans using a heuristic, such as storing one scan for
every 50 cm of travel. This has been described in many pose-graph SLAM publications
[28, 51, 31]. It provides a minimal representation that has been shown to work well
in structured indoor environments. In outdoor environments, however, where objects are
often more distant, the lidar scan measurements may become sparse to the point where this
decimation discards useful information. This can be seen in the lidar scans in Figure 2.6 on
page 40, where simple geometry such as straight walls become sequences of disconnected
points.

Rather than decimating lidar scans, the Local SLAM front-end collects all of the scans
acquired while driving through a submap. It aligns and fuses them into a single 2-D
occupancy gridmap using the ray tracing technique described in Section 2.3.4.3. These
gridmaps maintain an accurate representation of the environment, while requiring 10-30
times less data storage compared to the original set of scans. They are also several times
more compact than the decimation approach described above. For reference, Figure 4.4
shows two typical submaps created by the WAMbot UGVs.

The gridmap representation rounds each lidar measurement to the nearest grid cell,
naturally introducing small amounts of noise due to quantization. To prevent this noise
from accumulating when each scan is ray traced into the gridmap, the front-end collects the
lidar scans and aligns them with scan matching before ray tracing them into the gridmap
as a batch. While gridmap cell sizes can be reduced to limit this quantization noise, the
processing and storage costs increase quadratically, as discussed in Section 2.3.4.3. The
largest gridmap cell size is selected that ensures quantization noise will not interfere with
high-level functions, such as planning paths through narrow doorways.

108

4.3 Conceptual Design

4.3.6. Firewalling Pose Uncertainty

UGVs start in new submaps with zero pose uncertainty, and irrespective of the SLAM
algorithm chosen, their pose uncertainty will always grow (Section 2.4.2.2). In most
environments, horizontally mounted lidar sensors produce fairly consistent views (2-D
slices) of the environment that change minimally over small UGV motions (e.g. 10 cm).
These consistent views allows scan matching to align pairs of scans and reduce the growth
in pose uncertainty due to odometry noise. The resulting rate of accumulation depends
largely on the shape of the environment: a small rectangular room allows for precise
scan matching and minimal uncertainty growth, while in long corridors or sparse outdoor
environments scan matching is generally unable to reduce uncertainty.

The key to this submapping approach is to start a new submap whenever the UGV
pose uncertainty becomes too high. By tracking the current angular pose uncertainty
and average distance to obstacles in the environment, combined with the linear pose
uncertainty, the amount of “blurring” in distant gridmap cells can be an estimated. If this
estimate exceeds a fixed multiple of the gridmap cell size, a new submap is triggered.

This heuristic allows minimal distortions into the submap gridmap, while prevention the
large distortions that could result from a badly aligned lidar scan. If a new submap is
triggered, the current lidar scan is not fused. Rather the submap is closed, a new submap
is opened and the lidar scan is fused into the new submap instead.

To prevent uncertainty from accumulating without bound, the pose uncertainty is reset to
zero at the start of each submap. This effectively “firewalls” the uncertainty and prevents

p1

p2

r1t

r2t

Figure 4.4. Local SLAM submaps: Two submaps created by WAMbot UGVs in the Old Ram
Shed Challenge (ORSC). These 10 cm occupancy gridmaps represent the environment: Free space
(white), obstacles (black) and unknown (gray). In both submaps the UGV (red) is overlaid twice:
First at the submap origin, and second at the UGV’s final pose where each submap is closed. The
unmapped wedge behind each UGV occurs because of the 270° lidar FOV. These submaps can
be compared to TM and Penn’s in Figure 7.27 on page 212 where the same 20×12 meter area is
highlighted in green.

109

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

it from distorting the contents of future submaps. For completeness, the accumulated
uncertainty is not discarded, instead it is transferred into the constraint that is created to
join the old and new submaps (the UGV’s pose uncertainty covariance becomes the new
constraint’s covariance). Thus each UGV’s local pose uncertainty is periodically passed
into the pose graph where it is handled efficiently with maximum likelihood estimation.

The main insight in this design is that many lidar scans captured from a similar vantage
point can be collected and fused so that the distortions due to pose uncertainty are small
enough to be hidden in each gridmap’s quantization noise. The front-end produces a
sequence of submaps connected by constraints, where each submap is a spatially consistent
representation of the environment and each constraint captures the UGV pose uncertainty
that accumulated in the drive through the submap.

4.3.7. Loop Closures with Submaps

Each UGV front-end produces its own simple, acyclic, pose graph: long sequences of
submaps connected by constraints and without loop closures. The best configuration of
these disconnected pose graphs can be calculated with a simple spanning tree, without
any SLAM or pose graph optimization.

The SLAM problem actually begins when the back-end identifies loop closures, between
pairs of overlapping submaps with gridmaps that appear spatially similar. These loop
closures are broadcast as new constraints that form cycles in the distributed pose graphs—
it is the residual error in these newly-created cycles that requires optimization. Loop
closure constraints include a SE (2) transform, a 3×3 covariance matrix and a weighting
parameter that reflects the confidence in the match. The search for submap matches is
performed by the back-end, described in detail in Section 4.4.2 and Section 5.4.

The nature of the loop closing problem changes considerably when multiple UGVs are
operated in an overlapping area. To prevent errors from accumulating, and to keep the
UGV team well-localized, the back-ends must search for local loop closures between the
current “open” submaps and other overlapping submaps in real-time. These local loop
closure constraints create many small cycles that greatly increase the pose graph’s mean
node degree. Ideally this increases the quality of pose estimates, at the cost of making pose
graph optimization more computationally expensive. It is worth noting that the equivalent
pose graph built from individual lidar scans would have orders of magnitude more nodes,
thus Mapbuilder’s submapping approach offsets much of the additional expense.

4.3.8. Robust Wireless Communications

Appendix A describes how the DDS communications middleware can be configured to
provide various quality-of-service (QoS) policies over a wireless mesh network. In the

110

4.3 Conceptual Design

Mapbuilder DDS publisher-subscriber model, publishers buffer up to n messages, attempt-
ing to deliver them until their subscriber has confirmed receipt. The oldest messages are
dropped if more than n messages become buffered. Each of the message types published by
the front-end and back-end components are assigned various “best-effort” delivery policies
that determine the buffer size n. Larger buffers are more expensive, since publishers
require more memory during lossy communications, and consequently more bandwidth
when synchronizing after an outage.

Publishers are separated into local and global partitions. Most MR-SLAM message types
are broadcast to the global partition (all participants) only when required to avoid over-
loading the network (rules for broadcasts are given in Section 4.3.9.2). The local partition
is used for high-rate inter-process communication within a participant (e.g. 10 Hz). Local
partition messages passed between the front-end, back-end and other high-level MRS
software components are efficiently transported using shared memory.

QoS policies and buffer sizes are tuned based on the total bandwidth available and the
number of UGVs in the team. They are fixed configuration parameters in Mapbuilder,
however it would be possible for the MRS to dynamically tune buffer sizes based on the
current data throughput and bandwidth requirements of other MRS components.

Wireless mesh networks of moving UGVs often drop data packets and occasionally lose the
physical link. Even with a robust communications framework, and “best-effort” message
delivery policies of DDS, there are a few possible scenarios that the MR-SLAM system
must still cope with:

a) Out-of-order messages: noise on the physical link may cause data to be re-
transmitted. Delayed messages may cause sets of messages to arrive out of order.

b) Brief outages: the message buffer size n is large enough to store all undelivered
messages during the outage. After the outage each publisher is able to redeliver
missing messages to each subscriber.

c) Dropped messages: the buffers become full during an outage and the oldest
messages are dropped. For each message type, subscribers receive only the most
recent n messages.

4.3.9. Hybrid-Decentralized Pose Graphs

Central to the Mapbuilder architecture is a set of priority-based message filters that control
the flow of information between distributed copies of the pose graph. These filters are
particularly important when UGVs move out of range and the wireless network splits into
smaller cliques, and then when they rejoin and the network becomes fully connected again.

111

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

Each UGV and GCS participant executes an instance of the Mapbuilder back-end that
builds and optimizes its own local copy of the pose graph and is capable of completely
decentralized operation. In the ideal case, if wireless communications were instantaneous
and flawless, these distributed copies of the pose graph would remain synchronized and
decentralized pose-graph MR-SLAM would be simple. In reality, wireless communications
are lossy and intermittent, and messages are frequently lost, delayed or reordered, causing
the distributed pose graphs and their estimates to diverge. For large loop closures, in
particular, a single missing constraint can produce very different estimates.

To synchronize distributed pose graphs it is not sufficient to make sure every constraint has
been copied to every back-end instance. Large pose graph optimizations are susceptible
to local minima, and unless the constraints are added in the same order, different pose
estimates will result. Thus when wireless communications are lossy and intermittent,
decentralized MR-SLAM requires additional logic to ensure global convergence.

This section first introduces a naive design to avoid pose graph divergence, and after
pointing out its shortcomings, describes a hybrid-decentralized design that allows cliques of
participants to continue operating independent of the GCS. Its implementation is described
in Section 4.4.2.1.

4.3.9.1. Naive Decentralization

To keep the distributed copies of the pose graph synchronized, participants share their
current pose graph estimates by broadcasting batches of SubmapPose messages. By
design, these messages are relatively small and inexpensive to communicate since the QoS
policy does not guarantee delivery (see Section 4.4.2.6). For reference, 30 SubmapPose

messages transmitted as a batch are about the same size as an average submap gridmap.

To maintain synchronization in a naive decentralized system there are two rules that
describe when a participant should broadcast batches of SubmapPose messages:

• Rule 1: After optimization: all participants broadcast SubmapPose messages for
any pose estimates that are updated in the local pose graph.

• Rule 2: After two cliques merge: all participants broadcast SubmapPose mes-
sages for their entire pose graph estimate to synchronize all participants.

While these two rules create a functional decentralized system that can converge to a
single global solution, it is not tolerant to the loss of constraints. Consider a MRS that
splits into two cliques: if one or more constraints are dropped during an extended split,
the submap pose estimates are likely to oscillate after rejoining (likely overloading the
network with SubmapPose messages).

112

4.3 Conceptual Design

4.3.9.2. Hybrid-Decentralization with Priority-Based Filters

Each participant in a MRS is assigned a unique identifier that provides a priority that can
be used to sort the participants deterministically. These identifiers, and thus priorities,
are assigned so that GCS participants are ranked higher than UGV participants. During
deployment, each participant tracks the priorities of the other participants in its local
clique by querying the wireless mesh network.

If a participant recognizes that it has the highest priority in its clique, it automatically
promotes itself. This typically happens when a small clique splits away from the main
clique. Conversely, when two cliques merge only one participant has the highest priority;
the other will automatically demote itself. As such, each participant’s promotion and
demotion is performed independent of the clique; there is no time-dependent two-way
signaling and no centralized controller. Ideally, each clique has a single promoted partici-
pant, however if two participants self-promote, convergence is still guaranteed at the cost
of some redundant communications.

Using this technique to determine self-promotion, the hybrid-decentralized approach re-
fines the two rules used in the naive approach:

• Rule 1: After optimization: the promoted participant broadcasts SubmapPose

messages for any pose estimates that are updated in the local pose graph.

• Rule 2: After two cliques merge: both promoted participants broadcast their
pose graph estimates as a batch of SubmapPose messages.

• Rule 3: After a clique splits in two: the newly promoted participant broadcasts
its entire pose graph estimate.

• Rule 4: After receiving stale messages: low-priority participants broadcast
their non-stale copies of SubmapPose messages after a deterministic time delay.

Rule 3 and Rule 4 are added for robustness and are explained in Section 4.3.9.4. For
revision tracking, each SubmapPose message is augmented with the priority and local
timestamp of the participant that last updated the pose estimate (see Figure 4.7). When
a participant accepts a SubmapPose message, it stores the priority and timestamp along
with the pose estimate.

To ensure convergence, two priority-based filters determine whether SubmapPose messages
are accepted and which submaps in the local pose graph are eligible for optimization. The
filters are deterministic: information flows in a single direction so that the distributed pose
estimates converge on a single, global, solution without oscillations or race conditions:

113

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

• Filter 1: is used by participants to decide which SubmapPose messages to accept:
if the incoming priority is lower than the current priority, the message is ignored.
If the incoming priority is higher, the message is accepted, while if the priorities
match (originates from the same participant), the pose estimate with the most recent
timestamp is kept. Using this filter, each participant’s pose estimates will converge
to the newest estimate from the highest priority participant.

• Filter 2: is used by participants to decide which submaps in the local pose graph
to optimize. The participant’s priority is compared against the local pose graph,
and only submaps that have pose estimates with equal or lower source priorities
are optimized. Any submaps with pose estimates generated by higher priority
participants are “pinned” so they cannot move; and any constraints between these
pinned submaps are omitted from the optimization.

Using these rules and filters, the pose estimates in the distributed copies of the pose
graph tend to converge to the promoted participants’ estimates over time. Lower priority
participants accept most SubmapPose messages, resulting in the majority of the submaps
in their local pose graphs becoming pinned. Since UGVs have lower priorities than the
GCS, the only submaps they tend to optimize are the ones they create locally with their
own front-end (until they are pinned by a higher priority participant).

Within each clique, the highest-priority participant will optimize the unpinned parts of the
pose graph, broadcasting updates that the lower-priority participants accept. The lower-
priority participants accept these updates and pin their submaps, avoiding the majority
of the redundant pose graph optimization that would occur in the naive design. Pinning
also minimizes the quantity of SubmapPose messages, helping to avoid situations where
participants flood the wireless network.

4.3.9.3. Convergence Example

A brief example is given here to show how these rules and filters perform together. In a
typical MRS deployment, the UGV team starts near the GCS so that the mesh network is
fully-connected and every participant is part of a same clique. As the UGV team starts to
explore, the main GCS participant has the highest priority and all of the UGV participants
remain synchronized to its pose estimates. Figure 4.5 (a) illustrates this situation.

When a clique of UGVs drive out of communications range, however, the mesh network
splits as shown in Figure 4.5 (b). The main clique (shown in red) splits to form the new
clique (blue). The participant in the blue clique with the highest priority promotes itself
and begins optimizing newly-created submaps in the blue shaded area (submaps in the
red shaded area remain pinned).

114

4.3 Conceptual Design

Building

GCS

Building

GCS

Building

GCS

Building

GCS

(a) (b) (c) (d)

Figure 4.5. Decentralized pose graph case study: (a) A clique of 14 participants (red UGVs)
exploring outside a building. Wireless network links between participants are indicated in black.
Note that these figures are not pose graphs; the red shading indicates areas containing submaps.
In (b) the mesh network splits into two cliques; the highest-priority participant in the new clique
(blue UGVs) optimizes their newly created submaps (blue shaded area). In (c) a participant from
the red clique loses its network connection and proceeds alone (green). Finally in (d) the green
and blue cliques merge and the green participant is promoted. The design handles this worst-case
situation robustly.

In Figure 4.5 (b) and (c) the participants in the red clique continue to explore and the
main GCS participant continues to optimize the submaps in the red shaded area. In (c),
however, a single UGV participant loses communications with the red clique and splits to
form the green clique by itself (it is carrying pose updates for the pinned submaps in the
red area).

A worst-case scenario is created in Figure 4.5 (d) when the UGV in the green clique merges
into the disconnected blue clique and becomes the highest priority participant. At this
moment, the promoted green UGV knows nothing about the existence of the submaps
in the blue shaded areas in (c), while it is carrying stale updates to the pinned submaps
in the red area. Following Rule 2, both the green UGV and the promoted blue UGV
broadcast their submap estimates. The UGVs that were blue in (c) accept the updated
pose estimates and at this moment a discontinuity may be created between the submap
estimates in the red and blue areas. By design, the blue UGV that was promoted in (b)
is still able to optimize the submaps in the blue area; it quickly repairs the discontinuity
and continues to optimize these submaps until the missing constraints are delivered to the
promoted green UGV. At this point in (d), the promoted green UGV is able to optimize
all of the submaps in the larger green area. This scenario illustrates how the design can
handle worst-case edge cases effectively.

4.3.9.4. Robustness

The DDS middleware may take seconds or minutes to communicate batches of SubmapPose

messages to the entire mesh network. If the mesh network configuration and cliques of
participants are changing frequently, partial sets of messages may occasionally be received
by some participants. To avoid discontinuities from appearing in the distributed gridmaps,

115

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

these messages are sent in batches that are applied atomically (i.e. only if the entire batch
is received).

DDS makes no guarantee of the order in which subscribers are serviced. When cliques
merge the synchronization is deterministic, however, if cliques split and merge repeatedly
it is possible for a promoted participant to have stale pose estimates. Rule 3 and Rule 4
(Section 4.3.9.2) are designed to provide robustness in this situation.

Rule 3 causes a newly promoted participant to broadcast its pose graph as a batch of
SubmapPose messages. Each of the low-priority participants process them using Filter 1,
ignoring any messages that are stale. According to Rule 4, the ignored messages are flagged
by the low-priority participant, which then re-shares its local estimates (they have higher
priorities and/or newer timestamps).

Since multiple participants can identify the same stale pose estimates according to Rule
4, broadcasts are delayed to avoid flooding the network. Each participant calculates its
delay deterministically by considering its priority ranking within the local clique; the
second highest priority participant waits one second before broadcasting, while the n-th
priority participant waits (n− 1) seconds. These subsequent broadcasts are likely to clear
many, or possibly all, of the other participants’ flags, avoiding large batches of redundant
SubmapPose messages from overloading the network.

Several edge cases can occur, particularly when participants are slow at detecting changes
to their local clique3. When cliques merge, for example, more than one participant can be
promoted at the same time. In this case, Filter 1 consider all messages regardless of the
source, and only the highest priority, and newest update is stored. This approach ensures
that each participant’s pose graph estimate converges to the same global solution, even
when batches of SubmapPose messages arrive in different orders. This design deliberately
avoids two-way message passing to decide which participants to promote and demote, this
prevents race conditions and avoids a form of the “Two Generals Paradox” [325].

4.3.9.5. Considerations

This hybrid-decentralized approach is designed to allow extended periods of decentralized
activity. While it can handle difficult scenarios like the one shown in Figure 4.5 (c) and
(d), they should generally be avoided when out of communications range of the GCS.
Large-scale loop closures should ideally occur either while supervised by an operator,
which in this scenario requires one or more UGVs to be repositioned to act as a wireless
relays so that the network remains fully connected. Alternatively, unsupervised large-scale
loop closures could be confirmed by a more precise data association technique (e.g. visual
fiducials as in Section 2.4.4.2).

3The mesh network used in WAMbot (Appendix A) took up to a minute to detect topology changes.

116

4.4 Logical Design

4.4. Logical Design

The logical design presented here is derived from the conceptual design in the previous
section. Each UGV and GCS participant performs the same roles, which leads to a
logical design with only three software components. The software components’ functional
requirements are:

Local SLAM: (Section 4.4.1)
• Input: sensor data (lidar, odometry, IMU, GPS).
• Behavior: performs local SLAM, creates sequence of submaps.
• Output: broadcasts submap data, constraints, real-time UGV pose estimates.

Mapbuilder Back-end: (Section 4.4.2)
• Input: submap data from all UGVs, submap constraints, ground-truth constraints.
• Behavior: optimize pose graphs, fuse submap data, search for constraints.
• Output: global or windowed maps, submap pose estimates, submap constraints.

Mapbuilder GUI: (Section 4.4.3)
• Input: all MR-SLAM messages, GUI events, e.g. keystrokes and mouse clicks.
• Behavior: display global maps, interpret operator commands.
• Output: messages that alter graph structure, e.g. ground-truth constraints.

Instances of the Mapbuilder back-end component execute on all participants, while the
Local SLAM front-end executes only on UGVs, and the Mapbuilder GUI executes only
on GCS participants. Figure 4.1 on page 103 shows a typical deployment diagram. A
minimal view of Mapbuilder’s logical design, considering only a single UGV and GCS
participant, is shown in Figure 4.6. This diagram summarizes the inputs and outputs of
the Local SLAM front-end and Mapbuilder back-end software components.

The various MR-SLAM message types used by Mapbuilder are shown in a class diagram
in Figure 4.7. All messages are derived from the Submap message class, which ensures
that all messages include the source participant’s priority and timestamp, along with the
submap UUID.

This research work uses several open source libraries. Common to all three software
components is the Eigen library4, which is used extensively for matrix math. SE (2)
pose compositions (Section 2.2) are implemented using templates provided by the g2o
graph optimization library5 [238]. While the selection of software libraries is typically an
implementation detail, these are listed here since their capabilities are leveraged heavily
in the design.

4http://eigen.tuxfamily.org
5http://github.com/RainerKuemmerle/g2o

117

http://eigen.tuxfamily.org
http://github.com/RainerKuemmerle/g2o

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

Figure 4.6. Mapbuilder logical design: Software components and data flows on a typical
UGV participant (left) and GCS participant (right) are shown. Decentralized communications
are performed using the DDS middleware.

4.4.1. Local SLAM Front-end

The role of the Local SLAM front-end is to create submaps, constraints and real-time pose
estimates and broadcast them over the wireless network. Put simply, it is a single-robot
SLAM algorithm combined with a heuristic that decides when to start each new submap.
An instance of the front-end executes on each UGV, where it takes all sensor data as inputs
and creates a sequence of submaps that provide an overlapping gridmap representation of
the environment. The front-end’s requirements, based on the WAMbot MRS, are to:

• Estimate UGV pose, broadcast in real-time >10 Hz locally, 1 Hz globally
• Build 10 cm submap gridmaps, broadcast >1 Hz locally, >0.2 Hz globally
• Robustly handle moving objects, including mobile OOIs, humans walking at 6 km/h
• Robustly handle difficult sensing conditions: sparse areas, featureless corridors
• Detect odometry errors to minimize corruption in submaps
• Compress submap gridmaps before broadcast
• Use less than 25% of available computation and memory requirements

The Mapbuilder architecture distributes the front-end computation fully— each UGV that
is added to the team includes the necessary computing power to process the additional
sensor data it UGV creates. The computation and storage requirements are bounded by
the maximum size of each submap, which is ultimately bounded by the maximum distance
a UGV drives in its submap and the range of its lidar sensors.

118

4.4 Logical Design

SubmapPoseMessage
+global_pose: SE2

+is_anchored: bool

+is_deleted: bool

SubmapConstraintMessage
+target_submap_uuid: uuid_t

+measurement: SE2

+covariance: Matrix3d

+weight: double

SubmapMessage
+submap_uuid: uuid_t

+timestamp: double

+source_id_priority: uint

SubmapGridmapMessage
+is_closed: bool

UgvPoseMessage
+local_pose: SE2

GroundTruthMessage
+global_pose: SE2

+covariance: Matrix3d

+is_deleted: bool

GridmapMessage
+gridmap_data: char *

+width: uint

+height: uint

+cells_per_meter: uint

+origin_offset: Vector2i

GlobalGridmapMessage
+global_pose: SE2

+source: source_t

Figure 4.7. Mapbuilder message types: UML class diagram of demarshalled message types.

4.4.1.1. SLAM Algorithm

The architecture is flexible to the choice of single-robot SLAM algorithm implemented
in the front-end. Many of the algorithms reviewed in Section 2.5 are suitable; the main
requirement is that the algorithm can produce occupancy gridmaps while estimating UGV
pose and accumulated pose uncertainty. The various single-robot SLAM algorithms have
different strengths and weaknesses when considered for submapping front-ends:

• Kalman Filter SLAM: approaches, such as the EKF (Section 2.5.3.2), typically
have bounded computational requirements for a fixed-size environment. While gen-
erally used to generate landmark-based maps, lidar scans can be rendered to create
gridmaps [103, 104]. An inability to revisit previous data associations, combined with
nonlinearities, results in small errors being “baked” into the estimate. For fixed-size
submaps, however, the accumulation of errors can be managed and firewalled from
subsequent submaps.

• Particle Filter SLAM: approaches, such as RBPF’s (Section 2.5.3.7) are ideal for
submapping, since the number of particles can be selected to suit the target submap
size, environment complexity and processing budget [208, 209, 135]. Each particle
stores an estimate for the UGV’s path through the current submap, thus the filter

119

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

has the ability to maintain multiple pose hypotheses. When the submap is closed the
final distribution of particles can be converted into either unimodal or multimodal
constraints (Section 6.2.2).

• Pose-graph SLAM: approaches (Section 2.5.4) produce solutions that are closer to
the full-SLAM solution. Depending on the shape of the environment, periodic scan
matching and optimization offers the best opportunity to smooth the UGV’s path
and batch-align lidar scans into locally consistent configurations [224, 225, 226, 243].
While the path length, and computational requirements, are potentially bounded,
smoothing a graph with dozens of poses can requires orders of magnitude more
computation than filter-based methods; this cost is amortized in on-line incremental
optimizations. In difficult environments, optimization can cause large step changes
in UGV pose estimates, and pose uncertainty estimates recovered from marginal
covariances are likely to be overly optimistic [223].

• Sliding Window Filter: approaches (Section 2.5.3.8) maintain a fixed-size set
of historical UGV poses that are either filtered (e.g. an EKF) or smoothed (e.g.
pose-graph SLAM). The oldest poses are marginalized out, bounding computational
requirements. Within the Mapbuilder submapping framework, SWFs can optionally
provide more stability to the Local SLAM estimate by not clearing the map at the
start of each submap. This can assist with lidar scan matching and localization,
particularly in degenerate environments with perceptual aliasing. Care is taken to
ensure lidar scans from previous submaps are marginalized-out before closing the
current submap. This maintains the ability to firewall uncertainty between submaps
while avoiding double-counting measurements.

The algorithm selection depends on the target environment, the UGV sensor package and
UGV computation available. Three different configurations are used in my research work,
emphasizing the flexibility of the Mapbuilder design. The WAMbot front-end uses an EKF
with ICP, while TM uses a SWF and Penn uses RBPF techniques. These configurations
are described in Appendix A.

4.4.1.2. EKF SLAM with ICP

The Local SLAM front-end for the WAMbot UGVs is described here briefly, while he
sensors and hardware are described in Appendix A. To minimize computational require-
ments the front-end uses an EKF (Section 2.5.3.2) with scan matching (Section 2.3.4.1).
Submaps are built by aggregating lidar scans every 20 cm of motion or 20 degrees of
rotation. To maintain an upper bound on the error within each submap, the heuristic de-
scribed in Section 4.3.6 is used to decide when to close the current submap. This heuristic
is augmented by a threshold on the percentage of lidar returns that are successfully aligned;
this detects scan matching failures, particularly in sparse environments.

120

4.4 Logical Design

r
α

h
β

Figure 4.8. Local SLAM lidar prefilter: The terrain is assumed to be locally flat with inclinations
less than β, while a “Manhattan World” assumption treats all objects as vertical. For each
measurement r from the horizontal lidar scanner, the declination, α, is calculated from the pitch
and roll of the UGV. Using trigonometry, the corrected lidar range is r cosα, while the inequality
for accepting individual measurements is 0 < h− r sinα− r cosα tan β.

UGV pose is estimated using the EKF: each cycle begins by predicting the current pose
using the latest wheel odometry and IMU data. Using this prediction the latest lidar
scan is aligned against the current submap using scan matching [326]. Moving objects
are detected using a RANSAC outlier rejection step [313]. The resulting scan matching
alignment is used to update the EKF and pose estimate. The odometry noise in the EKF
update is altered according to the local ground slope; this is estimated using UGV pitch
and roll measurements from the IMU. As the slope increases, the model assumes that
odometry noise due to wheel slippage increases also, this switches the filter to prefer scan
matching over odometry as the slope increases. The filter is updated at the lidar scan rate
of 25 Hz; UGV pose messages are sent at 25 Hz to the local partition and broadcast at
1 Hz globally.

Uneven terrain, particularly in outdoor environments, can introduce a range of scenarios
that result in erroneous returns from a lidar scanner that is mounted horizontally. The
ground grazing hits described in Section 2.3.2 are a good example. Although it is difficult
to detect all of these errors, many can be filtered using UGV pitch and roll measurements
from the IMU. To do this we make two assumptions: the first is the local flatness of the
terrain, e.g. the inclination is never greater than βmax. The second is about the shape
of the objects the environment— here we use a “Manhattan World” assumption [327].
Together, these assume the terrain is mostly flat and objects are mostly vertical.

The prefilter becomes a simple test based on trigonometry. Referring to Figure 4.8, each
lidar measurement range r is first corrected to account for the declination, α, of the lidar
measurement (caused by the pitch and roll of the UGV). The corrected lidar measurement,
r cosα, and the height of the lidar above the ground, h, are used to create the inequality:

0 < h− r sinα− r cosα tan βmax (4.1)

121

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

Any measurement r with declination α that does not pass Equation 4.1 is filtered (re-
moved) because there is a chance that it hit (or grazed) the ground. In practice, individual
lidar measurements are first projected in 3-D using the UGV’s pitch and roll to obtain r
and α. It is trivial to apply this filter individually to each measurement in a lidar scan.
The corrected, filtered, lidar measurements r cosα are passed into the SLAM algorithm.

This prefilter assumes that obstacles in the environment have infinitely high walls. While
this is not true, it is difficult to make a more principled assumption— the prefilter works
well in practice for UGV pitch/roll angles below 30 degrees.

4.4.1.3. Submap Extents and Overlap

Submap gridmaps are rectangular, and their dimensions are dynamically increased to
encompass the extent of all lidar returns. Thus the size of each closed submap gridmap
is determined by the maximum range of the lidar (R), the shape of the environment and
the heuristic that decides when to start the next submap. This heuristic is described in
Section 4.3.6; here we will consider an average distance between submaps (D).

For a sequence of overlapping rectangular submaps created by a single UGV driving in an
outdoor area, the maximum overlap between submaps separated by D can be calculated
by the ratio 2R

2R+D . Using the WAMbot UGVs as an example (Appendix A), the lidar
range (R = 20 m) and average distance (D = 3 m) produces a maximum submap overlap
of 93%. A single UGV could therefore produce submaps that overlap the same area up
to 15 times. For reference, in the MAGIC challenge datasets (Appendix B) the overlap
varied between 10 and 22 times per UGV.

While it might seem that submapping creates a large quantity of redundant submap
data and computation, in the decentralized MR-SLAM case this spatial overlap between
submaps is required to enable the distributed back-ends to compare and align map data.
Given that each submap contains dozens of compressed lidar scans, this submapping ap-
proach results in less redundant computation than the equivalent decentralized MR-SLAM
solution using lidar scan matching. Chapter 5 explains how this overlapping, redundant,
data can be handled as efficiently as possible. For reference, histograms and statistics
for real-world submaps are given in Figure 7.9 on page 183, Figure 7.14 on page 189 and
Figure 7.19 on page 195.

4.4.1.4. Output Message Types and Policies

Three different message types are broadcast by the front-end, each timestamped by the
local clock. When submaps are closing, the front-end broadcasts their compressed gridmap
data along with a constraint linking the closed submap to a newly created one. This

122

4.4 Logical Design

minimal set of messages is sufficient for the distributed instances of the Mapbuilder back-
end to recreate the pose graph and produce global gridmaps.

If a UGV is driving infrequently, such as performing a surveillance task, it might remain
in a single submap for extended time periods. Therefore to produce real-time global
maps, the front-end also broadcasts incomplete gridmaps for the currently open submap.
This gridmap data is sent to the local partition at 1 Hz and the global partition every
five seconds to keep the distributed global gridmaps up-to-date. A flag in the message
indicates that the submap is still open, and is not yet immutable (Section 4.3.3).

The front-end’s publishing QoS policies vary depending on message type. The DDS buffer
size, n, is specified for each:

1. SubmapConstraint (n = 1000): Constraint messages are assigned the highest pri-
ority, since they define the entire pose graph structure. A large buffer size is
appropriate, since the messages are both small and comparatively valuable.

2. SubmapGridmap: Gridmap messages are assigned the next highest priority, since
they encode the actual shape of the environment. While gridmaps are compressed,
they form the bulk of the MR-SLAM data.

a) Open (n = 0): Gridmaps that are open are disposable since each front-end re-
broadcasts them periodically, and stale messages are not useful. An advanced
implementation only re-broadcasts parts of the gridmap that are changing. For
local UGV navigation, open gridmaps can be sent to the local partition at the
lidar’s scan rate.

b) Closed (n = 100): Gridmaps that are closing are higher priority, since they
are only transmitted once. There is a trade off when choosing n: if it is too low
there is a risk of small holes appearing in the global gridmap, if n is too high
the network may be overwhelmed after an extended communications outage.

3. UgvPose (n = 0): Real-time UGV pose estimates in the current submap’s frame, are
broadcast frequently. They become stale immediately and are disposable. For local
UGV navigation, pose messages can be sent to the local partition at the lidar scan
rate.

To create SubmapGridmap messages, a rendering algorithm ray traces the accumulated
lidar scans into an empty gridmap using the techniques described in Section 2.3.4.3. For
robustness and efficiency the gridmap data is broken into smaller 32×32 cell gridmap
tiles that can be broadcast as UDP packets without fragmentation. The occupancy data
in these tile cells is quantized and compressed using run length encoding. This basic
compression scheme provides around 50:1 compression ratio, reducing gridmaps to 2% of
their original size.

123

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

4.4.2. Mapbuilder Back-end

Distributed instances of the Mapbuilder back-end provide all of Mapbuilder’s MR-SLAM
capabilities. Using the DDS middleware, each back-end subscribes to all of the MR-SLAM
messages listed in Figure 4.7 to maintain a local copy of the pose graph and submap
gridmap data. The back-end’s requirements, based on the WAMbot MRS, are to:

• Optimize pose graphs robustly and efficiently, < 5 seconds per iteration.
• Output large (5000×5000) gridmaps to the local partition at >1 Hz.
• Match submaps to generate robust constraints, < 5 seconds per match.
• Broadcast SubmapPose messages globally to maintain decentralized pose graph.
• Output SubmapPose updates to the local partition at >1 Hz.

To meet these requirements, the back-end computation is performed in three tasks:

• Optimizer: performs incremental pose graph optimization.

• Builder: fuses the submap gridmaps to output global or windowed gridmaps.

• Matcher: searches for new SE (2) constraints that align overlapping submaps.

Task scheduling depends on the computational resources allocated to the back-end. In
this research work, the Optimizer, Builder, and Matcher tasks are executed in parallel in
separate CPU threads. This adds complexity by requiring an extensive use of mutexes
and semaphores, however it allows the back-end to take advantage of the multiple pro-
cessing cores available in modern CPUs. Any spare processing time the UGV and GCS
participants have can be dynamically allocated to the back-end, which typically runs the
Matcher task to perform additional submap alignments. This section describes the back-
end Optimizer (Section 4.4.2.3), Builder (Section 4.4.2.4), and Matcher (Section 4.4.2.5)
tasks in detail.

4.4.2.1. Maintaining Distributed Pose Graphs

For efficiency, each Mapbuilder back-end instance uses a single set of DDS subscriptions
and a single set of message call-back handlers. To ensure pose graph updates are performed
atomically and in a thread-safe manner, messages are not processed when they are received.
Instead they are demarshalled and placed in temporary queues (the demarshalled messages
are shown in Figure 4.7). These queues are processed in a batch update to the pose
graph, directly before the Optimizer is executed. The batch update uses Filter 1, from
Section 4.3.9, to decide which messages to accept or ignore.

To ensure pose graph updates are deterministic, special care is taken to only compare
timestamps embedded in messages that originated from the same participant. This avoids

124

4.4 Logical Design

the need for participants’ real-time clocks to be closely synchronized (the only requirement
is for the clocks to increase monotonically).

Recognizing that messages can arrive out of order, incoming messages are handled in a
greedy manner. For example, if a SubmapConstraint message arrives that joins submaps
that do not exist in the local pose graph, the missing submaps are automatically created
in the graph.

To avoid double-counting measurements, a common problem in decentralized MR-SLAM
architectures, incoming submap constraints are reversed as needed so that they are ordered
deterministically. Reversing is performed using cab = �cba so that the submap UUIDs are
ranked a < b. This design ensures that submap pairs have only has one constraint, and
allows for multimodal constraints.

The SE (2) pose graph is stored using submap pose and constraint classes that are derived
from the g2o library’s, g2o::VertexSE2 and g2o::EdgeSE2 types, respectively. Ground
truth constraints are derived from g2o::EdgeSE2Prior. Refer to [238, 243] for an intro-
duction to the g2o optimization library. Deriving classes from g2o types allows the pose
graph optimization to be performed directly on the graph and matrix decompositions to
persist between invocations, greatly improving efficiency.

4.4.2.2. Constraint Types

The Mapbuilder architecture can build and optimize pose graphs with various spatial
constraint types and both direct or iterative methods. Potential types have residual error
functions with Jacobians that can be derived analytically, or calculated numerically ([243]).
Three SE (2) constraint types are used in this research:

• Unimodal: the typical Gaussian SE (2) pose graph constraint described frequently
in the literature [238]. Jacobians are calculated analytically.

• Max-Mixture: Olson and Agarwal’s multimodal Gaussian approach was imple-
mented for comparison in Chapter 6 [57]. Jacobians are calculated analytically also.

• COMBO: this novel multimodal Gaussian constraint type is described in Chapter 6.
Jacobians are calculated with a combination of numerical and analytical techniques.

4.4.2.3. Optimizer: Incremental Pose Graph Optimization

The Optimizer task uses the standard pose graph optimization techniques described in
Section 2.5.4.7. The problem formulation is almost identical with submaps: the submap
poses, pWa , are estimated instead of the UGV poses, rWt . Either direct or iterative methods

125

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

can be used to find the maximum likelihood estimate (MLE)— the Levenberg Marquardt
algorithm (Section 2.5.4.9) with Cholesky factorization is used in this work.

To limit the Optimizer task execution time, each invocation performs an incremental MLE
optimization with a upper limit to the number of iterations (e.g. ≤ 10). Most of the time,
however, the pose graph will be close to an optimum; the optimization will converge in
one or two iterations and terminate early. Between invocations, additional poses and
constraints can be added to the pose graph that could, for example, result in large loop
closures. These may require dozens of iterations and several invocations of the Optimizer
(i.e. several batches of iterations) to converge..

Care must be taken to ensure that the optimization is well-formed, particularly when using
direct methods with matrix decompositions, such as the Cholesky factorization used here:

• All constraint uncertainties must be positive semidefinite.

• Every submap must be connected by at least one constraint.

• Every connected set of submaps must have at least one ground-truth constraint.

When messages arrive out of order, it is highly likely that the pose graph will not be
fully-connected. Submaps that are not connected to the main pose graph are omitted
from the optimization to avoid gauge freedom (refer to [234]). Gauge freedom must be
avoided, since the resulting Hessian matrix will be rank deficient such that it cannot be
factorized (Section 2.5.4.9).

It is important that the initial pose of any new submap is “close” to the global optimum,
since numerical optimization using floating-point numbers can become unstable with large
constraint residual errors (Section 2.5.4.4). A simple spanning-tree algorithm can be used
to initialize any submap pose estimates, provided the pose graph has at least one ground-
truth constraint.

To implement the hybrid-decentralized approach described in Section 4.3.9, the Optimizer
uses Filter 2 to determine which submaps in the pose graph are pinned, and which can be
freely optimized. For lower-priority participants, most submaps will be pinned resulting
in a very minimal pose graph optimization. For efficiency, only unpinned submaps are
added to the optimization along with the constraints they are directly connected to.

The four rules listed in Section 4.3.9.2 determine if the back-end should broadcast any
SubmapPose messages to maintain synchronization with the other participants. These
pose updates are filtered first, however, since most incremental optimizations result in
numerically small changes to the global gridmap. A simple filter projects the four corners
of each submap gridmap into the global frame: if any corner moves by more than half a
cell-width, the update is included.

126

4.4 Logical Design

4.4.2.4. Builder: Occupancy Gridmap Fusion

The Builder’s role is to efficiently create occupancy gridmaps by fusing thousands of
submap gridmaps together. It may produce global or windowed gridmaps depending on
the high-level requirements and available processing resources. Each execution of the task
starts with a blank output gridmap, where the probability of each cell being occupied is
p(mi) = 0.5. The Builder iterates over all submap gridmaps, fusing them into the output
gridmap. For each submap gridmap, the individual cells are transformed into the output
gridmap’s coordinate frame and the corresponding cells are fused using a binary Bayes
filter (Section 2.3.4.3).

Although it is computationally inexpensive to fuse individual cells, submaps are often
very densely overlapped. For reference, in the Phase 2 dataset in this research work 175
million submap cells are fused into 2.5 million output gridmap cells. It is nontrivial to
achieve this scale of gridmap fusion in real-time. Chapter 5 describes an efficient gridmap
fusion algorithm that can fuse 45 thousand submaps, and 3.9 billion submap cells per
second, enabling the distributed submapping approach described in this chapter. The
output gridmap data is efficiently delivered to the local partition (high-level consumers)
over shared memory.

4.4.2.5. Matcher: Submap Constraint Search

As discussed in Section 4.3.7, to connect sequences of submaps from individual UGVs into a
fully connected multi-robot pose graph, constraints need to be added that connect spatially
overlapping pairs of submaps. The Matcher task searches for these SE (2) constraints,
finding both large and small loop closures that make the pose graph increasingly connected,
while refining submap pose estimates.

For the distributed architecture to function, each UGV should be designed with sufficient
computational resources to match, at least, each submap that it creates to one other
submap. For example, if each UGV creates a new submap every ~3 meters, and has a top
speed of 0.5 meters per second, then searches should take less than 6 seconds to keep the
MR-SLAM pose graph connected.

The odometry error that accumulates as UGVs explore is assumed to be bounded by
±3 meters and ±20 degrees. This assumption, explained in Section 4.1.4, defines a volu-
metric search space between pairs of submaps that must be considered by the Matcher6.
Section 2.3.4.1 describes several algorithms that could perform this type of search; the
main requirement is that the algorithm returns a relative constraint in SE (2) and a
principled estimate of the constraint’s covariance. Consideration should be given to

6Note that constraints in se (2) have three degrees of freedom that define a volume.

127

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

the algorithm’s robustness in different environments. Chapter 5 describes an algorithm
that samples the entire search volume to estimate constraints with multimodal Gaussian
distributions.

The Matcher task maintains a list of submap pairs that require matching. This list is
formed by iterating over submaps in the local pose graph looking for pairs of submaps that
overlap spatially. An overlapping submap pair is added to the list if it has: 1) no existing
constraint, 2) an existing constraint where their relative pose has changed significantly, or
3) either of their states have changed from open to closed.

A heuristic is used to decide which submap pairs in the list a participant should prioritize
matching, it is designed to prevent participants from performing redundant searches.
Existing constraints prevent most redundant searches, except for the occasion where two
participants begin matching the same pair at the same time. To avoid this, this each
participant sorts and prioritizes the list:

1. Submap pairs that include a submap that was created by the participant itself in
the last 10 seconds. This gives UGV participants the opportunity to quickly connect
their newest submaps into the pose graph, while preventing other participants from
redundantly performing the same search.

2. Older submaps are matched by any participant, however to distribute the search
spatially across the pose graph, and computationally across the entire clique, the
local list of submap pairs is sorted deterministically using the last 32 bits of both
submaps’ UUIDs. These bits are uniformly distributed random numbers, and once
sorted they are used to slice the list of submap pairs into even work-loads. Each
participant starts matching submap pairs at an offset in the list determined by its
priority ranking in the local clique (see Section 4.3.9).

Each search is performed ±3 meters and ±20 degrees around the current relative pose. The
search results are broadcast as a SubmapConstraint message that includes a weighting
parameter that reflects confidence in the match. Locally-created constraints are integrated
into the local pose graph via the back-end’s main message queue (Section 4.4.2.1) to remain
deterministic.

4.4.2.6. Output Message Types and Policies

The back-end’s publishing QoS policies vary depending on message type. The DDS buffer
size, n, is specified for each:

128

4.4 Logical Design

1. SubmapPose:

a) Global Partition (n = 0): Submap pose estimates are broadcast globally to
perform pinning in the hybrid-decentralized pose graph. Since synchronization
between distributed participants is handled by by the priority-based filters
described in Section 4.3.9, delivery guarantees are not required .

b) Local Partition (n = 0): DDS uses shared memory to deliver real-time
submap pose estimates to local software components. QoS is not required.

2. SubmapConstraint (n = 1000): Constraint messages are assigned the highest pri-
ority, since they define the entire pose graph structure. A large buffer size is
appropriate, since the messages are both small and comparatively valuable.

3. GlobalGridmap (n = 0): DDS uses shared memory to deliver global gridmaps to
local software components. QoS is not required.

4.4.3. Mapbuilder GUI

The GUI implements a point-and-click user interface that allows operators to interact
with the MR-SLAM pose graph and submaps7. Its main purpose is to enable operators
to interactively correct for the non-Gaussian odometry errors described in Appendix B.
To correct these errors the operator needs to be able to modify the pose graph. Operator
interaction requirements include:

• Select, move and rotate a submaps (GroundTruth messages).
• Select and delete submaps (SubmapPose messages with deleted flag set).
• Select and anchor submaps (SubmapPose messages with anchored flag set).
• Create submap priors from aerial imagery (SubmapGridmap messages).

These four operator interactions are described in this section, since they affect all UGV
and GCS participants and their distributed copies of the pose graph. For reference, design
requirements that allow the operator to interact with the graphical displays are:

• Display, pan and zoom the global gridmap output.
• Display and hide configurable overlays (real-time UGV pose, historical UGV tracks,

pose graph structure and aerial imagery).
• Highlight individual submaps, highlight submap groups filtered by source UGV.
• Highlight unanchored parts of the global map.
• Save and restore pan and zoom presets for efficient interaction.

7Videos of the GUI being used are available online: http://reid.ai/thesis

129

http://reid.ai/thesis

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

Figure 4.9. Mapbuilder graphical user interface: Screen-shot showing ten of the UGVs
exploring Phase 2 of the MAGIC challenge. A global occupancy gridmap is blended with an
aerial image and various configurable overlays. Markers indicate current UGV poses, while lines
indicate their trajectories. Green dots indicate submaps and green lines the active pose graph
constraints. Animations are used extensively to minimize clutter. In this screen-shot, the submaps
for a selected UGV are highlighted (yellow, pulsating), while in the lower right a single submap
has been selected with the mouse (highlighted with a gray rectangle). Errors can be seen in these
submaps resulting from many non-Gaussian odometry errors caused by a long ditch, the operator
is manually deleting them (click to view video).

The GUI maintains its own local copy of the pose graph by subscribing to all MR-SLAM
message types. It displays an aerial image for the operator, over which it draws the
current global gridmap, the pose graph structure, highlighted submaps and UGV pose
markers. The global gridmap is delivered efficiently over the local partition so that the
display updates interactively and in near real-time. A screen-shot of the GUI is shown in
Figure 4.9.

While a GUI is an important part of any deployable MRS, the only system I could find in
the literature that allows operator interaction with the MR-SLAM pose graph is described
by Olson et al. in [53]. I could not find any GUIs that enable interactions with distributed
pose graphs.

4.4.3.1. Distributed Operator Interactions

For the GUI to affect the other participants’ distributed pose graphs, operator interactions
are broadcast as messages (summarized below).The participant running the GUI must have
the highest priority for the messages to pass through every other participant’s priority-
based filters (Section 4.3.9).

130

http://reid.ai/thesis/p2?t=19m25s
http://reid.ai/thesis/p2?t=19m25s

4.4 Logical Design

Submaps are moved and rotated into alignment by sending GroundTruth constraint mes-
sages. The operator performs these alignments by clicking and dragging on submaps with
the mouse. Typically the operator will align submaps with either the aerial image, or
other submaps.

To assist the operator managing dozens of UGVs, particularly during initialization, the
concept of anchoring submaps is introduced. Unanchored submaps float on top of the
map display, visually pulsating to draw the operator’s attention; they are ignored by
the Builder and Matcher tasks. The operator can move and rotate unanchored chains of
submaps into alignment, before issuing a command to anchor them (SubmapPose messages
are broadcast with their “anchored” flag set). The anchoring process is greedy, since it
propagates from the selected submap through all connected submaps in the pose graph.
In this way, every UGV and its submaps begin unanchored from the global map, and
are only fused and matched with other anchored submaps after the operator’s command.
Thus submaps generated by uninitialized UGVs are excluded from the output gridmap
and they are not incorrectly joined to other submaps.

If the operator identifies a submap that has been damaged by non-Gaussian errors, the
operator selects it and issues a delete command. To propagate the change to other par-
ticipants, submap deletions are broadcast via SubmapPose messages that have a “deleted”
flag set. The other participants delete the submap’s gridmap data and any constraints
connected to it, however they leave the submap in the pose graph. This removes all
influence in the optimization and output gridmap, while allowing the deleted flag to
propagate to the other hybrid-decentralized participants as in Section 4.3.9.

Deleting submaps can cause “islands” of submaps to be disconnected from the main pose
graph. If these disconnected submaps are not constrained by any ground-truth constraints,
they are automatically unanchored and begin pulsating to draw the operator’s attention.
These newly unanchored submaps are excluded by the Optimizer, which is crucial for the
gauge freedom rules described in Section 4.4.2.3.

4.4.3.2. Aerial Image Priors

Section 4.1.4 explains how a trained operator can manually add submap priors from aerial
imagery. This is performed in the GUI by creating synthetic submaps. Synthetic submaps
are generated by simulating a 360 degree lidar scan at the selected location; the simulated
lidar measurements are ray cast into the aerial image and stop when an edge in pixel
intensities is detected. The simulated lidar scan data is rendered into a gridmap using the
same techniques as the Local SLAM component (Section 4.4.1). The GUI broadcasts the
synthetic submap as a closed SubmapGridmap message, with a fixed SubmapPose, so that
the distributed back-ends can then perform loop closures to them.

131

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

This technique assumes the edges in the aerial images are aligned with actual objects in the
environment. Figure B.4 (b) on page 237 shows two adjacent buildings with very different
eaves that appear almost identical when viewed in the aerial image. Building eaves such
as these, and other features like shadows on the ground, lead to difficulties using this
approach, even for a trained operator. To assist, a 2-D edge map image is precomputed
off-line that can be manually edited to remove shadows and other clutter. Matching 2-D
lidar data to aerial imagery is a complex visual perceptual problem that is addressed in
other works such as [265, 266, 267].

4.4.3.3. Output Message Types and Policies

The GUI’s publishing QoS policies vary depending on message type. The DDS buffer size,
n, is specified for each:

1. SubmapPose (n = 0): Submap pose messages are broadcast globally to perform
pinning in the pose graph. Since synchronization between distributed participants
is handled by by the priority-based filters described in Section 4.3.9, delivery guar-
antees are not required.

2. GroundTruth (n = 1000): Ground truth messages are assigned the highest priority,
since they allow the operator to tie down the pose graph structure. They are small
and valuable messages.

3. SubmapGridmap (n = 100): Submap priors are generated from aerial imagery and
broadcast as closed SubmapGridmap messages.

4.5. System Verification

This research work and the Mapbuilder system are designed to meet a long list of re-
quirements (Section 4.1.3) under several assumptions (Section 4.1.4). This section ad-
dresses three of these requirements, highlighting how they are achieved. Results shown
in Chapter 7 demonstrate that the remainder of the MR-SLAM requirements have been
met.

4.5.1. Flexible Global Localization

The pose graph approach described here is flexible with respect to the method of global
localization. If a UGV team is deployed indoors, the first UGV submap pose can be
initialized to pW0 = [0, 0, 0]T , and the system will function normally without global
localization. For a georeferenced UGV deployment in GPS-denied environments, such

132

4.5 System Verification

as in dense urban settings or when electronic countermeasures are in place, submaps (and
hence their UGVs) can be aligned to a globally-referenced aerial image (Section 4.4.3.2).

If reliable GPS sensor data is available, it can be used to create loose ground-truth
constraints that gradually “tie down” a pose graph so that it becomes georeferenced. In
ideal situations GPS can provide position and heading accuracies better than ±5 meters
and ±10 degrees outdoors. For each GPS ground-truth constraint the uncertainty is
estimated using the GPS sensor’s horizontal DOP value (Section 2.4.3). The DOP model
is overconfident, however, and does not account for non-Gaussian errors such as multipath
reflections [328]. GPS data is not used in the results in Chapter 7, since the UGVs were
deployed in urban areas that experienced frequent multipath errors. Refer to Appendix B,
and Figure B.7 on page 239 for more detail.

4.5.2. Consistent Coordinate Frames

Teams of UGVs should perform spatial tasks with respect to their local environment, not
a global coordinate frame that is maintained by pose graph optimization. Large loop
closures, for example, can cause submaps (and the UGVs that are building them) to
“jump” in the global frame, causing inconsistencies in global coordinates.

To maintain consistent coordinate frames, all UGV operations are performed relative to
one or more submap coordinate frames. Navigation waypoints, for example, are issued as
coordinates with respect to one or more submap frames. This is essential, since globally-
referenced waypoints may become inaccessible if a loop closure causes an obstacle such as
a wall to move. Section 8.3 describes an approach for global navigation that plans directly
in submaps— this is future work.

To ensure consistency during operator GUI interactions, care needs to be taken when
converting global coordinates into submap-relative coordinates. If the operator provides a
global waypoint, rW , it is converted to a submap-relative coordinate with ra = �pWa rW ,
where pWa is the closest submap to the waypoint with a gridmap that includes the
waypoint.

4.5.3. Heterogeneous UGVs

The submap-based approach described in this chapter is well-suited to MR-SLAM with
heterogeneous UGVs. The back-end can incorporate data from UGVs with different types
of sensors, provided the Local SLAM front-end can generate:

133

Chapter 4 Hybrid-Decentralized and Distributed Multi-Robot SLAM

• 2-D occupancy gridmaps that appear similar from similar vantage points.
• Spatial constraints between submaps with principled uncertainty estimates.
• Real-time submap-relative pose updates.

To generate these outputs, each UGV sensor package would typically include a lidar
scanner. Results in Chapter 7 demonstrate heterogeneous UGVs performing MR-SLAM
with fixed, nodding and sweeping lidar configurations (see Appendix A).

134

5 Efficient Occupancy Gridmap
Fusion and Matching

The distributed multi-robot SLAM approach described in Chapter 4, produces
thousands of overlapping occupancy gridmaps that become computationally
expensive to fuse into global gridmaps and to search for loop closures. To main-
tain on-line performance in large-scale MR-SLAM deployments, two algorith-
mic contributions in this chapter show how to utilize the massively-parallel pro-
cessing capabilities of modern graphics processing units (GPUs). In Section 5.1
I introduce GPUs and their programming model, while in Section 5.2 I describe
how submap gridmaps are similar to the 2-D textures that GPUs are optimized
for. Section 5.3 shows how the binary Bayes filter can be parallelized into an
algorithm that can fuse tens of thousands of gridmaps per second. Finally, in
Section 5.4 I describe a correlative submap matching algorithm that extracts
multimodal Gaussian constraints from pairs of submaps.

5.1. Introduction

Chapter 4 describes Mapbuilder, a distributed architecture for MR-SLAM that generates
thousands of densely overlapping submap gridmaps. The research work in this chapter
shows how these submap gridmaps can be efficiently manipulated and describes two
algorithms that enable on-line distributed MR-SLAM.

135

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

5.1.1. Research Contributions

These contributions were required to realize the Mapbuilder MR-SLAM system:

1. GPU-based occupancy gridmap fusion: merges tens of thousands of submaps
per second using an efficient highly-parallelized adaptation of the log odds binary
Bayes filtering algorithm (Section 5.3).

2. GPU-based multimodal constraint generation: extracts descriptive, yet min-
imalistic, representations of the spatial relationships between submaps. A highly-
parallelized gridmap correlation algorithm calculates likelihood volumes and extracts
multimodal Gaussian distributions (Section 5.4).

The computers in a typical UGV operate without any visual display and the on-board
GPU is often unused. The GPU-based gridmap algorithms described in this chapter allow
the most computationally expensive parts of the Mapbuilder back-end (Section 4.4.2) to
be off-loaded to the unused GPU, thus freeing the CPU for other tasks.

The occupancy gridmap fusion algorithm described here is demonstrated in the Mapbuilder
back-end’s Builder task (Section 4.4.2.4), while the multimodal constraint generation al-
gorithm is demonstrated in the Matcher task (Section 4.4.2.5). The distributed nature of
the back-end design allows each instance to use 100% of the participants GPU: the Builder
task executes periodically, while the Matcher task is allocated all spare GPU computation
time to search for loop closure constraints.

5.1.2. Graphics Processing Units

While computer microprocessors (CPUs) have become exponentially more powerful over
the last few decades [329], physical limits have prevented CPU clock speeds from increasing
further. Instead, recent advances in computational power have been enabled by packaging
multiple processors into a single silicon chip. Two or four “cores” are frequently packaged
into these multi-core CPUs in a manner that allows them to share the execution of multi-
threaded programs. Even using the advanced vector operations on modern CPUs, however,
four processing cores running at 2-3 GHz are still too slow at manipulating the billions of
gridmap cells per second required for the Mapbuilder back-end to run in real-time1.

GPUs have evolved over the last two decades into multi-core processors with thousands
of cores. Their arithmetic and logic cores are highly-optimized for 3-D computer graphics
operations such as rendering 2-D textures. They are well-suited for algorithms where the
computation can be broken into thousands or millions of threads that can be executed in

1The memory caching techniques used in modern CPU’s are not well-suited to the types of sequential
read-write memory access patterns that occur when building large global gridmaps.

136

5.2 Submaps as Textures

parallel. Their massively-parallel designs have memory architectures that are optimized
for sequential read-write access patterns.

Driven primarily by 3-D computer graphics and games, GPUs are now commodity hard-
ware. For reference, the 1664-core GPU used in this research retails for USD $320 and has
more than twice the computational power necessary for on-line MR-SLAM with 23 UGVs
(it can process over 100 billion textured pixels per second). The research problem consid-
ered here, therefore, is how to reformulate the gridmap fusion and constraint generation
algorithms to leverage these massively-parallel capabilities.

5.1.3. Programming Model

GPUs are not programmed with traditional languages and compilers because of the special
functionality required to synchronize memory access and execution across groups of cores.
While proprietary languages have been created by various manufacturers [329], two notable
open standards for programming GPUs are OpenGL GLSL [330] and OpenCL [331]. For
manipulating gridmaps, both languages are equally well-suited, however OpenGL GLSL is
an older standard and is available on a a wider range of GPUs (OpenCL was not available
on the WAMbot UGV computers).

In this research work, the GPU is interfaced using OpenGL version 3.0 , and the gridmap
algorithms are implemented in the OpenGL GLSL shader language version 1.30 (an open
standard since 2008) [330]. For reference, most commodity GPU hardware, including
modern mobile phone processors, provide the OpenGL GLSL capabilities necessary to run
these algorithms.

5.2. Submaps as Textures

The insight that makes Mapbuilder’s submapping approach computationally feasible is
that rectangular submap gridmaps are very similar to the 2-D textures that can be
efficiently manipulated by GPUs. The thousands of cores in a modern GPU are very
efficient at transforming coordinates, reading pixels from 2-D textures and output memory
buffers, blending the red, green, blue and alpha (RGBA) color components and writing
the result back into the output memory buffer— all while synchronizing the output buffer
so that the reading and writing by thousands of cores at the same time do not interfere.
These capabilities are designed for applications like computer games, where millions of
2-D textured polygons are drawn into output buffers to render views of 3-D scenes. When
considering rectangular gridmaps as 2-D textures, a single gridmap cell is equivalent to a
single pixel in the texture.

137

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

In this work, OpenGL is used to store submap gridmaps as 2-D textures, which depending
on the platform, will reside either in dedicated high-speed GPU memory or in memory that
is shared with the CPU. Since the Mapbuilder architecture specifies that closed submaps
are immutable, they are only converted to textures and uploaded to the GPU’s memory
once— this is an important aspect of the design. Given each UGV maintains only a single
open submap, the number of new submap textures being uploaded to the GPU each second
is less than the number of UGVs in the team.

If the GPU’s computational power is limited, or if only smaller “windowed” gridmap
outputs are required, it is trivial to limit the extents of the gridmap output. Similarly,
if a participant’s GPU has limited memory available, the OpenGL drivers will move any
unused submap textures back to the host CPU’s memory. Furthermore, if the host CPU’s
memory is limited, then submap textures can be buffered to permanent storage (hard
disk). Submaps that do not overlap the current gridmap output window can be trivially
filtered and off-loaded to permanent storage.

It is inexpensive to store additional 2-D spatial data alongside the occupancy gridmap data
in a submap texture. GPUs are designed for rendering color images, and therefore their
memory access is optimized for reading and writing pixels with multiple color components.
A typical format is RGBA, with 8 bits per channel, or 32 bits total per pixel. Textures in
this format provide four spatially-aligned layers of data with 8-bit accuracy.

Mapbuilder utilizes the four color channels in each submap texture. Before uploading
submap textures to the GPU, the RGBA channels are precomputed and set to:

• Red: Occupancy gridmap, refer to Section 2.3.4.3 and Figure 4.4 for examples.
Occupied cells (p (mi) = 1) are stored as zero, free-space cells (p (mi) = 0) are stored
as 255, and unknown cells (p (mi) = 0.5) are stored as 127. This is the main channel
used by the gridmap fusion algorithm.

• Green: Likelihood gridmap, estimates the location of objects in the submap.
Likelihood data is not broadcast by the front-ends, as such it is approximated using
the occupancy data. The likelihood map is zeroed, all occupied cells are set to 255
and then a Gaussian blur with σ = 2 pixels (0.2 m) is applied to approximate lidar
sensor noise.

• Blue: Height cost gridmap, stores navigation height cost information for each
cell. This channel was not utilized in this research work because the three different
UGV front-ends produced height cost information in different formats that could
not be fused.

• Alpha: Navigation cost maps, stores precalculated cost maps to accelerate
path planning. The first step in many path planning algorithms is to build a cost

138

5.3 GPU-based Occupancy Gridmap Fusion

map by repeatedly dilating and smoothing the global occupancy gridmap. This
computationally expensive step can be avoided by fusing submaps with precalculated
cost maps.

5.3. GPU-based Occupancy Gridmap Fusion

5.3.1. Problem Statement

While occupancy gridmaps are well-suited for distributed MR-SLAM and provide a rich
representation of the environment, at large scales the computational cost of fusing gridmaps
becomes prohibitive. Although it is inexpensive to fuse individual gridmap cells with the
binary Bayes filter (Section 2.3.4.3), submaps are often densely overlapped. In the Phase
2 dataset in this work, for example, 175 million submap cells are fused into 2.5 million
output gridmap cells. It is nontrivial to achieve this scale of gridmap fusion in real-time.
This section shows how the binary Bayes filter can be reformulated into a gridmap fusion
algorithm that exploits the massively-parallel capabilities of modern GPUs.

At the core of this problem is the fact that the cells in sets of submaps are rarely aligned.
Gridmaps quantize the environment into square cells (e.g. 10×10 cm), however pose graph
optimization ensures that submaps and their cells overlap at arbitrary offsets and angles.
When fusing cells into an output gridmap, each cell will typically overlap 1-6 output
cells. Figure 5.1 illustrates the case of a single submap cell overlapping four output
cells; the probabilistically correct approach here is to perform four weighted binary Bayes
filtering operations, however the contention in memory access that occurs when reading
and writing the output buffer becomes prohibitive. A simpler approach might be to choose
the closest output cell, however this introduces spatial noise into the gridmap’s probability
distribution.

5.3.2. Previous Work

Many authors have recognized the potential for GPU-based algorithms in robotics and
SLAM. Limiting this discussion to SLAM in SE (2), Yguel et al. demonstrated rendering
lidar measurements into gridmaps using GPUs [332], however only with a single gridmap
in a simulated environment. Other authors have demonstrated building gridmaps with
GPUs in both indoor, [329], and outdoor environments [333].

Several authors have demonstrated fusing sets of gridmaps from multiple UGVs [334, 280,
335], with the largest real-world dataset being 45×25 meters. These authors did not
attempt to optimize the fusion algorithm. Only Strom and Olson [56] have demonstrated
fusing thousands of gridmaps at scales comparable to this research work. They optimize

139

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

WW

papa pbpb

Figure 5.1. Occupancy Gridmap Fusion: Two submap gridmaps with origins at pWa (red) and
pWb (blue) are being fused into the global output gridmap W (gray). In the naive approach, the
highlighted cell in pWa (red square) must be fused into the four cells in the output gridmap (gray
squares). This becomes inefficient when submaps are densely overlapped. The algorithm described
here reads four cells from the submap gridmap instead (blue squares in pWb) and fuses them into a
single cell in the output gridmap (gray square). Note that typical submaps are 400×400 cells, and
the typical output gridmap is 5000×5000 cells. Cell occupancy values are not shown for clarity.

global gridmap rasterization by avoiding the fusion of redundant information (their work
is compared in Section 7.4.6). As far as I am aware no other researchers have described
how to fuse multiple occupancy gridmaps at large scales, or have demonstrated how to
handle the misalignment of gridmap cells in a probabilistically sound manner.

5.3.3. Naive Algorithm

To avoid numerical issues and for computational efficiency, it is best to perform occupancy
gridmap fusion using the log odds ratio. If p (mi) is the probability of the cell mi being
occupied, then its log odds ratio is li = log p(mi)

1−p(mi) . The cells of an unknown gridmap
(i.e. p (m) = 50%) in the log odds form begin with all cells initialized to zero. Applying
the binary Bayes filter in the log odds form is trivial: cells are fused using addition. For
example, if there is 95% certainty that two overlapping cells are occupied (li = 3 and
lj = 3), then the fused log odds value (li+j = li + lj = 3 + 3 = 6) represents a 99.8%
certainty after fusion. Refer to Section 9.2 in [135] for an in-depth explanation.

140

5.3 GPU-based Occupancy Gridmap Fusion

Given that submap gridmaps are typically misaligned with the output gridmap, as in
Figure 5.1, and each submap cell overlaps multiple output cells, the log odds value for
each submap cell must be divided and fused to multiple output cells. One technique is to
use a reverse form of bilinear filtering [336]. Using this approach, each submap cell value
is divided and fused to its the four closest output cells (the log odds value is weighted
by the submap cell’s bilinear distance to the four output cells). While the math used
for cell fusion is trivial, as the problem scales to thousands of submaps and large output
gridmaps (e.g. 5000×5000), the memory access patterns in both CPUs and GPUs can
become inefficient2.

The naive approach to gridmap fusion is a simple nested loop: for each submap, iterate over
all of its cells, transforming them into the output gridmap’s coordinates and fusing them
into the four nearest output cells. For each submap this approach requires the overlapped
output cells to be read from memory, modified and then written back to memory four
times— eight times where the pair of submaps overlap in Figure 5.1, and on average 272
times in the datasets used in this research. While this naive approach can be parallelized
by fusing gridmap cells in multiple threads of execution at the same time, it is difficult
and expensive to synchronize memory reads and writes to the output gridmap. The fusion
operation must complete atomically, that is, two threads cannot read, modify and write
to the same output cell at the same time. Heuristics might gain some efficiencies by
spatially staggering the cell fusion operations, however the naive approach cannot escape
the memory access pattern of reading one submap cell and then reading and writing to
four output cells in succession.

5.3.4. Proposed Algorithm

The proposed algorithm flips this pattern up side down: an outer loop iterates over each
submap, however for each submap the inner loop iterates over the output gridmap cells
that are overlapped by the submap instead (refer to Figure 5.2). For each overlapped
cell in the output gridmap the 2-D coordinates of the center of the cell is transformed
into the submap’s coordinate frame. This submap coordinate is then used to read the
corresponding submap cell value, which is then fused into the output cell.

The cell alignment problem is now reversed: each output cell now overlaps with multiple
submap cells instead. Bilinear interpolation [336] is used to avoid introducing spatial
noise: the weighted sum of the four closest cells in the submap gridmap is fused into each
output cell (these four cells are shown in blue in Figure 5.1).

Flipping the inner loop reduces the number of synchronized memory reads and writes to
the output buffer by a factor of four. To achieve this it increases the number of reads

2For large problems (e.g. 5000×5000 cells), the fast memory caches in modern CPU and GPUs are too
small to cache the entire output gridmap (100 MB).

141

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

WW

papa pbpb

Figure 5.2. Occupancy Gridmap Fusion: Two submap gridmaps with origins at pWa (red grid)
and pWb (blue grid) are being fused into the global output gridmap W (gray grid). The inner
loop of the algorithm described here iterates over the output gridmap cells that are covered by the
submap gridmaps (gray squares). This is a typical rasterization operation in computer graphics.
Cell occupancy values are not shown for clarity.

from the submap gridmap by four times, however this adds negligible cost— reads from
immutable submap gridmaps (read-only memory) do not require synchronization, and
crucially, the entire submap gridmaps are small enough to fit in the L2 cache in modern
GPUs.

5.3.5. Implementation

The proposed gridmap fusion algorithm is very similar to the rasterization that occurs
when a GPU is used to draw a rectangular texture. In OpenGL [336], a rectangular
texture is rendered into an output Frame Buffer Object (FBO) by drawing a GL_QUAD

primitive. The corners of the GL_QUAD are transformed into FBO output pixel coordinates
and a rasterization algorithm iterates over the output cells the GL_QUAD overlaps (refer to
Figure 5.2). In a modern GPU, this causes thousands of processing cores to calculate and
blend pixel values into the output FBO in parallel.

To implement the proposed algorithm in OpenGL, a 5120×5120 pixel FBO is allocated
to store the 500×500 meter output gridmap at 0.1 meter resolution3. The FBO is

3Modern GPU hardware can easily create 16384×16384 pixels FBOs, i.e. 1.6×1.6 km output gridmaps.

142

5.3 GPU-based Occupancy Gridmap Fusion

1 # version 130
2 in vec3 submap_coord ;
3 uniform sampler2D submap_tex ;
4 void main () {
5 vec4 x = texture2D (submap_tex , gl_TexCoord [0]. xy); // sample gridmap
6 float cell = 20*(0.5 - x.r); // convert : 10.0= occupied -10.0= free
7 float radius_sqr = dot(submap_coord .xy , submap_coord .xy);
8 float blend = 0.2 + 10.0* exp(-radius_sqr /40.0); // Gaussian blend
9 gl_FragColor .r = cell; // classical gridmap
10 gl_FragColor .g = cell * blend ; // blended gridmap
11 gl_FragColor .b = 1.0; // accumulate submap count
12 gl_FragColor .a = x.g; // sum of gaussians
13 }

Table 5.1. GPU-based Occupancy Gridmap Fusion: algorithm implemented in OpenGL
GLSL fragment shader code. For each submap gridmap, this algorithm is executed for each output
gridmap cell that is overlapped. Most of the computation in this algorithm is performed in the
texture lookup (line 5) and when the output value (gl_FragColor) is blended into the output buffer
(this is hidden in the OpenGL implementation).

created with four 32-bit floating-point channels (described in the next section), with
the red color channel storing the fused output gridmap occupancy values as log odds
ratios (initialized to zero, i.e. unknown). Log odds values are fused into the FBO by
accumulating them— this is accomplished in OpenGL by setting the output blending
function to glBlendFunc(GL_ONE, GL_ONE) and glBlendEquation(GL_FUNC_ADD) [336].
Two FBOs are actually allocated that are used in an alternating manner: the output
gridmap is built into one FBO while the other one is being used for other high-level
functions (also called double buffering).

Each build cycle starts with the host CPU swapping the output FBOs and configuring the
OpenGL projection matrices for 2-D orthographic projection. The algorithm loops quickly
over all submaps, instructing the GPU to fuse their submap textures (Section 5.2) using
GL_QUADS positioned at the current submap pose. The GPU rasterizes each of the submap
textures: for each cell in the output gridmap that is overlapped by the submap gridmap,
the GPU executes a GLSL fragment shader that performs the cell fusions in parallel. The
fragment shader code is similar to pseudocode, it is listed in Table 5.1.

For each output cell fusion, the core executing the GLSL code starts by transforming
the FBO’s output pixel coordinates back into a coordinate in the submap’s texture space
(line 2). The submap gridmap is sampled by the GPU’s texture units; bilinear filtering
reads and blends four cells (line 5). The filtered sample is already in log odds format,
however it is first remapped because the submap textures are stored as 8-bit unsigned
integers (line 6). To build a “classic” gridmap (as in Section 2.3.4.3), the output red
channel is simply set to the cell value (line 9). After finishing the GLSL code, the GPU
performs the OpenGL output blending function. The blending function accumulates the
log odds values in the output FBO with a synchronized read-add-write to the output FBO
memory.

143

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

Once the GPU has finished fusing all of the submap gridmaps (a call to glFinish()

returns), the output gridmaps can be downloaded from the GPU or reused in-place for
other high-level functions. The probabilities can be recovered from the log odds form with
p(mi) = 1− li

1+exp(li) .

5.3.6. Additional Output Gridmaps

Four color channels can be accumulated in the output FBO, enabling the GLSL fragment
shader code in Table 5.1 to implement different gridmap fusion techniques in parallel. The
gridmap fusion algorithm is very efficient on modern GPUs, and the extra three channels
can be calculated with almost no additional cost.

The log odds occupancy values can be scaled to increase the certainty of gridmap cells
that are close to the UGV (and submap origin), while decreasing the certainty of distant
gridmap cells. A 2-D Gaussian-like scaling function is used to implement this (line 7 and
8). This scaling function reflects the fact that close lidar returns have less noise, and
more certainty, while distant lidar returns are subject to many sources of error (refer to
Section 2.3.3). The long tail on this blending function ensures that the distant gridmap
cells are included in the output, however the log odds values in these cells are easily
overpowered by information fused by a closer UGV. This blending is particularly important
to ensure that doorways are not obscured by noisy data from distant UGVs.

The code in Table 5.1 produces output gridmaps with these color channels:

• Red: (line 9) accumulated log odds cell values. This builds the “classical” gridmap
as described in Section 2.3.4.3.

• Green: (line 10) accumulated log odds cell values that have been adjusted by the
Gaussian scaling function. This blending algorithm is used in the results presented
in Chapter 7 and the accompanying videos.

• Blue: (line 11) counter incremented for every submap that overlaps the output cell.
This counter is used for diagnostics and statistics.

• Alpha: (line 12) accumulated pre-blurred likelihood maps (refer to Section 5.2).
This channel emphasizes occupied cells and produces the “x-ray” view shown in
Figure 7.15 (e) on page 191.

This GPU-based implementation of the gridmap fusion algorithm is demonstrated in
Chapter 7. If height or navigation cost information is available in the submap gridmaps
(blue or alpha channels from Section 5.2), it could be fused into these output channels.

144

5.4 GPU-based Multimodal Constraint Generation

5.4. GPU-based Multimodal Constraint Generation

5.4.1. Problem Statement

The problem considered here is how to evaluate and characterize a 3-D likelihood volume
that describes the relative spatial alignment of a pair of submap gridmaps in se (2).
This problem arises when searching for relative constraints, or loop closures, between
submaps in Mapbuilder’s graph-based SLAM formulation. As explained in Section 4.1.4,
each UGV’s accumulated odometry error is assumed to be bounded by ±3 meters and
±21 degrees. From this, we assume that submaps are roughly aligned and the likelihood
volume search can be bounded to the same ±3 meters and ±21 degrees around the pair’s
current relative pose.

The problem has two parts: the first is evaluating the likelihood distribution across the
search volume, i.e. sampling the likelihood at thousands of (x, y, φ) relative poses, the
second is characterizing, or summarizing the likelihood distribution in a form that can be
readily used in a pose graph optimization, e.g. extracting unimodal Gaussian constraints.

The likelihood volume should be sampled with sufficient density to ensure that the re-
sulting constraint distribution is representative. In complex environments it is likely that
multiple potential alignments exist between submap pairs (for example Figure 5.3), and in-
sufficient sampling could miss the correct alignment. Chapter 6 describes a novel technique
that optimizes multimodal Gaussian distributions, thus this chapter considers the problem
of characterizing complex likelihood volumes with multimodal Gaussian constraints also.

5.4.2. Previous Work

The constraint likelihood volume could be evaluated using existing scan matching ap-
proaches such as ICP (Section 2.3.4.1). Given enough uniformly distributed samples the
peaks in the distribution could be found and their covariances estimated [326]. Approaches
like ICP that use hill climbing tend to get stuck in local minima, however, and it is difficult
to know a priori how dense the sampling should be. It is difficult to obtain accurate
(non-conservative) covariance estimates with iterative approaches, without sampling large
volumes around each peak.

While exhaustive uniform sampling of the likelihood volume is computationally expensive,
it will find each peak given a sufficiently small sampling interval. Many authors have
proposed using exhaustive correlation-based approaches in SE (2) SLAM. Konolige and
Chou describe CPU-based approaches as early as 1999 [279]. Bailey describes scan corre-
lation experiments in his thesis [142], while others describe correlation using histograms
in [281, 280, 337]. An example of exhaustive correlation-based matching is shown in
Figure 5.3.

145

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

Olson described the first GPU-based exhaustive correlation approach in [282], which he
demonstrated to be superior to both ICP and ICL algorithms (Section 2.3.4.1). Olson
used OpenGL GLSL shaders to perform correlative lidar scan matching. His approach
matched a 1-D texture representing a single lidar scan to a 2-D texture that represented
the gridmap in log-likelihood form. Olson also showed how covariances could be extracted
from the likelihood volume around a peak, to produce unimodal constraint distributions.

An early version of this research work was the first to describe exhaustive correlation of
gridmaps at large scales using a GPU-based algorithm [66], however it only extracted
unimodal constraint distributions. Since then Rodriguez-Losada et al. demonstrated a
local submap matching approach using GPUs [329], however instead of extracting Gaussian
constraints, they blur the submap gridmaps and perform gradient descent directly on a
correlation cost function. They have demonstrated their approach directly aligning 28
submaps in 1.23 seconds.

The GPU-based algorithms described by Olson [282] and Rodriguez-Losada et al. [329]
are closely related to this work, however they solve a different problem. I could not find
any publications describing exhaustive correlative submap matching using GPUs, or how
to extract multimodal Gaussian constraint distributions from likelihood volumes.

Figure 5.3. Multimodal constraint output: example with perceptual aliasing. Correlation
results for an area in the Old Ram Shed Challenge where repetitive geometry causes perceptual
aliasing. An overlapping pair of submaps is shown (left), along with 15 slices through their
(x, y, φ) ∈ se (2) constraint likelihood volume (right). Each slice represents the 2-D correlation
between the submaps varied over ±3m translation in x and y, at a fixed angular rotation, e.g.
the middle row corresponds to -6, -3, 0, 3 and 6 degrees. A Gaussian mixture has been fit to the
likelihood volume, modes are indicated by their 3-σ covariances (2-D ellipses). Due to occlusions,
only a small fraction of the occupied cells (black) in this submap pair actually overlap. An array
of columns in the environment dominate the matchers output.

146

5.4 GPU-based Multimodal Constraint Generation

5.4.3. Multimodal Constraint Generation

5.4.3.1. Evaluating the Likelihood Volume

If the pair of submaps being evaluated have global poses pWa and pWb , the current relative
se (2) transform between them is qab = �pWa � pWb . The likelihood volume is evaluated
around this relative pose, i.e. qab +[x, y, φ]T , where the translational parameters x and y are
both varied ±3 meters and the angular parameter φ is varied ±21 degrees. The sampling
parameters [x, y, φ]T define a 3 DOF volume in se (2). For each sample, the algorithm
evaluates the 2-D correlation between the two gridmaps with the relative transform qab +
[x, y, φ]T . The likelihood volume is sampled at discretized intervals, or steps, in the x, y
and φ parameter space.

The step sizes are first calculated based on the gridmap’s spatial resolution: The 2-D
correlations calculated for each sample cannot use the occupancy gridmap values (they
are log odds ratios), and likelihood cost gridmaps are used instead (Section 5.2). The
likelihood cost gridmaps are created by applying a 2-D Gaussian blur with σ = 0.2 meters
to each of the occupied cells. While this blurring approximates some of the lidar sensor’s
noise, it also helps to smooth the resulting likelihood volume which is advantageous because
it allows the step size between correlation samples to be increased. With a blur of σ =
0.2 meters, the smallest peak in the likelihood volume has σ = 0.26 meters (correlation
between two 2-D Gaussians), which requires a linear step size of 0.1 meters to sample
adequately.

The angular step size is more difficult to determine in a principled manner, since it depends
on the shape of the environment and on the amount of blurring, σ. Even a small rotation
will move distant grid cells through a large arc. A step size of 3 degrees is chosen in this
work, since a single rotation step will move a cluster of cells that are 20 meters from the
origin through a one meter arc. This motion is small enough for the cluster of cells to be
aligned by the ±3 meter linear translation across five angular steps. For larger objects that
are closer to the submap’s origin, the same 3 degree step combined with the σ = 0.2 meter
blurring allows objects up to eight meters long to be aligned.

To evaluate the likelihood volume on a GPU, the samples (each one a 2-D submap correla-
tion evaluated at qab + [x, y, φ]T) are calculated in a OpenGL GLSL algorithm executed in
parallel by thousands of GPU cores. To formulate the problem, the submap gridmaps are
loaded into 2-D textures as described in Section 5.2, while the output likelihood volume
is created as a floating-point output FBO. To represent the 3-D likelihood volume in
the 2-D output FBO, the volume is sliced into fifteen 2-D tiles. Each 60×60 pixel tile
captures the ±3 meter translation in the x and y directions (0.1 meter steps) for a fixed
angle φ. The fifteen tiles each evaluate the range of translations at a different angle φ,

147

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

varied ±21 degrees in 3 degree steps. Figure 5.4 shows an example of two submaps and
their likelihood volume as calculated in the output FBO.

To start the GPU cores performing the correlations for each sample in the likelihood
volume, fifteen GL_QUADS are rendered into the output FBO for each of the fifteen angular
offsets. Using the OpenGL model projection matrix, the input coordinate for each 60×60
pixel GL_QUAD is translated to the center of the current set of samples (qab + [0, 0, φ]T).
OpenGL rasterizes each precisely aligned GL_QUAD, iterating over the 60×60 pixels/samples
(x and y translations), starting a single GPU core processing each sample.

For each sample, a GLSL fragment shader performs the 2-D submap correlation algorithm
listed in Table 5.2, between the “target” submap (line 4) and the “base” submap (line 3).
The algorithm uses a double for loop (lines 20 and 23) to iterate over every cell in the base
submap’s gridmap. It calculates the base gridmap’s cell coordinate in the target gridmap’s
frame (line 26), and then reads the target gridmap cell value (line 29), sampling it with
bilinear filtering [336] to avoid introducing spatial noise (similar to Section 5.3.5). The
correlation is performed with a multiplication and accumulation of the two cells’ likelihood
values (line 30).

The correlation sum is normalized before being saved as the sample likelihood value
in the output FBO (line 37). This normalization is a unique aspect of the algorithm
that is designed to reduce “greedy” matching. Typical correlation approaches are greedy
because they return higher correlation values as more geometry overlaps; this tends to

Figure 5.4. Multimodal constraint output: example with a single mode. Correlation results
for a well-constrained area in the Old Ram Shed Challenge. An overlapping pair of submaps is
shown (left), along with 15 slices through their (x, y, φ) ∈ se (2) constraint likelihood volume (right).
Each slice represents the 2-D correlation between the submaps varied over ±3m translation in x
and y, at a fixed angular rotation, e.g. the middle row corresponds to -6, -3, 0, 3 and 6 degrees.
These submaps are from different UGVs (TM’s top left, Penn’s lower left). This example shows
how a single Gaussian mode appears when its 3-σ covariance ellipsoid is plotted as 2-D slices (white
ellipses).

148

5.4 GPU-based Multimodal Constraint Generation

1 # version 130
2 in vec3 rel;
3 uniform sampler2D base_submap_tex ;
4 uniform sampler2D target_submap_tex ;
5 uniform vec2 base_bottom_left ;
6 uniform vec2 base_top_right ;
7 uniform vec2 target_bottom_left ;
8 uniform vec2 target_top_right ;
9 void main () {
10 const float cell = 0.1; // cell size in meters
11 const float half_cell = cell /2.0;
12 const float scale = 2.0*3.1415 * 2.0 * (2.0*2.0) * cell*cell * 100.0;
13 vec2 base_tex_coord , target_tex_coord , offset ;
14 vec2 inv_base_extents = 1.0 / (base_top_right - base_bottom_left);
15 vec2 inv_target_extents = 1.0 / (target_top_right - target_bottom_left);
16 vec2 rel_adj = vec2(rel.x-half_cell , rel.y- half_cell); // offset output
17 mat2 rot_inv = mat2(cos(rel.z), -sin(rel.z), sin(rel.z), cos(rel.z)); // inverse
18 float correlation_sum = 0.0;
19 int overlap_count = 0;
20 for (float y= base_bottom_left .y+ half_cell ; y< base_top_right .y; y+= cell) {
21 base_tex_coord .y = (y - base_bottom_left .y) * inv_base_extents .y;
22 offset .y = y - rel_adj .y;
23 for (float x= base_bottom_left .x+ half_cell ; x< base_top_right .x; x+= cell) {
24 base_tex_coord .x = (x - base_bottom_left .x) * inv_base_extents .x;
25 offset .x = x - rel_adj .x;
26 target_tex_coord = ((rot_inv * offset) - target_bottom_left)
27 * inv_target_extents ;
28 vec4 base = texture2D (base_submap_tex , base_tex_coord);
29 vec4 target = texture2D (target_submap_tex , target_tex_coord);
30 correlation_sum += base.g * target .g;
31 if ((target .r < 0.25 && (base.r > 0.75 || base.g > 0.0)) ||
32 (base.r < 0.25 && (target .r > 0.75 || target .g > 0.0)))
33 overlap_count ++;
34 }
35 }
36 if (overlap_count > 10)
37 gl_FragColor .a = exp(scale * correlation_sum / float (overlap_count));
38 else
39 gl_FragColor .a = 0.0;
40 }

Table 5.2. GPU-based Multimodal Constraint Generation: correlation algorithm
implemented in OpenGL GLSL fragment shader code. This 2-D correlation algorithm executes
on thousands of GPU cores in parallel. Each core evaluates one potential alignment of a pair of
submaps at a time. An optimized (but less readable) version of this algorithm uses bounding boxes
to increase the correlation speed by about 20%.

bias the correlation results to prefer maximum overlap, while ignoring potentially correct
alignments of finer geometry in the environment (e.g. the corridor cases described in
Appendix B). Incurring minimal additional cost, the GPU counts how many free or
occupied cells overlap between the two submaps, while ignoring unknown cells (lines 31-
33). The overlapping cell count is used to normalize the correlation sum (line 37).

Using this algorithm and the GPU used throughout this research work, over 1,600 cor-
relation samples can be calculated in parallel. For the real-world datasets in Chapter 7,
this equates to about 1.2 million correlation samples per second, or calculating about 22
submap pair likelihood volumes per second.

149

Chapter 5 Efficient Occupancy Gridmap Fusion and Matching

5.4.3.2. Extracting Multimodal Gaussian Constraints

Both Olson’s approach [282], and earlier versions of this research work [66], fit unimodal
Gaussian distributions to likelihood volumes. In simple environments (such as Figure 5.4)
this is adequate, however in more complex environments (such as Figure 5.3) it could be
premature to reduce the likelihood volume to a single Gaussian by selecting a single peak.
Other examples of complex likelihood volumes are shown in Figure 6.3 and Figure 6.4 on
page 156.

To represent the likelihood volume’s distribution more accurately, a Gaussian mixture is fit
using the Expectation Maximization (EM) algorithm. EM is an iterative approach that is
well-suited to extracting Gaussian modes, for a thorough description refer to Section 9.2.2
of [100].

Observing that many likelihood volumes have a non-zero bias around Gaussian-like peaks
(for example Figure 6.1 on page 152), two modifications to the standard EM algorithm en-
able these peaks to be extracted from cluttered likelihood volumes. The first modification
is to truncate the Gaussians to a 2-σ bounding ellipsoid when evaluating responsibilities
(see [100]). The second is the addition of a uniform ellipsoidal volume to each Gaussian
(coincident, and sized to 3-σ). It is difficult to visualize the resulting 3-D scalar volumes:
if the same truncation was performed to a 1-D Gaussian, the result would look like a
bowler hat.

The EM algorithm terminates after either convergence is achieved, or 50 iterations. The
resulting Gaussian modes are sorted by weight and the dominant six modes are used to
create a multimodal Gaussian constraint. This multimodal constraint generation approach
is demonstrated in Chapter 7.

150

6 Robust Multimodal Pose
Graph Optimization

Typical pose-graph SLAM techniques are designed to optimize constraints that
have unimodal Gaussian distributions. Real-world environments, however,
often exhibit more complex constraint distributions that are better represented
by Gaussian mixtures. In this chapter I introduce Continuous Mode Blend-
ing Optimization (COMBO), a novel contribution that allows pose graphs
with overlapping multimodal Gaussian constraints to be optimized using exist-
ing techniques. Section 6.1 motivates this research by describing how mul-
timodal constraints can help prevent outliers and handle perceptual alias-
ing. Section 6.2 introduces the mathematics for multimodal constraints, while
Section 6.3 reviews related work. In Section 6.4 I describe the COMBO tech-
nique in detail and provide an analysis of its convergence properties.

6.1. Introduction

In real-world environments, cluttered or repetitive geometry can cause perceptual aliasing
ambiguities when viewed by sensors that are unable to perform data associations directly
(Section 2.1.1). Lidar scanners, for example, in a room with parallel and self-similar
structures such as Figure 6.1, produce complex multimodal data associations that are
troublesome to integrate into standard SLAM algorithms.

The Mapbuilder multi-robot SLAM system, described in Chapter 4, builds large and
complex pose graphs that represent the environment with overlapping submap gridmaps.
When matching and aligning pairs of these submaps, perceptual aliasing ambiguities

151

Chapter 6 Robust Multimodal Pose Graph Optimization

create constraints with complex likelihood distributions. Chapter 5 describes how these
likelihood distributions can be efficiently evaluated and approximate with multimodal
Gaussians.

6.1.1. Research Contributions

Two contributions are described in this chapter that show how multimodal Gaussian
constraints can be used in traditional pose-graph SLAM:

1. Robust multimodal constraints: enable loop closures to be preemptively added
to the pose graph and outliers to rejected by consensus (Section 6.4.6). They also
describe more complex spatial relationships between submaps, ideal for real-world
environments with perceptual aliasing (Section 6.4.3).

2. Multimodal pose graph optimization: the continuous mode blending optimiza-
tion (COMBO) technique enables complex multimodal Gaussian constraints to be
optimized using traditional nonlinear least-squares approaches (Section 6.4.1).

To the best of my knowledge, the ability to optimize pose graphs with complex multimodal
constraints has not been described previously in the literature. The COMBO technique
exhibits convergence properties that are representative of the underlying multimodal
constraint distributions. In Chapter 7, large-scale results in SE (2) are demonstrated with
both the MAGIC challenge datasets and simulations (to provide ground truth).

Figure 6.1. Multimodal constraint output: complex overlapping modes. Correlation results
for an area in the Old Ram Shed Challenge. An overlapping pair of submaps is shown (left), along
with 15 slices through their (x, y, φ) ∈ se (2) constraint likelihood volume (right). Each slice
represents the 2-D correlation between the submaps varied over ±3m translation in x and y, at a
fixed angular rotation, e.g. the middle row corresponds to -6, -3, 0, 3 and 6 degrees. A Gaussian
mixture has been fit to the likelihood volume, modes are indicated by their 3-σ covariances (2-D
ellipses). This example shows a complex likelihood volume with no dominant modes. The correct
alignment is circled (blue), which is actually 0.55 m away from the highest peak.

152

6.1 Introduction

6.1.2. Motivation

6.1.2.1. Avoiding Constraint Outliers

Outlier constraints typically occur in environments that are prone to perceptual aliasing,
such as corridors or hallways with repetitive features. Figure 6.1 shows the output of
an exhaustive 2-D correlation, or a likelihood volume (see Section 5.4), between a pair
of submaps that exhibit perceptual aliasing. Likelihood volumes like these are difficult
to simplify to unimodal distributions, since the correct alignment is not necessarily the
highest peak in the likelihood volume. Figure 6.1 has multiple peaks, and the correct
alignment is actually the third highest peak. Typical approaches would simplify likelihood
volume into a unimodal constraint that is an outlier.

The unimodal constraints used in typical SE (2) pose-graph SLAM formulations produce
residual errors that exhibit a quadratic influence during nonlinear least-squares maxi-
mum likelihood estimation (MLE). A single outlier constraint, therefore, will have a
disproportionate effect and can prevent convergence to the correct solution. Pose graph
implementations typically adopt one of two approaches: they either try to avoid outliers,
or they to aim to make MLE robust against them.

In an attempt to avoid outlier constraints many SLAM researchers over the last decade
have described robust SLAM front-ends1 [144, 142, 248, 253, 53]. These approaches aim to
validate loop-closure hypotheses to high confidence intervals (e.g. 3-σ) before adding them
to the graph. This often result in robots driving many times further than their sensor
range before constraint hypotheses can be accepted. These delays might be tolerable in
single-robot SLAM, however in MR-SLAM they are very undesirable, particularly when
multiple robots are operating in close proximity.

To avoid loop closure delays, a number of researchers have investigated shifting the
requirement for robustness onto the SLAM back-end instead. Reviewed in Section 6.3,
these approaches lower the SLAM front-end’s validation thresholds and add constraints
immediately— accepting the risk that some will be outliers [253, 250, 256, 262, 338, 301,
339, 117, 57, 277, 299]. These approaches typically use unimodal constraints, and unless
additional information is available, complex constraints like the one in Figure 6.1 will be
simplified into outliers.

In [117] Pfingsthorn and Birk explain how odometry-based priors allow this unimodal
constraint simplification to work well for single-robot pose graphs. Odometry measure-
ments will typically help to pick the correct mode from a complex likelihood volume.
In multi-robot pose graphs, however, reliable priors are generally not available between
pairs of robots, and choosing a single mode from a complex likelihood volume is more

1The separation into front-end and back-end roles is described in Section 3.1.

153

Chapter 6 Robust Multimodal Pose Graph Optimization

likely to produce unimodal constraints that are outliers. Figure 6.2, for example, shows
two submaps from MR-SLAM that exhibit likelihood volumes with two equally likely
alignments.

These problems motivate the use of multimodal Gaussian constraints to avoid outliers,
particularly in the case of MR-SLAM. Growing interest by the research community is
indicated by workshops such as the ICRA 2013 “Workshop on Robust and Multimodal
Inference in Factor Graphs”.

6.1.2.2. Handling Perceptual Aliasing

Perceptual aliasing is a recurring problem in the datasets used in this research work.
It occurs when the UGVs are in sparse areas or long corridors: situations where parts
of each lidar scan are not returned (some parts of the environment are too distant).
In degenerate cases like these, the observable parts of the environment are unable to
constrain uncertainty in the robot’s pose. For example, Figure 6.3 shows two submaps
from two robots driving together down a straight and relatively featureless alleyway that
is 20 meters wide. Here parallel walls provide minimal information to constrain the robot’s
pose and odometry errors quickly accumulate in the direction of travel. In this example,
the constraint likelihood volume does not exhibit any Gaussian-like peaks, rather it has a
ridge of constant likelihood that runs the width of the matching volume. In MR-SLAM,
without odometry or priors, every point along this ridge is equally likely.

Figure 6.2. Multimodal constraint output: overlapping modes. Correlation results for an
area in the Old Ram Shed Challenge. An overlapping pair of submaps is shown (left), along with 15
slices through their (x, y, φ) ∈ se (2) constraint likelihood volume (right). Each slice represents the
2-D correlation between the submaps varied over ±3m translation in x and y, at a fixed angular
rotation, e.g. the middle row corresponds to -6, -3, 0, 3 and 6 degrees. A Gaussian mixture has been
fit to the likelihood volume, modes are indicated by their 3-σ covariances (2-D ellipses). Occlusions
in the environment have produced submaps with minimal overlapping geometry (highlighted in
blue), which produces a complex likelihood volume with no dominant modes.

154

6.1 Introduction

Featureless alleyways like this do provide valuable information, however only in the direc-
tion perpendicular to the walls. It is difficult to capture this information in the form of
submap constraints, however. While a single Gaussian could fit the ridge from the alleyway
in Figure 6.3, its eccentricity is likely to become very large and its inverse covariance
would be almost rank deficient2. In nonlinear least squares, this rank deficiency creates
a gauge freedom [234], and any optimization will either become numerically unstable
or fail to converge. One way to avoid this rank deficiency, and ensure convergence, is to
deliberately underestimate the covariance so that the eccentricity is reduced. This adds an
arbitrary and erroneous bias to the optimization, however, since the correct location of the
constraint mode is unknown. One research problem that arises here is how to incorporate
constraint information from these degenerate configurations into a well-formed pose graph
optimization, while not adding any biases to the constraints.

One solution is to use multimodal constraints with smaller modes that can overlap.
Chapter 5 describes how to evaluate likelihood volumes like these and approximate them
with Gaussian mixtures. For the example in Figure 6.3, four overlapping modes can
accurately represent this flat ridge. When visualized as overlapping 3-D ellipsoids, these
four modes sum together to form a smooth-sided cylindrical volume, similar to a French
baguette. Figure 6.6 plots a 2-D slice through a similar volume, showing how the Gaus-

2Each SE (2) constraint has three degrees of freedom, in this situation only two of the three are constrained.

Figure 6.3. Multimodal constraint output: perceptual aliasing ambiguities. Correlation
results for a 20 m wide alleyway in Phase 2. The overlapping pair of submaps have been rotated
so both robots are driving down the page (left), while 15 slices through the (x, y, φ) ∈ se (2)
constraint likelihood volume are shown (right). Each slice represents the 2-D correlation between
the submaps varied over ±3m translation in x and y, at a fixed angular rotation, e.g. the middle
row corresponds to -6, -3, 0, 3 and 6 degrees. A Gaussian mixture has been fit to the likelihood
volume, modes are indicated by their 3-σ covariances (2-D ellipses). The only identifiable feature in
the environment is circled (blue). The smoothness of the top of this ridge is a good example of the
unique normalization approach described in Section 5.3. A typical “greedy” correlation approach
would produces a peaked ridge that a unimodal Gaussian would fit well, however incorrectly.

155

Chapter 6 Robust Multimodal Pose Graph Optimization

sian components sum to produce a smooth surface. Each of these modes have minimal
eccentricities, avoiding the risk of rank deficiencies. The cost surface for this multimodal
constraint is both locally smooth, and approximately “flat” for the entire width of the
matching volume. While the equivalent unimodal constraint would add an erroneous bias
to the optimization, the multimodal constraint avoids this: it correctly models the fact
that the lidar scanner has provided no information in the direction parallel to the walls.

Using the Mapbuilder MR-SLAM system (Chapter 4), the two robot’s in Figure 6.3 would
create a pose graph with about 80 constraints while driving down this alleyway. Each
constraint provides minimal information in the direction parallel to the alleyway, however
using multimodal constraints the dominant walls can still be aligned, while allowing groups
of submaps to be freely extended or contracted like a telescope (the telescoping can
occur with minimal changes to the constraint cost). Ones these robots reach the end
of this alleyway, the orthogonal walls shown in Figure 6.4 result in a single dominant
mode with a circular covariance: this constraint aligns the two submaps very precisely.
Successive submap matches in this area further constrains the pose graph and eventually
the optimization aligns the submaps to automatically correct the drift. For reference, the
global gridmaps from this situation are shown in Figure 7.15 (b) on page 191.

Figure 6.4. Multimodal constraint output: perceptual aliasing resolved. Correlation
results for a 20 m wide alleyway in Phase 2. The overlapping pair of submaps have been rotated so
both robots are driving down the page (left), while 15 slices through the (x, y, φ) ∈ se (2) constraint
likelihood volume are shown (right). Each slice represents the 2-D correlation between the submaps
varied over ±3m translation in x and y, at a fixed angular rotation, e.g. the middle row corresponds
to -6, -3, 0, 3 and 6 degrees. A Gaussian mixture has been fit to the likelihood volume, modes are
indicated by their 3-σ covariances (2-D ellipses). The aliasing in Figure 6.3 is resolved when the
robots observe the end of the corridor. The circular mode indicates the correct alignment between
the submaps, while the more eccentric modes identify incorrect alignments between the orthogonal
walls.

156

6.2 Background

6.1.3. Problem Statement

Pose graphs built with overlapping multimodal constraints are an expressive and accurate
way to perform SLAM in complex real-world environments. Traditional MLE approaches,
however, cannot be used to optimize them and the multimodal techniques described in
the literature (reviewed in Section 6.3.3) can only optimize discrete modes. This problem
motivated the development of the COMBO technique in this chapter.

6.2. Background

6.2.1. Unimodal Constraints

This chapter focuses on SE (2) constraints and their residual error function; these concepts
were discussed in detail in Section 2.5.4. Here I adopt a slightly different representation,
and derive each SE (2) constraint, zi, as a unimodal Gaussian probability density function,
p(zi|x). The state vector x for the pose graph has previously been defined as:

x = [r0, r1, r2, r3 · · · rT]T (6.1)

The constraint zi is a SE (2) transform describing the relative alignment between a pair
of robot poses, rj and rk. I define a “virtual” sensor model that gives a constraint
measurement prediction, z̄i (x), from the current robot pose estimates:

z̄i (x) =
def

z (rj , rk) = �rWj � rWk (6.2)

For each constraint the residual error can be expressed in R3:

ei(x) = z̄i(x)− zi = [xi, yi, φi]T (6.3)

Figure 2.19 on page 71 shows this configuration. For unimodal constraints the expected
measurement prediction z̄i (x) is the normal function with mean µi and covariance Σi:

p (z̄i|x) = N (z̄i (x) |µi,Σi) = 1
(2π)3/2 |Σi|1/2

exp
(
−1

2 (z̄i(x)− µi)T Σ−1
i (z̄i(x)− µi)

)
(6.4)

Thus we expect the constraint measurement prediction, z̄i (x), based on the current pose
estimates, to also have the distribution N (z̄i(x)|µi,Σi). We can consider the cost, or
Mahalanobis distance, of each unimodal constraint:

D2
i = ei(x)TΣ−1

i ei(x) = ‖ei(x)‖2Σi
(6.5)

157

Chapter 6 Robust Multimodal Pose Graph Optimization

This is expected to exhibit a chi-squared, or χ2(3), distribution. Section 2.5.4.7 describes
in detail how the minimum cost, or the ML estimate, can be found for a pose graph of
unimodal constraints by taking the negative log likelihood. Equation 2.59 shows how this
estimation becomes a typical nonlinear least-squares optimization problem.

While the best alignment of two submaps may be apparent to a human, particularly
when they are pre-rotated as shown in Figure 6.1, the correlation output often lacks a
single dominant mode. Depending on the fitting method, a single Gaussian that is fit
to Figure 6.1 would either result in a big “blob”, or it would select one of the equally
dominant modes (after first subtracting the background clutter). The “blob” constraint
is certain to be an outlier, while the single most-dominant mode is likely to be an outlier.
In this example the correct mode is the third highest peak and the dominant mode is an
outlier.

6.2.2. Multimodal Constraints

The inability of unimodal Gaussians to accurately represent many of the complex con-
straint distributions encountered in lidar-based SLAM motivates this investigation into
Gaussian mixtures. Gaussian mixtures are ideal for describing complex distributions,
since in the limit, a mixture of infinite modes can describe any distribution [100]. The
complex constraint distributions described here can often be simplified into small Gaussian
mixtures. These multimodal constraints can be expressed as a weighted sum of M
individual Gaussian components:

p (zi|x) =
M∑
m=1

ωmN (zi|µm,Σm) (6.6)

Where
∑M
m=1 ωm = 1 and ωm ≥ 0 ∀m. Multimodal constraints can also describe unimodal

constraints when M = 1 and ω1 = 1.

While multimodal constraints are well-suited to describe real-world SLAM problems, they
cannot be optimized using the standard nonlinear least-squares algorithms described in
Section 2.5.4.7. Using Equation 2.53 on page 73 the joint distribution over the robot poses
x, given the constraint measurements z, becomes:

p (x|z) ∝
∏
i

p (zi|x) (6.7)

=
∏
i

M∑
m=1

ωmN (zi|µm,Σm) (6.8)

When taking the negative log likelihood of Equation 6.8, the summation prevents the log-
arithm from being combined with the exponential in N (·), and thus prevents multimodal
pose graphs from being reduced to a least-squares form.

158

6.3 Previous Work

6.3. Previous Work

6.3.1. Robust Loop Closures

With the goal of preventing constraint outliers from causing pose graph optimization from
diverging, one line of defense is to evaluate potential constraints in the graph before
accepting them permanently. Early approaches involved evaluating large numbers of
unimodal constraint cycles by composing SE (2) transforms and covariances [247]. For
valid cycles, the composed transforms should sum to almost zero, i.e. for a three constraint
cycle: zi � zj � zk ≈ 0. A cycle is generally considered valid if the Mahalanobis distance,
‖zi � zj � zk‖2Σzi�zj�zk

is below a chosen χ2(3) threshold.

In other robust loop closure work, Olson’s single-cluster spectral graph partitioning (SCGP)
builds a consistency matrix between pairs of unimodal constraint by testing them in small
cycles [256]. Latif et al. test unimodal constraint directly with their Realizing, Reversing,
Recovering work [263, 340]. In their approach they evaluate potential loop closures in
an optimization with χ2 tests initially, and then in optimizations of smaller clusters of
constraints.

6.3.2. Robust Unimodal Constraint Optimization

The effects of a single outlier in a nonlinear least-squares optimization are well known,
and robust methods, such as M-estimators, have been described in the estimation liter-
ature for several decades. Zhang provides a tutorial in [341]. M-estimators replace the
Mahalanobis cost function with a symmetric positive-definite function of the constraint
residuals, ρ(ei(x)). The pose graph optimization problem becomes a minimization of:

x∗ = argmin
x

∑
i

ρ(ei(x)) (6.9)

This is typically solved as an iteratively re-weighted least-squares (IRLS) problem [341].

Recently Sünderhauf and Protzel described Switchable Constraints (SC), where each
constraint is augmented with a switch variable si and a switch function Ψ (si) [342, 276,
244]:

x∗, s∗ = argmin
x,s

∑
i

‖Ψ (si) ei(x)‖2Σi︸ ︷︷ ︸
Switchable constraint

+
∑
i

‖1− si‖2Ξi︸ ︷︷ ︸
Switch prior

(6.10)

The switch variables are initialized to si = 1, and the switch prior covariances Ξi are
set to reflect the front-end’s confidence in the constraint. During optimization, individual

159

Chapter 6 Robust Multimodal Pose Graph Optimization

constraints are slowly switched off (si → 0) if the reduction in total cost is offset by the
increased cost in the switch prior. They demonstrate SC providing robustness against
large numbers of outlier constraints.

More recently Agarwal et al. described Dynamic Covariance Scaling (DCS) [301, 299],
which avoids using extra switch variables, thus reducing system complexity and compu-
tation cost. Their approach exhibits similarly robust properties by approximating the
switch variables with si = min

(
1, 2Φ

Φ+χ2
i

)
, where χ2

i is the Mahalanobis distance for each

constraint, i.e. χ2
i = ‖ei(x)‖2Σi

. They demonstrate impressive robustness to constraint
outliers.

In [299] Agarwal describes the Geman-McClure robust M-estimator [341], Sünderhauf
and Protzel’s switchable constraints [342, 276, 244] and their DCS approach [301, 299]
as having similar properties. Each of these successful techniques suggest that the SLAM
back-end can be made tolerant to front-end designs that output occasional outliers. To
ensure convergence, these iterative approaches require the pose graph to be initialized in
a reasonably good configuration.

6.3.3. Robust Multimodal Constraint Optimization

The “gold standard” approach to optimizing multimodal pose graphs with non-overlapping3

modes would be to optimize a pose graph of unimodal constraints for every possible
combination of modes: the lowest cost after all optimization corresponds to the optimal
configuration. This is a combinatorial problem, however, that quickly becomes intractable:
three poses with three constraints that have three modes each forms 27 unimodal graphs;
while four poses with six constraints forms 351 possible graphs. While it is likely that
most of the resulting graphs are incorrect, the cost explodes combinatorially. It is for this
reason that earlier SLAM work in multi-hypothesis tracking (MHT) has found limited
success [260]. While Olson’s SCGP was not described as a multimodal method [256], it is
a combinatorial approach that is easily adapted to multimodal constraints. I evaluated a
variant of SCGP during this research, however observed no notable increase in convergence
for cycles of three or four constraints.

Two groups have recently proposed techniques that can optimize multimodal pose graphs
at large scale and in real-time. Pfingsthorn and Birk described their Prefilter method
[117, 343], while Olson and Agarwal described Max-Mixtures [57, 299]. Both approaches
use heuristics to identify and promote a single mode from each constraint: at each iteration
of MLE they optimize the pose graph with only the promoted modes from each constraint.

3Here I consider two component modes of a multimodal constraint as “overlapping” when their 3-σ
covariance ellipsoids overlap.

160

6.3 Previous Work

The inability to take the negative log likelihood of Equation 6.8 is the primary reason for
this simplification.

In [117], Pfingsthorn and Birk describe an extensive set of experiments with several
different approaches for optimizing non-overlapping multimodal constraints. They eval-
uate particle filters and find them unsuitable, even with 10,000 particles, because of the
combinatorial nature of the problem. In another experiment they build a multi-edge graph
by inserting separate constraints for each of the modes in the multimodal constraints.
They use the Huber robust cost function [341], and report it converging incorrectly to a
configuration between modes; this is unsurprising since the Huber cost function approaches
the L1 norm.

Pfingsthorn and Birk report the greatest success with their Prefilter approach, which
extracts the least ambiguous spanning tree from the pose graph. They extract the tree by
tracing over the pose graph while branching along constraints with the lowest mode count
(least ambiguity). Using this initial prefiltered configuration, they optimize the resulting
unimodal pose graph with standard MLE techniques. In situations with considerable
perceptual aliasing, such as multiple robots in a featureless corridor, the Prefilter is unlikely
to choose the correct spanning tree. The Prefilter is not robust, since a unimodal constraint
that is an outlier is likely to be selected over a multimodal inlier. Further, the approach
does not re-evaluate the promoted modes in each iteration, which means it is even less-
likely to converge in the situations with perceptual aliasing described in Section 6.1.2.2.

Olson and Agarwal’s Max-Mixtures [57, 299] is the most similar approach to COMBO.
Their work was motivated by observations at the MAGIC challenge (Appendix B), specif-
ically the “slip or grip” problem where wheel slippage produced non-Gaussian odometry
errors. They augment odometry constraints with an additional mode that describes the
probability that the robot slipped in place. To reduce the quadratic effect of outliers, Olson
and Agarwal also add a large mode that represents the null hypothesis. They demonstrated
Max-Mixtures with multiple modes, however their scan matcher only generated single
modes [344]. Their Max-Mixture approach forms multimodal constraint distributions
using the max(·) operator:

p (zi|x) = max
m

ωmN (zi|µm,Σm) (6.11)

In this form, the max operator acts as a selector, returning the single mode with the
highest probability, given the current graph configuration. When taking the negative log
likelihood, the max operator in Equation 6.11 allows the logarithm to be pushed into the
expression so that a typical iterative least-squares problem is formed [57]. They optimize
the resulting system with Cholesky decomposition and Gauss-Newton (Section 2.5.4.8).
For each iteration, Max-Mixtures simplifies each multimodal constraint into its most likely
unimodal constraint.

161

Chapter 6 Robust Multimodal Pose Graph Optimization

When using a max-mixture, non-overlapping multimodal distributions (i.e. multiple dis-
tinct peaks) will have the same component modes as a proper Gaussian mixture. When
multimodal distributions have overlapping modes, however, Olson notes that different
component modes will result. Section 7.4.7 consider the effects of these differences.

6.4. Robust Multimodal Pose Graph Optimization

The COMBO technique enables standard MLE techniques to be applied to pose graphs
with multimodal constraints by converting each constraint into a unimodal distribution,
once per iteration. Instead of selecting and promoting a single mode, as in Max-Mixtures,
this approach selects multiple active modes and inexpensively blends them into a single
mode. The blending is performed using a modified form of the covariance intersection
(CI) algorithm described in Section 2.5.3.4 on page 62.

6.4.1. Continuous Mode Blending

The goal is to reduce each multimodal constraint distribution p (zi|x), into a single weighted
Gaussian, i.e. the approximation:

p (zi|x) =
M∑
m=1

ωmN (zi|µm,Σm) (6.12)

≈ ωiN (zi|µi,Σi)

The novel contribution here is to show how the parameters for the unimodal approximation
ωi, µi and Σi can be calculated using a modified version of CI (Section 2.5.3.4). These
modifications extend CI so that it can fuse multiple Gaussians instead of pairs. They also
addresses CI’s efficiency, since mode blending occurs very frequently in the inner-most
loops of MLE.

Recognizing that each Gaussian in CI contributes a single term to Equation 2.42, with
coefficients β and (1 − β), the series in these expressions can be extended to fuse M
Gaussians with coefficients βm:

Σ−1
i = β1Σ−1

1 + β2Σ−1
2 + β3Σ−1

3 + · · ·+ βMΣ−1
M (6.13)

µi = Σi

(
β1Σ−1

1 µ1 + β2Σ−1
2 µ2 + β3Σ−1

3 µ3 + · · ·+ βMΣ−1
M µM

)
As with standard CI, the blending coefficients βm are bounded by the interval [0, 1] and
sum to one, i.e 0 ≤ βm ≤ 1 ∀m and

∑M
m=1 βm = 1. These blending coefficients are

discussed in Section 6.4.2. The same coefficients are used to blend the mode weightings:

162

6.4 Robust Multimodal Pose Graph Optimization

ωi = β1ω1 + β2ω2 + β3ω3 + · · ·+ βMωM (6.14)

Noting the multiple matrix inversions in Equation 6.13, the CI rules are modified to
use the information form, Ωi = Σ−1

i (described in Section 2.5.3.5). Since many MLE
implementations use information matrices to store covariances, this modification avoids
repeated and expensive matrix inversions with no additional storage cost. The information
matrix is related to the canonical form with Ωi = Σ−1

i , while the information vector is
ηi = Ωiµi. The M modes in each multimodal constraint are fused into a single weighted
Gaussian, ωiN (zi|µi,Σi), with:

Ωi =
M∑
m=1

βmΩm

ηi =
M∑
m=1

βmηm

ωi =
M∑
m=1

βmωm (6.15)

If necessary, the single weighted Gaussian can be recovered in the canonical form with
Σi = Ω−1

i and µi = Ω−1
i ηi. The mode blending technique in COMBO can be described

most simply as the weighted sum of the component modes in their information form.
The blended Gaussian maintains the same conservative properties as CI, described in
[345], provided the coefficients, βm, sum to one. Note that while the resulting Gaussian
is weighted (ωi > 0), and not strictly a probability distribution, it is trivial to use in
least-squares MLE.

6.4.2. Blending Coefficients

With this principled technique for blending modes, the remaining problem is to assign the
blending coefficients, βm. The blending vector β = [β1, β2, β3 · · ·βM] acts as a selector that
chooses which modes to combine. For example, a single mode can be selected with β =
[· · · 0, 0, 1, 0, 0 · · ·], or two modes can be blended using β = [· · · 0, βm, 0 · · · 0, (βm−1), 0 · · ·]
(which is standard CI from Equation 2.42).

The blending coefficients are chosen so that the blended mode exhibits MLE convergence
properties that are as close to the full multimodal Gaussian distribution of p (zi|x) as
possible. That is, the cost function should be locally smooth, and the Jacobians should
point towards the nearest peak or ridge in p (zi|x).

163

Chapter 6 Robust Multimodal Pose Graph Optimization

In COMBO the coefficients β = [β1, β2, β3 · · ·βM] are determined by sampling each mode
at the current estimate using the virtual sensor model from Equation 6.2, i.e.:

βm = ωmN (z̄i(x)|µm,Σm)
p(z̄i(x)|x) = ωmN (z̄i(x)|µm,Σm)∑M

m=1 ωmN (z̄i(x)|µm,Σm)
(6.16)

Using Equation 6.16 the coefficients βm necessarily sum to one, provided the weights∑
ωm = 1. The intuitive explanation for this assignment is that each mode contributes to

the blended Gaussian the same relative amount it contributes to p(z̄i(x)|x).

6.4.3. Convergence Properties

This section demonstrates the ideal convergence properties of blended multimodal Gaus-
sians when used in least-squares MLE. Non-overlapping and overlapping modes are the
two cases considered here.

Non-overlapping modes: if the current estimate z̄i (x) is closest to a single isolated
mode m in p (zi|x), then this mode will dominate the blended result. The blended
parameters ωi ≈ ωm, µi ≈ µm and Σi ≈ Σm create a basin of attraction around the
dominant mode’s peak. MLE will converge to this peak as though no other modes were
present. A 1-D example, where two isolated modes are separated by 6-σ, is shown in
Figure 6.5. At the peak of either mode, the other mode has a negligible blending coefficient
(βm = 10−8). Using COMBO on this multimodal constraint, the solution converges
quadratically to the nearest mode, which is the desired property.

While it is straight-forward to demonstrate convergence near isolated modes, boundary
conditions occur between modes. Using Figure 6.5 as an example, a transitional region
exists between zi = 2 and zi = 3 where the blending coefficients are approximately equal,
i.e. β1 ≈ β2. Through this region the blended mode, and its basin of attraction around the
mean µi, switches from the first mode, µ1, to the second, µ2. A single stationary point is
created in this transitional region, where the two components are equal, i.e. β1 = β2 = 0.5.
At this point, the constraint measurement prediction z̄i (x) equals the mean µi, so that
the constraint’s residual is zero; this can be seen in Figure 6.5 (b) where the blended
mode’s χ2 cost dips to zero. This stationary point between the two modes is expected
and desirable, given the shape of p (zi|x). In the basin around the stationary point, the
constraint exerts very little influence on MLE.

Overlapping modes: the mode blending technique was designed for more complex
situations where multiple modes overlap significantly. Figure 6.6 (a) shows a 1-D example
where six modes overlap in a way that the individual modes are not separately discernible;
this example is modeled on the perceptual aliasing problem that is observed in alleyways,
as described in Section 6.1.2.2. The Gaussian mixture p (zi|x) exhibits a large flat top,

164

6.4 Robust Multimodal Pose Graph Optimization

indicating a region where the constraint has no information and should not influence the
convergence of x. This desirable behavior is observed with COMBO in Figure 6.6 (c),
where only the edges of the mixture p (zi|x) exhibit quadratic convergence.

The flat part of p (zi|x) in Figure 6.6 describes a region that is constantly transitioning
between modes. Instead of having stationary points, however, Figure 6.6 (b) shows that
the blended mode’s χ2 cost is almost zero throughout this region (at 10−5 it is not visible
in the plot). This indicates that the residual error is approximately zero also, which occurs
because the blended mode’s mean is tracking the constraint measurement prediction, i.e.
µi ≈ z̄i (x). Overlapping multimodal constraints like these can be chosen so that they
exert vary little influence on the MLE. When considering SE (2) constraints, instead of
this 1-D toy problem, however, overlapping modes may be arranged so that they lack
influence in only one of the constraint’s three degrees of freedom. This desirable trait was
described in Section 6.1.2.2.

1 0 1 2 3 4 5 6 7
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

p
(z
i|x

)

(a)
p(zi|x)

N(zi |µm ,Σm) mode m
p(zi|x) Max-mixture
p(zi|x) COMBO

1 0 1 2 3 4 5 6 7
0
2
4
6
8

10

N
eg

at
iv

e
Lo

g
Co

st(b)
Cost mode m
Cost COMBO
χ2 Max-mixture
χ2 COMBO

1 0 1 2 3 4 5 6 7
zi

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

O
pt

im
iza

tio
n

It
er

at
io

n

(c) Convergence Max-mixture
Convergence COMBO

Figure 6.5. COMBO: Convergence Properties of Non-overlapping Modes. A simple 1-D
example. (a) p (zi|x) for two isolated modes separated by 6-σ. At the peak of the first mode,
zi = µ1 = 1, the blending coefficients are β = [0.99999999, 10−8] such that that the second
mode has negligible influence. (b) shows COMBO’s negative-log cost function, which matching
both modes’ costs in the vicinity of their peaks. To emphasize the smooth convergence (c) shows
10 iterations of gradient descent starting from a wide range of initial values for x0. Without any
external influences the solution converges quickly to the nearest mode. When Levenberg-Marquardt
is used, this example converges quadratically. A stationary point exists between the two modes at
zi = 2.5 where the coefficients β = [0.5, 0.5] are equal. This is expected, and desirable, given the
shape of p (zi|x). For distributions with isolated modes, both COMBO and Max-Mixtures converge
to the same solution.

165

Chapter 6 Robust Multimodal Pose Graph Optimization

6.4.4. Constraint Jacobians

To converge towards the MLE, the Jacobians of the error function, δe(x,zi)
δx , evaluated at

the current constraint measurement prediction, z̄i(x), should point in the direction that
is “up-hill” in the distribution p(zi|x). There are three ways to calculate these Jacobians:

• Fast approximation: Jacobians are approximated using the weighted Gaussian
ωiN (zi|µi,Σi) and the derivations in [243]. This approximation assumes the blended
mode’s parameters are relatively constant with respect to the blending coefficients
βm. It underestimates the Jacobians in transitional regions, which reduces their
influence on MLE, an effect that is desirable in practice.

• Numerical Jacobians: the constraint cost function is evaluated 12 times to cal-
culate numerical Jacobians. Each evaluation re-blends the modes to avoid underes-
timating the Jacobians.

1 0 1 2 3 4 5 6 7
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

p
(z
i|x

)

(a)
p(zi|x)

N(zi |µm ,Σm) mode m
p(zi|x) Max-mixture
p(zi|x) COMBO

1 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6

N
eg

at
iv

e
Lo

g
Co

st(b)
Cost mode m
Cost COMBO
χ2 Max-mixture
χ2 COMBO

1 0 1 2 3 4 5 6 7
zi

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

O
pt

im
iza

tio
n

It
er

at
io

n

(c) Convergence Max-mixture
Convergence COMBO

Figure 6.6. COMBO: Convergence Properties of Overlapping Modes. A simple 1-D
example in an alleyway with perceptual aliasing. (a) p (zi|x) has six overlapping modes separated by
1.67-σ. (b) In the middle of this flat-topped distribution COMBO produces a constant negative log
cost indicating that the constraint has no information. (c) shows 10 iterations of gradient descent
starting from a wide range of initial values for x0. For COMBO, the middle of the distribution
exhibits no influence over zi, while the edges exhibit quadratic convergence. This is expected,
and desirable, given the shape of p (zi|x). COMBO produces a similar convergence when using
Levenberg-Marquardt or Gauss-Newton. Max-Mixtures, however, converges quickly to the nearest
peak, which is undesirable for overlapping multimodal distributions like this.

166

6.4 Robust Multimodal Pose Graph Optimization

• Hybrid Jacobians: an optimized implementation that switches between the fast
approximation and numerical Jacobians described above. The fast approximation is
only used when a single mode m is dominating, i.e. βm > 0.8.

• Analytical Jacobians: expansions of the derivatives are lengthy, however they can
be performed with symbolic math software.

It is difficult to visualize Jacobians to evaluate their correctness. Instead small gradient
descent steps are shown in Figure 6.5 (c) and Figure 6.6 (c), which indicate the Jacobian
directions across a range of z̄i(x). Figure 7.20 shows a more complex and asymmetric 1-D
example. In all three cases the Jacobians guide MLE towards the nearest peak in the
multimodal distribution p(zi|x).

6.4.5. Least Squares Optimization

The COMBO technique produces a single blended mode for each multimodal constraint
that is valid for the current measurement prediction z̄i(x). The resulting unimodal pose
graph can be optimized with any of the standard least-squares techniques described in
Section 2.5.4.9.

For complex multimodal pose graphs, Levenberg Marquardt (LM) exhibits good conver-
gence due to its ability to transition between Gauss-Newton and gradient descent. To
control this transition, LM requires each constraint to have a smooth cost function, Ci.
LM typically uses the Mahalanobis distance from Equation 6.5, otherwise known as the
χ2 cost. The χ2 cost, however, is not defined for multimodal distributions.

While it might seem consistent to directly use the χ2 cost for each blended Gaussian, the
χ2 cost dips to zero around the stationary points that exist between modes. This causes
a problem for LM, which expects the χ2 cost to decrease when moving in the direction
indicated by the Jacobians (i.e. away from the stationary points). This is shown clearly in
Figure 7.20 (b), around the stationary point at zi = 2, where the χ2 cost increases when
moving toward either peaks. In LM, this cost increase would cause the step size λ to be
decreased, inhibiting convergence.

Instead of the χ2 cost, COMBO uses the actual negative log of the multimodal distribution,
sampled at the current measurement prediction z̄i(x):

Ci = − log (p (z̄i|x)) (6.17)

= − log
(

M∑
m=1

ωmN (z̄i|µm,Σm)
)

167

Chapter 6 Robust Multimodal Pose Graph Optimization

6.4.6. Robust Multimodal Constraints

Even with the exhaustive correlation approaches used in Mapbuilder (Section 5.4), the
multimodal constraints generated will occasionally be outliers, or have outlier modes. A
moving object, for example, can break the static-world assumption, adding noise to a
submap and outlier modes. This is the case in Figure 7.26 on page 209, where three of
four modes are outliers resulting from a person walking past the robot.

Like the robust approaches reviewed in Section 6.3, I adopt a consensus-based approach
instead of explicitly trying to identify and suppress outliers. This approach requires the
MLE to begin in the vicinity of the optimum, while consensus, or internal consistency,
invites the inliers to overpower the outliers.

The cost function is made more robust (Section 6.3.2) to reduce the quadratic influence
of outliers by clamping it to a fixed upper value, Cmax. This produces an effect similar to
the Geman-McClure or Tukey M-estimators [341], however applied to multiple modes at
the same time. Once the cost exceeds the threshold, Ci > Cmax, the constraint is switched
off by forcing the residual error in Equation 6.3 to zero and setting Ci = Cmax.

Using an analogy similar to Section 2.5.4.4, each robust constraint acts like a magnet
joining two submaps together. If external forces (other constraints) pull the submaps apart
too hard (consensus), the constraint magnet will eventually break its hold (Ci > Cmax).
The constraint magnet does not exert any forces unless the submaps are brought into close
proximity again (Ci ≤ Cmax).

The value for Cmax is selected empirically, since it is not a true χ2 cost. Each cost, Ci,
has a bias that depends on the coefficients in Equation 6.17, in particular the weights ωm
and covariances Σm. For reference, Cmax was set to χ2

0.99(3) = 11.34 for all of the MAGIC
challenge datasets in Appendix B.

For implementation efficiency, only the active set of modes in each constraint are blended
using Equation 6.16 and Equation 6.15. Modes are defined as active when the current
measurement prediction z̄i(x) is inside their 3-σ ellipse4. The active set of modes is
filtered using the inexpensive χ2 test, ‖z̄i − µm‖2Σm

< χ2
0.997(3). Conveniently, this avoids

numerical instabilities in Equation 6.16 when the current measurement prediction is far
from any modes. Overlapping and non-overlapping multimodal constraints were described
in Section 6.4.3. This definition is formalized here according to whether the individual
modes’ 3-σ ellipses overlap. By definition, the active set of modes will alway overlap.

4The 3-σ ellipses are shown on the likelihood volumes to indicate where modes would be active.

168

7 Results

This chapter presents results demonstrating my research contributions. Re-
sults in Section 7.1 demonstrate on-line hybrid-decentralized and distributed
MR-SLAM with a team of WAMbot UGVs. Section 7.2 demonstrates large-
scale MR-SLAM in real-time using three combined datasets recorded at the
MAGIC challenge. In Section 7.3 I present additional results optimizing mul-
timodal pose graphs using the COMBO technique. Section 7.4 concludes with
an in-depth discussion of these results, including the accuracy, scalability and
robustness, along with a comparison with other published systems.

7.1. Hybrid-Decentralized and Distributed MR-SLAM

The results presented in this section demonstrate decentralized and distributed MR-SLAM
capabilities across multiple UGV and GCS computers using the Mapbuilder system. These
results were recorded during on-line distributed deployments of the WAMbot UGVs and
include typical communications latencies and losses. For reference, the WAMbot MRS
architecture is described in Appendix A.

7.1.1. MAGIC Challenge

The MAGIC challenge was introduced in Section 1.3.4.2. The test environment, described
in Appendix B, was a 500×500 meter urban environment that included a mixture of indoor
and outdoor areas, that were both compact (e.g. small rooms and doorways) and sparse
(e.g. car parks and large rooms). Figure 7.1 shows the judge’s orthorectified map showing
the GCS location and the four challenge phase areas [52]. A small amount of ground-truth
survey data is shown also.

169

Chapter 7 Results

Occupancy gridmap results from the on-line deployment of five WAMbot UGVs are shown
in Figure 7.2. A combination of hardware and software issues, described in [64], limited
our UGVs ability to explore and they were only able to map 15%, 8% and 5% of Phase 1,
Phase 2, and Phase 3, respectively. The WAMbot MRS performed considerably better in
the Old Ram Shed Challenge (ORSC), exploring 83% of the area. This limited exploration
during the challenge led to the acquisition and processing of datasets from TM and Penn—
large-scale real-time results from Phase 1, Phase 2 and the ORSC are provided with
comparisons to ground truth in Section 7.2.

The gridmaps in Figure 7.2 were generated by the Mapbuilder back-end and saved on the
main GCS computer during deployment. These global gridmap outputs show that the
submap gridmaps and pose graph data were being distributed around the UGV and GCS
participants.

7.1.2. Distributed Occupancy Gridmap Comparison

This section demonstrates that Mapbuilder’s global occupancy gridmaps converge towards
the same solution by directly comparing the distributed copies built separately by UGV
and GCS participants. When the hybrid-decentralized design is performing as expected,
the distributed copies should appear very similar, but not identical. Section 4.4.2.3 ex-
plains how a threshold is used to determine when submap pose changes are broadcast. This
threshold is tuned to balance pose graph convergence against wireless bandwidth usage.
Cells far from each submaps origin (~20 meters) are expected to occasionally experience
single cell (0.1 meter) misalignments.

Figure 7.3 (a) shows the global gridmap built by a GCS computer during a 180 meter drive
through the University of Western Australia campus. During this on-line test the UGV
was reconfigured to store copies of its locally generated gridmap outputs. In an off-line
comparison, both UGV and GCS gridmaps appear visually identical. Minor differences
are identified by comparing the gridmaps cell-by-cell. Figure 7.3 (c) shows a sample of
these differences, where less than 0.1% of the cells are different. This minor noise does not
affect the MRS’s performance.

7.1.3. Distributed Pose Graph Comparison

This section demonstrates hybrid-decentralized MR-SLAM using priority filters and pin-
ning (Section 4.3.9) by comparing copies of the distributed pose graphs1. The Mapbuilder
back-end instances save snapshots of their local copy of the pose graph every five seconds.
With a careful off-line analysis of these snapshots, the submap UUIDs can be cross

1It is difficult to compare large gridmap outputs since each UGV generates a 5000×5000 cell gridmap
every second— around 4.4 GB/min of raw data.

170

7.1 Hybrid-Decentralized and Distributed MR-SLAM

Figure 7.1. MAGIC challenge judge’s map: Orthorectified map used to evaluate each team’s
performance in the four phases. This map is 500 meters wide, with partial ground-truth data
overlaid in magenta. The GCS and phase starting locations are marked in green. Map courtesy
Anthony Finn [52]. Survey and ground-truth data courtesy Adam Jacoff.

Figure 7.2. WAMbot challenge day results: Occupancy gridmaps superimposed on aerial
imagery. Due to a combination of hardware and software issues, described in [64], our UGVs only
explored 15%, 8% and 5% of the three phases. WAMbot performed considerably better in the
Old Ram Shed Challenge (ORSC) on the left, exploring 83%. Aerial imagery courtesy DSTO.

171

Chapter 7 Results

referenced and the GCS and UGV participants’ distributed pose graphs can be compared
as they evolve over time.

Figure 7.4 plots a time-based comparison between the GCS and two WAMbots, recorded
on-line during Phase 3 of the MAGIC challenge. The occupancy gridmap generated
at the GCS is shown at the bottom of Figure 7.2 on the preceding page. The plots
in Figure 7.4 show the steady growth in submaps and constraints as WAMbot 5 and 7
explored 100 meters into the phase. They demonstrate the distributed pose graph copies
occasionally losing synchronization, as expected with lossy communications, and later
resynchronizing as designed.

The sequence of submaps becoming “pinned” by the higher-priority GCS computers as
described in Section 4.3.9, can be observed more clearly when enlarged in Figure 7.5. Here
the flow of new submaps and constraints can be seen filtering out to the other computers;
the GCS optimizes the pose graph and it takes 5-20 seconds for submap pose messages to
pin the UGVs’ pose graphs. The UGVs only have a few unpinned submaps at any moment
in time; this leads to very minimal pose graph optimizations, as designed.

This was a particularly challenging area for wireless communications, since the UGVs
were operating 150m from the GCS and behind a large mound of dirt. All data had to be
relayed, which meant bandwidth was restricted and intermittent. The network topology
was not recorded during the challenge, however less than half of the normal 2-5MB/s
would have been available to the MRS. This bandwidth was shared with video streams
and other subsystems. In this instance the DDS QoS design correctly discards minimal
amounts of gridmap tile data (0.02% of occupied cells), and instead prioritizes pose graph
data to correctly maintain synchronization.

172

7.1 Hybrid-Decentralized and Distributed MR-SLAM

(a) GCS gridmap (100×200 m)

(b) Inset: GCS gridmap zoom (50×30 m)

(c) Inset: WAMbot UGV gridmap differences

Figure 7.3. Mapbuilder Distributed MR-SLAM: Occupancy gridmaps generated by the
WAMbot MRS over a 180 meter drive through the University of Western Australia. (a) is the
gridmap built by Mapbuilder running on the GCS computer. (b) is an enlargement of the inset
to show individual 10 cm grid cells. The gridmaps generated by Mapbuilder on the UGVs appear
visually similar; to show the minor differences between the two distributed instances of Mapbuilder,
(c) compares the cells between both gridmaps: white cells are identical, red cells are only occupied
on the GCS, while green cells are only occupied on the UGV. The differences, which are less than
0.1% of cells have no affect on the performance of the MRS. This test was performed to evaluate
decentralized MRS communications and not mapping accuracy— several artifacts are visible at
the top of (b) that were caused by odometry and submap matching errors. These errors were not
corrected, however they could have been using the Mapbuilder GUI. Aerial map courtesy Google.

173

https://www.google.com/maps/@-31.9788831,115.8162013,19z

Chapter 7 Results

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

S
u
b
m

ap
 C

ou
n
t

(a)
WAMbot5 total submaps

WAMbot5 pinned submaps

WAMbot7 total submaps

WAMbot7 pinned submaps

GCS total submaps

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

C
on

st
ra

in
t

C
o
u
n
t

(b)
WAMbot5 total constraints

WAMbot7 total constraints

GCS total constraints

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

S
u
b
m

a
p
 P

os
e

D
if
fe

re
n
ce

s

(c)
WAMbot5 submap pose differences

WAMbot7 submap pose differences

0 200 400 600 800 1000 1200

Time (sec)

100

101

102

103

G
ri

d
m

ap
 C

el
l
D

if
fe

re
n
ce

s

(d)
WAMbot5 gridmap cell differences

WAMbot7 gridmap cell differences

Figure 7.4. Mapbuilder Hybrid-Decentralized MR-SLAM: Time-based comparisons between
three distributed copies of the pose graph recorded on-line during Phase 3 of the MAGIC challenge.
The occupancy gridmap generated by the GCS is shown at the bottom of Figure 7.2 on page 171.
While the WAMbot UGVs explored the first 100 meters of the phase, each Mapbuilder instance
stored snapshots of the pose graph every 5 seconds. Plots (a) and (b) show the steady growth in
submaps and constraints as WAMbot 5 and 7 explored. The area highlighted in blue is enlarged and
explained in Figure 7.5. Plot (c) shows the number of submaps that had different pose estimates
to the GCS; differences that are quickly corrected by the propagation of submap pose messages.
Around t =1000 s the MRS experiences severe communications issues and the UGV pose graphs
are only resynchronized after one of the UGVs moves into a better position to relay data. Plot
(d) indicates a minor loss of gridmap data at the GCS, however over 99.98% of gridmap cells
are successfully distributed at the end. This plot confirms that the QoS design correctly discards
gridmap tile data, and instead prioritizes pose graph data to correctly maintain synchronization.

174

7.1 Hybrid-Decentralized and Distributed MR-SLAM

700 720 740 760 780 800 820

12

14

16

18

20

22

S
u
b
m

ap
 C

ou
n
t

(a)
WAMbot5 total submaps

WAMbot5 pinned submaps

WAMbot7 total submaps

WAMbot7 pinned submaps

GCS total submaps

700 720 740 760 780 800 820

30

40

50

60

70

C
on

st
ra

in
t

C
o
u
n
t

(b)
WAMbot5 total constraints

WAMbot7 total constraints

GCS total constraints

700 720 740 760 780 800 820
0

5

10

15

20

S
u
b
m

a
p
 P

os
e

D
if
fe

re
n
ce

s

(c)
WAMbot5 submap pose differences

WAMbot7 submap pose differences

700 720 740 760 780 800 820

Time (sec)

101

102

103

G
ri

d
m

ap
 C

el
l
D

if
fe

re
n
ce

s

(d)
WAMbot5 gridmap cell differences

WAMbot7 gridmap cell differences

Figure 7.5. Mapbuilder Hybrid-Decentralized MR-SLAM: Enlarged section of the time-
based pose graph comparison in Figure 7.4. Here WAMbot 7 drives 15 meters and creates six
submaps, while the pose graphs were recorded every five seconds. Plot (a) indicates that new
submaps in the WAMbots’ pose graphs took up to five seconds to be shared to the GCS computer
and then 5-20 seconds to be pinned. Plot (b) shows several constraints being generated for each
new submap, the total count growing more smoothly as the Matcher takes time to generate and
distribute new constraints. The UGVs remained stationary for a while around t =780, however
they continue to match submaps and their new constraints fully connect the pose graph. In
plot (c) the stream of newly created constraints causes several large changes to the submap pose
estimates. The pose graphs resynchronize after some time. Plot (d) shows the number of gridmap
cell differences changing quite dynamically, even when the UGVs are stationary. These changing
cell differences indicate that objects were moving in the environment. This plot demonstrates the
hybrid-decentralized approach pinning submaps to maintain pose graph synchronization.

175

Chapter 7 Results

7.2. Large-Scale Real-Time Multi-Robot SLAM

This section demonstrates real-time MR-SLAM using datasets recorded at the MAGIC
challenge. The results presented here show how Mapbuilder and my research contributions
can be deployed at large scales. The challenge and datasets were divided into the three
phases that are listed in Table 7.1. These challenge phases, or test environments, are
described in Appendix B.

Multiple datasets were recorded by the WAMbot, TM and Penn teams during the chal-
lenge, they are combined and replayed in real-time to prepare these results. Appendix A
describes the MRS architectures and UGV front-end designs for the resulting team of 10-
23 heterogeneous UGVs. Each UGV sensor package included at least wheel odometry, an
IMU and one lidar scanner (either fixed in a horizontal plane, nodding up/down around
the horizontal plane, or sweeping left/right with a vertical plane).

This section includes figures that show the evolution of global gridmaps over time, however
these results are best viewed as video recordings of the GUI, captured while the datasets
were processed in real-time. These videos are available on-line at http://reid.ai/thesis.
The three datasets were all processed in the same way, notes common to each include:

• Each figure and video displays a time offset in the top right corner; these time offsets
are used to refer to specific events in each dataset. These events can be viewed easily
in the on-line videos by clicking on the gridmaps in the PDF version of this thesis.
Similarly, links are embedded in text like this: (open video), which, when clicked,
will open directly to a particular time in the corresponding video.

• Large non-Gaussian odometry errors occur frequently in these datasets. As discussed
in Section 4.1.4 and Appendix B, the operator must intervene to correct for these er-
rors. Corrections are performed by deleting corrupt submaps, and applying ground-
truth constraints. The videos are overlaid with the captions “Deleted submap” and
“Adjusting ground truth” to clearly indicate when these actions are performed.

• The total odometry, summed over all UGVs’ tracks is shown in the lower right of
each figure. This value is not monotonic; it decreases occasionally when the operator
deletes submaps.

Phase Phase
Extents

UGV
Count

Total
Odometry Time

Old Ram Shed Challenge 80×40 m 10 3,170 m 36 min
MAGIC Challenge Phase 1 210×140 m 14 6,153 m 80 min
MAGIC Challenge Phase 2 210×150 m 23 8,373 m 88 min

Table 7.1. Results: Large-scale real-time MR-SLAM dataset summary

176

https://reid.ai/thesis
http://reid.ai/thesis/orsc?t=32m00s

7.2 Large-Scale Real-Time Multi-Robot SLAM

• Mapbuilder fuses different versions of the output gridmap in parallel, each using a
different algorithm for fusing gridmap cells (Section 5.2). The gridmaps displayed
throughout these videos use an algorithm tuned to help the operator; other algo-
rithms are designed for navigation.

• TM and Penn’s UGVs and MRS were described in Appendix A. The development
time required to integrate their datasets was on the order of tens of hours— testament
to Mapbuilder’s flexible back-end design and ability to inter-operate with different
SLAM front-ends and heterogeneous UGVs.

• While Mapbuilder is designed to be distributed and decentralized, real-time large-
scale MR-SLAM is demonstrated here in a centralized manner. This centralization is
trivial and requires minor modifications; a single instance of Mapbuilder is executed,
providing the MR-SLAM back-end and GUI, with additional threads processing the
dataset log files.

• Processing was performed on a 2012 model Intel quad-core i7 CPU, with a NVIDIA
GTX 970 GPU. For reference, this GPU was about 25 times more powerful than
the WAMbot UGVs (Appendix A), and about half as powerful as the fastest COTS
GPUs today. In a distributed deployment each UGV has enough GPU processing
resources to perform its own submap matching. In this centralized configuration,
the GPU performed centralized submap matching for all 23 UGVs.

• In the results presented here, about 25% of the CPU’s resources were used to capture
the GUI screen at 30Hz and encode the frames into h.264 format.

• Tunable parameters were not changed when moving between environments— the
same parameters were used for all UGV types, and both indoor and outdoor envi-
ronments.

• Communications losses occur in both teams’ datasets. This can be observed many
times in the accompanying videos, where the UGVs “jump” tens of meters and
become badly localized. Appendix B describes these issues in more detail.

• Communications bandwidth estimates are calculated based on the size and volume of
messages that would have been sent in a decentralized and distributed deployment.
Estimates include the RLE compressed size of the submap gridmaps, and assume
that all messages are sent using UDP broadcasts.

• To show Mapbuilder’s computational cost scaling linearly with the size of the pose
graph, some of the plots in this section place the total submap count on the abscissa,
rather than time. This avoids the “flat spots” in the time-based plots where the
UGVs are motionless for periods of time.

177

Chapter 7 Results

• To demonstrate the global gridmapping accuracy, surveyed maps were used to calcu-
late the root-mean-squared error (RMSE). These surveyed ground-truth maps were
only available for limited parts of the challenge. The RMSE was measured manually
by placing a five meter grid over both the global gridmap and surveyed data. To
avoid any sampling bias, a single representative association was made in each grid
square, from which the error between the gridmap and survey was recorded.

7.2.1. Old Ram Shed Challenge

The Old Ram Shed Challenge (ORSC) datasets are described in Appendix B. A single
dataset with 10 UGVs exploring an 80×40 meter indoor area was created by merging
Penn and TM’s data. This is the smallest dataset in these results, with 3,170 meters of
odometry accumulated over 36 minutes. The dataset is unique because of the high average
node degree and connectivity (Section 3.3.3). For reference, this dataset is about three
times larger than the 45×25 meter indoor area used for the SDR program (Section 1.3.4).

I operated the Mapbuilder GUI to generate the ORSC results presented here. Prior to
generating these results I had processed the dataset dozens of times and viewed the site
in person. This prior knowledge is unlikely to have affected the mapping accuracy— only
four minutes of cumulative time was spent adjusting ground-truth constraints. This four
minutes was mostly spent initializing UGV poses and correcting repeated, systematic,
odometry errors from UGV number 17. Figure 7.7 (e) indicates that the majority of this
dataset was processed with minimal operator intervention.

Figure 7.6 shows a sequence where the global gridmaps evolve over time as viewed in the
Mapbuilder GUI. The largest of several loop closures is highlighted in part (c) and (d)
of this figure. This loop closure forms a 230 meter closed path, as measured from the
point in the first room where the UGVs separated. In the pose graph this corresponds to
a minimum spanning tree of about 70 edges (constraints).

In the middle of the southern part of the Old Ram Shed a maze was built out of straw
hay bales. Figure B.3 on page 236 shows two photos of this maze. The bales were stacked
to form walls that were low, badly defined and difficult to map with lidar. At the start
of the maze area, after eight minutes had elapsed, UGV number 17 becomes stuck and
severe odometry errors occur (open video). The operator repeatedly deletes corrupted
submaps and repositions the UGV in its correct location. Communications issues can be
seen around 32 minutes, where the UGV numbered 13, 14 and 18 make several 5 meter
jumps across the map (open video).

The surveyed ground-truth data is overlaid on the final gridmap in Figure 7.6 (e). Many
of the internal obstacles in the Old Ram Shed were not surveyed, including the hay bale

178

http://reid.ai/thesis/orsc?t=8m30s
http://reid.ai/thesis/orsc?t=32m00s

7.2 Large-Scale Real-Time Multi-Robot SLAM

maze. Based on the areas that were surveyed, the RMS error calculated from 88 samples
was ±0.27 meters.

Time-based statistics are shown in Figure 7.7, while statistics plotted against the submap
count are shown in Figure 7.8. Key measurements and statistics for the submaps, their
constraints, and the optimization errors are shown using histograms in Figure 7.9. These
results are summarized in Table 7.2 on page 196.

179

Chapter 7 Results

(a) 7m 59s: The UGVs start in the south-
east corner. The first team explores west,
the second team north.

(b) 15m 11s: Both teams explore on
separate fronts. The first team enters a
maze of straw hay bales.

(c) 22m 45s: The first team is about to
exit the maze into the south-west corner,
closing a loop with the second team.

(d) 29m 9s : After a 230 m loop closure.
The map alignment continues to improve
after more submaps are matched.

(e) 36m 5s (end): Global gridmap with surveyed ground truth overlaid (magenta). Note: many
temporary barriers were not surveyed, including the straw hay bale “maze”. The RMS error
calculated from 88 samples was ±0.27 meters.

Figure 7.6. Results: Old Ram Shed Challenge. 10 heterogeneous UGVs explore a 80×40 meter
indoor area in 36 minutes. Global gridmaps overlaid on aerial imagery. UGVs are shown colored
by their identifier, their tracks overlaid as thin lines in matching colors. The pose graph is shown in
green: dots represent submap poses, lines submap constraints and red triangles are ground-truth
constraints. Click on the images to open the accompanying video at the corresponding time.

180

http://reid.ai/thesis/orsc?t=7m59s
http://reid.ai/thesis/orsc?t=15m11s
http://reid.ai/thesis/orsc?t=22m45s
http://reid.ai/thesis/orsc?t=29m09s
http://reid.ai/thesis/orsc?t=36m05s

7.2 Large-Scale Real-Time Multi-Robot SLAM

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500
D

ist
an

ce
 (m

)
(a)

Total odometry

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

Co
un

t

(b)
Total submaps
Deleted submaps

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

A
re

a
(m

2
)

(c)
Global gridmap area mapped
Global gridmap area extents

0

10

20

30

40

50

60

70

80

Global gridmap coverage ratio mapped
Global gridmap coverage ratio extents

0 5 10 15 20 25 30 35
0
2
4
6
8

10
12
14
16

Ba
nd

wi
dt

h
(K

B/
se

c)

(d)
Pose graph bandwidth
Gridmap bandwidth

0 5 10 15 20 25 30 35
Time (minutes)

0

20

40

60

80

100

Ti
m

e
Pe

rc
en

ta
ge

(e)
Idle (15 sec bars)
Moving mouse
Panning display
Adjusting ground truths

Figure 7.7. Results: Old Ram Shed Challenge. 10 heterogeneous UGVs explore a 80×40 meter
indoor area in 36 minutes. In these time-based plots: (a) shows the steady accumulation of 3,170m
of odometry. (b) shows 653 submaps being created, 24 were deleted, giving an average of 5.04 m
of odometry per submap. (c) shows the global gridmap growing to 2,640m2 total area, while an
average of 38 submaps overlap each part of the map. (d) shows the variations in communications
bandwidth, averaging 1.2KB/s for a total of 2.5 MB of MR-SLAM data for the entire dataset.
(e) shows a histogram of operator interactions in 15 s bars. The operator spent 10.6% of the time,
or just under 4 minutes, correcting for odometry errors.

181

Chapter 7 Results

0 100 200 300 400 500 600
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

(a)
Optimization time per interval

0 100 200 300 400 500 600
0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

(b)
Builder time per interval

0 100 200 300 400 500 600
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
(s

)

(c)
Matcher time per submap pair

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

Co
un

t

(d)
Total constraints
Active constraints
Ground truth constraints

0 100 200 300 400 500 600
Submap Count

0

5

10

15

20
(e)

Constraint mean cost
Constraints per submap (mean node degree)

Figure 7.8. Results: Old Ram Shed Challenge. Plots (a), (b) and (c) shows the minimum,
maximum and mean value per execution, with the total submap count on the abscissa. These
statistics are noisy due to heavy contention for the CPU and GPU. (a) shows the optimization
time per interval, which scales approximately linearly, at 1.1 seconds per 1,000 submaps. (b) shows
the time the GPU spent building each 512×512 meter global gridmap; build times scale linearly
at 0.028 seconds per 1,000 submaps. (c) shows the time the GPU spent matching submaps; an
average of 0.078 seconds per match. (d) shows the growth in submap constraints; 80% of the 4,674
constraints are active (not outliers). (e) indicates that the UGVs’ exploration approach produced
a relatively constant number of constraints per submap (responsible for the linear optimization
times). The mean constraint cost in (e) decreases over time; spikes occur when the operator
adjusts ground-truth constraints.

182

7.2 Large-Scale Real-Time Multi-Robot SLAM

10 20 30 40 50 60 70
Width (meters)

10

20

30

40

50

60
H

eig
ht

 (m
et

er
s)

(a) Submap extents
Area mapped ∝ diameter

0 50 100 150 200 250
Data (KB)

0

10

20

30

40

50

60

70

Su
bm

ap
 C

ou
nt

(b) Gridmap data
uncompressed

0 1 2 3 4 5 6
Data (KB)

0

20

40

60

80

(c) Gridmap data
RLE compressed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Number of Constraints

0

10

20

30

40

50

Su
bm

ap
 C

ou
nt

(d) Constraints per submap
(node degree)

0 1 2 3 4 5 6 7 8
Number of Modes

0

500

1000

1500

2000

2500

Co
ns

tr
ai

nt
 C

ou
nt

(e) Total modes per constraint
Active modes per constraint
Inactive outlier constraints

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
χ2 Error

0

200

400

600

800

1000

1200

1400

Co
ns

tr
ai

nt
 C

ou
nt

(f)
χ2 (1) distribution
χ2 (3) distribution
Constraint χ2 error

3 2 1 0 1 2 3 4 5 6
Cost

0

100

200

300

400

500

600

700

Co
ns

tr
ai

nt
 C

ou
nt

(g) Constraint cost

Figure 7.9. Results: Old Ram Shed Challenge. Plot (a) shows the distribution of submap
extents; the average submap is 31×30 meters, while 170m2 of each gridmap area is mapped
(occupied or free cells). (b) shows the average submap is 95KB uncompressed, while (c) shows that
the RLE compression reduces the average submap to 1.9KB. (d) shows the number of constraints
for each submap, or the node degree, which averages 14.3. (e) shows both the total number of
modes per constraint, and the number of these modes that were active (refer to Chapter 6). (f)
shows the expected χ2 distribution, and the actual error distribution. (g) shows the distribution
of constraint costs (refer to Chapter 6 also).

183

Chapter 7 Results

7.2.2. MAGIC Challenge Phase 1

Phase 1 was described in Appendix B. Only TM’s data was available for this phase,
creating the second largest dataset with 14 UGVs exploring over 9,000 m2 of mixed indoor
and outdoor environments in 80 minutes. I operated the Mapbuilder GUI to generate the
results presented here. Having not viewed the Phase 1 area while at the challenge, and
having not processed the dataset beyond the first seven minutes, I made decisions with
the same logic that a trained operator would have used. Figure 7.10 and Figure 7.11 show
a sequence of global gridmaps as they evolve over time as viewed in the Mapbuilder GUI.

The UGV team takes 26 minutes to explore 170 meters down the west edge of the phase.
Based on TM’s challenge-day maps (Figure B.2 on page 235), their UGVs experienced
large odometry errors in this long alley, which when combined with the degenerate scan
matching configurations, took significant operator activity to correct (open video).

Transitioning through doorways can be particularly challenging, especially when there is a
void on the other side. This was the case entering the pavilion, as shown in Figure 7.10 (b)
(open video). Based on odometry, and with limited hints from submap matching, the
operator quickly added ground-truth constraints. These constraints aligned the west-
facing interior wall with the exterior wall, and the south-facing interior wall with the roof
geometry visible in the aerial imagery.

Figure 7.10 (d) shows the largest loop closure, around a 280 meter path. Odometry errors
and perceptual aliasing resulted in more than two meters of accumulated drift before the
closure. This drift was larger than the Mapbuilder Matcher’s search range, which aligned
the dominant north-facing interior wall. Two ground-truth constraints were added and
the submaps snapped into alignment (open video). Inside the pavilion, the operator had
limited information to correct for odometry errors. The roof beams, visible in the “x-ray”
view in Figure 7.11 (d) could have been used to align to the roof geometry, however as
the maps grew incrementally the operator could not be confident in this alignment.

The surveyed ground-truth data is overlaid on the final gridmap shown in Figure 7.11 (e).
Based on the areas that were surveyed, the RMS error was ±0.62m. The north-facing wall
inside the pavilion had an offset of about 1.6 meters. If I were to process these datasets
again, with the benefit of hindsight, these walls would be correctly aligned to the roof
geometry and the RMS error greatly reduced.

Time-based statistics are shown in Figure 7.12, while statistics plotted against the submap
count are shown in Figure 7.13. Key measurements and statistics for the submaps, their
constraints, and the optimization errors are shown using histograms in Figure 7.14. These
results are summarized in Table 7.2 on page 196.

184

http://reid.ai/thesis/p1?t=8m19s
http://reid.ai/thesis/p1?t=27m50s
http://reid.ai/thesis/p1?t=36m57s

7.2 Large-Scale Real-Time Multi-Robot SLAM

(a) 26m 18s: The 14 UGVs start in the north-west corner and explore down the west edge of the
phase. Large odometry errors occur in this alleyway. One team of UGVs assembles near the west
door to the pavilion, a second team moves south into the open car park.

(b) 30m 58s: The first team enters the
pavilion. With limited submap overlap
ground-truth constraints are required to
align the inside and outside walls.

(c) 32m 37s: The second UGV team ex-
plores the car park and finds the southern
entrance. Odometry errors accumulate
quickly in the sparse environment.

(d) 34m 50: Before loop closure between two
UGVs at top center. Perceptual aliasing
and odometry errors have shortened the
walls, however it is unclear which ones.

(e) 50m 29s: The inner pavilion is explored
after the loop closure. One UGV team
explores the east corridor and another
enters the inner maze.

Figure 7.10. Results: MAGIC challenge Phase 1. TM’s 14 UGVs explore a 210×140m mixed
indoor and outdoor environment in 80 minutes. The pose graph is shown in green: dots represent
submap poses, lines submap constraints and red triangles are ground-truth constraints. Click on
the images to open the accompanying video at the corresponding time.

185

http://reid.ai/thesis/p1?t=26m18s
http://reid.ai/thesis/p1?t=30m58s
http://reid.ai/thesis/p1?t=32m37s
http://reid.ai/thesis/p1?t=34m50s
http://reid.ai/thesis/p1?t=50m29s

Chapter 7 Results

(a) 51m 28s: Odometry errors while
entering the southern doorway. One
of many instances where the submap
gridmaps were corrupted (white ghosting).

(b) 53m 24s: The second largest loop closure
on the northern edge of the pavilion.
Additional ground truths were required to
resolve the perceptual aliasing.

(c) 74m 50s: The pavilion is 95% explored.
The inner maze contained many 15◦ ramps
that tested the UGVs’ mobility.

(d) 75m 17s: Alternate “x-ray” view
showing roof beams and clutter that is suc-
cessfully filtered in the regular gridmaps.

(e) 90m 40s: Global gridmap with surveyed ground truth overlaid (magenta). The temporary
structures inside the pavilion were not surveyed. Note: the dataset ended after 80 minutes. The
RMS error calculated from 76 samples was ±0.62 meters.

Figure 7.11. Results: MAGIC challenge Phase 1. TM’s 14 UGVs explore a 210×140m mixed
indoor and outdoor environment in 80 minutes. The pose graph is shown in green: dots represent
submap poses, lines submap constraints and red triangles are ground-truth constraints. Click on
the images to open the accompanying video at the corresponding time.

186

http://reid.ai/thesis/p1?t=51m28s
http://reid.ai/thesis/p1?t=53m24s
http://reid.ai/thesis/p1?t=74m50s
http://reid.ai/thesis/p1?t=75m17s
http://reid.ai/thesis/p1?t=90m40s

7.2 Large-Scale Real-Time Multi-Robot SLAM

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000
D

ist
an

ce
 (m

)
(a)

Total odometry

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

Co
un

t

(b)
Total submaps
Deleted submaps

0 10 20 30 40 50 60 70
0

5000

10000

15000

20000

A
re

a
(m

2
)

(c)
Global gridmap area mapped
Global gridmap area extents

0

10

20

30

40

50

60

70

Global gridmap coverage ratio mapped
Global gridmap coverage ratio extents

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

Ba
nd

wi
dt

h
(K

B/
se

c)

(d)
Pose graph bandwidth
Gridmap bandwidth

0 10 20 30 40 50 60 70
Time (minutes)

0

20

40

60

80

100

Ti
m

e
Pe

rc
en

ta
ge

(e)
Idle (15 sec bars)
Moving mouse
Panning display
Adjusting ground truths

Figure 7.12. Results: MAGIC challenge Phase 1. TM’s 14 UGVs explore a 210×140m mixed
indoor and outdoor environment in 80 minutes. In these time-based plots: (a) shows the steady
accumulation of 6,153m of odometry. (b) shows 1,572 submaps being created, 74 of them were
deleted, giving an average of 4.1m of odometry per submap. (c) shows the global gridmap growing
to 9,067m2 total area, while an average of 22 submaps overlap each part of the map. (d) shows the
variations in communications bandwidth, averaging 2.2KB/s for a total of 10.2MB of MR-SLAM
data for the entire dataset. (e) shows a histogram of operator interactions in 15 s bars. The operator
spent 22.4% of the time, or about 18 minutes, correcting for odometry errors.

187

Chapter 7 Results

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

Ti
m

e
(s

)

(a)
Optimization time per interval

0 200 400 600 800 1000 1200 1400
0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

(b)
Builder time per interval

0 200 400 600 800 1000 1200 1400
0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

(c)
Matcher time per submap pair

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

Co
un

t

(d)
Total constraints
Active constraints
Ground truth constraints

0 200 400 600 800 1000 1200 1400
Submap Count

0

5

10

15

20

25(e)
Constraint mean cost
Constraints per submap (mean node degree)

Figure 7.13. Results: MAGIC challenge Phase 1. Plots (a), (b) and (c) show the minimum,
maximum and mean value per execution, with the total submap count on the abscissa. These
statistics are noisy due to heavy contention for the CPU and GPU. (a) shows the optimization time
per interval, which scales approximately linearly, at 1.53 seconds per 1,000 submaps. (b) shows
the time the GPU spent building each 512×512 meter global gridmap; build times scale linearly
at 0.021 seconds per 1,000 submaps. (c) shows the time the GPU spent matching submaps; an
average of 0.075 seconds per match. (d) shows the growth in submap constraints; 86% of the
10,649 constraints are active (not outliers). (e) shows the average number of constraints per
submap peaking at 18 after all 14 UGVs drive down the first alley. This decreases as the UGVs
explore in smaller groups.

188

7.2 Large-Scale Real-Time Multi-Robot SLAM

10 20 30 40 50 60 70
Width (meters)

10

20

30

40

50

60
H

eig
ht

 (m
et

er
s)

(a) Submap extents
Area mapped ∝ diameter

0 50 100 150 200 250
Data (KB)

0

50

100

150

Su
bm

ap
 C

ou
nt

(b) Gridmap data
uncompressed

0 1 2 3 4 5 6
Data (KB)

0

50

100

150

200

250
(c) Gridmap data

RLE compressed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Number of Constraints

0

10

20

30

40

50

60

70

80

Su
bm

ap
 C

ou
nt

(d) Constraints per submap
(node degree)

0 1 2 3 4 5 6 7 8
Number of Modes

0

2000

4000

6000

8000

10000

Co
ns

tr
ai

nt
 C

ou
nt

(e) Total modes per constraint
Active modes per constraint
Inactive outlier constraints

0 1 2 3 4 5 6
χ2 Error

0

500

1000

1500

2000

2500

3000

Co
ns

tr
ai

nt
 C

ou
nt

(f)
χ2 (1) distribution
χ2 (3) distribution
Constraint χ2 error

3 2 1 0 1 2 3 4 5 6
Cost

0

200

400

600

800

1000

1200

1400

1600

1800

Co
ns

tr
ai

nt
 C

ou
nt

(g) Constraint cost

Figure 7.14. Results: MAGIC challenge Phase 1. (a) shows the distribution of submap extents;
the average submap is 30×28 meters, while 144m2 of each gridmap area is mapped (occupied or
free cells). (b) shows the average submap is 86KB uncompressed, while (c) shows that the RLE
compression reduces the average submap to 1.6KB. (d) shows the number of constraints for each
submap, or the node degree, which averages 14.7. (e) shows both the total number of modes per
constraint, and the number of these modes that were active (refer to Chapter 6). (f) shows the
expected χ2 distribution, and the actual error distribution. (g) shows the distribution of constraint
costs (refer to Chapter 6 also).

189

Chapter 7 Results

7.2.3. MAGIC Challenge Phase 2

The Phase 2 test environment is described in Appendix B. This is the largest combined
dataset, with 23 heterogeneous UGVs (14 from TM and 9 from Penn) exploring over
11,400m2 of mixed indoor and outdoor environments across 88 minutes. I operated the
Mapbuilder GUI to generate these results. Having processed Penn’s Phase 2 dataset
several years earlier [66], the environment was only vaguely familiar. The results presented
here were the first time that TM’s datasets, and all 23 UGVs together, had been processed
beyond the first 20 minutes. These results are representative of what a trained operator
might achieve on-line.

TM and Penn’s UGVs were tested on separate days and their movements in the Phase 2
datasets are uncoordinated. This presents a challenge to the operator when multiple events
occur on opposite sides of the phase simultaneously. The combined dataset was processed
in real-time, however log playback, or effectively the UGVs’ velocities were occasionally
slowed to 0.5× real-time to avoid overloading the single operator.

Figure 7.15 and Figure 7.16 show a sequence of global gridmaps as they evolve over time in
the Mapbuilder GUI. Perceptual aliasing problems are frequent in this phase due to large
odometry errors, combined with relatively featureless alleys. Figure 7.15 (b) and (c) show
submap matching and pose graph optimization correcting several meters of accumulated
odometry errors when the UGVs reach the end of the first alley.

About 35 minutes into the dataset, 10 UGVs converge on the 45×45 meter square in the
south-east corner of the phase (open video). A photo of this area is shown in Figure B.5
on page 237. Figure 7.16 (a) and (b) show a 210 meter loop closure occurring here. This
area is challenging because the open space is larger than the lidar sensor’s range, requiring
repeated operator intervention.

The largest loop closure, about 330 meters, occurs in the horse stables. Figure 7.16 (c)
shows the large odometry drift experienced by three UGVs prior to this loop closure. The
pot-holes that caused these non-Gaussian errors can be seen in the photo in Figure B.4 (b)
on page 237. The operator corrected the gross odometry errors, and the submap matching
and pose graph optimization corrected the remaining 1-2 meters.

The surveyed ground-truth data is overlaid on the final gridmap shown in Figure 7.16 (e).
By sampling 100 evenly spaced points across the phase, the RMS error was calculated as
±0.35m. Time-based statistics are shown in Figure 7.17, while statistics plotted against
the submap count are shown in Figure 7.18. Key measurements and statistics for the
submaps, their constraints, and the optimization errors are shown using histograms in
Figure 7.19. These results are summarized in Table 7.2 on page 196.

190

http://reid.ai/thesis/p2?t=35m00s

7.2 Large-Scale Real-Time Multi-Robot SLAM

(a) 2m 6s: Initial global localization: 12 of
23 UGVs are connected in the pose graph.
Odometry errors are already visible in the
20m wide alley to the south.

(b) 3m 53s: Two UGVs reach the end of the
wide alley. Significant perceptual aliasing
prevents submap matching from correcting
the odometry drift.

(c) 6m 24s: Mapbuilder aligns the submaps at the end of the alley as additional submap matches
are made. The UGVs explore the phase on five separate frontiers.

(d) 12m 44s: Three teams explore frontiers
towards the east. UGV number 16 (blue)
accumulates odometry errors in a narrow
corridor and its path is adjusted.

(e) 13m 32s: UGV number 18 (magenta)
explores through the horse stables. The
“x-ray” view is used to align its gridmap
to the building eaves in the aerial imagery.

Figure 7.15. Results: MAGIC challenge Phase 2. 23 heterogeneous UGVs explore a 210×150m
mixed indoor and outdoor environment in 88 minutes. The pose graph is shown in green: dots
represent submap poses, lines submap constraints and red triangles are ground-truth constraints.
Click on the images to open the accompanying video at the corresponding time.

191

http://reid.ai/thesis/p2?t=2m06s
http://reid.ai/thesis/p2?t=3m53s
http://reid.ai/thesis/p2?t=6m24s
http://reid.ai/thesis/p2?t=12m44s
http://reid.ai/thesis/p2?t=13m32s

Chapter 7 Results

(a) 34m 50s: 10 UGVs converge in the Red
Square (right) before closing a 210m loop.
The map distortions indicate that about
1m of drift is corrected by the closure.

(b) 38m 30s: After the loop closure the
UGV’s explore north into the stables. Red
Square is larger than the lidar sensors range
and uncorrected odometry errors result.

(c) 41m 51s: One UGV (magenta) has
explored the north horse stables. Several
meters of drift is corrected to enable five
loop closures, the first and largest is 330m.

(d) 77m 28s: The density of nodes in the
pose graph indicates the stables have been
mapped thoroughly. The UGVs explore the
corridors to the east.

(e) 92m 42s: Global gridmap with surveyed ground truth overlaid (magenta). Small colored marks
in the white (free) areas are UGVs, while many black marks are round barrels used to support
infrastructure. The RMS error calculated from 100 samples was ±0.35 meters.

Figure 7.16. Results: MAGIC challenge Phase 2. 23 heterogeneous UGVs explore a
210×150m mixed indoor and outdoor environment in 88 minutes. Click on the images to open the
accompanying video at the corresponding time.

192

http://reid.ai/thesis/p2?t=34m50s
http://reid.ai/thesis/p2?t=38m30s
http://reid.ai/thesis/p2?t=41m51s
http://reid.ai/thesis/p2?t=77m28s
http://reid.ai/thesis/p2?t=92m42s

7.2 Large-Scale Real-Time Multi-Robot SLAM

0 10 20 30 40 50 60 70 80
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

D
ist

an
ce

 (m
)

(a)
Total odometry

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Co
un

t

(b)
Total submaps
Deleted submaps

0 10 20 30 40 50 60 70 80
0

5000

10000

15000

20000

25000

A
re

a
(m

2
)

(c)
Global gridmap area mapped
Global gridmap area extents

0

10

20

30

40

50

60

70

Global gridmap coverage ratio mapped
Global gridmap coverage ratio extents

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

Ba
nd

wi
dt

h
(K

B/
se

c)

(d)
Pose graph bandwidth
Gridmap bandwidth

0 10 20 30 40 50 60 70 80
Time (minutes)

0

20

40

60

80

100

Ti
m

e
Pe

rc
en

ta
ge

(e)
Idle (15 sec bars)
Moving mouse
Panning display
Adjusting ground truths

Figure 7.17. Results: MAGIC challenge Phase 2. 23 heterogeneous UGVs explore a 210×150m
mixed indoor and outdoor environment in 88 minutes. In these time-based plots: (a) shows the
steady accumulation of 8,373m of odometry. (b) shows 2,200 submaps being created, 174 of them
were deleted, giving an average of 3.81m of odometry per submap. (c) shows the global gridmap
growing to 11,456m2 total area, while an average of 26 submaps overlap each part of the map.
(d) shows the variations in communications bandwidth, averaging 2.4KB/s for a total of 12.5MB
of MR-SLAM data for the entire dataset. (e) shows a histogram of operator interactions in 15 s
bars. The operator spent 19.3% of the time, or about 17 minutes, correcting for odometry errors.

193

Chapter 7 Results

0 500 1000 1500 2000
0

2

4

6

8

10

Ti
m

e
(s

)

(a)
Optimization time per interval

0 500 1000 1500 2000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ti
m

e
(s

)

(b)
Builder time per interval

0 500 1000 1500 2000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
(s

)

(c)
Matcher time per submap pair

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

(d)
Total constraints
Active constraints
Ground truth constraints

0 500 1000 1500 2000
Submap Count

0

5

10

15

20

(e)
Constraint mean cost
Constraints per submap (mean node degree)

Figure 7.18. Results: MAGIC challenge Phase 2. Plots (a), (b) and (c) show the minimum,
maximum and mean value per execution, with the total submap count on the abscissa. These
statistics are noisy due to heavy contention for the CPU and GPU. (a) shows the optimization
time per interval, which scales approximately linearly, at 2.4 seconds per 1,000 submaps. (b) shows
the time the GPU spent building each 512×512 meter global gridmap; build times scale linearly
at 0.022 seconds per 1,000 submaps. (c) shows the time the GPU spent matching submaps; an
average of 0.074 seconds per match. (d) shows the growth in submap constraints; 86% of the 15,757
constraints are active (not outliers). (e) shows the average number of constraints per submap, or
the mean node degree, averaging about 14.8.

194

7.2 Large-Scale Real-Time Multi-Robot SLAM

10 20 30 40 50 60 70
Width (meters)

10

20

30

40

50

60
H

eig
ht

 (m
et

er
s)

(a) Submap extents
Area mapped ∝ diameter

0 50 100 150 200 250
Data (KB)

0

50

100

150

200

250

Su
bm

ap
 C

ou
nt

(b) Gridmap data
uncompressed

0 1 2 3 4 5 6 7 8
Data (KB)

0

50

100

150

200

250

300

350(c) Gridmap data
RLE compressed

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Number of Constraints

0

20

40

60

80

100

120

140

Su
bm

ap
 C

ou
nt

(d) Constraints per submap
(node degree)

0 1 2 3 4 5 6 7 8
Number of Modes

0

2000

4000

6000

8000

10000

12000

Co
ns

tr
ai

nt
 C

ou
nt

(e) Total modes per constraint
Active modes per constraint
Inactive outlier constraints

0 1 2 3 4 5 6 7
χ2 Error

0

500

1000

1500

2000

2500

3000

3500

4000

Co
ns

tr
ai

nt
 C

ou
nt

(f)
χ2 (1) distribution
χ2 (3) distribution
Constraint χ2 error

3 2 1 0 1 2 3 4 5 6
Cost

0

500

1000

1500

2000

2500

Co
ns

tr
ai

nt
 C

ou
nt

(g) Constraint cost

Figure 7.19. Results: MAGIC challenge Phase 2. Plot (a) shows the distribution of submap
extents; the average submap is 30.6×28 meters, while 160m2 of each gridmap area is mapped
(occupied or free cells). (b) shows the average submap is 87KB uncompressed, while (c) shows that
the RLE compression reduces the average submap to 1.5KB. (d) shows the number of constraints
for each submap, or the node degree, which averages 14.8. (e) shows both the total number of
modes per constraint, and the number of these modes that were active (refer to Chapter 6). (f)
shows the expected χ2 distribution, and the actual error distribution. (g) shows the distribution
of constraint costs (refer to Chapter 6 also).

195

Chapter 7 Results

ORSC Phase 1 Phase 2
UGV count 10 14 23
Phase extents (m) 80×40 210×140 210×150
Phase extents area (m2) 3,200 29,400 31,500
Mapped area (free or occupied cells) (m2) 2,640 9,067 11,456
Time total (minutes) 36 80 88
Odometry total (m) 3,170 6,153 8,373
Largest loop closure path length (m) 230 280 330
Gridmap accuracy RMS error to survey (m) 0.27 0.62 0.35

Submap count total 653 1,572 2,200
Submaps deleted 24 74 174
Submap extents mean width×height (m) 31×29.7 30.8×28 30.6×28
Submap extents area mean (m2) 917.7 858.2 863.8
Mapped area per submap (free or occupied) 18.6% 16.7% 18.6%
Odometry per submap mean (m) 5.04 4.10 3.81
Mapped area (free or occupied) coverage ratio 38 21.9 25.9

Constraint count total (pose graph edges) 4,674 10,649 15,757
- 1 mode active 56.7% 59.5% 57.4%
- 2 modes active 10.8% 13.1% 15.0%
- 3 modes active 9.6% 9.0% 10.0%
- 4 modes active 1.5% 1.8% 2.6%
- 5 modes active 0.3% 0.4% 0.8%
- Inactive (outlier constraint) 20.3% 14.8% 12.6%
- Ground-truth constraints 0.4% 0.6% 0.7%
Constraints per submap (mean node degree) 14.3 14.7 14.8

Optimization mean time per interval per 1000 submap (s) 1.100 1.534 2.402
Builder mean time per interval per 1000 submap (s) 0.028 0.021 0.022
Matcher mean GPU time per submap pair (s) 0.078 0.075 0.074

Submap gridmap data uncompressed mean (KB) 94.6 85.9 86.8
Submap gridmap data RLE compressed mean (KB) 1.9 1.6 1.5
- compression ratio 50:1 54:1 58:1
Submap gridmap bandwidth average over phase (KB/s) 0.586 0.553 0.679
Pose graph bandwidth average over phase (KB/s) 0.589 1.667 1.741
Total bandwidth average over phase (KB/s) 1.18 2.22 2.42
Total bandwidth peak over phase (avg over 1 s) (KB/s) 22.63 36.2 52.8
Total data transmitted over phase (MB) 2.5 10.2 12.5

GUI operator time moving constraints 10.6% 22.4% 19.3%
GUI operator time moving mouse 17.7% 28.8% 28.7%
GUI operator time panning display 0.0% 1.6% 1.9%
GUI operator idle time 71.7% 47.2% 50.1%
GUI operator active time (minutes) 10.2 42.2 43.9

Table 7.2. Results: Mapbuilder performance on MAGIC datasets

196

7.3 Robust Multimodal Pose Graph Optimization

7.3. Robust Multimodal Pose Graph Optimization

The GPU-based multimodal constraint generation algorithm (Section 5.4) and the COMBO
technique (Section 6.4) were both used to process the combined MAGIC datasets in
the previous section. While both of these contributions demonstrate global gridmaps
converging accurately (discussed in Section 7.4.1), ground-truth data was not available to
evaluate pose graph convergence. This section presents additional experimental results
using COMBO to optimize multimodal distributions in R1, R2 and SE (2).

7.3.1. Multimodal Gaussians in R1

Figure 7.20 shows a simple 1-D problem that is modeled on the “slip or grip” problem
described in Section 6.3.3. In this problem COMBO converges correctly to the nearest
peak in the multimodal distribution p (zi|x).

1 0 1 2 3 4 5 6 7
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

p
(z
i|x

)

(a)
p(zi|x)

N(zi |µm ,Σm) mode m
p(zi|x) Max-mixture
p(zi|x) COMBO

1 0 1 2 3 4 5 6 7
0

2

4

6

8

N
eg

at
iv

e
Lo

g
Co

st(b)
Cost mode m
Cost COMBO
χ2 Max-mixture
χ2 COMBO

1 0 1 2 3 4 5 6 7
zi

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

O
pt

im
iza

tio
n

It
er

at
io

n

(c) Convergence Max-mixture
Convergence COMBO

Figure 7.20. Results: COMBO Convergence in 1-D. A simple 1-D example modeled on the
“slip or grip” odometry problem. (a) p (zi|x) has five overlapping modes: the two tallest modes
capture the possibility that either the robot’s wheels slip (zi = 0) or the odometry is correct
(zi = 3). Two additional modes overlap at zi = 3.5 and zi = 4, emulating weak likelihoods
from scan matching. A wide null mode is added at zi = 0. (b) COMBO’s negative log cost
function is continuous and smooth, well suited for Levenberg-Marquardt. While the Max-Mixture
cost function is discontinuous, this does not affect convergence with Gauss-Newton. (c) shows 10
iterations of gradient descent starting from a wide range of initial values for x0. COMBO converges
to the nearest peak in p (zi|x), as expected. Max-Mixtures converges to the nearest mode, which
is undesirable for the overlapping modes around zi = 3.7.

197

Chapter 7 Results

Figure 7.21 shows another simple 1-D problem that validates COMBO’s performance with
widely varying mode weights. The tall, but low-weight, mode at zi = 1 was positioned to
give p (zi|x) a small additional peak. This type of distribution is observed in the MAGIC
challenge datasets. COMBO converges correctly to the nearest peak.

7.3.2. Multimodal Gaussians in R2

It is difficult to confirm COMBO’s convergence properties visually in dimensions higher
than R1. In particular, multimodal SE (2) constraints are difficult to visualize because
they define a space in R3 (in their minimal [x, y, φ]T ∈ se (2) form). Figure 7.22 instead
visualizes a single 2-D slice through a multimodal constraint. The slice corresponds to a
fixed angle φ, and allows us to confirm COMBO’s convergence properties in R2.

1 0 1 2 3 4 5 6 7
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

p
(z
i|x

)

(a)
p(zi|x)

N(zi |µm ,Σm) mode m
p(zi|x) Max-mixture
p(zi|x) COMBO

1 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6

N
eg

at
iv

e
Lo

g
Co

st(b)
Cost mode m
Cost COMBO
χ2 Max-mixture
χ2 COMBO

1 0 1 2 3 4 5 6 7
zi

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

O
pt

im
iza

tio
n

It
er

at
io

n

(c) Convergence Max-mixture
Convergence COMBO

Figure 7.21. Results: COMBO Convergence in 1-D. A simple 1-D example that shows
desirable convergence with a variety of mode weights. (a) p (zi|x) has three overlapping modes: a
dominant mode at zi = 2, flanked by two smaller low-weight modes at zi = 1 and zi = 3. The
mode at zi = 1 is tall enough to give p (zi|x) a small additional peak at zi = 1.1. (b) COMBO’s
negative log cost function is continuous and smooth, while the Max-Mixture cost function indicates
that only the dominant mode is active. (c) shows 10 iterations of gradient descent starting from a
wide range of initial values for x0. COMBO converges to the nearest peak in p (zi|x), as expected.
Max-Mixtures converges to the dominant mode only, which is the expected behavior.

198

7.3 Robust Multimodal Pose Graph Optimization

(a) COMBO

(b) Max-Mixture

Figure 7.22. Results: COMBO Convergence in 2-D. The convergence properties of COMBO
and Max-Mixtures can be visualized in R2 by taking a 2-D slice through a multimodal SE (2)
constraint. For a constraint distribution p (zi|x) with five modes, the height of the gray surface
indicates the value of p (zi|x) across an x, y slice for fixed angle φ. In (a) the COMBO constraint
is active when its cost Ci ≤ Cmax. In this region COMBO converges quickly to nearest peak
in p (zi|x). For robustness, outside this region, Ci > Cmax, the constraint remains inactive. (b)
Max-Mixtures converges to the nearest mode’s peak instead.

199

Chapter 7 Results

7.3.3. Multimodal Gaussians in SE (2)

To evaluate COMBO’s performance with multimodal SE (2) constraints I generated several
synthetic pose graphs. This was necessary because there were no widely available multi-
modal datasets with both ground truth and overlapping modes. Other researchers have
generated synthetic unimodal datasets modeled on Manhattan, New York [233, 236, 244,
302], where the simulated world is a fixed grid pattern modeled on city blocks. To simulate
the perceptual aliasing problem discussed in Section 6.1.2, however, it was necessary to
generate datasets with varying geometry, including parallel walls and corridors.

Inspired by the Manhattan datasets, I used real street map data from middle and lower
Manhattan to provide spatially varying geometry. A team of robots are simulated driving
repeatedly across the city to random destinations. The resulting pose graph becomes very
dense in the center with over ten constraints per pose. Simulated submap matching is
used to generate loop closures, such that around intersections and more complex geometry
unimodal constraints are generated. Modeled on the corridor case in Figure 6.3, perceptual
aliasing is simulated in areas where the streets are straight. This results in multimodal
constraints with 2-7 overlapping modes, much like in Figure 6.6 on page 166. COMBO is
designed to be an incremental optimization technique, as such the pose graph is initialized
by perturbing the submap poses with σ=20m of Gaussian nose; this could simulate noisy
GPS readings between buildings. A handful of x, y priors are included to simulate operator
interaction (ground-truth constraints) and to keep the pose graph aligned.

COMBO was evaluated against unimodal constraints and Olson et al.’s Max-Mixtures
[57]. The three techniques were implemented using the g2o library [238]. They all used
Cholesky decomposition, while the unimodal and Max-Mixtures techniques used Gauss-
Newton and COMBO used Levenberg-Marquardt for optimization (Section 2.5.4.9). Two
datasets were generated: Manhattan Small and Manhattan Large, they are summarized in
Table 7.3. Three optimization tests were performed for each of these datasets: unimodal,
Max-Mixtures and COMBO. The unimodal constraints were generated to fit the type of
distribution seen in Figure 6.3, resulting in highly-eccentric, but not rank deficient, modes.

The Manhattan Small dataset is a three block (315 meters) wide subset of the Manhattan
dataset with over 7,400 meters of odometry. An average of five overlapping modes were
created for each constraint. Figure 7.23 shows the configuration of the pose graph before
and after optimization. Convergence and timing statistics are presented in Table 7.4.

The Manhattan Large dataset is a 4×4 km area centered on Washington Square Park,
with over 177 km of accumulated odometry. An average of ten overlapping modes were
created for each constraint. Figure 7.24 shows the configuration of the pose graph before
and after optimization. Convergence and timing statistics are presented in Table 7.5.

200

7.3 Robust Multimodal Pose Graph Optimization

Manhattan
Small

Manhattan
Large

Submaps 370 8,889
Constraints 2,071 39,327
Ground truths 8 78
Mean node degree 11.2 8.8
Total odometry (m) 7,400 177,780

Table 7.3. Results: Simulated multimodal SE (2) pose graph dataset summary

Initial
Uni-
modal

Max-
Mixture

COMBO

Pose error RMSE (m) 24.77 2.02 2.10 1.17
Pose error stdev (m) 12.78 2.71 4.02 1.24
Optimization time (s) - 0.029 2.090 34.0
Time per iteration (s) - 0.003 0.083 0.557
Optimization iterations - 10 25 61

Table 7.4. Results: Convergence and timing for Manhattan Small dataset

Initial
Uni-
modal

Max-
Mixture

COMBO

Pose error RMSE (m) 25.30 3.20 2.23 2.20
Pose error stdev (m) 13.17 5.08 3.93 3.53
Optimization time (s) - 1.762 40.854 617.3
Time per iteration (s) - 0.057 1.409 8.818
Optimization iterations - 31 29 70

Table 7.5. Results: Convergence and timing for Manhattan Large dataset

201

Chapter 7 Results

(a) Initialized σ=20m (b) Ground Truth

(c) Max-Mixture (d) COMBO

Figure 7.23. Results: Pose graphs for Manhattan Small dataset. A three block (315 meters)
wide subset of the Manhattan dataset with 7,400 meters of odometry. The pose graph constraints
are shown in black. (a) The SE (2) pose graph is initialized by perturbing with Gaussian noise
(σ=20m). (b) Ground truth used in RMSE calculations. The pose graphs (c) and (d) both
converge to almost identical solutions.

202

7.3 Robust Multimodal Pose Graph Optimization

(a) Initialized σ=20m (b) Unimodal

(c) Max-Mixture (d) COMBO

Figure 7.24. Results: Pose graphs for Manhattan Large dataset. Centered on Washington
Square Park, this 4×4 km area from the Manhattan dataset represents 177 km of accumulated
odometry. The pose graph constraints are shown in black. (a) The SE (2) pose graph is initialized
by perturbing with Gaussian noise (σ=20m). The pose graphs (b) (c) and (d) converge to almost
identical solutions after optimization with three different techniques.

203

Chapter 7 Results

7.4. Discussion

The results presented in this chapter demonstrate my research work and contributions.
The Mapbuilder system successfully performs real-time MR-SLAM at large scales. In
the largest of the datasets, 23 UGVs accumulate over 8,300 meters of odometry while
exploring 11,400 square meters of mixed indoor and outdoor environments. To the best
of my knowledge, this is the largest large-scale MR-SLAM demonstration described in
the literature (Section 3.3). This section highlights several key results and statistics from
Table 7.2 that demonstrate Mapbuilder’s accuracy, scalability and robustness. It also
compares my research work to other recent large-scale MR-SLAM publications.

7.4.1. Accuracy

The root-mean-squared (RMS) error between the global gridmap output and the surveyed
ground-truth data, is a concise way to capture the global-referenced mapping accuracy.
The RMS errors were ±0.27m, ±0.62m and 0.35m for the three datasets, which is 0.34%,
0.30% and 0.17% of the extents of each dataset, respectively. To validate this error
measurement, Figure 7.25 (a) plots the distribution of the errors measured. This is closer
to the corresponding χ2 distribution than anticipated.

More important than the global accuracy, however, is the local mapping accuracy. In real
terms: whether the gridmap accurately represents obstacles in the environment so that the
UGV’s global navigation algorithms can avoid obstacles and navigate through doorways.

0.0 0.5 1.0 1.5 2.0
Error (m)

0

20

40

60

80

100

120

140

M
ea

su
re

m
en

t C
ou

nt

Expected χ2 distribution
Gridmap errors compared to
surveyed ground-truth

(a) Histogram of map errors between Map-
builder’s global gridmaps and the surveyed
ground-truth. Errors measurements were
spatially distributed using a grid. The χ2(2)
distribution is shown for σ=0.25 m.

(b) The stables from Phase 2 overlaid with
ground-truth survey data (magenta).
Four small rooms with open doors have
been mapped, gaps allowed many other
rooms to be partially mapped.

Figure 7.25. Global gridmap accuracy: Small obstacles such as posts and open doorways are
clearly visible in Mapbuilder’s global gridmaps.

204

7.4 Discussion

Figure 7.25 (b) shows an enlarged section from Phase 2. The gridmap accurately represents
the narrow corridors, roof-support poles and entrances into four small rooms. The pose
graph has converged well, and there is no duplication or ghosting of obstacles in the
environment.

An evaluation of the accuracy of a SLAM algorithm should include the exactness of the
UGV localization also, however ground-truth localization data was not made available
after the challenge. The natural coupling of mapping and localization uncertainty in
SLAM, however implies that the UGVs’ localization accuracy would have been close to
the ±0.27m, ±0.62m and 0.35m RMS mapping errors.

7.4.2. Scalability

The main factors limiting scalability are computation, memory and communications re-
sources. The ideal “full” SLAM solution is combinatorial, and the problem is NP-complete
(refer to Section 2.5). Thus the best real-time solution will use all of the available
computational resources. While the UGVs are actively exploring, Mapbuilder utilizes
nearly 100% of the CPU’s four cores and 100% of the GPU’s 1,664 cores. Contention for
the CPU’s time is complicated by the GUI screen capture and video encoding.

7.4.2.1. Computational Resources

Optimizer Task: the computational cost of on-line, incremental, pose-graph SLAM can
vary considerably. The requirement for Mapbuilder’s Optimizer was for it to scale linearly;
for example, deployment in a 20% larger environment should require 20% more computa-
tional resources. Using the total submap count as a proxy for both total UGV odometry
and area mapped, the results in Figure 7.8, Figure 7.13, Figure 7.18 and Table 7.2 suggest
that it is approximately linear. A linear fit to the three datasets indicates that 1,000
submaps require on average 1.1, 1.5 and 2.4 seconds per optimization cycle.

Two factors affect this normalized computation time: the mean node degree (average
number of constraints per submap) m, and the average number of Levenberg Marquardt
(LM) iterations required for each cycle to converge. The mean node degree was discussed
in Section 3.3.3; while Cholesky factorization is typically O(n3) for n nodes (submaps),
the Hessian is very sparse, and after optimum variable reordering this is reduced towards
O(nm). Kaess discusses this complexity in Chapter 3 of his thesis [236]. For a constant
mean node degree, the optimization time should scale in proportion to the submap count;
this is observed in the plots.

Convergence in an LM-based pose graph optimization is a complex topic, especially when
the cost surface is highly-concave. In an ideal world, the submap constraints would

205

Chapter 7 Results

perfectly describe the relative submap poses and the pose graph would easily converge
to a solution where all the constraints agree. In reality, the constraint measurements
are noisy and as more constraints are added they “fight” against each other resulting in
highly complex cost surfaces. In this situation LM is likely to make more iterations of
gradient descent (λ → ∞) while it achieves very incremental cost improvements. The
normalized average optimization cycle time for each dataset reflects the noise, ambigu-
ities and perceptual aliasing experienced: the ORSC environment was well constrained
(1.1 seconds/cycle), Phase 1 had minimal perceptual aliasing (1.5 seconds/cycle), while
Phase 2 had large aliasing issues along the many alleyways (2.4 seconds/cycle).

The Optimizer scales linearly with the number of unpinned submaps. With the hybrid-
decentralized design, most of the UGVs’ pose graphs are pinned and their Optimizers
estimate only a handful of free submaps in constant time. This effectively avoids redundant
optimization, at the minimal bandwidth cost to transmit the pinned submaps’ pose
updates (described in next section).

To scale to 20,000 submaps (an order of magnitude larger than Phase 2) the optimization
cycle time at the main GCS computer would becomes a bottleneck. MRS operations could
tolerate a 24 second cycle time, however GUI interactions with the pose graph would be
unfeasible with the slow the update rate. This could be mitigated by performing local,
windowed, optimizations to maintain responsiveness for the operator while performing
larger batch optimizations in parallel.

The design described in Section 4.4.2 could be improved in several areas: The already
multi-threaded CPU code could be parallelized even further by unrolling loops with, for
example, OpenMP. The Cholesky decomposition of the Hessian could be reused between
invocations of the Optimizer task, since most of the time the pose graph structure remains
constant. The handling of the λ step size in the LM algorithm could be improved; instead
of restarting each cycle with λ close to zero (Gauss-Newton) it could save a few LM
iterations by restarting with the previous value, reflecting the fact that the cost surface is
only incrementally changing.

Builder Task: uses the GPU-based gridmap fusion algorithm described in Section 5.3.
It uses minimal GPU resources, averaging 0.024 s to fuse 1,000 submaps. The algorithm
scales linearly, as shown in Figure 7.8, Figure 7.13 and Figure 7.18. It took 0.048 s to
render the whole of Phase 2, utilizing about 5% of the GPU’s processing for a 1 second
cycle time. This solution would easily scale to 20,000 submaps, or an order of magnitude
larger. By treating submaps as 2-D textures, the GPU-based fusion algorithm is likely
near-optimum for modern GPUs.

Mapbuilder’s design results in a large number of overlapping submaps— for the ORSC
an average of 38 submaps covered each global gridmap cell. For the three datasets the

206

7.4 Discussion

coverage ratios were 38, 22, and 26. While this requires the gridmap fusion algorithm
to process large volumes of redundant data, the GPU-based algorithm is highly efficient.
This efficiency is key to enabling distributed mapping, where redundant computation is
performed by each participant to build local copies of the global gridmap.

Matcher Task: uses all of the spare GPU processing time to perform exhaustive corre-
lations between pairs of submaps. An average of 0.075 s per submap pair was more than
sufficient to generate matches for 23 UGVs in real-time. In a decentralized deployment
the distributed instances of the Mapbuilder back-end would probably run on less powerful
GPUs, however there would be more GPUs available. The distributed solution scales
if each UGV includes enough processing power to match its own submaps. Only a few
matches per submap are required to maintain a well-connected pose graph, and for UGV
speeds under 3ms−1 as few as one match per second would be sufficient.

7.4.2.2. Memory Resources

In the implementation of the Mapbuilder back-end used in these results, the bulk of the
MR-SLAM data is stored and processed directly in the GPU’s memory. The average
gridmap size across the datasets is 870m2, or 87,000 cells. Each submap is stored as
a texture using two bytes per gridmap cell, thus gridmaps require on average 170KB
of GPU memory. All three MAGIC datasets combined require only ~735MB of texture
memory. The commodity GPU used to produce these results could easily store an order
of magnitude more submaps in memory. With GPU-based texture compression enabled,
over 80,000 submaps could easily be handled with minimal loss in output accuracy.

For the GPU-based gridmap fusion algorithm, the FBOs used to store the 500×500 meter
global gridmaps used 100MB of GPU memory. The commodity GPU used in these results
has been tested fusing gridmaps up to 1640×1640 meters (1024MB of GPU memory).

7.4.2.3. Communications Bandwidth

Central to Mapbuilder’s efficient use of bandwidth is the fusion of hundreds of lidar scans
into compact submap gridmaps. The subsequent quantization and compression of the
gridmap data reduces the required bandwidth by more than 50 times. Despite the heavy
compression, the finer gridmap details are preserved in the fused global gridmap output.
At least every five seconds the UGV front-ends transmit compressed copies of their current
submap gridmaps. With efficient DDS middleware and a broadcast-capable wireless
network, at most 0.34KB/s of bandwidth was required per UGV for submap gridmap
data. Across the three datasets the total average gridmap data rates were 0.59KB/s,

207

Chapter 7 Results

0.55KB/s and 0.68KB/s for all UGVs. These averages are considerably less because the
UGVs spend different amounts of time sitting idle in each dataset.

It is difficult to model the bandwidth required to maintain the distributed pose graphs.
Bandwidth requirements have been estimated here by counting the quantity of pose
graph related messages that would have been sent: the bulk of which were SubmapPose

messages. Events such as loop closures and cliques splitting and rejoining (large batches
of SubmapPose messages) are unpredictable in real-world environments and depend on the
UGV exploration strategy. Assuming ideal conditions, the three datasets require an aver-
age bandwidth of 0.59KB/s, 1.67KB/s and 1.74KB/s for all pose graph related messages.
Despite the pose graph growing over time, the volume of traffic appears relatively constant
throughout each dataset, suggesting that loop closures are only updating submap poses
in more localized areas.

The total bandwidth requirements for MR-SLAM appear to correlate most strongly with
the rate of submap creation, hence proportional to the number of UGVs and their average
velocity. This traffic is often irregular and occurs in bursts, thus it is important to consider
the peak bandwidth required over any small period. For the three datasets the peak total
bandwidth over any one second period was 22.6KB/s, 36.2KB/s and 52.8KB/s— a small
fraction of the 54MB/s bandwidth that 802.11g Wi-Fi theoretically provides.

7.4.3. Robustness

The Mapbuilder back-end design is robust in several ways. The low RMS errors in
Section 7.4.1 indicates that the map converged in a manner that is tolerating both Gaus-
sian odometry noise and small non-Gaussian errors. This is most evident when comparing
the results presented here with earlier implementations of Mapbuilder [66]. Earlier im-
plementations would frequently fail to converge, with errors varying from minor visual
distortions to completely unusable maps. The contributions described in Chapter 6 are
mostly responsible for this improved convergence.

The Local SLAM front-end (Section 4.4.1) uses RANSAC to identify outliers caused by
moving objects in the environment. This is particularly important in sparse environments
where the moving object may return more lidar measurements than the environment itself.
Slow or objects that move intermittently are still likely to become “baked” into occupied
cells in submaps. These artifacts are robustly handled by the MR-SLAM back-end instead.

Penn’s front-end produced several artifacts, including trails behind walking human OOIs.
These are shown in Figure 7.26, where two submaps have large clusters of occupied cells
that are outliers. Mapbuilder’s multimodal constraints capture several large erroneous
modes, along with the correct one. In this instance the pose graph converges to the
correct configuration and correctly ignores the outlier modes.

208

7.4 Discussion

The binary Bayes filtering algorithm used to fuse global gridmaps (Section 5.3) is effective
at filtering outliers out of the global gridmaps. The corrupted submaps from Figure 7.26
can be seen in the south-east corner of the Phase 2 gridmap in Figure 7.16 (b) on page 192;
the black outliers are filtered in the final gridmap in Figure 7.16 (e) demonstrating robust-
ness to slow and intermittently moving objects.

7.4.4. Perceptual Aliasing

In the datasets recorded by all three UGV designs (WAMbot, TM and Penn’s), the most
significant SLAM errors were caused by the perceptual aliasing ambiguities described in
Section 6.1.2. These ambiguities occur frequently in the challenge datasets, particularly
in large sparse areas, such as the 100×25 meter car park in Phase 1 (Figure 7.11 (e)), and
very frequently in straight featureless corridors, such as the 20 meter wide alleyways in
Phase 2 (Figure 7.15 (b)).

In sparse open areas, there is very little that can be done, other than to dead-reckon
with odometry and hope that the wheels slippage is both minimal and mostly Gaussian.
In the case of featureless corridors, the multimodal pose graph constraints described
in Section 6.4 allow submaps with spatial information perpendicular to the walls to be
integrated.

Figure 7.26. Multimodal constraint output: robustness to moving objects. Correlation
results for an area in Phase 1. An overlapping pair of submaps is shown (left), along with 15 slices
through their (x, y, φ) ∈ se (2) constraint likelihood volume (right). Each slice represents the 2-D
correlation between the submaps varied over±3m translation in x and y, at a fixed angular rotation,
e.g. the middle row corresponds to -6, -3, 0, 3 and 6 degrees. A Gaussian mixture has been fit to the
likelihood volume, modes are indicated by their 3-σ covariances (2-D ellipses). Due to occlusions,
only a small fraction of the occupied cells (black) in this submap pair actually overlap. An array of
columns in the environment dominate the matchers output. The two submaps are corrupted by a
person walking past (outlier cells circled in red). This example demonstrates robustness to moving
objects: the correct mode (labeled 0.03) is found, even though it is overwhelmed by a mixture of
three other modes that occur due to the moving object’s trails.

209

Chapter 7 Results

7.4.5. Usability and Cognitive Load

The Mapbuilder GUI, described in Section 4.4.3, was designed to enable “human-in-the-
loop” graph-based MR-SLAM. It was essential for processing these datasets because of the
frequent non-Gaussian errors. The time and cognitive loading required for these operator
interactions was of particular interest to the MAGIC challenge organizers, particularly for
multi-hour ISR deployments [52].

Similar to Olson et al. [53], I use the GUI interaction times as a proxy for cognitive load.
Histograms for each of the datasets, shown in Figure 7.7, Figure 7.12 and Figure 7.17,
provide a breakdown of how the operator’s time was spent. It is interesting to note that
there are many periods of several minutes in all of the datasets where Mapbuilder ran
without any operator interaction.

The types of operations that corrected non-Gaussian odometry errors, essential to ensuring
the pose graph convergences, were adjusting ground-truth constraints, and deleting cor-
rupted submaps. The time spend adjusting ground-truth constraints is clearly indicated
in the plots, however the delete operations requires only a brief key press. Much of
the operator’s cognitive attention is applied to observing and identifying badly localized
UGVs and corrupt submaps; this time is captured in the “moving mouse” statistic in
the plots. These operations are better demonstrated in the videos available on-line at
http://reid.ai/thesis.

While processing the three datasets, the operator spent 28.3%, 52.8%, and 49.9% of the
time actively looking for, or correcting, issues. It is difficult to make direct comparisons
with Olson et al.’s work [53], since the results presented here include Penn’s UGVs. The
complete Phase 2 dataset, with 23 UGVs, took 44 minutes of operator time to process
with Mapbuilder, while Olson et al. report using 70 minutes of operator time [53] with 14
UGVs. Olson et al. report manually adding a new loop-closure constraint on average every
24 seconds; in Mapbuilder all loop closures are generated automatically. The equivalent
corrective operation in Mapbuilder is the addition of ground-truth constraints, of which
one was added on average every 80 seconds.

One of the high-level goals of the MAGIC challenge was to encourage advances in MRS
autonomy that would allow operators to control increasingly large teams of UGVs. It
is unclear whether Mapbuilder’s 2-D “Google Maps” styled GUI provides an optimum
interface or whether 3-D interfaces, such as TM’s SAGE display with its “fog of war”
[53], increase the operators’ situational awareness and efficiency. It is also unclear how
the operator’s cognitive load scales with the number of UGVs. Humphrey et al. suggest
that this scaling is sub-linear [346]. There is considerable scope in this area for large-scale
MR-SLAM usability studies; my research work has barely scratched the surface.

210

http://reid.ai/thesis

7.4 Discussion

7.4.6. Comparison to Recent Work

This section compares my research work and the Mapbuilder system against the recent
MR-SLAM systems were reviewed in Section 3.2.3. Table 3.2 on page 93 summarizes
the most comparable systems and highlights and compares their capabilities. The most
comparable MR-SLAM systems are TM’s, described by Olson et al. [53], and Penn’s,
described by Lee et al. [311]; this section focuses on key differences between their work
and mine.

Architecture: both TM and Penn describe pose graph architectures with SLAM front-
ends on each UGV, and centralized MR-SLAM back-ends [53, 311]. They both use DCA
(Section 3.2.2) for limited UGV autonomy. Loop closures and UGV pose updates are not
shared by the centralized back-end, however, and as such each UGV’s ability to navigate
independently is limited by the rate at which odometry errors accumulate. In contrast,
Mapbuilder’s distributed and hybrid-decentralized design allows small cliques of UGVs to
navigate in their own local copies of the global map and perform the entire MR-SLAM
back-end role independent of the GCS. Table 3.1 on page 88 summarizes how the proposed
architecture compares against other architectures.

SLAM front-end: TM’s front-end produced a 2-D “maplet” for every 1.25 second sweep
of its UGV’s lidar scanner, while Penn’s front-end built a single gridmap with a sliding
window (they are both described in Appendix A). The Local SLAM front-end design
(Section 4.4.1) worked well during testing, however was not demonstrated extensively
in the same environments due to hardware issues [64]. The most significant differences
between the three front-ends can be attributed to the arrangement of lidar scanners, such
as fixed, sweeping or nodding. Figure 7.27 shows example submaps for the three front-
ends after the reprocessed datasets had been turned into submaps. The WAMbot and
Penn submaps have similar depth-of-fields due to the fixed horizontal lidar; Penn’s lidar
was mounted 0.3 meters higher, explaining some variation. TM’s nodding horizontal lidar
frequently produced more distant returns and larger submaps.

Data reduction: before transmitting gridmaps, TM’s front-end uses a custom predictive
compression method that achieved a 21:1 compression ratio; they merge free cells with
unknown cells and transmit binary gridmaps [53]. Mapbuilder’s submaps are considerably
larger and they include all three cell states (free, occupied, unknown), which results in
larger gridmaps. For comparison, the compression ratio in this work was about 14:1, which
means the design transmits about 50% more data per square meter of gridmap, however,
it transmits gridmaps less often and the back-end is able to differentiate between free and
unknown cells. Penn’s front-end transmitted compressed Matlab objects that contained
lists of cell changes; it is difficult to make any quantitative comparisons to their design.

211

Chapter 7 Results

MR-SLAM back-end: TM’s pose graph optimization applies exact minimum degree
variable reordering to the Gauss-Newton normal equation (Section 2.5.4.7) before using
Cholesky decomposition to solve for each optimization step [53]. Olson et al. implement
a graph simplification algorithm that identifies redundant constraints and removes them;
they report using this several times in each of their MAGIC datasets. Table 7.6 compares
TM and Mapbuilder’s mean node degrees and optimization times. Mapbuilder’s mean
node degree for Phase 1 is about three times higher, suggesting that TM’s graph sim-
plification approach is effective. While Olson et al. did not report the total number of
constraints, they can be estimated from the mean node degree; interestingly, for Phase 1
Mapbuilder’s submapping approach and TM’s graph simplification both resulted in about
11,000 constraints. In Phase 1, TM’s graph optimization is about six times faster than
Mapbuilder, however their times reported in [53] used unimodal constraints while Map-
builder implements the multimodal constraints described in Chapter 6. When moving to
Phase 2, TM’s mean node degree was halved, however Mapbuilder’s mean node degree
remained similar. This can be explained by the addition of Penn’s dataset with nine UGVs,
and the resulting increase in submap density. Despite the interval between graph update
cycles being higher in Mapbuilder, the operator’s interaction times were still considerably
less (Section 7.4.5). To the best of my knowledge, Penn’s back-end was only designed and
not implemented.

Constraint generation: TM’s front-end reduces each sweep from their nodding lidar
scanners into small binary gridmap scans. Olson describes a CPU-based scan correlation
approach similar to [282] that searches for alignments between pairs of gridmaps and
creates unimodal Gaussian constraints. In [344] they describe a newer implementation
that uses a multi-resolution approach to speed the search; they report unimodal matches
taking 0.002 s. This rate of matching is essential for highly-centralized MR-SLAM where a
single centralized CPU performs all back-end computation, and when each UGV generates
a new gridmap every 1.25 seconds. The GPU-based constraint generation described in

WAMbot TMPenn

Figure 7.27. Sample submaps: Captured from the three different UGVs around the same location
in the Old Ram Shed Challenge (ORSC). For reference, the 20×12 meter boundary of first room
is highlighted in green.

212

7.4 Discussion

this work (Section 5.4) is an order of magnitude slower, however it is generating more-rich
multimodal constraints, and its computation is typically distributed across all computers,
including UGVs. Furthermore, the submapping technique described here produces less
submaps, thus requiring less matches also. Olson’s multi-resolution approach [344] could
be modified to generate multimodal constraints, however it is unclear how much slower it
would be.

Global map building: TM have described improvements to their occupancy gridmap
building algorithm since the MAGIC challenge. In [56] Strom and Olson described how
their naive rasterization approaches were not fast enough for large-scale MR-SLAM. Their
new approach uses a caching scheme that exploits the fact that most of the time only small
parts of the global gridmap are changing. A separate node covering analysis allows them to
avoid rasterizing redundant gridmaps that are obscured by others while removing moving
objects with a voting scheme. Combined, their two techniques reduce the average time it
takes to build the complete Phase 2 dataset from 5.62 s for their naive solution, down to
1.24 s (with maximums of 6.94 s and 3.6 s, respectively).

In comparison, Mapbuilder takes 0.048 seconds to build Phase 2, including the additional
submaps from Penn’s nine UGVs and while implementing a full binary Bayes filter. TM’s
CPU-based results were generated on a laptop— while their algorithms are efficient, it
is difficult to compete with a massively-parallelized algorithm running on thousands of
GPU cores. To compare more directly, a laptop with the specifications they report might
have a GPU that is 16 times slower; extrapolating Mapbuilder’s performance, it would
take 0.47 seconds per build for their 14 UGVs (the approach described here is about 2.6
times faster). The limited availability of ground-truth data makes it difficult to compare
the fine-scale accuracy of the global gridmaps. Figure 7.28 compares a small sample of
Mapbuilder’s global gridmap with TM’s from [56].

TM’s MR-SLAM system is the most comparable to Mapbuilder and my research work
[53, 54], and as such it has been referred to many times in this thesis. The first descrip-
tion of their MR-SLAM system [55], was published concurrently with earlier versions of
Mapbuilder in 2010 [68]. Both systems shares several design aspects including pose graphs

TM Mapbuilder

Phase 1
Nodes/submaps 3,876 1,572
Mean node degree 5.7 14.7
Optimization time 0.756 4.55

Phase 2
Nodes/submaps 4,265 2,200
Mean node degree 2.96 14.8
Optimization time 0.249 6.72

Table 7.6. Discussion: Pose graph optimization timing comparison

213

Chapter 7 Results

(a) Mapbuilder (b) TM: Naive (c) TM: Cover

Figure 7.28. Global occupancy gridmap comparison: Comparison between outputs from
Mapbuilder and Strom and Olson’s approach [56]. Mapbuilder’s output from the start of Phase 2
is shown for context (left). The three insets show enlargements of a barrel at the corner of a 5 meter
wide building. (a) shows Mapbuilder’s output, note the aerial map is visible through the inside of
the building. (b) is TM’s naive rasterization approach, and (c) is their node covering approach.

and occupancy gridmaps. The most significant difference is in the high-level architecture:
Mapbuilder implements a hybrid-decentralized and distributed approach, while TM uses
DCA with a centralized server. Mapbuilder provides each UGV with a copy of the
global gridmap, allowing considerably more autonomy and distributed processing. The
performance of both systems has improved considerably since 2010, the most significant
improvements resulting from the addition of robust multimodal constraints, discussed in
the next section.

7.4.7. Multimodal Pose Graph Optimization

Chapter 6 described the COMBO technique for optimizing multimodal pose graphs. Con-
vergence properties have been demonstrated with real-world datasets (Section 7.2), with
minimal problems in R1 and R2, and with simulated datasets in SE (2) that provide ground-
truth information (Section 7.3). The most comparable work to COMBO is Olson and
Agarwal’s Max-Mixtures [57, 299], which is discussed and compared in this section.

For non-overlapping modes, similar to the multimodal pose graphs considered in [117, 343],
Figure 6.5 on page 165 shows COMBO correctly converging to the nearest peak in the
likelihood distribution. It converges quadratically at the same rate as Max-Mixtures for
most of the distribution. For the alleyway example in Figure 6.6 on page 166, which
exhibits a flat-topped likelihood distribution, Max-Mixtures quickly converges to the
nearest peak. This exerts an undesirable quantizing effect on the optimization, while
COMBO correctly does not exert any influence in the flat part of this distribution. The
“slip or grip” problem, shown in Figure 7.20 on page 197, shows COMBO having more
desirable convergence also.

COMBO and Max-Mixtures use different approaches to represent constraint probability
distributions: COMBO is a true Gaussian mixture, while Max-Mixtures approximates

214

7.4 Discussion

a mixture using the max function as a selector. By design, Max-Mixtures converges
quickly and correctly when modes are either non-overlapping, or they are exactly over-
lapping (Olson et al. describe robust constraints that overlap in [57]). Many complex
constraint probability distributions are better approximated by Gaussian mixtures, how-
ever, where overlapping modes produce smooth distributions such as the alleyway example
in Figure 6.6 on page 166, or the 2-D distribution in Figure 7.22 on page 199. If a
max-mixture is created from the modes of a Gaussian mixture, i.e. the same overlapping
Gaussian modes, it is certain to have an undesirable effect on convergence.

Section 6.2.2, discusses how any distribution can be approximated with a sufficient number
Gaussian modes; the same is true for max-mixtures. A complex “lumpy” distribution like
Figure 6.1 on page 152 might be well-approximated by a max-mixture having a few dozen
modes, however a distribution like the “flat top” in Figure 6.3 on page 155 would need
many more. A key observation in Section 6.1.2.2 is that constraint distributions will often
have flat areas like Figure 6.6 on page 166, that are difficult to model with unimodal
constraints because they are highly-eccentric. COMBO’s blending technique is ideal for
these cases, while Max-Mixtures is likely to require many more modes.

The experiments in Section 7.3 were performed to evaluate COMBO against Max-Mixtures
and unimodal Gaussians in exactly this case. For the Manhattan Small dataset, Table 7.4
on page 201 shows COMBO producing much lower pose errors than both unimodal
constraints and Max-Mixtures. The unimodal constraints had a RMSE 73% higher than
COMBO, while Max-Mixture’s RMSE was 79% higher. For this dataset, however, the
unimodal constraints are optimized almost 200 times faster than COMBO, while Max-
Mixtures 6.7 times faster. For the Manhattan Large dataset, in Figure 7.24 on page 203,
COMBO is shown producing lower pose errors also, however its lead over Max-Mixtures
and unimodal constraints was less— the unimodal constraints’ RMSE was 45% higher,
while Max-Mixtures was only 1.5% higher. The unimodal constraints optimized almost
155 times faster than COMBO, while Max-Mixtures execute 6.3 times faster.

The implementation of COMBO used in these tests went through a similar level of
code optimization as the Max-Mixtures implementation. At about six times slower, the
computational cost of COMBO’s mode blending is not negligible. The test cases presented
here, however, are almost pathological, since almost every constraint is blending multiple
modes continuously, and every constraint is near a stationary point. Section 6.4.4 describes
a fast Jacobian approximation that is rarely used in these simulated datasets.

In a small, real-world, test using the Mapbuilder back-end for incremental SLAM (with 62
submaps, 549 constraints and an average of 5.5 modes per constraint) each optimization
cycle took 21.2ms for COMBO (an average of 2.3 modes were active per constraint), and
4.4ms for Max-Mixtures. While Max-Mixtures is 4.8 times faster per iteration, in this

215

Chapter 7 Results

case it was taking five iterations to converge. Here the Gauss-Newton optimization used
in Max-Mixtures was oscillating between solutions, while COMBO’s Levenberg-Marquardt
optimization (with its variable step size) was converging in a single iteration.

In practice, COMBO is designed to be used on-line in an incremental pose graph optimiza-
tion. In on-line SLAM, the batch optimization times shown in Table 7.3 and Table 7.4 on
page 201 would be amortized over the entire deployment time. Furthermore, in normal
operations the pose graph would remain close to the optimum, which would require less
optimizer cycles total.

For pose graphs with complex constraint distributions, COMBO assists convergence by
providing better approximations to these distributions. Using overlapping multimodal
Gaussian modes, it produces smoother paths through the cost function (Section 6.4.3).
In the case of non-overlapping multimodal constraints with discrete modes, such as those
considered by [57, 117], COMBO switches between modes and executes as efficiently as
Max-Mixtures.

The source code and scripts to reproduce the experiments in Section 7.3 are available
on-line at http://reid.ai/thesis. This includes a C++ implementation of COMBO that
integrates into the g2o library [238], and Python scripts to generate large-scale pose graph
datasets for cities using data from OpenStreetMap.

216

https://reid.ai/thesis

8 Conclusion

To conclude this thesis, Section 8.1 summarizes the multi-robot SLAM problem
and the architectural aspects of the problem that my research work addressed.
Section 8.2 lists the research contributions described in this thesis while high-
lighting their significance to the fields of multi-robot SLAM and multi-robot
systems. Section 8.3 outlines limitations in my research approach and identifies
interesting directions for future research work. Finally, Section 8.4 considers
the broader implications of my research work and its applications for the next
generation of multi-robot systems.

8.1. Summary

On-line localization and mapping are fundamental requirements for teams of mobile robots
to cooperate in everyday situations, such as inside our homes or along urban streets,
particularly when these environments have either not been mapped or they change over
time. From emergency search and rescue, to precision agriculture and mining, there are
many applications where we would like to deploy teams of robots quickly, without a priori
maps, and only using noisy on-board sensors.

When localization and mapping are intrinsically coupled— i.e. when a robot needs a
map of its environment to localize itself using on-board sensors, however to build the
map incrementally it needs to estimate its localization— we describe this as the SLAM
problem. In Chapter 2 I reviewed several broad classes of algorithms that solve the single-
robot SLAM problem. While each of these algorithms have been adapted to solve the
multi-robot SLAM problem, most adaptations have ignored the limitations of real-world

217

Chapter 8 Conclusion

communications and proposed highly-centralized solutions. For teams of robots that rely
on centralized servers, wireless communications become a single point of failure— it is not
hard to imagine the potential dangers and frustrations of a robot team that freezes each
time its wireless network drops out.

The state-of-the-art MR-SLAM systems demonstrated at the MAGIC challenge used
centralized servers, and while their decoupled centralized architectures allowed individual
robots to operate for brief periods, their robots did not share SLAM data or perform loop
closures, which limited their autonomy. Several decentralized MR-SLAM architectures
have been described in the literature, however none have been demonstrated at large scales
while maintaining the map fidelity required for autonomous deployments both indoors and
outdoors.

For truly robust deployments of autonomous robot teams, a decentralized— or at least
partly decentralized— solution to the MR-SLAM problem is required; one that allows
teams of robots to operate independently for extended periods by sharing SLAM data
and performing loop closures on-board. Decentralized SLAM, by design, also requires a
distributed architecture; one where every robot stores, processes and shares its own local
copy of MR-SLAM data.

8.2. Research Contributions

Chapter 4. Hybrid-Decentralized and Distributed Multi-Robot SLAM:

The research contributions I describe in this thesis enable teams of robots to operate
autonomously for extended periods, independent of any centralized server. The proposed
hybrid-decentralized architecture runs distributed instances of the same MR-SLAM back-
end on each robot and server. These distributed instances allow teams of robots to continue
MR-SLAM after they separate into smaller cliques, and include the ability to perform local
loop closures. With the robots in each clique able to build their own copies of the global
gridmap, global navigation and high-level autonomy can continue despite intermittent and
lossy communications. Contributions in Chapter 4 include:

1. Distributed MR-SLAM back-end: allows computationally expensive MR-SLAM
algorithms to be distributed over all robots and servers. The back-end design adapts
to the available computational resources (Section 4.4.2).

2. Distributed global map building: allows each participant to build its own local
copy of the global occupancy gridmap. This distributed spatial awareness enables
decentralized global MRS operations (Section 4.3.1).

218

8.2 Research Contributions

3. Hybrid-decentralized pose graphs: enables cliques of participants to operate
independent of the GCS. Submap pinning and priority-based filters ensure that local
pose graph copies converge to the global solution (Section 4.3.9).

4. Immutable submapping: minimizes overall system complexity, in particular,
making the distributed and decentralized parts of the design both simple and robust.
Immutable, or “read only,” submaps, retain the ability to re-evaluate the most uncer-
tain data associations (loop closures), while minimizing communications bandwidth
(Section 4.3.3).

5. Human-in-the-loop MR-SLAM: increases mapping accuracy and convergence
by allowing a human operator to interact with the pose graph and submaps in real-
time. This is essential in real-world environments where Gaussian assumptions do
not always hold (Section 4.4.3).

Chapter 5. Efficient Occupancy Gridmap Fusion and Matching:

Two algorithmic contributions in Chapter 5 are essential to enabling real-time MR-SLAM
using the proposed submapping technique. Manipulating thousands of submaps is compu-
tationally expensive and these contributions show how the massively parallel capabilities
of modern GPUs can be leveraged. The proposed approach is capable of creating large-
scale global occupancy gridmaps with sufficient detail for indoor and outdoor navigation
at large scales (over 500×500 meters). Contributions include:

6. GPU-based occupancy gridmap fusion: merges tens of thousands of submaps
per second using a efficient highly-parallelized adaptation of the log odds binary
Bayes filtering algorithm (Section 5.3).

7. GPU-based multimodal constraint generation: extracts descriptive, yet min-
imalistic, representations of the spatial relationships between submaps. A highly-
parallelized gridmap correlation algorithm calculates likelihood volumes and extracts
multimodal Gaussian distributions (Section 5.4).

Chapter 6. Robust Multimodal Pose Graph Optimization:

When perceptual aliasing ambiguities and cluttered environments produce submap align-
ments with complex multimodal Gaussian likelihoods, traditional unimodal techniques are
forced to choose either a single mode (risking an outlier), or delay deciding until the hy-
pothesis is confirmed (non-ideal for MR-SLAM). The COMBO technique enables complex
likelihoods to be represented with multimodal constraints and avoids both delaying loop
closures and creating outliers. Contributions in Chapter 6 include:

219

Chapter 8 Conclusion

8. Robust multimodal constraints: enable loop closures to be preemptively added
to the pose graph and outliers to rejected by consensus (Section 6.4.6). They also
describe more complex spatial relationships between submaps, ideal for real-world
environments with perceptual aliasing (Section 6.4.3).

9. Multimodal pose graph optimization: the continuous mode blending optimiza-
tion (COMBO) technique enables complex multimodal Gaussian constraints to be
optimized using traditional nonlinear least-squares approaches (Section 6.4.1).

8.3. Future Work

Chapter 4. Hybrid-Decentralized and Distributed Multi-Robot SLAM:

Robust ego-motion: The most significant issues in real-world deployments of the Map-
builder MR-SLAM system can be traced back to odometry errors. More specifically, the
moments when wheel slippages cause non-Gaussian odometry errors while the environment
is either too sparse, or geometrically similar, for the errors to be corrected using lidar
data alone. While the Mapbuilder GUI allows an operator to correct these errors, this
interaction may create a bottleneck when scaling this MR-SLAM approach up to larger
environments and larger team of robots.

If external localization such as RTK-GPS is not available, the best way to make ego-motion
estimation more robust is with multi-modal sensing. Cameras are the most complementary
sensors to wheel odometry and lidar, since their failure modes are somewhat orthogonal
(Section 2.4.2). In the five years since the various robots were designed for the MAGIC
challenge, it has become more practical to add visual odometry (VO) as an additional
source of ego-motion estimates for wheeled robots [319, 220, 221]. It has been shown
that fusing VO estimates with wheel odometry, IMU and lidar scan matching produces
more robust ego-motion estimates [217, 125]. More recently, tightly-coupled visual inertial
odometry (VIO) systems have been demonstrated that further increase accuracy and
robustness [160].

Tightly-coupled VIO could dramatically improve the robustness and accuracy of the
Local SLAM front-end, and would certainly avoid the majority of odometry problems
experienced. A potential area of research is to integrate range-bearing measurements into
a tightly-coupled filter along with visual feature tracking. While similar concepts have
been demonstrated indoors using the Kinect [129] and outdoors using cameras and lidar
[347], there are potential contributions that could be made here, particularly if extended
to the multi-robot SLAM problem.

220

8.3 Future Work

Loop closures: While the MR-SLAM approach described in this thesis creates thousands
of local loop closures between nearby submaps, it was designed with the assumption that
global loop closures would occasionally be assisted by a human operator. Visual place
recognition (PR), described in Section 2.4.4.2 would provide an ideal source of potential
global loop closures. Since I started this research work, PR implementations have become
available that would help with map convergence [171, 285, 173, 172], however they are
all designed for single robots. Multi-robot PR has been demonstrated by Forster et al.
[348], however they relied on a centralized server to build a PR database and generate
candidate loop closures. To add decentralized and distributed visual PR to my research
work, the first steps would be to divide and distribute the PR database by augmenting
the 2-D submaps. Lynen et al. have recently shown how to compress PR databases so
they are smaller to share [349], however there remains considerable scope for future work
developing decentralized and distributed PR.

Elevation mapping with 2.5-D submaps: Many rough or undulating terrains are not
well represented by the flat 2-D submap representations used in this work; however these
terrains are often traversable by mobile robots. While full 3-D maps, and SLAM in SE (3),
are attractive solutions to accommodate these terrains, the computational, storage and
communication costs may be prohibitive, particularly at the large scales demonstrated
here (see Section 2.3.5). A less expensive approach is to augment the cells in each submap
with height estimates, and then fuse them along with the occupancy gridmaps to form
2.5-D global elevation gridmaps. While elevation gridmaps are an old concept, I was
unable to identify any approaches in the literature that builds them using submaps.
Section 5.2 describes how implementing this would incur minimal additional cost. The
GPU-based gridmap fusion approach described in Chapter 5 would be ideal to perform
efficient blending of height data.

Multilevel submapping: With minimal effort, this approach could be adapted to handle
overlapping geometry such as multi-story buildings and bridges. The concept of multilevel
maps is not new [350, 149], however combining them with small 2.5-D submaps could be
a novel research problem. Each submap’s SE (2) pose would be augmented with a height
estimate, and global gridmaps would be built by filtering submaps around a given height
range.

Path planning directly in submaps: Beyond a certain size, global path planning in
large gridmaps becomes too computationally expensive (discussed in Section 3.3.1). Fur-
thermore, when multilevel submapping is used, overlapping geometry (e.g. a car parking
structure) will produce inconsistent and unnavigable gridmaps. A graph of connected
submaps provides a topological abstraction that is well-suited to large-scale global path
planning. Planning in these hybrid metric/topological spaces has been demonstrated
recently in [351] and [352], however only at small scales. There is considerable potential

221

Chapter 8 Conclusion

research in this area, and this capability would be essential to scale the Mapbuilder to
larger deployments.

Pose graph optimization algorithm: This work used Levenberg Marquardt with
Cholesky factorization. Recent improvements to iSAM by Kaess et al. introduce a Bayes
Tree structure that is more efficient than Cholesky factorization for most single robot
problems [239]. It would be interesting to evaluate whether iSAM2 performs better
than LM and Cholesky in MR-SLAM, particularly when distributed robots are producing
frequent loop closures and structural changes across the entire pose graph (and hence
Bayes tree).

Pose graph simplification: If long-term deployment (weeks or years) in a particular
area is desired, the MR-SLAM system described here would need to be modified to bound
computation and memory usage. It is likely that a simple heuristic could discard old
and redundant submaps, and their corresponding constraints, however this should be
considered in a principled manner similar to Strom and Olson’s approach [56]. Several
researchers have described how to simplify lidar-based pose graphs [274, 275, 353], and
their approaches could be modified for the immutable submaps used here.

GUI usability: Section 7.4.5 reveals a large variation in interaction times required by
the operators to manage the MRS and MR-SLAM systems. It hints that there may be
an optimum user interface design that maximizes the operators’ situational awareness and
efficiency, while minimizing cognitive load. There is considerable scope here for future
usability studies in user interface designs, particularly when multiple separate teams of
robots are exploring in large deployments.

Open source: In [320] we describe an early attempt at porting Mapbuilder to ROS. At the
time, however, ROS had no suitable replacements for the DDS middleware that provided
decentralized peer-to-peer communications. More recently, it has been suggested that
ROS 2 will use DDS for message passing [354]. The current plan is to rebuild Mapbuilder
on top of ROS 2 when it becomes available, and then release it as an open source project.

Chapter 5. Efficient Occupancy Gridmap Fusion and Matching:

Gradient descent on likelihood volumes: It would be an interesting research problem
to perform SGD (Section 2.5.4.9) directly on the 3-D likelihood volumes generated by the
GPU-based correlative submap matching algorithm. Instead of extracting approximate
multimodal Gaussian distributions, the GPU would build likelihood volumes for overlap-
ping pairs of submaps. If overlaps changed significantly the likelihood volumes would be
recalculated around the new relative pose. I have not seen this described in the literature,
and it would be interesting to compare convergence properties with the direct methods
used in this work.

222

8.4 Final Thoughts

GPU-based sensor models: Another interesting experiment would be to use the GPU
to implement higher-fidelity lidar sensor models. Beam divergence effects that are typically
too expensive to implement using a CPU (Section 2.3.3) could be implemented in real-
time using the GPU. Similarly, after recovering the marginals for each submap’s pose
uncertainty [223], the GPU could be used to render submaps that are blurred according
to their pose uncertainty. This blurring could represent occupancy gridmap likelihood
distributions more accurately.

Mobile GPU implementation: The current Mapbuilder implementation uses the
vendor-neutral OpenGL standard to interface GPUs. Using OpenGL ES 3.0 and minimal
modifications, the Mapbuilder back-end could run on the GPUs available in modernmobile
phone processors. An implementation like this could fast-track the Mapbuilder system for
deployment on small and low-powered devices such as robotic vacuums.

Chapter 6. Robust Multimodal Pose Graph Optimization:

SE (3) pose-graph SLAM: The COMBO technique is likely to exhibit desirable conver-
gence properties for multimodal Gaussian constraints in SE (3) pose graphs also. Percep-
tual aliasing effects also occur when aligning 3-D lidar point clouds [117], which suggests
that COMBO could be useful for complex SE (3) likelihood distributions also. Evaluating
and characterizing the 6-DOF multimodal SE (3) constraints would be an interesting
research problem.

Visual SLAM: While most visual SLAM pipelines estimate both the 3-D position of
visual features and the pose of a camera, some newer systems use a SWF to marginalize old
feature observations to create a SE (3) pose graph with SE (3) constraints [221]. In some
environments the unimodal SE (3) constraints that are typically created could be more
accurately represented with multimodal constraints. Marginalizing features observations
into multimodal SE (3) constraints would be an interesting research problem.

8.4. Final Thoughts

In the near future, the majority of mobile robot deployments are expected to be ground-
based [355], and as their capabilities and prevalence continue to increase, the market’s in-
terest in combining multiple robots into cooperative teams is likely to increase also. These
cooperative teams will be expected to have strongly-coordinated autonomous capabilities,
and this autonomy will require teams to share localization and mapping information—
capabilities provided by multi-robot SLAM systems.

Prior to this research work, there were no MR-SLAM systems described in the liter-
ature that enabled MRS deployments where teams of robots could maintain high-level

223

Chapter 8 Conclusion

autonomy despite high-latency, lossy or intermittent communications with centralized
servers— particularly at large scales and in unstructured real-world environments such
as those encountered in the MAGIC challenge (i.e. 10 to 23 robots in a 500×500meter
indoor/outdoor environment).

To create this capability, the architecture I have proposed distributes the MR-SLAM
back-end so that every robot is able to build its own copy of the global gridmap. This
distributed approach is highly scalable, since each robot contributes the computational
resources it requires to process its own sensor data and maintain its own registration to the
global pose graph. The proposed hybrid-decentralized and distributed MR-SLAM archi-
tecture provides robust localization and mapping capabilities for large-scale deployments
of autonomous teams, while not requiring reliable communications or external localization
sensors such as GPS.

My research contributions have been demonstrated together in the Mapbuilder MR-SLAM
system, which has been evaluated at large scales and in real-world conditions. While
the Mapbuilder system is robust, there is considerable scope to increase its robustness
and decrease (or eliminate) the need for operator intervention using one or more of the
approaches described in the previous section. Of these approaches, the most effective is
likely to be the addition of wide FOV cameras and tightly-coupled VIO— an area I am
excited to be working in currently.

In the near future, MR-SLAM systems like Mapbuilder will enable teams of robots to
cooperate in GPS-denied environments, with imperfect communications and without a
priori maps. These capabilities are critical for military, disaster response, agricultural
and mining applications where operations span large areas, network communications are
unreliable and deployments must scale robustly. The potential utility of these systems,
combined with economies of scale, could offer considerable benefits to humanity.

224

A
MRS Architecture and UGV Design

This appendix describes three MRS and UGV front-end designs (experimen-
tal setups) that were used to demonstrate my research contributions and to
verify the performance of the Mapbuilder MR-SLAM system. The results in
Chapter 7 combine datasets from the MAGIC challenge that were captured
by these UGV setups: Section A.1 describes the WAMbot MRS architecture
and UGV design. Section A.2 describes TM’s UGV design, while Section A.3
describes Penn’s UGV design. This appendix is provided for reference and
includes contributions from WAMbot, TM and Penn’s team members.

A.1. WAMbot MRS Architecture

MAGIC was a complex system-of-systems integration challenge. The WAMbot MRS archi-
tecture was necessarily complicated because it combined multiple distributed hardware and
software systems and had to meet many challenging requirements. One requirement, for
example, was for the centralized GCS to be able to control a team of UGVs up to 300 meters
away without line of sight— this demanded a robust RF communications architecture.
Similarly, requiring two operators to control five or more UGVs simultaneously demanded
comprehensive coordination strategies and high-level autonomy.

225

Chapter A MRS Architecture and UGV Design

The MRS requirements related to MR-SLAM are summarized in Section 4.1.3 on page 99.
To encourage heterogeneity, the rules defined two classes of UGVs: disposable sensor
UGVs for exploration and mapping, and expensive disruptor UGVs that carried sophisti-
cated bomb defusing equipment.

High-level requirements and aspects of the MRS architecture specific to the high-level ISR
mission (e.g. detecting OOIs), are described more thoroughly in [64]. Aspects of the MRS
software, communications and hardware designs that are related to Mapbuilder and its
hybrid-decentralized and distributed MR-SLAM architecture are described here.

A.1.1. Software Architecture

Our MRS software used a service-oriented architecture (SOA) approach; where the various
MRS functionalities were split into a large number of separate software components
(executables). Figure A.1 shows how the various software components are interrelated.
Each disruptor UGV had 16 components and nine device interfaces, while each sensor
UGV had 15 components and eight interfaces. At the GCS a single laptop computer ran
the Mapbuilder back-end and GUI and four other components, while additional laptop
computers could run additional instances of the GCS software. Chapter 4 describes the
Local SLAM front-end and Mapbuilder back-end software components in more detail. The
high-level MRS software architecture decisions are described in [68, 64].

The various software components communicated using a data distribution service (DDS)
[321] middleware implemented by RTI. DDS was used to define structured message formats
and provided libraries that allowed our team to write software components in both C++
and Java. The SOA approach with DDS enabled fast software development, since various
software components and hardware interfaces could be shut down, replaced and restarted
without having to restart the entire stack. For fast development and configurations, we
used a model-driven architecture (MDA) approach. Metamodels were defined and code
generation techniques used to create DDS bindings and other software stubs.

The Robot Operating System (ROS) is now a popular framework for UGV development
because it brings a large number of libraries and functionalities together within a unified
publisher-subscriber messaging system. In 2009, when the WAMbot architecture was
designed, ROS lacked a robust decentralized messaging system like DDS. In recent work
a small team and I ported the WAMbot MRS to ROS [320], however, the results were less
robust. Once ROS version 2 is released it may be a good framework for MR-SLAM since
it is being built using DDS for message passing [354].

226

A.1 WAMbot MRS Architecture

Figure A.1. WAMbot MRS component diagram: 16 software components and 9 device
interfaces that ran on each UGV are shown. The components that ran on the GCS computer
are inset on the right. The MR-SLAM components (Mapbuilder and Local SLAM) are highlighted
in blue. UML diagram courtesy Adrian Boeing [64].

A.1.2. Communications Architecture

Data link and network layer: based on pre-challenge estimates, the maximum range
required for wireless communications was about 300 meters, and without line of sight
from the GCS wireless relays were necessary. To minimize cost our main wireless commu-
nications channel used COTS 802.11g Wi-Fi hardware reprogrammed to form a wireless
mesh network. Ubiquity Pico Station 2HP Wi-Fi access points (APs) were flashed with
a custom OpenWRT operating system, and configured to provide an OLSR mesh [356]
over an ad-hoc Wi-Fi network. With APs mounted on each UGV and at the GCS, this
multi-hop mesh network design provided more than the required 300 meter range. When
UGVs were positioned as relays it enabled over-the-hill operations, albeit with a small
fraction of the theoretical 54Mbit/sec bandwidth available to 802.11g.

Transport layer: the DDS middleware implemented partitions that controlled which
message types could pass over the mesh network to other UGVs and GCS participants.
Local partitions restricted data to a single participant, in which case messages were trans-
ferred efficiently using local shared memory. Partitions grouped sensor UGVs, disruptor
UGVs and the GCS, and enforced data separation rules required for disruptor UGVs. For
messages passed between two participants, DDS was configured to use UDP packets. For
the MR-SLAM related messages that were shared between all participants, efficient UDP

227

Chapter A MRS Architecture and UGV Design

(a) Our ground control station (GCS) during
a test scenario. A single COTS laptop com-
puter provided sufficient processing power.

(b) Five WAMbot UGVs before deployment in
the Old Ram Shed Challenge. We operated
the GCS from this army tent.

Figure A.2. WAMbot MRS deployment at MAGIC challenge

broadcast packets were used. The DDS middleware handled all participant discovery,
message delivery, data marshaling and demarshaling, flow control and quality-of-service
(QoS) [321].

Application layer: DDS was used to provide a robust publisher-subscriber framework
for real-time communications. Dozens of message data types were defined in the WAMbot
MRS, and depending on UGV activities the data flow rates were highly variable. This
variability, along with lossy data links, prompted us to make extensive use of DDS’s fine-
grained QoS model. The DDS QoS models allowed us to design configurable delivery
policies for each message type and partition. In these policies, publishers were required to
buffer up to n messages until their subscriber has confirmed receipt: Guaranteed delivery,
where n = ∞, was used for critical messages such as command and control or OOI
observations. Best-effort delivery, with n� 1, was used for certain MR-SLAM data, and
included policies that allowed late-joining subscribers to automatically receive missed data
samples. For certain fast-changing message types, policies were used to prevent buffering,
i.e. n = 0, so that stale messages such as teleoperation commands were not erroneously
executed late. Each message type had priorities and bandwidth allocations applied also.
MR-SLAM specific message types and policies are described in Chapter 4.

A.1.3. Ground Control Station

Our GCS configuration was minimal and it could be deployed quickly. A single laptop
computer running the human machine interface (HMI) software components, while con-
nected to a mesh-enabled wireless AP, was sufficient to control the entire UGV team. To
increase operator awareness and efficiency additional screens could be used. During the
MAGIC challenge, the second operator had an additional laptop computer running the
HMI; this configuration is shown in Figure A.2. Instances of Mapbuilder ran on each GCS

228

A.1 WAMbot MRS Architecture

Figure A.3. WAMbot HMI: Screen shot taken during testing at Flinders University in Adelaide.
The Mapbuilder occupancy gridmap is overlaid on an aerial image. Taken during debugging, an
invalid constraint has caused the bottom part of the gridmap to be slightly misaligned.

computer alongside the HMI. Using DDS, the distributed design with network broadcasts
allowed additional Mapbuilder instances to be run with minimal overhead.

Operator situational awareness was provided by the HMI, which displayed an aerial map of
the environment with the WAMbot UGVs, OOI observations and exploration boundaries
overlaid, similar to the screen shot in Figure A.3. A global occupancy gridmap, updated
in real-time by the Mapbuilder back-end, was also overlaid on the aerial map. The
HMI allowed operators to efficiently command and control the team of UGVs. While
the Mapbuilder GUI provides a more fluid user interface, the HMI also allowed basic
interactions with the pose graph, such as adding ground-truth constraints to anchor parts
of the gridmap to orthorectified aerial imagery.

A.1.4. UGV Hardware Design

A short development timeline combined with our team’s skills being biased towards soft-
ware encouraged us to develop a UGV hardware design that integrated as many COTS
components as possible. Various design trades are described in detail in [64], with cost and
limited development time being the most significant factors. We assembled seven UGVs for
our MRS, Figure A.2 shows five of them. Each UGV used a Pioneer AT3 base to provide
a chassis, wheels, differential drive, motor controllers, batteries and wheel encoders. We
fitted each UGV with an Intel Core 2 Duo automotive PC and a range of sensors, as shown
in Figure A.4, that were interfaced with either USB 2.0, or 100Mbit/s Ethernet. Each

229

Chapter A MRS Architecture and UGV Design

SICK LMS 111 lidar

SLAM, obstacle avoidance

IBEO LUX automotive lidar:

Tracking mobile OOIs

Hokuyo URG lidar

Detecting ramps, curbs, obstacles

Xsens MTi IMU

Odometry, orientation information

RF Innovations 900 MHz radio

Redundant communications link

Logitech Sphere PZT camera

Object tracking (not in photo)

Axis IP camera

Sit. awareness, teleoperation

QStarz 5 Hz GPS

Global localization

Ubiquity Pico Station 2HP

Wi-Fi mesh communications

Pioneer AT3 all-terrain base

WAMbot UGV platform

DataQ USB IO module

E-stop, general IO

 Intel Core 2 Duo PC

CPU & GPU processing

Figure A.4. WAMbot UGVs: TheWAMbot hardware design integrated many COTS components.

UGV carried a homogeneous set of sensors that were used by the Local SLAM software
component including:

• SICK LMS 111 lidar: mounted horizontally (20m, 270° range, 0.25° res, 25Hz)
• Hokuyo URG-04LX lidar: fixed vertically (4m, 240° range, 0.36° res, 10Hz)
• Pioneer AT3 base: encoders for wheel odometry, û = [x̂u, ŷu, φ̂u]T

• Xsens MTi IMU: absolute pitch and roll estimation, relative yaw
• QStarz GPS: noisy global localization, 5Hz

The Local SLAM front-end used these sensors to provide localization and mapping within
submaps (see Section 4.4.1). The SICK lidar was the primary SLAM sensor; it scanned in a
fixed horizontal plane 0.5meters above the ground. Each scan returned 1080 measurements
and provided detailed 2-D “slices” of the environment out to ~20m. The disruptor UGVs
included a long-range IBEO LUX multi-plane lidars for tracking OOIs, however this data
was not integrated into the front-end due to the challenge’s data separation rules.

A.2. Team Michigan UGV Front-End Design

Team Michigan’s (TM’s) challenge datasets were used in Chapter 7 to verify Mapbuilder
MR-SLAM system. This section provides an overview of their MRS design and UGV
hardware as it relates to these datasets, their system is described in more depth in [55, 53].

Each of their 15 custom designed differential-drive UGVs were controlled by a single Intel
Core i5 laptop computer. Figure A.5 (a) shows one of their sensor UGVs. For communica-
tions they used 900MHz radios that provide a theoretical 115.2Kb/s bandwidth, and the
Lightweight Communications and Marshalling (LCM) library [357]. Their SLAM-related
sensors included:

230

A.2 Team Michigan UGV Front-End Design

(a) Team Michigan (TM) (b) University of Pennsylvania (Penn)

Figure A.5. Penn and TM’s UGVs: Custom built for the MAGIC challenge. Datasets from
these robots were used extensively in this research work. Photos taken in the maze section of the
Old Ram Shed Challenge.

• Hokuyo UTM-30LX lidar: nodding (30m, 270° range, 0.25° res, 40Hz)
• Custom 6-DOF MEMS IMU: absolute pitch and roll estimation, relative yaw
• Drive wheel motor controllers: relative odometry estimates
• Garmin 18x GPS: noisy global localization, 5Hz

TM’s lidar was mounted horizontally, however it oscillated in a “nodding” configuration,
actuated by a Dynamixel AX-12 servo. Every 1.25 seconds it swept the vertical field-
of-view providing a 3-D point cloud with approximately 54,000 measurements. As a
result of tight bandwidth restrictions TM’s SLAM front-end projected these 3-D points
into 2-D binary gridmap “maplets” using the pitch and roll information from the IMU.
These 2-D gridmaps were losslessly compressed before being sent back to the GCS. Each
UGV maintained a local gridmap used for localization and navigation. To help avoid
odometry and scan-matching errors, a sliding window filter was used: lidar scans older
than 15 seconds were discarded [53]. As shown in Figure A.5 (a), 2-D visual fiducials
were attached to each UGV [166], which could be observed by servo-actuated cameras.
This allowed UGVs to recognize each other and generate inter-UGV constraints; these
constraints, however, were not used in this research.

TM’s challenge datasets included the 2-D gridmaps compressed and stored in LCM struc-
tures. Olson and Strom provided two versions of their logs: lossy radio logs recorded
at the GCS during the challenge, and also complete logs that were reconstructed after
the challenge. To demonstrate robustness, only their lossy logs are used throughout this
research.

231

Chapter A MRS Architecture and UGV Design

A.3. University of Pennsylvania UGV Front-End Design

The University of Pennsylvania’s (Penn’s) challenge datasets were also used in Chapter 7
to verify Mapbuilder MR-SLAM system. This section provides an overview of their MRS
design and UGV hardware as it relates to these datasets, their MRS is described thoroughly
in [58, 60]. Each of their nine custom designed differential-drive UGVs were controlled by
an Intel Core 2 Duo PC and a custom microcontroller board. Figure A.5 (b) shows one
of their sensor UGVs. Similar to WAMbot, Penn used COTS Ubiquity 802.11g Wi-Fi
routers. Instead of using middleware for message transport, they used raw UDP packets for
best-effort delivery and TCP/IP for messages that required additional delivery attempts.
SLAM sensors on each UGV included:

• Hokuyo UTM-30LX lidar: fixed horizontally (30m, 270° range, 0.25° res, 40Hz)
• Hokuyo UTM-30LX lidar: sweeping vertically (30m, 270° range, 0.25° res, 40Hz)
• Custom 6-DOF MEMS IMU: absolute pitch and roll estimation, relative yaw
• Hall effect encoders on motors: relative odometry estimates
• 50 Channel D2523T Helical GPS: noisy global localization, 5Hz

Penn used one lidar mounted horizontally 0.8 meters above the ground for faster map
updates and more reliable localization. A second lidar was mounted vertically and swept
left and right to give±60° horizontal FOV. Their sensor front-end used a Rao-Blackwellized
particle filter to perform local SLAM, producing a gridmap with separate layers for each
lidar. The first layer was a regular 2-D occupancy gridmap, while the second encoded
height obstacles, such as curbs or stairs for traversability analysis. Deltas to the local
2-D gridmaps were transmitted back to the GCS periodically, each update relative to the
UGV’s local coordinate frame.

Penn also experienced communications losses, which meant that some of the gridmap
deltas were not received by the GCS computers. Similar to TM, Penn’s dataset included
only the gridmaps received by the GCS computers. It is not known how much packet loss
occurred, however their challenge datasets appear mostly complete.

232

B
MAGIC Challenge Datasets

This appendix describes the various phases and their datasets recorded at the
MAGIC challenge. These are the test environments used to demonstrate my
research contributions in Chapter 7 and to verify the performance of the Map-
builder MR-SLAM system. Section B.1 provides an overview of the challenge
environment, while Section B.2 provides an overview of each phase highlighting
the mobility and perception issues that are “baked” into the challenge datasets.
In Section B.3 I conclude with a discussion of the issues experienced with
odometry, communications and GPS measurements.

B.1. Overview

The MAGIC challenge was introduced in Section 1.3.4.2 on page 12, while the WAMbot,
TM and Penn UGVs are described in Appendix A. A high level overview of the challenge
environment is given by Finn et al. in [52]. For reference, a pre-challenge map is shown in
Figure B.1, while the post-challenge judges map is shown in Figure 7.1 on page 171. This
post-challenge map provides a good overview of the challenge, including phase bound-
aries and OOI locations. Table B.1 summarizes the phases, including their extents and
accessible areas. Figure 7.1 also shows ground-truth data acquired in a survey that was
commissioned by the judges before the challenge. This ground-truth data was captured by
a well-localized horizontal lidar and rendered into a gridmap. The survey covered about
80% of both Phase 2 and the Old Ram Shed Challenge (ORSC), while the other phases
are sparsely mapped.

233

Chapter B MAGIC Challenge Datasets

Figure B.1. MAGIC pre-challenge map: The challenge area at the Adelaide Agricultural
Showgrounds in South Australia. This map was assembled based on hints and briefings in the
weeks before the challenge. A 100 meter grid is overlaid. Aerial image courtesy DSTO.

The largest gridmaps produced by the WAMbot UGVs, overlaid on aerial imagery, are
shown in Figure 7.2 on page 171. For reference, Figure B.2 shows TM’s gridmaps recorded
during their deployment at the challenge— these distorted maps are included to illustrate
the various non-Gaussian odometry errors that are included in the datasets. Since the
challenge, TM reprocessed their datasets and these odometry errors were removed by
their operators [53, 54]. Penn’s challenge-day maps were not released; their publications
show maps produced using Mapbuilder [58, 358, 54].

ORSC Phase 1 Phase 2 Phase 3 Total Specified
Phase extents (m) 80×40 210×140 210×150 230×300 450×300 500×500
Extents area (m2) 3,200 29,400 31,500 69,000 135,000 250,000
Accessible area (m2) 2,700 21,000 22,000 49,000 95,000 -
Percent of challenge 3% 22% 23% 52% 100% -

Static OOI count 5 6 4 3 18
>18Mobile OOI count 0 0 2 7 9

Table B.1. MAGIC challenge: Phase summaries

234

B.2 Challenge Datasets

Figure B.2. Team Michigan challenge day results: Occupancy gridmaps superimposed on
aerial imagery. TM won the challenge by exploring 100% of the first two phases and 10% of the
third. TM released more accurate post-processed maps after the challenge. Gridmaps courtesy Ed
Olson et al. [53, 54]. Aerial imagery courtesy DSTO.

B.2. Challenge Datasets

B.2.1. Old Ram Shed Challenge

The Old Ram Shed Challenge (ORSC) was a single-day competition held for press and
dignitaries, after the main challenge had finished. The ISR mission was simplified to five
UGVs searching for a handful of static OOIs distributed around an 80×40 meter indoor
area. TM and Penn both explored 100% of the area. Shown in Figure B.3, WAMbot
explored 83% of the ORSC area, with our UGVs performing better after addressing some
of the hardware issues [64]. The ORSC datasets are considerably smaller than the main
challenge phases, however combined they form a unique dataset due to the high average
node degree and connectivity (Section 3.3.3). For reference, these ORSC datasets are
about three times larger than the 45×25 meter indoor area used for the SDR program
(Section 1.3.4).

B.2.2. Phase 1 Dataset

Referring to Figure 7.1 on page 171, each team started their UGVs at the point marked
DSL and drove into a curving alley that is 5 meters wide. Two doorways entered into the

235

Chapter B MAGIC Challenge Datasets

large Wayville Pavilion; one near the static OOI marked AA and another on the south
east wall. Once inside the pavilion another four OOIs were hidden in a maze-like envi-
ronment containing large wooden ramps on 15° angles. Figure B.2 shows TM’s gridmaps
after spending 80 minutes in this phase. The UGVs were “over-the-hill” behind a large
grandstand for most of this phase, and required a UGV to function as a communications
relay.

SLAM-related problems occurred in the first alleyway, where minor perceptual aliasing
errors were observed. To the south of the pavilion a sparse 75×30m outdoor area caused
many problems. Wheels slipped on the hard asphalt surface causing odometry errors,
while objects in this mostly-empty space were further away than the Hokuyo lidar scanner’s
range. In Figure B.2, significant distortions can be seen in the south west corner of Phase 1
where lidar scan matching was unable to correct odometry errors.

B.2.3. Phase 2 Dataset

The topology of Phase 2 was more complex, including two large loop closures approxi-
mately 200 meters in length, and many smaller loop closures. The UGVs started at the
point marked DSZ1 in Figure 7.1 on page 171. After entering through an alley teams
explored north and south along East Crescent without attempting to enter the large sand-
pit. An oblique aerial view is shown in Figure 1.8 on page 15 along with a panorama
taken at the start of Phase 2. Visible in this photo is the southern route; a 20 meter wide
alley with a v-shaped drain down the middle. Similar to the first phase, non-Gaussian
odometry errors occurred that neither TM or Penn’s SLAM front-ends could correct using
lidar data alone.

South Boulevard, shown at the south edge of Phase 2 in Figure 7.1 on page 171, was
another 20 meter wide alley that caused significant problems. Figure B.4 (a) shows an
area on the boulevard where a parked car forced the UGVs to drive through a “v-shaped”
drain. At many places along the boulevard this drain caused significant odometry errors
for both TM and Penn’s SLAM front-ends. These errors persisted in both teams’ datasets,

Figure B.3. Old Ram Shed Challenge: Our WAMbot UGVs robots exploring the indoor
80×40 meter area. Left: First area inside the ORSC. Center, Right: A maze of hay bales.

236

B.2 Challenge Datasets

(a) South Boulevard: A
car was parked near this v-
shaped drain, causing sig-
nificant odometry errors.

(b) Horse stalls: The damaged asphalt surface caused
odometry errors and in some places these relatively
featureless alleys to be stretched. Heading estimates were
generally maintained due to the close walls.

Figure B.4. Phase 2: Photos taken several days after the challenge.

Figure B.5. Phase 2: Panorama of Red Square, a large 45×45 m area with a mobile OOI.

with Figure B.2 showing TM’s gridmaps after 80 minutes of exploration. Some damaged
submaps from this location are shown in Figure B.6. The effects of these errors, before
being corrected by an operator, are shown in a screen shot of the GUI in Figure 4.9 on
page 130.

As the teams progressed their UGVs explored the stables, marked A, B1 and B2 in
Figure 7.1 on page 171. Damaged asphalt surfaces, like the ones shown in Figure B.4 (b),
caused repeated mobility and odometry issues. Parallel walls caused many perceptual
aliasing problems; in a few places the walls were stretched due to uncorrected wheel
slippage, however heading estimates were generally maintained. Figure B.4 (b) also shows
the large, irregular, building eaves that added confusion while matching submap gridmaps
to the aerial imagery.

Further issues in Phase 2 occurred in a large 45×45m area labeled “Red Square” in

237

Chapter B MAGIC Challenge Datasets

Figure 7.1 on page 171. A panorama of this large open space is shown in Figure B.5.
The area was patrolled by a mobile OOI and two of Penn’s UGVs drove into the middle
of this area where their 30 meter Hokuyo lidars faltered and odometry errors rapidly
accumulated. Figure 7.26 on page 209 shows two submaps that were corrupted by the
mobile OOIs. Both teams experienced communications issues in the south-east corner of
this phase.

B.2.4. Phase 3 Dataset

The third phase had twice the accessible area, and potentially two loop closures over
250 meters long. The ISR mission complexity increased significantly, with a scenario
where a hostile OOI walked alongside a non-combatant. No team was able to neutralize
the hostile OOI to gain access to the rest of the phase. For reference, WAMbot mapped
5% and TM mapped 10% of this phase.

B.3. Post-Challenge Dataset Notes

Wheel slippage: the most frequent issue in the challenge datasets are large irregular
wheel-slippages where the SLAM front-ends could not disambiguate the UGV’s motion
using lidar scan matching. These non-Gaussian odometry errors lead to bad constraints
being added to the pose graph, and many submaps being corrupted. A robust pose
graph optimizer may cope with erroneous constraints (see Section 6.3), however corrupted

Figure B.6. Phase 2 South Boulevard: Corrupted submaps from a 20 meter wide alley where
wheel slippage consistently occurred in a drain. Both TM and Penn’s SLAM front-ends produced
unusable submaps. Blue: UGV. Red: Graphic where car was parked. Green: Nearby walls.

238

B.3 Post-Challenge Dataset Notes

(a) MR-SLAM trajectories (b) GPS sensor data

Figure B.7. Phase 2: TM’s reprocessed MR-SLAM map from [328] showing GPS data. Trajectories
for 12 UGVs are shown in each figure, with the hue mapped from red at the start to blue after 2
hours. A 50 meter grid is overlaid. In (b) GPS position data can be seen drifting widely, with up
to 80 meters error around the horse stables due to multipath effects. Maps courtesy Ryan Morton.

submaps are very hard to detect and ignore if the SLAM front-end continues to express
confidence in them. This is addressed by the Local SLAM front-end in Section 4.3.6.
The challenge datasets do not contain raw sensor data, and the reduced 2-D gridmap
representations frequently have these errors “baked” in. Figure B.6 shows some corrupt
submaps from the South Boulevard in the Phase 2 dataset.

Data loss: as described in Appendix A, both TM and Penn’s UGVs had communi-
cations issues that result in different types of data loss. Both SLAM front-ends used
decoupled local coordinate systems that in many cases allows MR-SLAM to continue
(see Section 3.2.2). In some places, however, odometry errors had accumulated during
communications blackouts, and once communication had been recovered the UGVs jumped
tens of meters and became badly localized. A vigilant operator is required to correct these
non-Gaussian errors before they corrupt the global map.

GPS errors: while each challenge phase began with a clear view of the sky (ideal
conditions for GPS) the UGVs quickly encountered degenerate satellite configurations
driving through agricultural sheds. In these situations, buildings with opaque metal roofs
blocked the majority of satellites, while intermittent position fixes were obtained from
satellites closer to the horizon. Multipath signal reflections became frequent in these
predominantly horizontal configurations, causing large step errors in the GPS position
measurements. For reference, in Figure B.7 Morton and Olson show up to 80 meters
of position error in Phase 2 when comparing their GPS position measurements with
post-processed trajectories [328]. The results presented in Chapter 7 ignored the GPS
measurements due to a lack of an appropriate uncertainty model. TM also reported not
using their GPS measurements during the challenge [53].

239

Bibliography

[1] L. Nocks, The Robot: The Life Story of a Technology. Greenwood Publishing Group,
2007. 1

[2] R. Brooks, Flesh and Machines: How Robots Will Change Us. Pantheon Books,
ISBN: 978-375420795, 2002. 2

[3] R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology. Viking
Penguin, ISBN: 0-670-03384-7, 2005. 2

[4] L. Riazuelo, J. Civera, and J. M. M. Montiel, “C2tam: A Cloud framework for
cooperative tracking and mapping,” Robotics and Autonomous Systems, 2013. 3, 16,
92

[5] G. Mohanarajah, V. Usenko, M. Singh, M. Waibel, and R. D’Andrea, “Cloud-based
collaborative 3d mapping in real-time with low-cost robots,” IEEE Transactions on
Automation Science and Engineering, 2014. 3, 16, 92

[6] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, “A
solution to the simultaneous localization and map building (SLAM) problem,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241, 2001. 5, 58,
81

[7] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous Localization and
Mapping via Square Root Information Smoothing,” The International Journal of
Robotics Research, vol. 25, pp. 1181–1203, Dec. 2006. 5, 24, 55, 67, 77, 90

[8] A. Birk, Simultaneous Localization and Mapping (SLAM) is NP-Complete. 2010. 5,
24, 55

[9] R. C. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial
Uncertainty,” The International Journal of Robotics Research, vol. 5, pp. 56–68,
Dec. 1986. 5, 57, 81

[10] H. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Journal of Robotics and
Automation, vol. 4, pp. 23 –31, Feb. 1988. 5

241

Bibliography

[11] J. Leonard and H. Durrant-Whyte, “Simultaneous Map Building and Localization for
an Autonomous Mobile Robot,” in IEEE/RSJ International Workshop on Intelligent
Robots and Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS ’91,
pp. 1442 –1447 vol.3, Nov. 1991. 5, 32

[12] S. Thrun and J. J. Leonard, “Simultaneous Localization and Mapping,” in Springer
Handbook of Robotics (O. Khatib, ed.), pp. 871–889, Springer Berlin Heidelberg,
Jan. 2008. 5, 8

[13] K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig, and P. Shah, “A low-cost laser
distance sensor,” in IEEE International Conference on Robotics and Automation,
2008. ICRA 2008, pp. 3002 –3008, May 2008. 5

[14] T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in multi-robot systems,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 655–661, 2002.
6, 9

[15] L. E. Parker, “Multiple Mobile Robot Systems,” in Springer Handbook of Robotics,
Springer, June 2008. 6

[16] T. Yasuda and K. Ohkura, Multi-Robot Systems, Trends and Development. InTech,
2011. 6

[17] Y. Mohan and S. G. Ponnambalam, “An extensive review of research in swarm
robotics,” in World Congress on Nature Biologically Inspired Computing, 2009.
NaBIC 2009, pp. 140–145, Dec. 2009. 6

[18] A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused
on coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 34, pp. 2015 –2028, Oct. 2004. 6, 7

[19] B. P. Gerkey and M. J. Matarić, “A Formal Analysis and Taxonomy of
Task Allocation in Multi-Robot Systems,” The International Journal of Robotics
Research, vol. 23, pp. 939–954, Sept. 2004. 6, 9

[20] C. L. Ortiz, R. Vincent, and B. Morisset, “Task inference and distributed
task management in the Centibots robotic system,” in Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems,
AAMAS ’05, (New York, NY, USA), pp. 860–867, ACM, 2005. 6, 12

[21] K. Lerman, C. Jones, A. Galstyan, and M. J. Matarić, “Analysis of Dynamic
Task Allocation in Multi-Robot Systems,” The International Journal of Robotics
Research, vol. 25, pp. 225–241, Mar. 2006. 6

242

Bibliography

[22] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,” Spectrum, IEEE,
vol. 45, no. 7, pp. 26–34, 2008. 9, 10

[23] A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, C. Baker, S. Thayer,
C. Whittaker, and W. Whittaker, “Recent developments in subterranean robotics,”
Journal of Field Robotics, vol. 23, pp. 35–57, Jan. 2006. 9, 18

[24] J. Larsson, J. Appelgren, J. A. Marshall, and T. D. Barfoot, “Atlas Copco
Infrastructureless Guidance System for High-Speed Autonomous Underground
Tramming,” in Proceedings of the 5th Int. Conference and Exhibition on Mass
Mining, MassMin, pp. 585–594, 2008. 9, 10, 18

[25] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collaborative multi-
robot exploration,” in IEEE International Conference on Robotics and Automation,
2000. Proceedings. ICRA ’00, vol. 1, pp. 476 –481 vol.1, 2000. 9

[26] R. Madhavan, K. Fregene, and L. E. Parker, “Distributed Cooperative Outdoor
Multirobot Localization and Mapping,” Autonomous Robots, vol. 17, pp. 23–39,
July 2004. 9, 61

[27] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart, “Distributed
Multirobot Exploration and Mapping,” Proceedings of the IEEE, vol. 94, pp. 1325 –
1339, 2006. 9, 12, 65, 81, 84, 88, 89, 93, 95

[28] K. Konolige, D. Fox, C. Ortiz, A. Agno, M. Eriksen, B. Limketkai, J. Ko, B. Morisset,
D. Schulz, B. Stewart, and R. Vincent, “Centibots: Very Large Scale Distributed
Robotic Teams,” in Experimental Robotics IX (M. H. Ang and O. Khatib, eds.),
vol. 21, pp. 131–140, Berlin/Heidelberg: Springer-Verlag, 2006. 9, 12, 89, 93, 95, 96,
108

[29] A. Howard, L. E. Parker, and G. S. Sukhatme, “Experiments with a Large
Heterogeneous Mobile Robot Team: Exploration, Mapping, Deployment and
Detection,” The International Journal of Robotics Research, vol. 25, pp. 431 –447,
May 2006. 9, 12, 86, 89, 93, 95, 105

[30] R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset, C. Ortiz,
D. Schulz, and B. Stewart, “Distributed multirobot exploration, mapping, and task
allocation,” Annals of Mathematics and Artificial Intelligence, vol. 52, no. 2, pp. 229–
255, 2008. 9

[31] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S. Teller,
“Multiple Relative Pose Graphs for Robust Cooperative Mapping,” in IEEE Intl.
Conf. on Robotics and Automation, ICRA, (Anchorage, Alaska), pp. 3185–3192,
May 2010. 9, 81, 88, 92, 94, 95, 108

243

Bibliography

[32] T. A. Vidal-Calleja, C. Berger, J. Solà, and S. Lacroix, “Large scale multiple robot
visual mapping with heterogeneous landmarks in semi-structured terrain,” Robotics
and Autonomous Systems, vol. 59, no. 9, pp. 654–674, 2011. 9

[33] M. Dorigo, D. Floreano, L. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, et al., “Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms,” IEEE Robotics &
Automation Magazine, 2012. 9, 10

[34] A. Gautam and S. Mohan, “A review of research in multi-robot systems,” in 2012
7th IEEE International Conference on Industrial and Information Systems (ICIIS),
pp. 1 –5, Aug. 2012. 9

[35] O. S. R. Foundation, “TurtleBot 2,” 2014. 10

[36] Q. J. Lindsey, D. Mellinger, and V. Kumar, “Construction of Cubic Structures with
Quadrotor Teams,” Robotics: Science and Systems, June 2011. 10

[37] A. Kushleyev, D. Mellinger, and V. Kumar, “Towards a Swarm of Agile Micro
Quadrotors,” Robotics: Science and Systems, July 2012. 10

[38] S. Weiss, Vision based navigation for micro helicopters. PhD thesis, ETH, Zurich,
2012. 10

[39] M. Achtelik, S. Weiss, M. Chli, F. Dellaert, and R. Siegwart, “Collaborative stereo,”
in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pp. 2242–2248, 2011. 10

[40] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Fraundorfer, E. Kosmatopoulos,
A. Martinelli, M. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, et al., “Vision-
controlled micro flying robots: from system design to autonomous navigation and
mapping in GPS-denied environments,” IEEE Robotics & Automation Magazine,
pp. 1–10, 2013. 10

[41] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems,” in In Proceedings of the 11th
International Conference on Advanced Robotics, pp. 317–323, 2003. 11

[42] R. Vaughan, “Massively Multi-Robot Simulation in Stage,” Swarm Intelligence,
vol. 2, pp. 189–208, Dec. 2008. 11

[43] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3, pp. 2149–2154,
IEEE, 2004. 11

244

Bibliography

[44] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: a robot
simulator for research and education,” in Robotics and Automation, 2007 IEEE
International Conference on, pp. 1400–1405, IEEE, 2007. 11

[45] H. Kitano and S. Tadokoro, “RoboCup Rescue: A Grand Challenge for Multiagent
and Intelligent Systems,” AI Magazine, vol. 22, p. 39, Mar. 2001. 11

[46] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, et al., “ARGoS: a modular,
multi-engine simulator for heterogeneous swarm robotics,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, pp. 5027–5034, 2011.
11

[47] T. Bräunl, Embedded Robotics: Mobile Robot Design and Applications with Embedded
Systems. 3rd ed., 2008. 11, 43, 81

[48] J. A. Rothermich, M. İ. Ecemiş, and P. Gaudiano, “Distributed Localization and
Mapping with a Robotic Swarm,” in Swarm Robotics, no. 3342 in Lecture Notes in
Computer Science, pp. 58–69, Springer Berlin Heidelberg, Jan. 2005. 12

[49] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, “A practical, decision-
theoretic approach to multi-robot mapping and exploration,” in 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings, vol. 4, pp. 3232 – 3238 vol.3, Oct. 2003. 12, 89

[50] A. Howard, “Multi-robot Simultaneous Localization and Mapping using Particle
Filters,” The International Journal of Robotics Research, vol. 25, pp. 1243 –1256,
Dec. 2006. 12, 65, 81, 95

[51] A. Howard, L. E. Parker, and G. S. Sukhatme, “The SDR Experience: Experiments
with a Large-Scale Heterogeneous Mobile Robot Team,” in Experimental Robotics
IX, no. 21 in Springer Tracts in Advanced Robotics, pp. 121–130, Springer Berlin
Heidelberg, Jan. 2006. 12, 14, 89, 93, 94, 105, 108

[52] A. Finn, A. Jacoff, M. Del Rose, B. Kania, J. Overholt, U. Silva, and J. Bornstein,
“Evaluating autonomous ground-robots,” Journal of Field Robotics, vol. 29, no. 5,
pp. 689–706, 2012. 12, 13, 169, 171, 210, 233

[53] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan, R. Goeddel,
M. Bulic, J. Crossman, and B. Marinier, “Progress toward multi-robot
reconnaissance and the MAGIC 2010 competition,” Journal of Field Robotics,
vol. 29, no. 5, pp. 762–792, 2012. 13, 81, 83, 84, 86, 88, 90, 91, 92, 93, 94, 95,
96, 130, 153, 210, 211, 212, 213, 230, 231, 234, 235, 239

245

Bibliography

[54] E. Olson, J. Strom, R. Goeddel, R. Morton, P. Ranganathan, and A. Richardson,
“Exploration and Mapping with Autonomous Robot Teams,” Communications of
the ACM, Dec. 2012. 13, 90, 91, 92, 93, 95, 213, 234, 235

[55] P. Ranganathan, R. Morton, A. Richardson, J. Strom, R. Goeddel, M. Bulic, and
E. Olson, “Coordinating a Team of Robots for Urban Reconnaisance,” in Land
Warfare Conference, 2010. 13, 95, 213, 230

[56] J. Strom and E. Olson, “Occupancy grid rasterization in large environments for
teams of robots,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pp. 4271–4276, 2011. 13, 81, 91, 95, 139, 213, 214,
222

[57] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot
mapping,” International Journal of Robotics Research, Feb. 2013. 13, 81, 95, 125,
153, 160, 161, 200, 214, 215, 216

[58] J. Butzke, K. Daniilidis, A. Kushleyev, D. D. Lee, M. Likhachev, C. Phillips, and
M. Phillips, “The University of Pennsylvania MAGIC 2010 multi-robot unmanned
vehicle system,” Journal of Field Robotics, vol. 29, no. 5, pp. 745–761, 2012. 13, 81,
84, 86, 88, 90, 91, 92, 93, 232, 234

[59] J. Butzke and M. Likhachev, “Planning for multi-robot exploration with multiple
objective utility functions,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3254 –3259, Sept. 2011. 13

[60] J. Butzke, K. Daniilidis, V. Kumar, A. Kushleyev, D. D. Lee, M. Likhachev,
C. Phillips, and M. Phillips, “University of Pennsylvania MAGIC 2010 Final
Report,” tech. rep., Jan. 2011. 13, 93, 232

[61] A. Lacaze, K. Murphy, M. Del Giorno, and K. Corley, “Reconnaissance and
Autonomy for Small Robots (RASR) team: MAGIC 2010 challenge,” Journal of
Field Robotics, vol. 29, no. 5, pp. 729–744, 2012. 13, 81

[62] A. Lacaze, K. Murphy, M. Giorno, and K. Corley, “Reconnaissance and Autonomy
for Small Robots (RASR): MAGIC 2010 Challenge,” in TARDEC Quarterly Robotics
Workshop. Michigan, 2011. 13

[63] A. Lacaze, K. Murphy, and M. Del Giorno, “MAGIC 2010 RASR Team,” tech. rep.,
Dec. 2010. 13

[64] A. Boeing, M. Boulton, T. Bräunl, B. Frisch, S. Lopes, A. Morgan, F. Ophelders,
S. Pangeni, R. Reid, K. Vinsen, N. Garel, C. S. Lee, M. Masek, A. Attwood, M. Fazio,

246

Bibliography

and A. Gandossi, “WAMbot: Team MAGICian’s entry to the Multi Autonomous
Ground-robotic International Challenge 2010,” Journal of Field Robotics, vol. 29,
no. 5, pp. 707–728, 2012. 13, 81, 88, 90, 92, 93, 95, 170, 171, 211, 226, 227, 229, 235

[65] A. Boeing, S. Pangeni, T. Bräunl, and C. S. Lee, “Real-time tactical motion planning
and obstacle avoidance for multi-robot cooperative reconnaissance,” in 2012 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 3117 –3122,
Oct. 2012. 13

[66] R. Reid and T. Bräunl, “Large-scale multi-robot mapping in MAGIC 2010,” in 2011
IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 239–244,
IEEE, Sept. 2011. 13, 81, 88, 90, 92, 93, 95, 146, 150, 190, 208

[67] A. Boeing, T. Bräunl, R. Reid, A. Morgan, and K. Vinsen, “Cooperative Multi-
Robot Navigation and Mapping of Unknown Terrain,” in 2011 IEEE Conference on
Robotics, Automation and Mechatronics (RAM), pp. 234–238, IEEE, Sept. 2011. 13,
95

[68] A. Boeing, M. Boulton, T. Bräunl, B. Frisch, S. Lopes, A. Morgan, F. Ophelders,
S. Pangeni, R. Reid, K. Vinsen, N. Garel, C. S. Lee, M. Masek, A. Attwood, M. Fazio,
and A. Gandossi, “Team MAGICian,” in Land Warfare Conference, 2010. 13, 213,
226

[69] A. Erdener, E. O. Ari, Y. Ataseven, B. Deniz, K. G. Ince, U. Kazancioğlu, T. A.
Kopanoğlu, T. Koray, K. M. Koşaner, A. Özgür, Ç. Ç. Özkök, T. Soncul, H. O. Irin,
I. Yakin, S. Biddlestone, L. Fu, A. Kurt, Ü. Özgüner, K. Redmill, Ö. Aytekin, and
I. Ulusoy, “Team Cappadocia Design for MAGIC 2010 (The ASELSAN Team),” in
Land Warfare Conference 2010, Nov. 2010. 13

[70] J. C. Mankins, “Technology Readiness Levels,” White Paper, April, vol. 6, 1995. 14

[71] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada,
S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, and S. Tadokoro,
“Collaborative mapping of an earthquake-damaged building via ground and aerial
robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 832–841, 2012. 16

[72] R. R. Murphy, K. L. Dreger, S. Newsome, J. Rodocker, B. Slaughter, R. Smith,
E. Steimle, T. Kimura, K. Makabe, K. Kon, H. Mizumoto, M. Hatayama,
F. Matsuno, S. Tadokoro, and O. Kawase, “Marine heterogeneous multirobot
systems at the great Eastern Japan Tsunami recovery,” Journal of Field Robotics,
vol. 29, no. 5, pp. 819–831, 2012. 16

[73] J. Dietsch, “DARPA Entices Roboticists to Take the Next Step,” IEEE Robotics
Automation Magazine, vol. 19, pp. 9 –10, Sept. 2012. 16

247

Bibliography

[74] Y. Liu and G. Nejat, “Robotic Urban Search and Rescue: A Survey from the Control
Perspective,” Journal of Intelligent & Robotic Systems, Mar. 2013. 16

[75] P. Velagapudi, P. Scerri, K. Sycara, H. Wang, M. Lewis, and J. Wang, “Scaling
effects in multi-robot control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008. IROS 2008, pp. 2121 –2126, Sept. 2008. 16

[76] G.-J. M. Kruijff, F. Colas, T. Svoboda, J. van Diggelen, P. Balmer, F. Pirri, and
R. Worst, “Designing Intelligent Robots for Human-Robot Teaming in Urban Search
and Rescue,” in AAAI Spring Symposium: Designing Intelligent Robots, 2012. 16

[77] Van Riper, “A Concept for Future Military Operations on Urbanized Terrain.,” tech.
rep., United States Marine Corps, Defense Technical Information Center, 1999. 17

[78] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On the
requirements for successful GPS spoofing attacks,” in Proceedings of the 18th ACM
conference on Computer and communications security, CCS ’11, (New York, NY,
USA), pp. 75–86, ACM, 2011. 17, 51

[79] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned Aircraft
Capture and Control Via GPS Spoofing: Unmanned Aircraft Capture and Control,”
Journal of Field Robotics, vol. 31, pp. 617–636, July 2014. 17, 51, 81

[80] J. Billingsley and M. Schoenfisch, “The successful development of a vision guidance
system for agriculture,” Computers and Electronics in Agriculture, vol. 16, pp. 147–
163, Jan. 1997. 17

[81] A. Stentz, C. Dima, C. Wellington, H. Herman, and D. Stager, “A system for semi-
autonomous tractor operations,” Autonomous Robots, vol. 13, no. 1, pp. 87–104,
2002. 17

[82] D. Oetomo, J. Billingsley, and J. F. Reid, “Editorial: Agricultural robotics,” Journal
of Field Robotics, vol. 26, pp. 501–503, June 2009. 18

[83] M. Bryson, A. Reid, F. Ramos, and S. Sukkarieh, “Airborne Vision-Based Mapping
and Classification of Large Farmland Environments,” Journal of Field Robotics,
2010. 18

[84] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, and
J. Valente, “Aerial remote sensing in agriculture: A practical approach to area
coverage and path planning for fleets of mini aerial robots,” Journal of Field Robotics,
vol. 28, pp. 667–689, Sept. 2011. 18

248

Bibliography

[85] M. Bryson and S. Sukkarieh, “Architectures for Cooperative Airborne Simultaneous
Localisation and Mapping,” J. Intell. Robotics Syst., vol. 55, no. 4-5, pp. 267–297,
2009. 18, 81, 89, 92, 93

[86] R. González, F. Rodríguez, J. Sánchez-Hermosilla, J. Donaire, and others,
“Navigation Techniques for Mobile Robots in Greenhouses,” Applied Engineering
in Agriculture, vol. 25, no. 2, p. 153, 2009. 18

[87] D. Bellamy and L. Pravica, “Assessing the impact of driverless haul trucks in
Australian surface mining,” Resources Policy, vol. 36, pp. 149–158, June 2011. 18

[88] J. Barnes, C. Rizos, J. Wang, D. Small, G. Voigt, and N. Gambale, “Locata:
A new positioning technology for high precision indoor and outdoor positioning,”
Proceedings, ION GNSS, Portland, OR, CD ROM, pp. 1119–1128, 2003. 18

[89] A. Chehri, P. Fortier, and P. M. Tardif, “UWB-based sensor networks for localization
in mining environments,” Ad Hoc Networks, vol. 7, pp. 987–1000, July 2009. 18

[90] A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun, “6d SLAM
with an application in autonomous mine mapping,” in Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 2,
pp. 1998–2003, 2004. 18

[91] W. Wang, W. Dong, Y. Su, D. Wu, and Z. Du, “Development of Search-and-Rescue
Robots for Underground Coal Mine Applications: Search and Rescue Robot for
Underground Coal Mine,” Journal of Field Robotics, vol. 31, pp. 386–407, May
2014. 18

[92] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker, R. Barry,
D. F. Blake, P. Conrad, K. S. Edgett, B. Ferdowski, R. Gellert, J. B. Gilbert,
M. Golombek, J. Gómez-Elvira, D. M. Hassler, L. Jandura, M. Litvak, P. Mahaffy,
J. Maki, M. Meyer, M. C. Malin, I. Mitrofanov, J. J. Simmonds, D. Vaniman,
R. V. Welch, and R. C. Wiens, “Mars Science Laboratory Mission and Science
Investigation,” Space Science Reviews, vol. 170, pp. 5–56, Sept. 2012. 19

[93] I. Thomson, “NASA’s Opportunity rover celebrates 10 years on Mars,” 2014. 19

[94] L. Matthies, “Stereo vision for planetary rovers: Stochastic modeling to near real-
time implementation,” International Journal of Computer Vision, vol. 8, no. 1,
pp. 71–91, 1992. 19

[95] R. Li, K. Di, A. Howard, L. Matthies, J. Wang, and S. Agarwal, “Rock modeling
and matching for autonomous long-range Mars rover localization,” Journal of Field
Robotics, vol. 24, pp. 187–203, Mar. 2007. 19

249

Bibliography

[96] M. Maimone, Y. Cheng, and L. Matthies, “Two years of Visual Odometry on the
Mars Exploration Rovers,” Journal of Field Robotics, vol. 24, pp. 169–186, Mar.
2007. 19

[97] J. Leitner, “Multi-robot Cooperation in Space: A Survey,” in Advanced Technologies
for Enhanced Quality of Life, 2009. AT-EQUAL ’09., pp. 144–151, July 2009. 19

[98] R. A. Brooks and A. M. Flynn, “Fast, Cheap and Out of Control,” tech. rep., Dec.
1989. 19

[99] J. Castillo-Rogez, M. Pavone, I. Nesnas, and J. Hoffman, “Expected science return
of spatially-extended in-situ exploration at small Solar system bodies,” in 2012 IEEE
Aerospace Conference, pp. 1–15, 2012. 19

[100] C. Bishop, Pattern Recognition and Machine Learning. Springer, ISBN: 978-
0387310732, 2007. 19, 56, 68, 73, 74, 75, 150, 158

[101] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation with Applications to
Tracking and Navigation. Wiley-Interscience, June 2001. 19, 24, 58

[102] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Fluids Engineering, vol. 82, no. 1, pp. 35–45, 1960. 24, 57, 58

[103] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms,” Robotics and Automation Magazine, vol. 13,
pp. 99–110, 2006. 24, 25, 119

[104] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and Mapping (SLAM):
Part II State of the Art,” Robotics and Automation Magazine, vol. 13, pp. 108–117,
2006. 24, 25, 60, 81, 119

[105] V. G. Ivancevic and T. T. Ivancevic, “Lecture Notes in Lie Groups,” arXiv preprint
arXiv:1104.1106, 2011. 26

[106] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC press, 1994. 26, 28

[107] W. Fulton and J. Harris, Representation Theory: A First Course. New York:
Springer, corrected edition ed., Aug. 1999. 26

[108] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships
in robotics,” Autonomous Robot Vehicles, 1990. 27, 28

[109] E. Olson, Robust and Efficient Robotic Mapping. PhD thesis, Massachusetts
Institude Of Technology, 2008. 29, 67, 78

250

Bibliography

[110] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust mapping and
localization in indoor environments using sonar data,” The International Journal of
Robotics Research, vol. 21, no. 4, p. 311, 2002. 29, 32, 48, 49, 59, 81

[111] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, second ed., 2003. 30, 33, 65, 77

[112] J. J. Leonard and H. F. Durrant-Whyte, Directed sonar sensing for mobile robot
navigation, vol. 448. Kluwer Academic Publishers Dordrecht, 1992. 32

[113] J. Ring, “The laser in astronomy,” New Scientist, vol. 18, p. 344, 1963. 32

[114] G. Weiss and E. V. Puttkamer, “A Map Based On Laserscans Without Geometric
Interpretation,” tech. rep., CiteSeerX, 1995. 32

[115] F. Lu and E. Milios, “Robot pose estimation in unknown environments by matching
2d range scans,” Journal of Intelligent and Robotic Systems, vol. 18, no. 3, pp. 249–
275, 1997. 32, 38

[116] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual appearance and laser
ranging,” 2006. 32

[117] M. Pfingsthorn and A. Birk, “Simultaneous localization and mapping with
multimodal probability distributions,” The International Journal of Robotics
Research, vol. 32, pp. 143–171, Feb. 2013. 32, 81, 153, 160, 161, 214, 216, 223

[118] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning 2d laser,”
in Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on,
pp. 4312–4319, 2009. 32

[119] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza,
J. Derenick, J. Spletzer, and B. Satterfield, “Little Ben: The Ben Franklin Racing
Team’s entry in the 2007 DARPA Urban Challenge,” Journal of Field Robotics,
vol. 25, pp. 598–614, Sept. 2008. 33

[120] S. Thrun, “Google’s driverless car,” TED Talk, 2011. 33

[121] F. Amzajerdian, M. Vanek, L. Petway, D. Pierrottet, G. Busch, and A. Bulyshev,
“Utilization of 3-D imaging flash lidar technology for autonomous safe landing on
planetary bodies,” in Proc. of SPIE Vol, vol. 7608, pp. 760828–1, 2010. 33

[122] W. Zhou, V. Miro, and G. Dissanayake, “Information-driven 6d SLAM based on
ranging vision,” in Intelligent Robots and Systems, pp. 2072–2077, 2008. 33

251

Bibliography

[123] G. Von Wichert, “Mobile robot localization using a selforganized visual
environment representation,” in Advanced Mobile Robots, 1997. Proceedings., Second
EUROMICRO workshop on, pp. 29–36, IEEE, 1997. 33, 53, 81

[124] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-Time Single
Camera SLAM,” IEEE Trans. On Pattern Analysis And Machine Intelligence, 2007.
33, 45, 46

[125] J. Civera, A. Davison, and J. Montiel, “1-Point RANSAC for EKF Filtering.
Application to Real-Time Structure from Motion and Visual Odometry,” Journal
of Field Robotics, vol. to appear, Sept. 2010. 33, 46, 60, 220

[126] T. Botterill, S. Mills, and R. D. Green, “Correcting Scale Drift by Object Recognition
in Single-Camera SLAM.,” IEEE T. Cybernetics, vol. 43, no. 6, pp. 1767–1780, 2013.
33

[127] K. Boyer and A. Kak, “Color-Encoded Structured Light for Rapid Active Ranging,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9,
pp. 14–28, Jan. 1987. 33

[128] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data
for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 2012. 33,
81

[129] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion: Real-time
dense surface mapping and tracking,” in 2011 10th IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pp. 127–136, 2011. 33, 81, 220

[130] G. Reina, J. Underwood, G. Brooker, and H. Durrant-Whyte, “Radar-based
perception for autonomous outdoor vehicles,” Journal of Field Robotics, 2011. 34,
81

[131] J. Mullane and E. Jose, Robotic Navigation and Mapping with Radar. Artech House,
2012. 34

[132] D. Vivet, F. Gerossier, P. Checchin, L. Trassoudaine, and R. Chapuis, “Mobile
Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two
Approaches,” International Journal of Advanced Robotic Systems, p. 1, 2013. 34

[133] F. Pomerleau, A. Breitenmoser, M. Liu, F. Colas, and R. Siegwart, “Noise
characterization of depth sensors for surface inspections,” in Applied Robotics for
the Power Industry (CARPI), 2012 2nd International Conference on, pp. 16–21,
IEEE, 2012. 34, 35, 81

252

Bibliography

[134] H. Alismail, L. D. Baker, and B. Browning, “Continuous Trajectory Estimation for
3d SLAM from Actuated Lidar,” in ICRA, 2014. 36, 81

[135] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT Press, ISBN:
978-0262201629, 2005. 36, 37, 40, 41, 47, 53, 58, 59, 66, 81, 119, 140

[136] M. Ruhnke, R. Kummerle, G. Grisetti, andW. Burgard, “Highly Accurate Maximum
Likelihood Laser Mapping by Jointly Optimizing Laser Points and Robot Poses,” in
2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2812
–2817, May 2011. 36, 79, 81

[137] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, pp. 1–9, Mar. 1974. 38, 81

[138] P. Besl and H. McKay, “A method for registration of 3-D shapes,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 14, no. 2, pp. 239–256, 1992.
38

[139] A. Censi, “An ICP variant using a point-to-line metric,” in IEEE International
Conference on Robotics and Automation, 2008. ICRA 2008, pp. 19–25, May 2008.
38

[140] J. Guivant, E. Nebot, and S. Baiker, “Autonomous Navigation and Map building
Using Laser Range Sensors in Outdoor Applications,” Journal of Robotic Systems,
vol. 17, no. 10, pp. 565–583, 2000. 39, 63, 81

[141] J. E. Guivant and E. M. Nebot, “Optimization of the Simultaneous Localization
and Map-Building Algorithm for Real-Time Implementation,” IEEE Transactions
on Robotics and Automation, vol. 17, no. 3, pp. 242–257, 2001. 39, 61

[142] T. Bailey, Mobile Robot Localisation and Mapping in Extensive Outdoor
Environments. PhD thesis, Australian Center for Field Robotics, University of
Sydney, 2002. 39, 60, 81, 145, 153

[143] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly Sparse Extended
Information Filters for Feature-based SLAM,” The International Journal of Robotics
Research, vol. 26, pp. 335–359, Apr. 2007. 39

[144] J. Neira and J. Tardós, “Data association in stochastic mapping using the joint
compatibility test,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6,
pp. 890–897, 2001. 39, 60, 81, 153

[145] Y.-H. Choi, T.-K. Lee, and S.-Y. Oh, “A line feature based SLAM with low grade
range sensors using geometric constraints and active exploration for mobile robot,”
Autonomous Robots, vol. 24, pp. 13–27, Jan. 2008. 39, 81

253

Bibliography

[146] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in 1985
IEEE International Conference on Robotics and Automation. Proceedings, vol. 2,
pp. 116–121, Mar. 1985. 39

[147] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal of
Robotics and Automation, vol. 3, pp. 249–265, June 1987. 39, 40

[148] J. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems
Journal, vol. 4, no. 1, pp. 25–30, 1965. 41

[149] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
an efficient probabilistic 3d mapping framework based on octrees,” Autonomous
Robots, vol. 34, pp. 189–206, Apr. 2013. 42, 81, 221

[150] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics. Cambridge
University Press, July 2010. 43, 45, 81

[151] G. Campion, G. Bastin, and B. D’Andrea-Novel, “Structural properties and
classification of kinematic and dynamic models of wheeled mobile robots,” IEEE
transactions on robotics and automation, vol. 12, no. 1, pp. 47–62, 1996. 43, 81

[152] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear Complementary Filters on
the Special Orthogonal Group,” IEEE Transactions on Automatic Control, vol. 53,
pp. 1203–1218, June 2008. 45

[153] H. Chung, L. Ojeda, and J. Borenstein, “Accurate mobile robot dead-reckoning
with a precision-calibrated fiber-optic gyroscope,” IEEE Transactions on Robotics
and Automation, vol. 17, pp. 80–84, Feb. 2001. 45

[154] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–
770, 2004. 46

[155] J. A. Castellanos, J. Neira, and J. D. Tardós, “Limits to the Consistency of EKF
Based SLAM,” 2004. 48, 60, 61, 81

[156] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the EKF-
SLAM algorithm,” in International Conference on Intelligent Robots and Systems,
2006. 48, 60, 61, 81

[157] T. Bailey, J. Nieto, and E. Nebot, “Consistency of the FastSLAM Algorithm,” in
IEEE Int Conference on Robotics and Automation, 2006. 48, 64, 81

254

Bibliography

[158] K. Iagnemma and C. C. Ward, “Classification-based wheel slip detection and
detector fusion for mobile robots on outdoor terrain,” Autonomous Robots, vol. 26,
pp. 33–46, Jan. 2009. 50, 81

[159] V. Kubelka, L. Oswald, F. Pomerleau, F. Colas, T. Svoboda, and M. Reinstein,
“Robust Data Fusion of Multimodal Sensory Information for Mobile Robots,”
Journal of Field Robotics, Aug. 2014. 50

[160] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual-inertial
odometry,” The International Journal of Robotics Research, vol. 32, pp. 690–711,
May 2013. 50, 220

[161] R. B. Langley, “Dilution of precision,” GPS world, vol. 10, no. 5, pp. 52–59, 1999.
51

[162] A. El-Rabbany, Introduction to GPS: The Global Positioning System. Artech House,
Jan. 2002. 51

[163] J. A. Farrell, T. D. Givargis, and M. J. Barth, “Real-time differential carrier phase
GPS-aided INS,” Control Systems Technology, IEEE Transactions on, vol. 8, no. 4,
pp. 709–721, 2000. 51

[164] M. Joerger and B. Pervan, “Measurement-Level Integration of Carrier-Phase GPS
and Laser-Scanner for Outdoor Ground Vehicle Navigation,” Journal of Dynamic
Systems, Measurement, and Control, vol. 131, pp. 021004–11, Mar. 2009. 51, 81

[165] M. Fiala, “Comparing ARTag and ARToolkit Plus fiducial marker systems,” Oct.
2005. 52, 54

[166] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3400–3407,
IEEE, May 2011. 52, 54, 81, 231

[167] S. Engelson and D. McDermott, “Error correction in mobile robot map learning,”
in IEEE International Conference on Robotics and Automation, 1992. Proceedings,
pp. 2555–2560 vol.3, May 1992. 53

[168] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo localization
for mobile robots,” Artificial Intelligence, vol. 128, pp. 99–141, May 2001. 53

[169] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle Filters for Mobile Robot
Localization,” in Sequential Monte Carlo Methods in Practice (A. Doucet, N. d.
Freitas, and N. Gordon, eds.), Statistics for Engineering and Information Science,
pp. 401–428, Springer New York, Jan. 2001. 53

255

Bibliography

[170] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and mapping
in the space of appearance,” The International Journal of Robotics Research, vol. 27,
no. 6, p. 647, 2008. 53, 81, 95

[171] M. Cummins, Probabilistic Localization and Mapping in Appearance Space. PhD
thesis, University of Oxford, 2009. 53, 81, 221

[172] M. Cummins and P. Newman, “Appearance-only SLAM at large scale with FAB-
MAP 2.0,” The International Journal of Robotics Research, Nov. 2010. 53, 54, 81,
94, 95, 221

[173] T. Botterill, Visual Navigation for Mobile Robots using the Bag-of-Words Algorithm.
PhD thesis, University of Canterbury, 2010. 53, 81, 221

[174] S. Siltanen and T. T. Valtion, Theory and applications of marker-based augmented
reality. 2012. 54, 81

[175] D. S. Berkovitz, System characterization and online mass property identification
of the SPHERES formation flight testbed. PhD thesis, Massachusetts Institute of
Technology, 2008. 54

[176] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer, “Fast and Incremental Method
for Loop-Closure Detection Using Bags of Visual Words,” IEEE Transactions on
Robotics, vol. 24, pp. 1027–1037, Oct. 2008. 55, 81

[177] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small ARWorkspaces,”
in IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007.
55

[178] Z. Chen, “Bayesian filtering: From Kalman filters to particle filters, and beyond,”
Statistics, vol. 182, no. 1, pp. 1–69, 2003. 57

[179] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardós, “The SPmap: A
probabilistic framework for simultaneous localization and map building,” Robotics
and Automation, IEEE Transactions on, vol. 15, no. 5, pp. 948–952, 1999. 58

[180] L. Paz, J. Tardós, and J. Neira, “Divide and Conquer EKF SLAM in O(n),” IEEE
Transactions on Robotics, vol. 24, pp. 1107–1120, Oct. 2008. 59, 60, 61, 81

[181] J. A. Castellanos, R. Martinez-Cantin, J. D. Tardós, and J. Neira, “Robocentric
map joining: Improving the consistency of EKF-SLAM,” Robotics and Autonomous
Systems, vol. 55, no. 1, pp. 21–29, 2007. 60, 61, 81

256

Bibliography

[182] B. Williams and I. Reid, “On combining visual SLAM and visual odometry,” in 2010
IEEE International Conference on Robotics and Automation (ICRA), pp. 3494–3500,
IEEE, May 2010. 60

[183] M. Chli and A. J. Davison, “Active Matching for Visual Tracking,” Robotics and
Autonomous Systems, vol. 57, pp. 1173–1187, Dec. 2009. 60, 81

[184] R. Reid, “Jointly Compatible Pair Linking for Visual Tracking with Probabilistic
Priors,” in Australasian Computer Science Conference (ACSC 2011), vol. 113 of
CRPIT, (Perth, Australia), pp. 35–42, ACS, 2011. 60, 81

[185] V. Bonato, E. Marques, and G. A. Constantinides, “A floating-point extended
kalman filter implementation for autonomous mobile robots,” Journal of Signal
Processing Systems, vol. 56, no. 1, pp. 41–50, 2009. 60, 81

[186] J. J. Leonard and H. J. Feder, “A computationally efficient method for large-scale
concurrent mapping and localization,” in Robotics Research: the Ninth International
Symposium, vol. 9, pp. 169–178, 2000. 61, 93, 95

[187] J. Knight, A. Davison, and I. Reid, “Towards constant time SLAM using
postponement,” in Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems,
pp. 406–412, 2001. 61

[188] P. Piniés, L. M. Paz, D. Gálvez-López, and J. D. Tardós, “CI-Graph simultaneous
localization and mapping for three-dimensional reconstruction of large and complex
environments using a multicamera system,” Journal of Field Robotics, vol. 27,
pp. 561–586, Aug. 2010. 61, 81, 95

[189] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “Towards multi-vehicle
simultaneous localisation and mapping,” vol. 3, pp. 2743–2748, 2002. 61, 88

[190] S. Williams, G. Dissanayake, and H. Durrant-Whyte, “An efficient approach to the
simultaneous localisation and mapping problem,” in IEEE International Conference
on Robotics and Automation, 2002. Proceedings. ICRA ’02, vol. 1, pp. 406–411 vol.1,
2002. 61

[191] X. S. Zhou and S. I. Roumeliotis, “Multi-robot SLAM with unknown initial
correspondence: The robot rendezvous case,” in Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pp. 1785–1792, IEEE, 2006. 61, 81

[192] G. P. Huang, N. Trawny, A. I. Mourikis, and S. I. Roumeliotis, “On the consistency
of multi-robot cooperative localization,” MARS Lab, University of Minnesota,
Minneapolis, MN, Tech. Rep., Jan, 2009. 61, 88

257

Bibliography

[193] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Real-Time Monocular SLAM:
Why Filter?,” in Int. Conf. on Robotics and Automation, 2010. 61, 81

[194] S. Julier, J. Uhlmann, and H. Durrant-Whyte, “A New Method for the Nonlinear
Transformation of Means and Covariances in Filters and Estimators,” IEEE
Transactions on Automatic Control, vol. 45, pp. 477 –482, Mar. 2000. 61, 81

[195] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004. 61, 81

[196] S. Holmes, G. Klein, and D. W. Murray, “A square root unscented Kalman filter for
visual monoSLAM,” in Proc Int Conf on Robotics and Automation, pp. 3710–3716,
2008. 61

[197] S. Julier and J. Uhlmann, “A non-divergent estimation algorithm in the presence of
unknown correlations,” in American Control Conference, 1997. Proceedings of the
1997, vol. 4, pp. 2369–2373 vol.4, June 1997. 62

[198] S. J. Julier and J. K. Uhlmann, “Using covariance intersection for SLAM,” Robotics
and Autonomous Systems, vol. 55, no. 1, pp. 3–20, 2007. 62

[199] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous Localization and Mapping with Sparse Extended Information
Filters,” The International Journal of Robotics Research, vol. 23, pp. 693–716, Aug.
2004. 62, 78

[200] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state filters for
view-based SLAM,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1100–1114,
2006. 62, 63

[201] Y. Liu and S. Thrun, “Results for outdoor-SLAM using sparse extended information
filters,” in International Conference on Robotics and Automation, vol. 1, pp. 1227–
1233, 2003. 62, 63

[202] I. Mahon, S. B. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient view-
based SLAM using visual loop closures,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1002–1014, 2008. 63, 66

[203] S. Thrun and Y. Liu, “Multi-Robot SLAM With Sparse Extended Information
Filters,” in Robotics Research: The Eleventh International Symposium, 2005. 63,
81

[204] M. A. Paskin, “Thin junction tree filters for simultaneous localization and mapping,”
Computer, 2002. 63, 78, 81, 96

258

Bibliography

[205] U. Frese, “A proof for the approximate sparsity of SLAM information matrices,”
in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pp. 329–335, IEEE, 2005. 63

[206] U. Frese, “Treemap: An O (log n) algorithm for indoor simultaneous localization
and mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103–122, 2006. 63

[207] U. Frese and L. Schroder, “Closing a million-landmarks loop,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pp. 5032–5039, 2006.
63, 81, 95, 96

[208] K. P. Murphy, “Bayesian Map Learning in Dynamic Environments.,” in NIPS,
pp. 1015–1021, 1999. 64, 119

[209] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient FastSLAM algorithm
for generating maps of large-scale cyclic environments from raw laser range
measurements,” in 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2003. (IROS 2003). Proceedings, vol. 1, pp. 206 – 211 vol.1, Oct. 2003.
64, 81, 95, 119

[210] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A Factored
Solution to the Simultaneous Localization and Mapping Problem,” in Proceedings
Of The National Conference On Artificial Intelligence, pp. 593–598, 2002. 64

[211] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An Improved Particle Filtering Algorithm for Simultaneous Localization and
Mapping that Provably Converges,” in International Joint Conference On Artificial
Intelligence, vol. 18, 2003. 64

[212] M. Montemerlo and S. Thrun, “FastSLAM 2.0,” FastSLAM: A Scalable Method for
the Simultaneous Localization and Mapping Problem in Robotics, pp. 63–90, 2007.
64, 81

[213] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping
with Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23,
no. 1, pp. 34–46, 2007. 64

[214] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A Probabilistic Approach to
Collaborative Multi-Robot Localization,” Autonomous Robots, vol. 8, pp. 325–344,
June 2000. 65

[215] L. Carlone, M. Kaouk Ng, J. Du, B. Bona, and M. Indri, “Simultaneous Localization
and Mapping Using Rao-Blackwellized Particle Filters in Multi Robot Systems,”
Journal of Intelligent & Robotic Systems, 2010. 65

259

Bibliography

[216] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding Window Filter with Application
to Planetary Landing,” Journal of Field Robotics, vol. 27, pp. 587–608, July 2010.
65, 81

[217] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner,
R. Shade, D. Schroeter, D. Cole, and I. Reid, “Navigating, recognizing and describing
urban spaces with vision and lasers,” The International Journal of Robotics Research,
vol. 28, no. 11-12, p. 1406, 2009. 66, 81, 220

[218] C. Bibby and I. Reid, “Simultaneous localisation and mapping in dynamic
environments (SLAMIDE) with reversible data association,” in Proceedings of
Robotics: Science and Systems, 2007. 66, 81

[219] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “A Constant-Time Efficient
Stereo SLAM System,” in Proceedings of the British Machine Vision Conference
(BMVC), 2009. 66

[220] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “RSLAM: A System
for Large-Scale Mapping in Constant-Time Using Stereo,” International Journal of
Computer Vision, pp. 1–17, 2010. 66, 81, 86, 94, 95, 220

[221] H. Strasdat, A. Davison, J. Montiel, and K. Konolige, “Double window optimisation
for constant time visual SLAM,” in 2011 IEEE International Conference on
Computer Vision (ICCV), pp. 2352 –2359, Nov. 2011. 66, 83, 220, 223

[222] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder, V. Lepetit, and
P. Fua, “View-based maps,” The International Journal of Robotics Research, 2010.
66

[223] M. Kaess and F. Dellaert, “Covariance Recovery from a Square Root Information
Matrix for Data Association,” Robotics and Autonomous Systems, 2009. 66, 81, 120,
223

[224] F. Lu and E. Milios, “Globally consistent range scan alignment for environment
mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–349, 1997. 67, 81, 89, 120

[225] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic environ-
ments,” in 1999 IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1999. CIRA ’99. Proceedings, pp. 318 –325, 1999. 67, 120

[226] A. Howard, M. Matark, and G. Sukhatme, “Localization for mobile robot teams
using maximum likelihood estimation,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002, vol. 1, pp. 434–439 vol.1, 2002. 67, 120

260

Bibliography

[227] A. Howard and L. Kitchen, “Cooperative Localisation and Mapping,” in
International Conference on Field and Service Robotics, pp. 92–97, 1999. 67, 88

[228] S. Thrun and M. Montemerlo, “The Graph SLAM Algorithm with Applications to
Large-Scale Mapping of Urban Structures,” The International Journal of Robotics
Research, vol. 25, pp. 403–429, May 2006. 67, 81, 90, 95

[229] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe, “Subgraph-preconditioned
conjugate gradients for large scale slam,” in Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pp. 2566–2571, IEEE, 2010. 67, 68,
81, 95

[230] A. Howard, M. J. Mataric, and G. Sukhatme, “Relaxation on a mesh: a formalism
for generalized localization,” in Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, vol. 2, pp. 1055–1060, IEEE, 2001.
67, 105

[231] K. Konolige, “Large-scale map-making,” in Proceedings of the 19th national
conference on Artifical intelligence, AAAI’04, pp. 457–463, AAAI Press, 2004. 67

[232] J. Folkesson and H. Christensen, “Graphical SLAM - A Self-Correcting Map,” in
IEEE International Conference on Robotics and Automation, vol. 1, 2004. 67

[233] E. Olson, J. Leonard, and S. Teller, “Fast Iterative Alignment of Pose Graphs with
Poor Initial Estimates,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2262–2269, 2006. 67, 78, 81, 90, 200

[234] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle Adjustment - A
Modern Synthesis,” Lecture Notes In Computer Science, pp. 298–372, 1999. 67, 76,
77, 126, 155

[235] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental smoothing and
mapping with efficient data association,” in 2007 IEEE International Conference on
Robotics and Automation, pp. 1670–1677, 2007. 67, 77, 81, 95

[236] M. Kaess, Incremental Smoothing and Mapping. Ph.D., Georgia Institute of
Technology, Dec. 2008. 67, 77, 81, 95, 200, 205

[237] K. Konolige, G. Grisetti, R. Kummerle, B. Limketkai, and R. Vincent, “Efficient
Sparse Pose Adjustment for 2d Mapping,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010. 67, 76, 77, 81, 83

[238] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A
General Framework for Graph Optimization,” in IEEE Int. Conf. on Robotics and
Automation, 2011. 67, 73, 76, 77, 95, 117, 125, 200, 216

261

Bibliography

[239] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2:
Incremental smoothing and mapping using the Bayes tree,” The International
Journal of Robotics Research, 2012. 68, 81, 95, 96, 222

[240] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, pp. 498–519, Feb.
2001. 68

[241] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” 2012. 68

[242] P. C. Mahalanobis, “On the generalized distance in statistics,” in Proceedings of the
National Institute of Sciences of India, 1936. 71

[243] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A Tutorial on Graph-
Based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4,
pp. 31 –43, 2010. 75, 83, 120, 125, 166

[244] N. Sunderhauf, Robust Optimization for Simultaneous Localization and Mapping.
PhD thesis, TU Chemnitz, 2012. 76, 81, 159, 160, 200

[245] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchical
optimization on manifolds for online 2d and 3d mapping,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), 2010. 77, 81

[246] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, “An Atlas
framework for scalable mapping,” in IEEE International Conference on Robotics and
Automation, vol. 2, 2003. 78, 79, 95, 107

[247] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous Localization and
Map Building in Large-Scale Cyclic Environments Using the Atlas Framework,” The
International Journal of Robotics Research, vol. 23, no. 12, p. 1113, 2004. 78, 79,
81, 95, 159

[248] M. Bosse, ATLAS: A Framework for Large Scale Automated Mapping and
Localization. PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 2004. 78, 79, 95, 153

[249] C. Estrada, J. Neira, and J. Tardós, “Hierarchical SLAM: real-time accurate
mapping of large environments,” IEEE Transactions on Robotics, vol. 21, pp. 588–
596, Aug. 2005. 79, 90, 93, 95

[250] C. Estrada, J. Neira, and J. Tardós, “Finding good cycle constraints for large scale
multi-robot SLAM,” in IEEE International Conference on Robotics and Automation,
2009. ICRA ’09, pp. 395 –402, May 2009. 79, 81, 90, 93, 95, 153

262

Bibliography

[251] K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Exact, Out-of-Core, Submap-
Based SLAM,” in 2007 IEEE International Conference on Robotics and Automation,
pp. 1678 –1685, Apr. 2007. 79, 81, 95

[252] K. Ni and F. Dellaert, “Multi-level submap based SLAM using nested dissection,” in
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pp. 2558–2565, IEEE, 2010. 79, 95

[253] J. Blanco, J. Fernandez-Madrigal, and J. Gonzalez, “Towards a Unified Bayesian
Approach to Hybrid Metric–Topological SLAM,” IEEE Transactions on Robotics,
vol. 24, pp. 259–270, Apr. 2008. 79, 81, 95, 153

[254] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with
unknown data association using FastSLAM,” in IEEE International Conference on
Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 2, 2003. 81

[255] D. Hähnel, S. Thrun, B. Wegbreit, and W. Burgard, “Towards lazy data association
in SLAM,” in International Symposium on Robotics Research (ISRR), pp. 421–431,
2003. 81

[256] E. Olson, “Recognizing places using spectrally clustered local matches,” Robotics
and Autonomous Systems, vol. 57, no. 12, pp. 1157–1172, 2009. 81, 153, 159, 160

[257] A. Handa, M. Chli, H. Strasdat, and A. Davison, “Scalable Active Matching,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2010. 81

[258] J. Sola, Towards Visual Localization, Mapping and Moving Objects Tracking by a
Mobile Robot: a Geometric and Probabilistic Approach. PhD thesis, 2007. 81

[259] C. C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultaneous
localization, mapping and moving object tracking,” The International Journal of
Robotics Research, vol. 26, no. 9, pp. 889–916, 2007. 81

[260] S. J. Davey, “Simultaneous localization and map building using the probabilistic
multi-hypothesis tracker,” Robotics, IEEE Transactions on, vol. 23, no. 2, pp. 271–
280, 2007. 81, 160

[261] M. Bosse and R. Zlot, “Keypoint design and evaluation for place recognition in 2d
lidar maps,” Robot. Auton. Syst., vol. 57, pp. 1211–1224, Dec. 2009. 81

[262] Y. Latif, C. Cadena, and J. Neira, “Realizing, Reversing, Recovering: Incremental
Robust Loop Closing over time using the iRRR algorithm,” in IEEE/RSJ
Int.Conf.on Intelligent Robots and Systems, 2012. 81, 153

263

Bibliography

[263] Y. Latif, C. Cadena, and J. Neira, “Robust Loop Closing Over Time,” in Proceedings
of Robotics: Science and Systems (RSS), 2012. 81, 159

[264] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment to real-time
visual mapping,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1066–1077,
2008. 81, 95

[265] C. Früh and A. Zakhor, “An automated method for large-scale, ground-based city
model acquisition,” International Journal of Computer Vision, vol. 60, no. 1, pp. 5–
24, 2004. 81, 100, 132

[266] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard,
“Large Scale Graph-Based SLAM Using Aerial Images as Prior Information,”
Autonomous Robots, vol. 30, no. 1, pp. 25–39, 2011. 81, 95, 100, 132

[267] T. Senlet and A. Elgammal, “Satellite image based precise robot localization
on sidewalks,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pp. 2647–2653, IEEE, 2012. 81, 100, 132

[268] J. Neira, J. Tardós, and J. Castellanos, “Linear time vehicle relocation in SLAM,”
in IEEE International Conference on Robotics and Automation, vol. 1, pp. 427–433,
2003. 81

[269] B. Williams, G. Klein, and I. Reid, “Real-time SLAM Relocalisation,” in IEEE
International Conference on Computer Vision, pp. 1–8, 2007. 81

[270] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A Tree Parameterization
for Efficiently Computing Maximum Likelihood Maps Using Gradient Descent,” in
Proc. of Robotics: Science and Systems (RSS), 2007. 81

[271] G. Grisetti, C. Stachniss, and W. Burgard, “Non-linear constraint network
optimization for efficient map learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 3, pp. 428–439, 2009. 81

[272] S. Huang, Y. Lai, U. Frese, and G. Dissanayake, “How far is SLAM from a linear least
squares problem?,” in International Conference on Intelligent Robots and Systems,
2010. 81

[273] H. Wang, G. Hu, S. Huang, and G. Dissanayake, “On the Structure of Nonlinearities
in Pose Graph SLAM,” in 2012 Robotics: Science and Systems Conference (RSS),
2012. 81

[274] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-Based Compact Pose
SLAM,” IEEE Transactions on Robotics, 2010. 81, 96, 222

264

Bibliography

[275] C. Stachniss and H. Kretzschmar, “Pose Graph Compression for Laser-Based
SLAM,” in The 15th International Symposium on Robotics Research (ISRR), 2011.
81, 222

[276] N. Sünderhauf and P. Protzel, “Switchable Constraints vs. Max-Mixture Models vs.
RRR–A Comparison of Three Approaches to Robust Pose Graph SLAM,” 2012. 81,
159, 160

[277] Y. Latif, C. Cadena, and J. Neira, “Robust Graph SLAM Back-ends: A Comparative
Analysis,” 2014. 81, 153

[278] D. Rosen, M. Kaess, and J. Leonard, “Robust incremental online inference over
sparse factor graphs: Beyond the Gaussian case,” in Proc. of Intl. Conf. on Robotics
and Automation (ICRA), 2013. 81

[279] K. Konolige and K. Chou, “Markov localization using correlation,” in International
Joint Conference on Artificial Intelligence, vol. 16, pp. 1154–1159, 1999. 81, 145

[280] S. Carpin, “Fast and accurate map merging for multi-robot systems,” Autonomous
Robots, vol. 25, no. 3, pp. 305–316, 2008. 81, 139, 145

[281] M. Bosse and R. Zlot, “Map Matching and Data Association for Large-Scale
Two-dimensional Laser Scan-based SLAM,” The International Journal of Robotics
Research, vol. 27, pp. 667 –691, June 2008. 81, 145

[282] E. B. Olson, “Real-time correlative scan matching,” in IEEE International
Conference on Robotics and Automation, 2009. 81, 146, 150, 212

[283] P. Piniés and J. D. Tardós, “Scalable SLAM Building Conditionally Independent
Local Maps,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3466–3471, 2007. 81

[284] P. Piniés and J. Tardós, “Large-Scale SLAM Building Conditionally Independent
Local Maps: Application to Monocular Vision,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 1094–1106, 2008. 81, 95

[285] M. Milford and G. Wyeth, “Persistent Navigation and Mapping using a Biologically
Inspired SLAM System,” The International Journal of Robotics Research, vol. 29,
pp. 1131–1153, Aug. 2010. 81, 221

[286] L. A. Andersson and J. Nygards, “On multi-robot map fusion by inter-robot
observations,” in Information Fusion, 2009. FUSION’09. 12th International
Conference on, pp. 1712–1721, IEEE, 2009. 81, 90, 93

265

Bibliography

[287] M. Haley, “Multi-Autonomous Ground-robotic International Challenge (MAGIC)
2010 The Chiba Team,” tech. rep., Analytical Software Inc, 2010. 81

[288] S. Sukkarieh, E. Nettleton, J.-H. Kim, M. Ridley, A. Goktogan, and H. Durrant-
Whyte, “The ANSER Project: Data Fusion Across Multiple Uninhabited Air
Vehicles,” The International Journal of Robotics Research, vol. 22, pp. 505–539,
July 2003. 81, 87, 88, 89, 92

[289] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset, “Limited communication,
multi-robot team based coverage,” in Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, vol. 4, pp. 3462–3468, IEEE,
2004. 81

[290] E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh, “Decentralised SLAM
with Low-Bandwidth Communication for Teams of Vehicles,” in Field and Service
Robotics, pp. 179–188, 2006. 81, 88

[291] N. Trawny, S. Roumeliotis, and G. Giannakis, “Cooperative multi-robot localization
under communication constraints,” in IEEE International Conference on Robotics
and Automation, 2009. ICRA ’09, pp. 4394 –4400, May 2009. 81

[292] M. E. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, S. Thomopoulos,
and others, “Distributed fusion architectures and algorithms for target tracking,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 95–107, 1997. 81, 89

[293] A. Makarenko and H. Durrant-Whyte, “Decentralized data fusion and control in
active sensor networks,” in Proceedings of the Seventh International Conference on
Information Fusion, vol. 1, pp. 479–486, 2004. 81, 87, 89, 106

[294] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized Localization
of Sparsely-Communicating Robot Networks: A Centralized-Equivalent Approach,”
IEEE Transactions on Robotics, vol. 26, pp. 62–77, Feb. 2010. 81, 91, 93

[295] A. Makarenko, S. Williams, and H. Durrant-Whyte, “Decentralized certainty grid
maps,” in 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings, vol. 4, pp. 3258–3263 vol.3, Oct. 2003.
81, 89

[296] A. Makarenko, A. Brooks, T. Kaupp, H. Durrant-Whyte, and F. Dellaert,
“Decentralised data fusion: A graphical model approach,” in Information Fusion,
2009. FUSION’09. 12th International Conference on, pp. 545–554, IEEE, 2009. 81,
88, 89

266

Bibliography

[297] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully distributed SLAM
using Constrained Factor Graphs,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3025 –3030, Oct. 2010. 81, 91, 93

[298] K. Y. K. Leung, T. D. Barfoot, and H. H. Liu, “Distributed and decentralized
cooperative simultaneous localization and mapping for dynamic and sparse
robot networks,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pp. 3841–3847, IEEE, 2011. 81, 91, 93

[299] P. Agarwal, Robust Graph-Based Localization and Mapping. PhD thesis, University
of Freiburg, 2015. 81, 153, 160, 161, 214

[300] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot
mapping,” in Proceedings of Robotics: Science and Systems (RSS), (Sydney,
Australia), July 2012. 81

[301] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust Map
Optimization using Dynamic Covariance Scaling,” in Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA), 2013. 81, 153, 160

[302] J. Wang and E. Olson, “Robust Pose Graph Optimization Using Stochastic Gradient
Descent,” 2014. 81, 200

[303] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E.
Munich, “The vSLAM algorithm for robust localization and mapping,” in Robotics
and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pp. 24–29, IEEE, 2005. 83

[304] D. Moore, A. S. Huang, M. Walter, E. Olson, L. Fletcher, J. Leonard, and S. Teller,
“Simultaneous Local and Global State Estimation for Robotic Navigation,” in IEEE
International Conference on Robotics and Automation, 2009. 86

[305] L. A. Andersson and J. Nygards, “C-SAM: Multi-robot SLAM using square root
information smoothing,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pp. 2798–2805, IEEE, 2008. 88, 90, 93

[306] K. Singh and K. Fujimura, “Map making by cooperating mobile robots,” in , 1993
IEEE International Conference on Robotics and Automation, 1993. Proceedings,
pp. 254–259 vol.2, May 1993. 88

[307] D. T. Cole, P. Thompson, A. H. Göktoğan, and S. Sukkarieh, “System Development
and Demonstration of a Cooperative UAV Team for Mapping and Tracking,” The
International Journal of Robotics Research, vol. 29, pp. 1371–1399, Sept. 2010. 89,
92, 93

267

Bibliography

[308] K. Konolige, J. Gutmann, and B. Limketkai, “Distributed map-making,” in
Workshop on Reasoning with Uncertainty in Robotics, Int. Joint Conf. on Artificial
Intelligence, Acapulco, Mexico, 2003. 89

[309] H. J. Chang, C. G. Lee, Y. C. Hu, and Y.-H. Lu, “Multi-robot SLAM with
topological/metric maps,” in IROS, pp. 1467–1472, 2007. 90

[310] M. Pfingsthorn, B. Slamet, and A. Visser, “A Scalable Hybrid Multi-robot SLAM
Method for Highly Detailed Maps,” in RoboCup 2007: Robot Soccer World Cup XI
(U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert, eds.), vol. 5001 of Lecture Notes
in Computer Science, pp. 457–464, Springer Berlin / Heidelberg, 2008. 90

[311] D. D. Lee, “UPenn Multi-Robot Unmanned Vehicle System (MAGIC),” tech. rep.,
DTIC Document, 2014. 90, 91, 92, 96, 211

[312] A. Cunningham, K. Wurm, W. Burgard, and F. Dellaert, “Fully distributed scalable
smoothing and mapping with robust multi-robot data association,” in 2012 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1093 –1100, May
2012. 91

[313] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” 1981. 92,
121

[314] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Consistent
distributed smoothing and mapping,” in 2013 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5220–5227, May 2013. 92

[315] A. G. Cunningham, Scalable online decentralized smoothing and mapping. PhD
thesis, 2014. 92, 93

[316] J. Guivant, S. Cossell, M. Whitty, and J. Katupitiya, “Internet-based operation of
autonomous robots: The role of data replication, compression, bandwidth allocation
and visualization,” Journal of Field Robotics, vol. 29, no. 5, pp. 793–818, 2012. 92

[317] F. Dellaert, A. Fathi, A. Cunningham, B. Paluri, and K. Ni, “Local Exponential
Maps: Towards Massively Distributed Multi-robot Mapping,” tech. rep., Georgia
Institute of Technology, 2010. 92

[318] L. Paz, P. Piniés, J. Tardós, and J. Neira, “Large-Scale 6-DOF SLAM With Stereo-
in-Hand,” IEEE Transactions on Robotics, vol. 24, pp. 946–957, Oct. 2008. 95

[319] G. Sibley, C. Mei, I. Reid, and P. Newman, “Vast-scale Outdoor Navigation Using
Adaptive Relative Bundle Adjustment,” The International Journal of Robotics
Research, vol. 29, pp. 958–980, July 2010. 95, 220

268

Bibliography

[320] R. Reid, A. Cann, C. Meiklejohn, L. Poli, A. Boeing, and T. Bräunl, “Cooperative
Multi-Robot Navigation, Exploration, Mapping and Object Detection with ROS,”
in 2013 IEEE Intelligent Vehicles (IV), IEEE, June 2013. 95, 222, 226

[321] G. Pardo-Castellote, “OMG data-distribution service: Architectural overview,” in
Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International
Conference on, pp. 200–206, IEEE, 2003. 102, 226, 228

[322] C. F. F. Karney, “Transverse Mercator with an accuracy of a few nanometers,”
Journal of Geodesy, vol. 85, pp. 475–485, Feb. 2011. 106

[323] H. Moritz, “Geodetic reference system 1980,” Bulletin géodésique, vol. 54, pp. 395–
405, Sept. 1980. 106

[324] P. J. Leach, M. Mealling, and R. Salz, “A Universally Unique Identifier (UUID)
URN Namespace,” 2005. 107

[325] J. N. Gray, “Notes on data base operating systems,” in Operating Systems (R. Bayer,
R. M. Graham, and G. Seegmüller, eds.), no. 60 in Lecture Notes in Computer
Science, pp. 393–481, Springer Berlin Heidelberg, 1978. 116

[326] A. Censi, “An accurate closed-form estimate of ICP’s covariance,” in 2007 IEEE
International Conference on Robotics and Automation, pp. 3167–3172, Apr. 2007.
121, 145

[327] J. M. Coughlan and A. L. Yuille, “Manhattan world: Orientation and outlier
detection by bayesian inference,” Neural Computation, vol. 15, no. 5, 2003. 121

[328] R. Morton and E. Olson, “Robust sensor characterization via max-mixture
models: GPS sensors,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pp. 528–533, IEEE, 2013. 133, 239

[329] D. Rodriguez-Losada, P. San Segundo, M. Hernando, P. de la Puente, and A. Valero-
Gomez, “GPU-Mapping: Robotic Map Building with Graphical Multiprocessors,”
Robotics & Automation Magazine, IEEE, vol. 20, no. 2, pp. 40–51, 2013. 136, 137,
139, 146

[330] J. Kessenich, “The OpenGL® Shading Language v1.30,” tech. rep., 2009. 137

[331] J. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems,” Computing in Science Engineering, vol. 12,
pp. 66–73, May 2010. 137

269

Bibliography

[332] M. Yguel, O. Aycard, and C. Laugier, “Efficient GPU-based construction of
occupancy grids using several laser range-finders,” International Journal of Vehicle
Autonomous Systems, vol. 6, pp. 48–83, Jan. 2008. 139

[333] F. Homm, N. Kaempchen, J. Ota, and D. Burschka, “Efficient occupancy grid
computation on the GPU with lidar and radar for road boundary detection,” in
Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 1006–1013, IEEE, 2010. 139

[334] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple robots,”
Proceedings of the IEEE, vol. 94, no. 7, pp. 1384–1397, 2006. 139

[335] H. Li, M. Tsukada, F. Nashashibi, and M. Parent, “Multivehicle Cooperative
Local Mapping: A Methodology Based on Occupancy Grid Map Merging,” IEEE
Transactions on Intelligent Transportation Systems, vol. Early Access Online, 2014.
139

[336] R. Wright, B. Lipchak, and N. Haemel, OpenGL SuperBible: Comprehensive
Tutorial and Reference. Pearson Education, June 2007. 141, 142, 143, 148

[337] S. Saeedi, L. Paull, M. Trentini, M. Seto, and H. Li, “Map merging for multiple
robots using Hough peak matching,” Robotics and Autonomous Systems, 2014. 145

[338] N. Sunderhauf and P. Protzel, “Towards a robust back-end for pose graph SLAM,” in
2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1254
–1261, May 2012. 153

[339] Y. Latif, C. Cadena, and J. Neira, “Detecting the correct graph structure in pose
graph SLAM,” in ICRA Workshop on Robust and Multimodal Inference in Factor
Graphs, 2013. 153

[340] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time for pose graph
SLAM,” The International Journal of Robotics Research, Oct. 2013. 159

[341] Z. Zhang, “Parameter estimation techniques: A tutorial with application to conic
fitting,” Image and vision Computing, vol. 15, no. 1, pp. 59–76, 1997. 159, 160, 161,
168

[342] N. Sünderhauf and P. Protzel, “Switchable Constraints for Robust Pose Graph
SLAM,” 2012. 159, 160

[343] M. Pfingsthorn, A. Birk, F. Ferreira, G. Veruggio, M. Caccia, and G. Bruzzone,
“Large-scale image mosaicking using multimodal hyperedge constraints from
multiple registration methods within the Generalized Graph SLAM framework,”
in Intelligent Robots and Systems (IROS), pp. 4564–4570, IEEE, 2014. 160, 214

270

Bibliography

[344] E. Olson, “M3rsm: Many-to-Many Multi-Resolution Scan Matching,” in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), June
2015. 161, 212, 213

[345] T. Bailey, S. Julier, and G. Agamennoni, “On conservative fusion of information
with unknown non-Gaussian dependence,” in 2012 15th International Conference
on Information Fusion (FUSION), pp. 1876–1883, July 2012. 163

[346] C. M. Humphrey, C. Henk, G. Sewell, B. W. Williams, and J. A. Adams, “Assessing
the scalability of a multiple robot interface,” in Human-Robot Interaction (HRI),
2007 2nd ACM/IEEE International Conference on, pp. 239–246, IEEE, 2007. 210

[347] C. H. Tong, S. Anderson, H. Dong, and T. D. Barfoot, “Pose Interpolation for
Laser-based Visual Odometry: Pose Interpolation for Laser-based Visual Odometry,”
Journal of Field Robotics, vol. 31, pp. 787–813, Sept. 2014. 220

[348] C. Forster, M. Pizzoli, and D. Scaramuzza, “Air-ground localization and map
augmentation using monocular dense reconstruction,” in Intelligent Robots and
Systems (IROS), pp. 3971–3978, IEEE, 2013. 221

[349] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart, “Get Out
of My Lab: Large-scale, Real-Time Visual-Inertial Localization,” in RSS, 2015. 221

[350] R. Triebel, P. Pfaff, and W. Burgard, “Multi-Level Surface Maps for Outdoor Terrain
Mapping and Loop Closing,” pp. 2276–2282, Oct. 2006. 221

[351] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in Hybrid Met-
ric–Topological Maps,” in International Conference on Robotics and Automation,
2011. 221

[352] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, “Planning reliable paths
with pose SLAM,” Robotics, IEEE Transactions on, vol. 29, no. 4, pp. 1050–1059,
2013. 221

[353] N. Carlevaris-Bianco, M. Kaess, and R. Eustice, “Generic Node Removal for Factor-
Graph SLAM,” IEEE Transactions on Robotics, pp. 1–15, 2014. 222

[354] W. Woodall, “ROS on DDS,” 2015. 222, 226

[355] Bank of America Merrill Lynch, “Robot Revolution – Global Robot & AI Primer,”
tech. rep., 2015. 223

[356] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized link state routing protocol for ad hoc networks,” in Multi Topic

271

Bibliography

Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings.
IEEE International, pp. 62–68, 2001. 227

[357] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight Communications and
Marshalling,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct. 2010. 230

[358] K. Nagatani, A. Kushleyev, and D. D. Lee, “Sensor Information Processing in Robot
Competitions and Real World Robotic Challenges,” Advanced Robotics, vol. 26,
no. 14, pp. 1539–1554, 2012. 234

272

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Robots
	1.1.1 Trends in Robotics
	1.1.2 Mobile Robots
	1.1.3 Simultaneous Localization and Mapping

	1.2 Multi-Robot Systems
	1.2.1 MRS Architectures
	1.2.2 Multi-Robot Localization
	1.2.3 Multi-Robot SLAM

	1.3 State of the Art
	1.3.1 Academic Research
	1.3.2 Localization-Only Systems
	1.3.3 Multi-Robot Simulations
	1.3.4 On-line MR@汥瑀瑯步渠--SLAM Systems
	1.3.5 Technology Maturity

	1.4 Potential Multi-Robot Applications
	1.4.1 Search and Rescue
	1.4.2 Military and Law Enforcement
	1.4.3 Agriculture and Farming
	1.4.4 Mining and Resource Extraction
	1.4.5 Space Exploration and In-Situ Resource Utilization

	1.5 Notation
	1.6 Publications
	1.7 Thesis Structure

	2 Review: Simultaneous Localization and Mapping
	2.1 Problem Statement
	2.1.1 Data Association
	2.1.2 Full SLAM
	2.1.3 Loop Closures
	2.1.4 Example Problem

	2.2 Poses and Transformations
	2.2.1 Rigid-Body Transformations
	2.2.2 Transform Compositions
	2.2.3 Homogeneous Coordinate Transforms

	2.3 Environment Mapping and Parameterization
	2.3.1 Environment Mapping Sensors
	2.3.2 Lidar Measurement Noise
	2.3.3 Lidar Sensor Model
	2.3.4 Map Parameterization and Storage
	2.3.5 2@汥瑀瑯步渠--D vs. 3@汥瑀瑯步渠--D Maps for Wheeled Robots

	2.4 Motion Models and Localization
	2.4.1 Mobile Robot Motion Models
	2.4.2 Ego-Motion Estimation with Odometry Sensors
	2.4.3 Global Pose Estimation with External Localization
	2.4.4 Map-Based Robot Localization

	2.5 SLAM Algorithms
	2.5.1 SLAM Assumptions
	2.5.2 Full SLAM Graphical Model
	2.5.3 Bayesian Filter-Based SLAM
	2.5.4 Graph-Based SLAM
	2.5.5 Submapping Techniques

	2.6 Problem Review

	3 Review: Large-Scale Multi-Robot SLAM
	3.1 Definitions
	3.2 Multi-Robot SLAM
	3.2.1 Problem Statement
	3.2.2 Architectures
	3.2.3 Previous Work

	3.3 Large-Scale SLAM
	3.3.1 Large Areas and Trajectories
	3.3.2 Large Teams of Robots
	3.3.3 Large Average Node Degree

	4 Hybrid-Decentralized and Distributed Multi-Robot SLAM
	4.1 Introduction
	4.1.1 Research Contributions
	4.1.2 Dependencies
	4.1.3 Requirements
	4.1.4 Assumptions

	4.2 System Architecture
	4.2.1 High-Level Decisions and Rationale
	4.2.2 Software Components and Deployment

	4.3 Conceptual Design
	4.3.1 Graph-based SLAM with Submaps
	4.3.2 Coordinate Frames
	4.3.3 Submap Life Cycle
	4.3.4 Submap Uniqueness
	4.3.5 Submap Gridmap Representation
	4.3.6 Firewalling Pose Uncertainty
	4.3.7 Loop Closures with Submaps
	4.3.8 Robust Wireless Communications
	4.3.9 Hybrid-Decentralized Pose Graphs

	4.4 Logical Design
	4.4.1 Local SLAM Front-end
	4.4.2 Mapbuilder Back-end
	4.4.3 Mapbuilder GUI

	4.5 System Verification
	4.5.1 Flexible Global Localization
	4.5.2 Consistent Coordinate Frames
	4.5.3 Heterogeneous UGVs

	5 Efficient Occupancy Gridmap Fusion and Matching
	5.1 Introduction
	5.1.1 Research Contributions
	5.1.2 Graphics Processing Units
	5.1.3 Programming Model

	5.2 Submaps as Textures
	5.3 GPU-based Occupancy Gridmap Fusion
	5.3.1 Problem Statement
	5.3.2 Previous Work
	5.3.3 Naive Algorithm
	5.3.4 Proposed Algorithm
	5.3.5 Implementation
	5.3.6 Additional Output Gridmaps

	5.4 GPU-based Multimodal Constraint Generation
	5.4.1 Problem Statement
	5.4.2 Previous Work
	5.4.3 Multimodal Constraint Generation

	6 Robust Multimodal Pose Graph Optimization
	6.1 Introduction
	6.1.1 Research Contributions
	6.1.2 Motivation
	6.1.3 Problem Statement

	6.2 Background
	6.2.1 Unimodal Constraints
	6.2.2 Multimodal Constraints

	6.3 Previous Work
	6.3.1 Robust Loop Closures
	6.3.2 Robust Unimodal Constraint Optimization
	6.3.3 Robust Multimodal Constraint Optimization

	6.4 Robust Multimodal Pose Graph Optimization
	6.4.1 Continuous Mode Blending
	6.4.2 Blending Coefficients
	6.4.3 Convergence Properties
	6.4.4 Constraint Jacobians
	6.4.5 Least Squares Optimization
	6.4.6 Robust Multimodal Constraints

	7 Results
	7.1 Hybrid-Decentralized and Distributed MR@汥瑀瑯步渠english Hybrid-Decentralized and Distributed MR-SLAMsub:ResultsHybrid-Decentralized-=000026-Distribut-SLAM
	7.1.1 MAGIC Challenge
	7.1.2 Distributed Occupancy Gridmap Comparison
	7.1.3 Distributed Pose Graph Comparison

	7.2 Large-Scale Real-Time Multi-Robot SLAM
	7.2.1 Old Ram Shed Challenge
	7.2.2 MAGIC Challenge Phase 1
	7.2.3 MAGIC Challenge Phase 2

	7.3 Robust Multimodal Pose Graph Optimization
	7.3.1 Multimodal Gaussians in R1
	7.3.2 Multimodal Gaussians in R2
	7.3.3 Multimodal Gaussians in SE(2)

	7.4 Discussion
	7.4.1 Accuracy
	7.4.2 Scalability
	7.4.3 Robustness
	7.4.4 Perceptual Aliasing
	7.4.5 Usability and Cognitive Load
	7.4.6 Comparison to Recent Work
	7.4.7 Multimodal Pose Graph Optimization

	8 Conclusion
	8.1 Summary
	8.2 Research Contributions
	8.3 Future Work
	8.4 Final Thoughts

	A MRS Architecture and UGV Design
	A.1 WAMbot MRS Architecture
	A.1.1 Software Architecture
	A.1.2 Communications Architecture
	A.1.3 Ground Control Station
	A.1.4 UGV Hardware Design

	A.2 Team Michigan UGV Front-End Design
	A.3 University of Pennsylvania UGV Front-End Design

	B MAGIC Challenge Datasets
	B.1 Overview
	B.2 Challenge Datasets
	B.2.1 Old Ram Shed Challenge
	B.2.2 Phase 1 Dataset
	B.2.3 Phase 2 Dataset
	B.2.4 Phase 3 Dataset

	B.3 Post-Challenge Dataset Notes

	Bibliography

