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ABSTRACT

This thesis presents the development of a rugged, high-speed, low-cost, and highly 

adaptable autonomous ground vehicle, to serve as an educational tool for future Robotic

Engineering students at The Universtity of Western Australia, and enabling future 

research into Automous Navigation and Computer Vision not possible with the 

university’s current fleet of robots. The vehicle was developed with the goal of 

facilitating future research into Autonomous (car) Driving, and Self Localisation and 

Mapping (SLAM) techniques, utilising progressively lower cost sensors and hardware 

than traditionally employed for the purpose, thereby lowering the cost of entry for 

research into the field. The vehicle was developed around a highly configurably 

consumer R/C car to ensure stability at high speeds, over varied terrain, both indoors 

and out, ensuring adaptability to future test conditions, and autonomous and SLAM 

capabilities utilising a 2D Laser Distance Scanner as it’s only sensor were developed as 

a proof of concept and baseline for future research.

 The software was developed on top of UWA’s RoBIOS software, which provides a 

touchscreen interface for users to run programs as well as providing a simple API to 

interact with the robot. As an additional part of this part of this project, improvements 

and alternatives to RoBIOS were investigated, and functionality required for the new 

vehicle was added to the RoBIOS API, providing a more feature rich environment for 

future Robotics students.
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INTRODUCTION

1 INTRODUCTION

A robot requires an accurate understanding of it’s environment if it is to be able to 

interact with it effectively. The degree of self and environmental awareness of a robot is 

often dependent on the quality of sensory information available. Self-driving vehicles 

may employ a wide variety of sensors, but it is common to see them rely heavily on 

Laser Scanners known as LIDAR, which can provide accurate distance measurements 

of the robots surroundings at high frequencies, and typically at high cost. The primary 

focus of this project was developing and testing an autonomous vehicle using LIDAR as

its only sensory input, and therefore providing a baseline to compare results of future 

research into autonomous driving with lower cost sensors. [1] [2]

The project is perhaps best summarised by dividing it into 3 distinct stages:

• A study of software available for the Raspberry Pi 3, focussing on compatibility 

with UWAs existing robot interface RoBIOS

• Developing a self-driving algorithm to prove the ability to drive autonomously 

with a 2D Laser Scanner

• Demonstrating the ability of the Raspberry Pi 3 to perform a SLAM algorithm

Each of these stages contributes to the primary aims of the project, to enhance the 

existing educational resources available to UWAs robotics students, and to prove the 

capability of the platform to enable research into autonomy and SLAM using alternate 

sensor.

Raspberry Pi 3s running RoBIOS software are currently used by The University of 

Western Australia in the practical education of Electrical Engineering students. Work 

initiated with testing and troubleshooting of the RobiOS software through the 

development of an autonomous, maze navigating robot. As well as allowing 

familiarisation and refinement of RobiOS, this testing highlighted the difficulty of using

calbrated, single dimension, IR-based Position Sensing Devices (PSDs) to navigate, 

even at low speed. As such, LIght-baser raDAR (LIDAR) sensors are frequently 

employed to assist in autonomous vehicle navigation.[3]
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In order to test navigating with LIDAR, an alternate vehicle to the Eyebots normally 

used by had to be developed and configured. A 1:10 scale, Traxxas Stampede Radio 

Control vehicle had previously been used within the department and was available for 

use. This vehicle is a RWD electric car with servo controlled steering and capable of 

speeds up to 50km/h (scaled speed 500km/h).

The primary focus of the this project was configuring the car, the Raspberry Pi 3, and 

the Robios software to work in harmony enabling the vehicle to safely navigate 

autonously, at relatively high speed, through an office like environment using solely 2D 

LIDAR measurements (no odometry). The result is a stable autonomous platform which

can easily be expanded to test more complex driving and mapping algorithms, or as a 

basis for comparing performance of alternate sensors. The RoBIOS software and it’s 

underlying operating system Raspbian were also investigated, developed, and updated 

significantly to allow future Robotics students a simple way to access features used for 

in this vehicle.
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2 HARDWARE

As with any project, there were

limitations on what we could and

couldn't do to meet our

objectives. Specifically, the robot

was to use components (sensors,

controllers, etc.) already owned

by the Robotics department; a

new Laser Scanner was not to be

used for example. Compatibility

with the departments existing

teaching robots and platform,

EyeBot and RoBIOS

respectively, was to be maintained to the highest level possible, to ensure any new 

features implemented could be implemented across all the teaching robots, as well as 

providing a consistent user interface across the department's fleet.

These limitations dictated the physical components, and subsequently additional 

software, of the robot, which consists of a Traxxas Stampede R/C Car, Raspberry Pi 3 

Single Board Computer with a 3.5" TouchScreen for UI, Hokuyo URG-04LX-UG01 

Laser Scanner, and a Logitech Gamepad for remote control. These components would 

therefore be physically connected and virtually interfaced to become the autonomous 

platform in Figure 2.1.

2.1 Traxxas Stampede R/C Car  

The commercially available Traxxas Stampede XL-5® is a 1/10 scale R/C (Radio 

Control) Car, and is the backbone of the robot and perhaps the primary component 

allowing the adaptability and flexibility of the end product. The car features:

• Speeds up to 50km/h or increased torque at lower speeds via adjustable gearing

• Fully adjustable suspension and steering similar to that found on a car

• Waterproof motor and electronics

6
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HARDWARE

• Rear wheels driven through a differential, brakes via the motor (through the rear 

wheels only)

The Traxxas Stampede was available to the department following previous research

Additional information can be found at the Traxxas website [4]

2.2 Hokuyo URG-04LX-UG01 Laser Scanner  

As mentioned, Laser Scanners are widely used in Robotics to provide high quality 

nearest distance data to a controller for processing. Available to us was the Hokuyo 

URG-04LX-UG01. Important specifications include[5]:

• 10Hz scan rate

• 240° Field of Vision

• 0.352° Angular Resolution

• 20 – 5600mm range, ±3%

• USB power and communication

2.3 Logitech Gamepad F710  

This is a wireless, gaming console style, handheld controller. It uses a USB dongle and 

operates at 2.4GHz.

The controller features 2 “triggers’ with 8 bit resolution, and two thumbsticks featuring 

32 bit resolution in 2 axes.[6]

2.4 Raspberry Pi 3  

The primary teaching robot currently used at the UWA is known as “EyeBot”, and is a 

small differential drive robot controlled via a Raspberry Pi 3 Single Board Computer 

(SBC) running a GNU/Linux distribution “Raspbian” and the university RobiOS robot 

interface. As we wished to build upon RobiOS to enable the new robots use as a 
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learning aid, the Pi 3 was the obvious choice of controller. Additional Pi 3 features taken

advantage of by include:

• USB powered with a relatively low power draw

• Onboard Wi-FI, Bluetooth, 100M Ethernet, 4xUSB2.0 ports

• General Purpose Input/Output (GPIO) pins, enabling the use of a 3.5” LCD 

touchscreen for a user interface with remaining pins for interfacing with external

components

• Full Linux development environment with very active community ensuring high

compatibility of software and hardware

• Small footprint with multiple enclosures and mounting options available

More information is available through the Raspberry Pi Foundation [2]
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3 SOFTWARE

The use of the Raspberry Pi 3 SBC opens up a realm of software possibilities for robot 

control, development, and interfacing in comparison to more traditional embedded 

robotics microcontrollers such as the Motorolla 68k series. Different operating systems 

available for the Pi 3 are available with varying levels of Robotics software support. 

Several were investigated for stability, usability and compatibility with UWA's RoBIOS 

software [2]

3.1 SINGLE BOARD COMPUTERS  

Traditional embedded microcontrollers, such as the M68322 used on the previous 

generation of the Eyebot teaching robots, limit power and resource usage by only 

running and storing what is needed at any one time. The original RoBIOS interface and 

the desired user programs would be close to the only software stored and run by the 

controller.

The Pi 3 is a Single Board Computer (SBC), which by definition is much more akin to a

modern home computer than the traditional embedded controller. SBCs require an 

Operating System (OS) to provide access to the array of features integrated on the board

(eg the CPU itself, network interfaces, storage). This is traditionally installed as part of 

a Linux distribution, which also provides repositories of compatible user applications 

and packages to customise and extend your system, as you might your PC.[7]

3.2 Pi 3 DISTRIBUTIONS  

The Pi 3's large userbase and development community has led to a number of official 

OS releases from major Linux distributions (Raspbian, Ubuntu, openSUSE etc.), as well

as a number of unofficial OS builds, each implementing a unique set of features or 

software. To make matters more complicated, the OS officially supported by The 

Raspberry Pi Foundation, Raspbian, has been through multiple iterations since it’s 

initial release.[8] [9]
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Each of these Raspbian release was investigated for RoBIOS compatibility and features 

that may be desirable in our robot, as was an official Ubuntu for Pi release, configured 

by a third party to include a ready-to-run ROS installation. These were selected from the

countless available distributions and releases due to their larger user bases and thus 

support facilities.

3.2.1 Raspbian Wheezy

Raspbian Wheezy was the first Raspbian (Debian for Raspberry Pi) officially released 

(in July 2012) and last seeing a major update in May 2015 prior to the release of Jessie. 

The software officially available for this release has not seen much development in 

several years and can feel a little dated. It is however extremely stable when configured 

correctly, and was the OS used by RoBIOS until mid-late-2017. ROS packages are not 

available nor is it recommended to build from source. The Mobile Robot Portable 

Toolkit is also unavailable. Due to it's age it should be avoided for new work.[10]

3.2.2 Rasbian Jessie

Rasbian Jessie was first released in September of 2015 and initially featured only minor 

improvements to stretch beyond compatibility with newer software and updated 

repositoiesy. Between its release and final major update in July of 2017 however, a lot 

of the underlying system, and front end, were updated to improve performance, 

appearance and security. Unfortunately these updates broke a lot of software, including 

RoBIOS when it was moved from Wheezy to Jessie in 2017.

RoBIOS has been rebuilt and is now mostly stable on Jessie, however it still exhibits 

problems that do not exist on Wheezy. The Jessie repositories provide limited access to 

the MRPT but a complete robotics development environment is not officially available 

or supported. 

Jessie was superseded with the release of Stretch in August 2017[10]
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3.2.3 Raspbian Stretch

Rasbian Stretch was released in August of 2017 and featured an updated kernel and 

firmware revision, even compared to a fully up to date Jessie install. 

Stretch was the first release based solely on the updated init system and core packages 

and not incrementally upgraded like Jessie. This made compatibility with older software

(eg RoBIOS) a potential issue.

The software repositories include prebuilt ROS packages to install, however at the time 

they were tested (not long after the August release), they did not seem to be configured 

correctly, and many packages referenced in the official ROS documentation and 

tutorials did not seem to have any equivalent in the Raspbian release. 

That may be resolved in the future, however if ROS were required, it can be built 

successfully from source on Stretch with multiple reports of success online and 

ErleRobotics providing support to commercial customers.

ErleRobotics is also working with ROS 2 (currently still alpha) on Pi 3s running Stretch.

[11]

The Mobile Robot Portable Toolkit (MRPT) installed successfully from the official 

Raspbian repositories and worked as documented out of the box. Unfortunately MRPT 

is not nearly as prominent in the online Robotics community and it was difficult to find 

support. Very limited testing had the icp-slam implementation working with the Hokuyo

Laser within minutes of installation however no progress was made beyond that.[12]

RoBIOS was updated to work on a recent Jessie install only weeks before the official 

release of Stretch. Not seeing the logic in updating all the teaching robots to an already 

outdated OS, I spent many hours configuring Raspbian Stretch to successfully build 

RoBIOS from source, and many more hours making replacing code broken by the new 

OS (eg. ifconfig to find ip address) with their new counterparts (eg. ip a).

A number of issues were fixed, especially those responsible for crashes, but bugs 

remained and the team responsible for maintaining the EyeBots simply didn't have the 

resources to perform another upgrade. EyeBots and therefore the RoBIOS software are 

therefore running on the older Rasbian Jessie.
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The size of the OS images increased to around 3.5GB for the GUI or Desktop versions 

of Jessie or Stretch compared to the 2GB or less for Wheezy. I chose to attempt to build 

a lighter system by using the Raspbian Stretch Lite (no gui) image and building only the

packages required by RoBIOS, and MRPT for my own education. If anybody reads this 

and would like a copy, don't hesitate to contact me. [10]

3.2.4 Ubuntu + ROS

The developers at "German-Robot Humanoid Robots" have provided instructions to 

build ROS Kinetic on Ubuntu 14.04 for Pi 3, as well as providing a ready to run image. 

Unfortunately official support for 14.04 has now ended.

This image was not encountered until further into the project and as such RoBIOS 

compatibility was not checked. Instead the image was used to investigate the possibility 

of integrating ROS SLAM algithms into our robot, but after completing a number of 

ROS tutorials and realising the magnitude of the ROS project, the idea was forgotten.

Despite all this, for someone wanting to learn ROS, this image and a Pi 3 is a much 

nicer way to do so than installing on your PC and it is surprisingly responsive and 

smooth.[13]

3.3 OPERATING SYSTEM SUMMARY  

After researching, downloading, flashing, updating, configuring, and repeating all the 

aforementioned Pi 3 Operating Systems, it shouldn't surprise the reader to read we are 

still using Wheezy, the original version of Raspbian from 2013. Officially EyeBots are 

now running RoBIOS on Jessie. In our experience this is still not as stable as the 

Wheezy installation, and there is no benefit for our project to upgrade at this time.

Additionally, the I/O expansion board used by EyeBot connects via USB to the Pi 3 at 

ttyACMx, as does the URG-04LX.  [5]This has been solved in our RoBIOS by 

modifying the way USB devices are detected in the source code. The same correction 

will work in Jessie but due to restricted code access it has not yet been implemented.
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The Stretch image with RoBIOS (created from the corrected but old source) worked 

with our program reliably however to eliminate the possibility of the new, relatively 

untested OS affecting behaving strangely we opted to revert to Wheezy. Our original 

desire to upgrade was to make use of ROS or MRPT in our autonomy and laser 

visualisation and processing and still remains a potential extension of this work. The 

complexity of ROS and lacking documentation of MRPT put this option out of our 

reach with the timeframe we had. Our recommendation for future OS and RoBIOS 

development is to use the latest version of Raspbian Stretch to take advantage of it’s 

performance and security improvements and allow access and compatibility with the 

latest software repositories and robotics platforms. 

3.4 ADDITIONAL SOFTWARE REQUIRED  

With the Operating System decided, it was necessary to start interfacing the Pi 3 with 

the additional hardware. Fortunately an open-source software solution existed for all 

these devices enabling reliable communication between the Pi 3 and peripheral devices. 

3.4.1 Traxxas ESC and Servo Interface

The Traxxas R/C car originally utilised a radio transmitter/receiver combination 

common to most radio control vehicles, indicating the Electronic Speed Controller was 

most likely controlled with the standard servo-style PWM signal; 1-2ms pulses every 

20ms, or at a rate of 50Hz. This was confirmed by applying the appropriate signal to the

control wire previously attached to the R/C receiver with the battery connected and ESC

enabled. The steering servo is a standard model airplane type servo utilising the same 

protocol. We therefore required 2 servo-style pulse generators, and a reference for 

ground.[4]

The Raspberry Pi SBCs feature 2 rows of General Purpose, Input/Output (GPIO) pins, 

enabling digital input and output on most of the pins as specified by the user. The Pi 3 

features 40 GPIO pins, 26 of which are utilised by the 3.5" LCD TouchScreen leaving 

14 pins including the requiured ground free to use. 
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There is no obvious provision for accessing and controlling these pins in the standard 

Raspbian Distribution, beyond using an inefficient and inaccurate software defined 

output. 

Fortunately, user "richardghirst" of Github has developed ServoBlaster, a user space 

daemon (background process), which sets any GPIO pin as defined by the user to the 

pulse width value written to the file /dev/servoblaster. 

Simply put, he has provided a simple interface enabling PWM signals to be generated, 

in hardware, on any of the GPIO pins according to the timing value and pin specified by

the user. This proved to be perfect for our requirements and required only a slight 

modification to the default configuration to ensure the pins used by the display were not

being modified.[14]

3.4.2 Hokuyo URG-04LX-UG01 Interface

The developers of the Laser Scanner provide the Urg Library, an open source C library 

providing a very complete interface to the URG Laser Scanners. [15]This was the first 

and most obvious library encountered for this sensor, so is the one we worked with 

most. 

The library is designed to work with all URG scanners and provides far more 

functionality than required. It is for the most part simple to use but documentation is 

lacking and difficult to find, and, as with commenting throughout the code, is often in 

Japanese Kanji. Regardless, it has proved to be a robust and reliable interface to the 

sensor.

BreezyLIDAR provides a much simpler interface for accessing the scanners 

measurements and is designed to work directly with BreezySLAM if desired.[16]

ROS, MRPT and others provide their own drivers and interfaces for accessing the Laser

data.[17] [18]
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It is important to note that you may only use one of these libraries at any one time. 

Multiple requests to open or access the device will result in errors or erraneous 

behaviour

The software URG Viewer, which provides a graphical display of the current distance 

measurements from the scanner, was compiled for the Pi 3. This provided a simple 

verification of scanner functionality and settings, and a convenient way to visualise the 

incoming data.[19]

Unfortunately URG Viewer makes use of the QT application framework and we 

experienced issues making this compatible with Remote Desktop Protocol (RDP). RDP 

is used heavily in the department to provide a virtual monitor for the Pi and we 

therefore discontinued use of URG Viewer.

3.4.3 Logitech Gamepad F710

The Logitech Gamepad utilises a wireless usb dongle to receive user input from the 

wireless gamepad.

The OS kernel automatically supports the device, which mounts at /dev/input/eventX 

where X depends on the order the kernel recognises the device.

Trying to display the incoming data directly results in unreadable characters, however 

the event tester (evtest) utility, installed via the Raspbian repositories, recognises the 

incoming data and prints out the appropriate "event" or keypress.[20]

3.5 PRELIMINARY TESTING  

Prior to working on any more advanced development, the ability of the Pi 3 to assume 

control of the Traxxas, and it’s ability to autonomous code or building maps with Laser 

Scans, we needed to configure and test the basic controls of the vehicle; Acceleration, 

Braking and Steering.

Using evtest, we recorded the "Types" and "Codes" of various controller inputs and 

their associated values. We opted to utilise similar controls to those that might be found 
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in a Driving game utilising a similar controller (Right Trigger = Accelerator, Left stick =

Steering...)

Evtest is free software, allowing editing of the source to scan the incoming events for 

the previous identified Types and Codes. On identification, we are able to use 

ServoBlaster to control motor speed and steering position based on the values attached 

to the relevant input events.

The resulting program enabled manual operation of the car through the wireless 

controller and served as the basis for all future experiments.

3.6 ADDITIONAL SOFTWARE SUMMARY  

The project required a way for the Raspberry Pi 3 to interact with devices not before 

used with the Raspberry Pi 3 within the department. Figure 3.1 shows the devices and 

the software we chose to use. We made sure to test the new software for compatability 

with RoBIOS to ensure anything we made use of could be incorporated into future 
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software indicated in the intermediary blocks.
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RoBIOS development. ServoBlaster to allow PWM control of any GPIO pin is already 

in use, and the BreezyLIDAR package for laser scan access is being developed. The 

additional features these packagegs provide will soon be accessible through the Eyebot 

API for use by students studying robotics, hopefully providing a richer and more 

valuable learning experience.

17



DRIVING PROGRAM

4 DRIVING PROGRAM

A fairly rudimentary autonomous driving program has been developed for the vehicle 

and parameters optimised for the Electical Engineering hallways enabling speeds of up 

to and perhaps beyond 20km/h, with average speeds while performing “laps”  of the 4th 

floor around 12km/h. 

Autonomous Navigation for wheeled vehicles is a well developed and researched field 

of mobile robotics; the increasing number of autonomous passenger vehicles on the road

is evidence of this. Nonetheless the development of a seemingly simple autonomous 

driving routine from scratch is not an easy task and is quickly complicated by the reality

of uncertainty and limitation of sensor data availability in the real world. The following 

sections provide an overview of the final program, some of the complications we 

encountered developing this autonomous routine, and solutions to these issues. 

The program is still under development and is in no way an optimal or revolutionary 

method of navigation. Nonetheless it has proved effective and serves as a great 

demonstration of the capabilities of a robot using a 2D Laser scanner. It also may 

provide a benchmark for comparison should alternative sensor research proceed.

4.1 USER INTERFACE  

The program makes use of the RoBIOS API to provide a graphical user interface (GUI) 

to the user. 

Upon running the program or returning

from other screens, Figure 4.1 is displayed

to the user. On the left, a map showing the

location of the most recent laser scan data

(in red) is displayed, to the right, the

current camera view is displayed. 

18
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Below these, the current drive mode (see 4.2) is displayed, alongside the current motor 

and steering values (in Pulse Width Duration)

If the program is running in autonomous mode, the map displays an approximate 

vehicle trajectory as seen in Figure 4.1. The colour of this trajectory indicates whether 

the vehicle is accelerating (green) or decelerating (red).

The colourful row along the bottom of the display provides access to alternate displays:

Stats provides information mainly for debugging and tuning driving parameters,

Dashboard allows changing program options via the touchscreen, specifically whether 

text is displayed correctly for the LCD or for a remote desktop session, although other 

options could be configured.

4.2 DRIVE MODE  

A number of “Drive Modes” are available to the user depending on the current use case.

4.2.1 Manual Mode

The default mode, used when the program is first started, is Manual Mode. This 

provides complete manual operation of the car via the Logitech Controller, with 

Controller inputs mapping directly to Steering and Speed outputs (Speed output is still 

limited to hard-coded value).

Implementing some form of collision avoidance was considered but decided against due

to the common Manual Mode use cases, car retrieval when the laser scanner fails.

4.2.2 Auto Mode

Auto Mode is entered by pressing the Left Bumper of the Logitech Controller and has 

“sub-modes” which can be selected with the D-pad of the controller. 

Auto Mode lets the program take over control of the robot. As a safety measure, the 

Right Trigger is used as a dead-mans-switch and must be pulled to enable autonomous 

driving, but otherwise the robot is in full control of steering and speed and will attempt 

to negotiate the path it decides is best at the maximum speed it decides is possible.
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The sub-modes, Left Priority, Right Priority, and Balanced, prioritise turning in the 

specified direction when the robot reaches a junction. The turning sub-modes are 

selected by pressing the preferred direction on the D-pad.

The sub-mode U-turn can be used to automatically perform a U-turn if it is possible in 

the robots current position. This feature is still experimental and enabled by pressing 

Down on the D-pad.

4.3 AUTONOMOUS DRIVING ALGORITHM  

The algorithm developed for the autonomous driving mode is quite simple in it’s logic 

and implementation and its usage can be

described by Figure 4.2. 

If a new scan is available, the algorithm

uses the new scans data, the current

turning priority sub-mode and the speed

set by the algorithms previous iteration as

inputs to determine the optimum settings

at the current time for the steering servo

and speed controller. These are applied by

Servoblaster and the cycle repeats when

the next scan is received.

It is important to note that the current

value of “Speed” is not an accurate

representation of the actual robot speed and is only the speed we have requested the 

vehicle to accelerate or decelerate to. In fact Speed is an inaccurate name, as its value is 

more closely related to the proportion of the available power that we wish the motor to 

see. Therefore factors like battery voltage and capacity, and physical inclines may result 

in considerable variance of actual speeds at the same setting.

This is especially important to consider when the robot wishes to reduce its speed but 

does not need to apply brakes. In such situations the vehicle “coasts” until it reaches its 
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new set speed, meaning actual speed can remain much higher than the current Speed 

setting might suggest.

At a slightly lower level, Figure

4.3 shows the individual branches

responisible for the robots path,

one branch for deciding the

vehicles speed, and one for

deciding the steering angle.

4.3.1 Speed Control Branch 

The speed control branch of the

algorithm is quite simple. A

forward facing range of scans

equivalent to the width of the car

(plus a safety factor) is checked for

obstacles, and a distance to the

obstacle on the forward facing axis

is calculated. The distance to this

object and the vehicles previously set speed are used to determine the vehicles new 

speed and its behaviour is

summarised in Table 1. It should be

mentioned that there is no definition

of close or distant objects in the

code, the set speed is instead a

function of previous speed and the

forward distance to the obstacle.

The “Danger Zone” is similarly

defined and represents the latest

point the vehicle can safely stop

without hitting the obstacle it has

detected. At a high speed, the vehicle
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Figure 4.3: High Level Algorithm Overview

Previous 

Speed

Obstacle 

Location

Set Speed

Low None High

Low Distant Increase or Maintain

Low Close Maintain or Decrease

Low Danger Zone Full Brakes

High None Maintain

High Distant Maintain or Decrease

High Close Decrease

High Danger Zone Full Brakes

Table 1: Speed Control Behaviour
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is going to take longer to brake to a complete stop and therefore the Danger Zone is 

larger. At low speed it is smaller, and if the vehicle has stopped, the braking distance 

and therefore Danger Zone will be 0.

As mentioned in 4.3, the Previous Speed variable does not give an accurate measure of 

actual vehicle speed, especially under deceleration and braking. Therefore as a safety 

measure, if the vehicle detects an object in it’s Danger Zone, it will apply full braking 

force until either a period of time guaranteed to bring it to a complete stop has passed 

(time varies depnding on the previous speed at time of invocation), or the steering logic 

has repositioned the vehicle while braking to a position where it is safe to once again 

accelerate. 

4.3.2 Steering Control Branch

The branch responsible for controlling the

steering servomoter, shown in Figure 4.3,

works in parallel with the speed control

branch and performs a number of functions

internally, aiming to ensure a clear forward

path for maximum speed. 

For simplicity, the scan data is separated

into equal circular sectors, currently of 5°

per sector, and the minimum horizontal and

forward distances of each sector is

calculated as defined in Figure 4.4. 

These minimum distances are used in three distinct operation, visible in Figure 4.5.

The first operation uses the minimum distances across sectors to identify any objects it 

may need to avoid and calculates the angle required to do so. 

The second operation attempts to ensure the vehicle is centered and aligned with the 

walls if it is in an environment like a straight corridor. The average minimum horizontal 

distance of each sector is calculated for the left and right side of the robot and used to 

calculate a steering angle for correction if required
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Figure 4.4: Distance Definitions
A: Actual Distance
B: Forward Distance (x-dimension)
C: Horizontal Distance (y-dimension)
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The third operation looks for corners the vehicle may wish to perform a major turn at. In

order to do so it uses both horizontal and forward distances to detect “holes” wider than 

the user defined minimum (eg ignore doors but turn at corridors). The steering angle 

required to enter any hole detected can then be calculated.

We can compare the angles generated by the

3 processes above and by using the largest

angle we ensure the vehicle, combined with a

weighting factor from the turn-preference

sub-mode (Section 4.2.2) we ensure the

vehicle will turn at any intersections it

approaches as required to drive laps around

the department.

4.4 PERFORMANCE  

The algorithm in its current state is able to

consistently drive around the environment it

was designed for at speeds far surpassing

than UWAs other wheeled robots are capable

of, despite using very little sensory

information and lacking any feedback

mechanism. Timing the robot during

autonomous experiments around the

department showed an average speed of 15km/h was possible. This converts to a scale 

speed of 150km/h.

4.5 SUMMARY  

The autonomous ability of the robot with the limited sensory data surprised us. 

Maximum speed is currently restricted by the Laser Scanner refresh rate of 10Hz and 

reliable range of ~4.5m. The distance travelled between scans and the braking distance 
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Figure 4.5: Calculating Steering Angle
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both increase with speed and increasing it further would limit our ability to safely avoid 

obstacles.

The program as a whole is still very much a work in progress and the code needs 

significant refinement, if for no reason other than readability. The self-driving algorithm

is very specific to office-like environments and could be expanded further if desired. 

That was beyond the scope of this project, which successfully demonstrated the self-

navigating ability of the robot using only a Laser Scanner and can be used for 

comparison in future research.

24



SLAM

5 SLAM

 One of the objectives of this project was to develop a platform enabling future research 

into autonomous and SLAM vehicles. Specifically, a platform for testing the self-

navigating capabilities with sensors alternate to LIDAR (ie cameras) was desired. This 

is out of the scope of this research, but we expect Visual(camera)-based SLAM 

algorithms will be investigated as a solution. 

To ensure the platform is capable of the expected use-case, or at least providing a 

baseline for comparison, we wanted to ensure it was at least capable of performing more

traditional laser-distance based SLAM iterations at a rate enabling an implementation in

real-time.[2]

5.1 SLAM ALGORITHM  

The SLAM algorithm we tested is commonly known as TinySLAM or tinySLAM and 

was developed Bruno Steux and Oussama El Hamzaoui of the MINES ParisTech Center

for Robotics.[21]

Despite being designed to be less computationally heavy than some of the more full 

featured algorithms and implementations available, it has been demonstrated at least 

once that this is not the case despite producing significantly less accurate results. [22]

The focus of this research was not optimal algorithms or optimising SLAM 

performance, we simply wanted to confirm the systems ability to generate a reasonable 

map of its environment at a rate above the incoming data rate, something TinySLAM 

would be more than capable of. TinySLAM has also been implemented in an Open-

Source and stand-alone repository named “BreezySLAM” courtesy of Simom D. Levy 

of Washington & Lee University. Ease of use and the algorithms ability to function 

without Odometry data were key in its selecton for testing[23]
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5.2 INSTALLATION AND INTEGRATION  

Thanks to Levy’s BreezySLAM package, installation was quite straight forward and 

required only a minor addition to the provided instructions to ensure the newly installed 

library was properly configured for execution through the use of ldconfig [24]

After installing and running the sample program however, the documentation fell a bit 

short and did not provide much guidance on extending the program for alternate use 

cases. The source code was however well designed and commented, enabling us to 

quickly adapt the sample program to work with our generated data without needing to 

fully understand or rewrite the backend. The changes are summarised below.

5.2.1 Scan Data

The original sample made use of data collected by the TinySLAM authors, which was 

formatted to include their robot’s wheel encoder data (Odometry). Our robot does not 

provide odometry data, and due to slightly ambiguous code in the function parsing the 

logged data, meant we rewrote the code for parsing the incoming log to match perfectly 

with our logging function in the navigation code, without looking for Odometry data.

5.2.2 Derived Classes

The package employs base and derivative classes, the ones of interest shown in Figure 

5.1. While this is useful when the software is likely to be used across multiple 

platforms, for our brief testing it was excessive and we chose to remove a layer from the

Laser class to enable greater parameter customisation as it was required.

The “WheeledRobot” Class and derivative only provided a convenient way to generate 

velocities from the measured Odometry data and as such were not required for our use 

and were removed. 
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5.2.3 Useful Parameters

The remaining base classes and derivatives in BreezySLAM contain the SLAM 

algorithm parameters, which influence the accuracy of the generated map, as well as 

what we’ve named environment parameters; the dimensions of the environment being 

stored as well as parameters defining the Laser Scanner data (which must match the 

scanner parameters when the log was taken).

5.3 EXPERIMENTAL METHOD  

The robot was driven manually around the EECE 3rd and 4th floors whilst logging the 

incoming LIDAR. Due to some hard-coded parameters in our autonomous routine, we 

were unfortunately unable to log an autonous drive, however the difference in results 

would likely be minimal.

BreezySLAM was then configured for the 2 environments; the 3rd floor using a map size

of 16×16m and the 4th floor 32×32m (based on the area covered by the robot), before 

executing the SLAM algorithm with a timer attached to the process.
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Deterministic_SLAM

RMHC_SLAM

Laser URG04LX MinesURG04LX

RoverWheeledRobot

Figure 5.1: BreezySLAM class diagram showing the derived classes
(right) pointing towards their more general base classes, and unused
classes with a cross
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5.4 SLAM TESTING RESULTS  

5.4.1 Map Accuracy

The initial tests were not exactly a success, with

the algorithm generating twisted and warped

maps (Figure 5.2). 

As configuring the algorithm for high accuracy

was never priority, it received little time or

attention and parameters were adjusted almost

randomly rather than due to any real

understanding of their impact. Regardless,

BreezySLAM produced a relatively accurate map

of the EECE 3rd floor. 

Figure 5.3 above shows the actual floor plan of the area of the EECE 3rd floor that the 

roboit drove to generate the map shown in Figure 5.4. The Floor Plan includes various 

object the Laser Scanner sees that are evident in the generated map such as chair legs 

and cupboards. The dotted line through the generated map shows the position the 

SLAM algorithm believed the robot was at when each Laser Scan was recorded.

28

Figure 5.2: Initial SLAM Test

Figure 5.4: SLAM Generated Map, 3rd 

Floor EECE
Figure 5.3: Floor Plan, 3rd Floor EECE
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We also attempted to map the 4th floor of the EECE building, the same area we tested 

the self-driving algorithm. This a larger area, with few unique features for the algorithm 

to make use of. 

Figure 5.5 shows the actual floor plan the generated map in Figure 5.6 represents. The 

algorithm tracked the path of the robot quite accurately. A random path was manually 

driven after a loop was driven and is represented in the top right of 5.6. A pot plant in 

the lower left is also clearly visible. 

The algorithm did not accurately determine the length of the hallways and produced a 

much smaller map than its actual size
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Figure  5.5:  Floor  Plan,
4th Floor EECE

Figure 5.6: SLAM 
Generated Map, 4th Floor 
EECE
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5.4.2 CPU Load and Processing Time

The SLAM algorithm utilised 100% of 1 of the 4 CPU cores on the Pi 3 (Figure 5.7) 

and achieved processing rates above the 10Hz that the URG04LX operates at when 

generating the previous maps (Figure 5.8). 

5.5 DISCUSSION  

An extensive analysis of results was not performed, however visually analysing the 

SLAM generated maps does indicate the vehicle in its current configuration is capable 

of SLAM in real-time and could therefore be used for comparison with visual SLAM 

algorithms, although a different or modified SLAM algorithm would be ideal.

The results also confirmed shortcomings of the tinySLAM algorithm identified in other 

SLAM research, particularly that tinySLAM suffers from poor loop closure logic, which

can be seen in the upper right of both Figures 5.4 and 5.6. [22]

The original tinySLAM creators are among a few researchers who have proposed 

solutions that could potentially replace the algorithm used by BreezySLAM. [25], [26]

The result of the test on the 4th floor show the limitation of SLAM without odometry 

data in featureless environments. The hallways are many times longer than the 

maximum range of the Laser Scanner, and the SLAM algorithm struggles to find 

reference points to determine relative motion. This can be corrected for by tuning the 

algorithm, to a degree.
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Figure 5.7: CPU Usage During SLAM (PID 18783)

Figure 5.8: SLAM Processing Rate
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The CPU usage recorded during the SLAM algorithm lead us to believe the algorithm 

could be implemented in real time. While the process did require 100% of one of the 

cores, the remaining 3 cores should be sufficient to enable control of the vehicle
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6 CONCLUSION AND FUTURE WORK

6.1 FUTURE WORK  

The platform was developed to enable research into alternatives to the expensive 2D-

laser scanner and that remains a potential for future work. Attempting to achieve similar

autonomous driving capabilities using only a camera is one such topic of research.

The platform would also serve as a good tool for developing SLAM algorithms.

The autonomous driving currently implemented is not a very intelligent design and 

could be significantly improved. An implementation to enable quickly adapting to new 

environments either automatically or through manual operation like teach-and-repeat 

would be particularly useful. Integration with SLAM for autonomous exploration would

be a good use of the platform.

The robot is well suited to outdoors and harsh terrain, so future researchers should not 

limit themselves to office environments. 

An accurate model of the car and it’s behaviour would be useful for any future work.

6.2 CONCLUSION  

Experiments conducted using the robot platform developed in this paper have succeeded

in demonstrating the capabilities of the new vehicle utilising only a 2D Laser Scanner 

for information about it’s environment and relative position. An autonomous driving 

routine has been developed capable navigating an office environment at speeds far 

greater than capable by anything in the departments current fleet of wheeled robots. We 

have also shown that SLAM is possible on the new platform and the results indicate 

SLAM in real-time is also viable. 

The new platform and it’s components have been implemented to be compatible with 

the RoBIOS interface used in the practical components of robotics coursework. Some of

these features are being integrated into the RoBIOS interface to provide new 

functionality, such as a simple API for accessing Laser Scanner Data and PWM control 

with the GPIO pins. The additional features can therefore be integrated into the 
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coursework and equipment enabling hands on experience with a broader range of 

equipment. The cars high speed, unique appearance, and simple graphical interface 

would, in the authors opinion, be a great tool for generating interest among potential 

students.

The work described in this paper has resulted in a platform that is ready for future 

research into the use of low-cost sensors as a replacement for expensive laser-ranging 

technologies, and improving autonomous robotic navigation. It has also contributed to 

enriching the learning experience of Robotics students at the University of Western 

Australia through the development and improvement of tools used in their education.
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