

FINAL YEAR PROJECT

21776987

Renewable Energy Vehicle’s
User Interface

 Author: Supervisor:

 Fangpeng Li Prof. Thomas BR�̈�UNL

Thesis submitted as part of the B.E. degree in the School of Electrical, Electronic and Computer
Engineering, University of Western Australia

Glossary of Terms

API Application Programming Interface

BMS Battery Management System

DP Douglas Peucker Algorithm

EV Electric Vehicle

GPS Global Positioning System

GUI Graphical User Interface

HMI Human Machine Interface

IDE Integrated Development Environment

QT QT Application Framework

REV Renewable Energy Vehicle Project

RPi Raspberry Pi

RPM Revolutions Per Minute

SDK Software Development Invironment

Abstract

The Renewable Energy Vehicle project (REV) is dedicated to design and

develop environmentally sustainable vehicles, initiatively formed by the

University of Western Australia. Among the numerous achievements of

REV, the REV Eco is a road-licensed plug-in electric commuter car based

on a Hyundai Getz, and the REV Racer is an electric sports car based on a

Lotus Elise.

Embedded controllers for both vehicles were originally designed for

replacing vehicle instruments like speedometer and tachometer, and

displaying GPS information. After gradual development, modules like

media player, battery management system (BMS), and route tracker were

integrated into the controller.

This thesis focuses on upgrading both software and hardware that concern

the User Interfaces (UI) on both vehicles to improve the performance and

promote the capability. The last modification of the UI was conducted in

2014. Hence the first thing is to upgrade the development environment for

the base program, and the operating system allocated on the controllers.

During this process, a fair amount of necessary alters and changes was

applied to the pre-existing code to eliminate the incompatibility between

the previous UI program and the newly software environment. Similarly,

a hardware of the controllers was changed from Raspberry Pi (RPi) Model

B to RPi 3 Model B, the latest product of the Raspberry Pi series of single

computer board. These upgrades are supposed to make the UI adapt to

recent techniques and benefit its development in the future.

Contents

Introduction .. 1

1.1 Electric Vehicles ... 1

1.2 The REV Project ... 2

System Analysis ... 4

2.1 REV Getz .. 4

2.2 REV Lotus ... 7

2.3 Tesla Model S ... 8

2.4 Objectives Identification 10

Implementation ... 12

3.1 Hardware Upgrade .. 12

3.1 Software Upgrade .. 12

3.3 GUI Design ... 13

3.3.1 Home Tab .. 13

3.3.2 Battery Tab .. 15

3.3.3 Map Tab .. 16

3.3.4 Trip Tab ... 17

3.3.5 Music Tab ... 18

3.3.6 Setting Tab .. 19

Methodology .. 22

4.1 Integration of C++ and QML 22

4.2 Douglas Peucker Algorithm 23

Problem & Future work .. 26

Conclusion .. 27

1

Introduction

1.1 Electric Vehicles

Today climate change is no longer a topic only for environmentalists but is

now world-widely discussed by the general society. There is a common

agreement that climate change is mainly due to greenhouse gas (GHG)

emissions, especially the carbon dioxide (C𝑂2) emissions. As conventional

internal combustion engine (ICE) vehicles contribute a significant part of the

C𝑂2 emissions, it is increasingly necessary to find alternative transportation

approaches. Therefore, electric vehicles (EV) which produce no GHG itselves

have been developed as a suitable alternative to conventional vehicles using

fossil fuel.

EV in this thesis refers to a battery-powered vehicle. There are usually one

or more electric motors which use electrical energy stored in rechargeable

batteries and propel the car1. Unlike a lot of people think that EV is a

modern invention, it has a long history began in the early 19th century. In

1837, chemist Robert Davidson of Aberdeen invented the first EV. After

decades of development, EVs were put into practical usage and once

popular during the period from the late 19th century to early 20th century.

Due to advances in ICEs, EVs were soon replaced by cheaper gasoline

vehicles. However,

Modern commercial use of EVs were firstly found in 1987 in the USA.

Those EVs used as taxies which served in New York were manufactured

by the Philadelphian Electric Carriage and Wagon company1. In contrast

to ICE vehicles, they produced less noise and needed no gear changes.

Although the development and use of EVs were very limited due to

restriction of battery costs and low fuel prices at the time, the interest in

EVs gradually increased due to the increasing concerns about the growing

fuel prices and the global warning crisis, and eventually met its burst

brought by the Tesla Motors, a small up-start California car company who

invented an EV sports car aka the Telsa Roadster in 2008. The success of

this vehicle caught the eyes of the public and renewed the interest of the

tycoons of the vehicle industry in EVs. Following this, more and more

practical EVs, like Telsa Model S, Nissan Leaf, BMW i3 and Fiat 500e,

were put into the market. According to the International Energy Agency

(IEA)1, the number of registered electric cars in 2016 exceeded 750

thousand all over the world, which was the highest number ever. The

increasing demands of EVs indicates a bright prospect of researches in

related fields.

2

Figure 1.1: Electric car sales, market share, and BEV and PHEV sales

shares in selected countries, 2010-2016 (Sources: IEA analysis based on EVI

country submissions, complemented by EAFO (2017a), IHS Polk (2016),

MarkLines (2017), ACEA (2017a, 2017b) and EEA (2017).)2

1.2 The REV Project

The UWA Renewable Energy Vehicle (REV) project is a project conducted

by the University of Western Australia (UWA). It began as a restart of ealier

research in to hydrogen fuelled vehicles, which had been discarded primarily

due to the costs. The REV aims to prove the viability and ‘revolutionise

personal transport’ by building zero emission vehicles, charged from

renewable sources. As a part of this project, two REV plug-in electric

conversion project were started, providing road-legal fully EVs for

experimenting.

The REV Eco was the first plug-in electric conversion project that was started

and completed in 2008. It is a five-seater commuter vehicle, based on a

Hyundai Getz 2008 model, converted to electric drive by replacing the ICE

with an electric drive motor, batteries wiring and instrumentation. The second

conversion project conducted by UWA as well is the REV Racer. This car is

two-seated high-performance car, based on a Lotus Elise S2, 2002 model. The

conversion work of the REV Eco (aka Getz) and Racer (aka Lotus) were

completed in 2008 and 2009, respectively.

3

Figure 1.2: REV Eco - The Converted Hyundai Getz. (Source:

http://therevproject.com/)

Figure 1.3: REV Racer - The Converted Lotus Elise. (Source:

http://therevproject.com/)

An important part of the REV is the development of the human machine

interface (HMI) between users, especially drivers, and the aforementioned

two EVs. Ideally, the HMI should provide a logging and user interface (UI)

system handled by a device embedded into a targeted EV. Since originally

raised in 2008 and firstly implemented by Ovens, this system has

undergone several modifications and even re-implementations. The last

update was carried out by Marcus in the year of 2013, resulting in upgrades

of both software and hardware, and a complete rewrite of the graphic user

interface (GUI).

http://therevproject.com/

4

System Analysis

2.1 REV Getz

It is basic demand that the driver should be informed the state of the car

and get warned whenever the car is in an inappropriate condition that could

harm their safety. To satisfy this need, it was the first time that the HMI

system for the REV EVs (Getz and Lotus) was developed in 2008 by

Ovens. This system was deployed to an EyeBot M6, an embedded

controller developed at the University of Western Australia (UWA)6. It

was primarily used to display important vehicle instruments including

battery status, engine RPM (revolutions per minute) and speed, and allow

data logging for analysis at the moment. As the EyeBot M6 consists of a

LCD touch screen and an embedded controller, it offered the HMI system

for the Getz the abilities of collecting a wide range of system parameters

and displaying a customized user-friendly interface.

Figure 2.1: The Eyebot M6, the controller to control instrumentation in

The REV Eco up until 2013.

5

In the year of 2009, due to the installation of EyeBot controller, the system

was introduced more features like GPS tab and warning tab. After the

modification done by Varma, the system was able to display a map

centralized at the location of the car when switched to the GPS tab, and

display warning information when switched to the warning tab. The

warning information informed the driver something like low battery, the

driver’s door open or the driver’s seatbelt unlatched. Additionally, a

similar system was designed for the REV Lotus and installed on a

VoomPC.

 In 2010, Walter, who was responsible for developing the REV HMI

system at that time, introduced the Nokia Qt C++ development framework

to the project due to the consideration of the program portability and

system performance. On one hand, programs developed with Qt

framework can be deployed to multiple platforms including Windows,

Linux, Mac OS and most importantly, some embedded systems. On the

another hand, although C++ is not the most suitable programming

language in the software development for embedded device, it provides a

relatively better performance (compared with Java, Python, and etc.) while

providing a better programming experience than C language. Nevertheless,

Qt provides an open source version and thereby this change saved the

potential cost of using a commercial integrated development environment

(IDE). Another critical modification done by Walter was to introduce the

music module, which was used to play audio files.

Before this project, the last system installed on the REV Getz was

implemented by Marcus in 2013. The modifications generally consist of

the upgrade of both software and hardware, and fixing existing defects in

the program. The program was developed and compiled with Qt 5.1 (the

latest Qt version at the moment), and then installed in the Raspberry Pi, a

single board computer. Based on the recommendation raised by Gabriel in

2013, Raspberry Pi were used as embedded controllers for the REV Getz

and REV Lotus, taking place of previous EyeBot M6 and VoomPC. This

change remarkably improved the system performance.

6

Figure 2.2: The GUI design by Gabriel Feng. (2013)

Figure 2.3: The GUI Design by Macus Pham. (2013)

Figure 2.4: Raspberry Pi 1 Model B

7

2.2 REV Lotus

Since Varma firstly implemented a GUI system used for the Lotus, the

REV Lotus system had always had a different design to that of the Getz

until the year of 2013. Figure xx shows the different desgins for the two

EVs in 2010. Despite the differences in GUI, these two systems essentially

had similar functionalities and structures. Therefore, in the previous

modification made to the REV Lotus system, it was designed with a same

GUI of the REV Getz system. However, it is worth mentioning that the

control methods for the two systems were entirely different. For the REV

Lotus, the screen is a touch screen and hence user can navigate to any of

the five tabs by a single click to corresponding button. As for the REV

Getz, the navigation to different buttons was done through the Griffin

Powermate (a rotating knob). This difference required different

implementation measures and led to slight difference in program

structures. Table 1 presents the key presses while testing the program in

desktop.

Action Keyboard Key Powermate KeyPress

Left on navigation button Q Rotation left
Right on navigation button W Rotation right
Selection on navigation
button

E Press down

Navigation on buttons in
windows

TAB Rotation left/right

Selection of buttons in
windows

SPACE Press down

Exit a window ESC Hold down
Exit a menu ESC Hold down

Table 1: Key navigation for the GUI of REV Getz in destop and in vehicle

Figure 2.5: The VoomPC. (2013)

8

2.3 Tesla Model S

Telsa Model S is the second model developed by the Telsa Motors and

was first on the market in 2012. In the Figure xx which shows the its

interior, it can be found that the in-vehicle system is made up of two parts,

a display behind the steering wheel and a big screen next to the driver’s

seat. The display is used to show speed, battery status and other crucial

information (it can also display a navigation map if necessary) while

driving. The toolbar above the map widget in the big screen (Figure xx)

indicates that it provides more functionalities including media player,

navigation map, battery status, web browser, camera management and

phone call. Besides, there is a status bar at the top, showing a brief status

of the car. Moreover, it can be noticed that the screen is divided into two

separated windows, which allow the driver to view the map and control

the media player simultaneously.

The left image in Figure xx is the version 5.0 of the main screen UI design

from the Telsa Motors and the right one is the version 7.0. An obvious

difference between these two UI designs is the style. From v5.0 to v7.0,

Telsa used a flat style to replace the previous 3D button style. Despite the

argument of whether flat styles are easier to understand, flat look is most

effective on small displays and has recently taken over Windows, Mac,

Android and other applications.

9

Figure 2.6: The interior design of Tesla Model S.

Figure 2.7: Main window UI v5.0 (left); Main window UI v7.0 (right).

10

2.4 Objectives Identification

After review of previous work on this project, it can be concluded that the

main purpose of ultilizing the system in the REV EVs is to provide

virtualized driving information. Additionally, other useful modules like

data logger, GPS map and media player were added into the system. As

this project is to develop an in-vehicle system, it should concentrate on

assisting the driver while driving and not distracting he or she too much.

A common risk in the driving process was pointed out by Goncalves5 that

the driver spends too much attention on the secondary tasks like

manipulating a driver information system (DIS) or reading data from a

display, and neglect the primary one, which is driving safely. This may

lead to a decrease in driving performance and safety. Therefore, the

consideration of providing a safe driving environment has the most

priority in the modification work to the existing GUI.

Before the modification work to the previous system can be conducted, it

is an important procedure to upgrade software, hardware and eliminate

defects in the previous GUI program. Marcus has proven the necessary of

this step when he took over this project from Gabriel Feng. As the

hardware change of using RPi to replace both EyeBot M6 and VoomPC

had already implemented by Gabriel, the upgrade work at that time

basically included upgrading the operating system for the Rpi and using

QT 5 instead of QT 4 for program compilation. Additional work like

setting up the connection of CAN bus to Rpi in the REV Lotus and

installing a Hall-Effect Sensor to enable tachometer were also carried out

to keep the controller able to receive and process driving information from

the vehicle.

To sum up, the primary objectives of this project are as listed below:

1. Upgrades in software and hardware. It can be expected that some

problem would occur and impact the execution of the program due

to the incompatibility between different software environments

and hardware configurations.

2. Redesign of the existing GUI to enhance user experience under

the premise of minimizing the distraction to the driver while

driving.

3. Re-implement the music player. Since a built-in media player

class is provided in the latest Qt library, the performance and

stability can be improved through the re-implementation of the

music module by using the new Qt class.

4. Re-implement the map. The previous map module used a

customized class to read pre-downloaded map tile images and

render them to the window. The latest Qt library provides several

11

plugins to implement same functionality, providing significantly

better performance and fluency.

Once above changes have been completed, it can be expected to deliver an

improved in-vehicle HMI system with better usability and functionality.

12

Implementation

3.1 Hardware Upgrade

Rpi 3 Model B is the latest product of the Rpi series. It was published as

the third-generation Rpi in February 2016

(https://www.raspberrypi.org/products/raspberry-pi-3-model-b/) and

replaced the Rpi 2 Model B. In contrast to Rpi Model B, it provides

wireless LAN, Bluetooth Low Energy (BLE), 2 more UB ports, and

extremely more advanced processor. Besides these, it is worthy to mention

that a micro SD port has took the place of SD port for loading operating

system and storing data since Rpi 2. These advantages should be able to

make it worthy to take the increased cost. Till the publish date of this thesis,

the price of Rpi 3 Model B is $67.95 AUD

(https://raspberry.piaustralia.com.au/) and that of Rpi Model B is $39.95

(https://www.adafruit.com).

The first problem faced during the process of hardware upgrade was

incompatibility between the operating system installed on the previous controller,

namely Rpi Model B, and the new Rpi. This is because of the backward

compatibility of the Rpi series products, which means older Rpi is supported by

later Raspbian operating systems while older Raspbian is not compatible with

later Rpi products. This factor additionally verified the necessary of upgrading the

operating system.

The installation process of new operating system was relatively simple. An

arguable point may be about the choice of desktop environment (DE). The default

DE of the official Raspbian distribution is PIXEL, a branch of LXDE, which is a

light weighted DE and recommended to be used to decrease memory usage. In

this case, the operating system stays with the default DE.

3.1 Software Upgrade

As aforementioned, Qt as a cross-platform application framework8 was

firstly introduced to the software development process in this project by

Walter in 2010. After almost a decade of development, the latest version,

Qt 5.9.2, has integrated numerous built-in classes and plugins, offering

developers great convenience and efficiency. Two most significant

changes in this project also benefitted from this, which will be introduced

later. By upgrade the Qt framework, it means to compile the previous

program with a new Qt IDE which is up to date. Qt itself provides both

forward and backward compatibilities and thereby the most part of code

in the existing GUI program worked fine while compiled. Problems were

raised while compiling the external libraries.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.adafruit.com/

13

During the evolution process of the REV HMI systems, a number of third

party libraries were used in the program and finally several libraries were

still left in the system, which are listed in Table xx.

Library Utility

Qcustomplot Plot tracks on the map.

Gizmod Daemon
Enable the use of the rotating knob in

Raspbian and the other Linux OS.

Qextserialport
Enable the system to receive data through

USB ports.

ALSA (Advanced Linux

Sound Architecture)
Audio driver to enable voice control in

Raspbian and the other Linux OS.

Table 3: External libraries used in the previous sytems

In general, these external libraries excluding ALSA still work

appropriately. As a touch screen is going to be installed in the REV Getz

as well, it will be no longer necessary to use the Gizmod Daemon library.

Besides, the utilities of both Qcustomplot and Qextserialport libraries can

be replaced by the built-in plugins or classes in Qt library. As for ALSA,

the previously used library seems to crash with current Qt framework as a

more up to date ALSA library has been integrated as a part of it. Therefore,

the references to this library in the source code were removed and a built-

in function of QMediaplayer class is used to control the system volume.

3.3 GUI Design

In the previous GUI system, there are 5 tabs for the REV Getz and 6 tabs

for the REV Lotus (the one extra tab is the battery tab). In this section,

some significant defects in the GUI design are pointed out and a new

design scenario is introduced.

3.3.1 Home Tab
The home tab is designed to display some crucial driving information,

including the voltage, current, trip data, warning informs, and especially

the speed, etc. On the basis of previous GUI design, the first edition of

modified Home Tab UI is as shown in Figure xx. The modification mainly

consisted of a new background, new button icons and warning icons, and

a much more striking speed number. This new background looks more

comfortable and makes it easier to distinguish the UI elements. Moreover,

a flat style design was adapted to the changes of button and warning icons.

In compliance with the core idea to minimize the distraction to the driver,

a much bigger font size was used to the speed text. This design allows the

driver easily gets the current speed and less dedicated to look at the driving

14

information display while driving. However, a fatal error of this design

was that it was designed with a screen size of 1920×1080, while the

resolution of the touch screen is 1024×768. Therefore, the GUI design was

redesigned to fit the small display. In the new GUI, the older background

is no longer suitable as it may look too crowd in a much smaller screen.

The button icons have the same problems. Besides additional changes to

the background image and button icons, there is also a useful improvement

that the warning icons were separated from the home tab, which makes

them visible when the user navigates to other tabs. This modification was

made due to the importance of warning information.

Figure 3.1: Original GUI design

Figure 3.2: The current GUI design

15

3.3.2 Battery Tab
The battery tab plays a crucial role in the design of EV10. In this project,

difference in battery tabs of two REV EV systems is due to the different

design of their battery management system (BMS). In the REV Getz, a

TBS monitor was used to access the battery information, while in the REV

Lotus, the Hardware Black Box system developed by Daniel Kingdom is

used in the BMS7. It has a USB interface with FTDI drivers for an

emulated serial port and provides serialized information from the BMS -

battery pack voltage, battery pack current and individual cell voltages and

currents. It also transmits information about the state of the digital inputs

and analogue inputs - temperature of the battery packs, headlights, door

sensor and seatbelt sensor via serial.

This tab is only available in the REV Lotus system, used to display the

battery status and relevant statistical data. The widget at the right upper

area can display the voltage of all available batteries the informs driver the

position of those batteries in uncommon conditions. It can be noticed that

at the top of the window, the warning icons and driver name label are still

displayed on the screen.

Figure 3.3: The battery tab

16

Figure 3.4: The battery table in work

3.3.3 Map Tab
From the aspect of GUI, the new design of the map tab maximized the size of the

map on the premise that the menu buttons and warning icons are always available

or visible. At the top right area of the map widget, the zoom level number is

provided. The new map was re-implemented by the Qt Mapbox plugin and the

zoom level is a metric to quantify the scaling extent and the bigger the zoom level

number is, the clearer the objects on the map are. In this program, the range of

zoom level is set from 12 to 20, in order to optimize the size of map cache. This

map was implemented by the Qt Quick module with mapbox plugin for QML.

Figure 3.5: The map tab

QML is a declarative language commonly used to design UI-centric applications.

Qt Quick is a SDK which Nokia created for writing QML applications. Providing

a standard library for QML. A mapbox map can be created by writing below code

lines in a *.qml file:

17

a)

b)

Figure 3.6: a) Choose a map plugin; b) Create a map.

Plugin is a QML type used to specify the name of desired plugin and define

necessary parameters. Then a Map type can cite the id of the plugin and

then use it to display the map images fetched from the specified map

provider. Here, the defined plugin parameter, the access_token, is a unique

token used by developers to access any of the Mapbox’s tools, APIs and

SDKs. Another parameter defined in this program is the cache directory.

By specifying the value of this parameter, the fetched map tile images will

be automatically stored in the specified directory for offline use. As

aforementioned, the new map module can benefit from the advanced map

rendering algorithm, which provides a much faster rendering speed than

the algorithm used in the previous system, which was barely improved

after it was firstly implemented by Varma in 2009. Nevertheless, the new

mapbox map also allows user to zoom in or zoom out the map by tap of 2

fingers, and hence the “Zoom In” and “Zoom Out” buttons were no longer

needed and removed.

3.3.4 Trip Tab
Similar to the battery tab, the trip tab was not changed too much as it is

used to present driving information. This information including both

motivation data and battery data are useful to help the driver find out his

or her driving habit and monitor the correlation between current and speed.

Besides adjusting the UI elements to fit the size of the touch screen, there

is also a minor change that the driver name label used to change the name

of driver was moved to the setting tab, which it is more conform to. The

18

warning icon tab at the top is still available in this tab, as well as in the

other tabs.

3.3.5 Music Tab
This is another tab which was entirely rewritten in this project. The first

one is the map tab. From the aspect of GUI, a customized style sheet was

applied to the vertical slider bar and the horizontal slider bar to make the

GUI design more conform to a flat style. As for the functionality, the new

music player automatically loads all files of *.wma, *.mp3 or *.mp4

format in pre-specified directory. The user can either directly choose

music in the table or use the two buttons at the right side to navigate in the

table. The green button is used to play music when there is no music being

played. Once any music is played, the icon is instantly switched to a pause

sign and by pressing it the music player will be temporarily paused.

Pressing the button again will play the music from the position it was

paused. The red button is the stop button. Different with the pause button,

after the stop button was pressed, playing music again will start at the

beginning rather than from the historical position. The shuffle button is the

play mode button. Similar to the green button, it is used to switch among

three different play modes, which are shuffle, repeat and loop mode,

respectively.

19

Figure 3.7: The music tab

Figure 3.8: Set up the music player

An object of QmediaPlayer is created to play music. This class provides

many useful of APIs like play, pause, and stop music. Additionally, it can

also emit signals to inform other module that its status has changed. For

example, positionChanged(qint64) is a pre-defined signal of

Qmediaplayer and emitted every 2 seconds by default if playing progress

is changed. The setProgSlider(qint64) slot, or function, will be called

every time it receives the signal and used to set the handle of slider bar to

corresponding position.

3.3.6 Setting Tab
It was mentioned that the driver name label was moved into this tab.

Although a text input widget is provided for type in the user name, there

is no valid input method while using the system in the vehicle, which

means the driver is not able to set or change the driver name without plug

in a keyboard. This is apparently impractical. Therefore, an input panel

was provided in the renewed system and will be called once user clicked

20

the text field. Considering the limited screen area, when the input panel is

called, it occupies the entire window and is hidden when user clicks the

accept button.

Figure 3.9: The setting tab

a)

b)

Figure 3.10: a) The input panel; b) The driver name was changed.

This input panel is implemented by the virtual keyboard plugin provided

in Qt Quick module. There are three procedures to use the plugin in a QML

21

application. Firstly, the reference to the virtual keyboard plugin should be

declared in the main.cpp, and then the corresponding header should be

imported to a *.qml where virtual keyboard is used. Lastly, the InputPanel

type should be configured. Figure xx shows a typical configuration of this

type. By adding appropriate compile commands while compiling the

virtual keyboard library, it also provides numerous input methods from

different locale. For example, by configuring command

CONFIG += “lang-de_DE”

the input panel can be switched to the layout of German locale. This new

feature can be not only used for type in the driver name, but also used to

type input for a web browser or phone numbers for mobile calls if these

modules are implemented in the future.

22

Methodology

4.1 Integration of C++ and QML

Qt is once a framework dedicated to software development using C++

language. As a result, although QML is highly differentiated from C++ in

both structure and syntax, there are still many ways to easily integrate C++

code into QML applications or extend C++ applications by QML files. In

this project, this technique was utilized in two approaches. The first one is

to render a QQuickView in a QWidget-based application, and the second

one is to emit a signal in C++ file and trigger a function in QML.

The first approach is relatively simpler. It was used to display the map

window and the input page using virtual keyboard, both of which are

implemented in QML files. As the previous GUI system was a purely

QWidget based application, the QML files cannot be directly rendered to

the main window. Alternatively, the GUI created in the QML files are put

into a QWidget first, using

createWidgetContainer(QQuickView* mapView);

function. Once this widget is used as a container, any configurations

excluding geometry information of this widget will be overridden by the

QQuickView, which is the mapView in this case. The geometry

information decides the size and the absolute position of the widget in the

main window.

Figure 4.1: example of using widget to render a QQuickView

23

Another application of integrating C++ with QML is to connect a signal

in C++ file and a slot in QML file. In the current program, position data

including latitudes and longitudes were read by C++ code, using the

qextserialport library. In order to send the position data to the QML file

and draw the track on the map, a feasible solution is to use a signal created

in C++ to trigger a slot in QML and transfer the data as a parameter. Firstly,

use rootObject() function to get the access to attributes in mapView.qml,

then use findChild<>() function to find the type in QML with specified

object name. Now, the objects in both C++ and QML are aware of each

other. After connect the pre-defined signal and slot, C++ can inform the

QML end to update the track by emitting the signal.

Figure 4.2: connect QML and C++ with signal and slot

4.2 Douglas Peucker Algorithm

In the existing HMI system, the GPS module faithfully records the position

of the EV after every fixed time interval. The detailed track records can

help drivers remind their driving behavior and realize their driving habits.

But it is also a common situation that we want a smoothen track which

shows the general route other than describing even minor changes in

direction. Besides, the lost in the accuracy of GPS receiver may also

produce noises in the track9. In this project, the Douglas Peucker algorithm

(DP) is used on demand to simplify the route drawn on the map.

DP, also known as the Ramer-Douglas-Peucker algorithem, is commonly

used to simplify a curve consists of line segments into a similar curve with

fewer points3. The simplification process should start with a curve with a

set of sequential points or lines. Assume C is a set of ordered points Pi

C={Pi (xi , yi)|i=1, 2,..., n}

24

Where n is the number of points in the set and xi , yi are the

coordinates of the point with index i. Then the solution of DP can

be described like this4:

• Select the point with the greatest perpendicular distance to

the line segment between the first and the last point in the

curve;

• If the distance between the point and the primary line is

greater than a specified tolerance, then divide the primary

line into two line-segments based on the position of the point

chosen in the first step;

• Repeat above two steps until the convergence goal is

achieved.

This is a simple but efficient method widely used in simplification

work for map service providers. A potential situation which may

benefit of applying this algorithm is when the track is very long and

composes of a large number of nodes. In this case, it can be expected

that DP will help eliminate those inessential points and improve the

system performance.

25

Figure 4.3: Simplify a piecewise linear curve with DP

Figure 4.4: Track smoothened by DP (Source:

http://blog.transittimesapp.com/category/gtfs/)

http://blog.transittimesapp.com/category/gtfs/

26

Problem & Future work
In this project, a considerable amount of effort was spent to investigate Qt

APIs as Qt is used as the development framework. After countless read of

Qt Documentation, the official handbook provided by the Qt company, it

was found out that a much wider range of ready-to-use APIs and plugins

are available in QML while those APIs in C++ libraries are usually used

to access or process detailed data. Taking Qt Location as an example,

many C++ APIs are provided to offer developers the access to almost all

necessary geocoding and navigation information, and most of QML APIs

are used to render these information on a map. Therefore, an optimized

strategy for software development in the Qt framework might be to design

the UI by QML and use C++ to implement the backend like reading and

processing data. Such development scheme can make the program benefit

not only the abundant interactive functionality in QML application like

touch gestures, layer overlays, and so on, but also the precise and modular

structure design and higher performance in C++ programming.

In order to make use of the various plugins provided for QML application,

the map and virtual keyboard module were implemented in QML while

other GUI modules were kept with C++, considering the numerous

connections between the backend and the GUI. However, the

aforementioned method of integrating C++ application with QML files

were turned out to be infeasible on RPi. As a cross-platform tool, Qt

provides a platform plugin for displaying the visualized elements in Qt

application and this is the only available choice on RPi devices. There is a

strict restriction in this plugin that it only renders either a QWidget

window (C++) or a QQuick window (QML) at the same time. Any attempt

to display two different type of windows or a hybrid window makes the

plugin terminate the Qt program. The hybrid window includes using a

QWidget as the container to render the UI in a QML file. This makes it

impossible to separately implement a part of the project in QML and then

integrated it into the original program.

Therefore, in order to make use of the modules implemented in QML to

provide better performance and additional functionally, an important work

following this report would be re-implement the entire GUI part in QML

and thereby there is only one main window in the system to be render,

which is the QQuick Window. As all of these new features require the

interactivity with screen, upgrading the REV Getz HMI system with

touchscreen is also considered as a part of future work.

27

Conclusion

It was found that the previous systems can still work appropriately in the

REV EVs. Therefore, this project mainly concentrated on improve the

existing systems to deliver an enhanced in-vehicle HMI system which

provides better user experience and more useful functionality. The new

map module and input method on the basis of QML APIs can enrich the

interaction with touchscreens, which is a common method in the modern

technologies to enhance the usability of HMI systems12. Another

achievement in the project would be the improvement of the GUI.

Although there was not a specified specification used in the GUI design,

it is admittedly an improvement that the new system offers the driver a

better user experience to some extent. The navigation map with flexible

touchscreen control and the clear driving information display provides

driver not only convenience but also safety, as they produce less

distraction to the driver.

The program has been well best tested on desktop, but the crucial new

features are still not able to be delivered to the REV EVs due to the

restriction of display Qt application on embedded device. Therefore, the

re-written of the GUI system is still undergoing and will be hopefully bring

the latest features provided by Qt to the REV EV systems.

28

1. En.wikipedia.org. (2017). Electric car. [online] Available at:

https://en.wikipedia.org/wiki/Electric_car [Accessed 28 Oct.

2017].

2. Global EV Outlook 2017. (2017). [S.l.]: OECD, p.12.

3. En.wikipedia.org. (2017). Electric car. [online] Available at:

https://en.wikipedia.org/wiki/Electric_car [Accessed 30 Oct.

2017].

4. Li, L. and Jiang, W. (2010). An improved Douglas-Peucker

algorithm for fast curve approximation. 2010 3rd International

Congress on Image and Signal Processing.

5. Goncalves, J., Rossetti, R. and Olaverri-Monreal, C. (2012). IC-

DEEP: A serious games based application to assess the

ergonomics of in-vehicle information systems. 2012 15th

International IEEE Conference on Intelligent Transportation

Systems.

6. Pham, M. (2017). Renewable Energy Vehicles’ User Interface.

Perth: University of Western Australia, p.4.

7. Varma, D. (2009). Renewable Energy Vehicle Instrumentation:

Graphical User Interface and Black Box. Perth: University of

Western Australia, p.71.

8. Kang, P., Wei, Y. and Wei, Z. (2017). Control system for granary

ventilation based on embedded networking and Qt

technology. 2017 29th Chinese Control And Decision Conference

(CCDC).

9. Shahid, M., Shahzad, M., Bukhari, S. and Abasi, M. (2016).

Autonomous vehicle using GPS and magnetometer with HMI on

LabVIEW. 2016 Asia-Pacific Conference on Intelligent Robot

Systems (ACIRS).

10. Sixto, V., lopez, P., Sanchez, F., Jones, S., Kural, E., Parrilla, A.

and LeRhun, F. (2014). Advanced co-simulation HMI

environment for fully Electric Vehicles. 2014 IEEE International

Electric Vehicle Conference (IEVC).

11. Kang, P., Wei, Y. and Wei, Z. (2017). Control system for granary

ventilation based on embedded networking and Qt

29

technology. 2017 29th Chinese Control And Decision Conference

(CCDC).

12. Rozhdestvenskiy, D. and Bouchner, P. (2017). Human machine

interface for future cars. Changes needed. 2017 Smart City

Symposium Prague (SCSP).

