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Abstract 

This dissertation covers the author’s work on the development of the control system, 

software architecture, environmental mapping and visualisation system of an 

Autonomous Electric SAE car at the University of Western Australia. 

The UWA REV Autonomous SAE Electric Race Car Project is a platform for students 

to explore and develop modern electronics and automation systems, and spans 

multiple disciplines including electronics, power systems, software design, and 

computer science. This year the project team has been working to extend the 

autonomous driving functionality of the Electric SAE Race car to be suited to the racing 

conditions set by Formula Student Germany. This extension involves implementing 

the ability to autonomously drive through a track delineated by traffic cones. On top 

of this the team has aimed to improve the platform to facilitate the ease of future 

developments in part through the author’s work in building a modularised software 

system with the intention of replacing the previous system. 

The design considerations, implementation processes and test results of this work is 

discussed. 
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Nomenclature 

 

SAE Society of Automotive Engineers 
 

REV Project Renewable Energy Vehicles Project 
 

UWA University of Western Australia 
 

LiDAR Light Detection And Ranging 
 

LiDAR: Raw Data The series of 3D data points provided by the LiDAR that denote 
the position of light reflective material in the LiDAR’s field of 
view. 
 

LiDAR: Object Data The data provided by the LiDAR that denotes the position, size 
and classification of objects as interpreted by the LiDAR’s 
internal data processing. 
 

IMU  
 

Inertial Measurement Unit 

GPS Global Positioning System 
 

PID Controller Proportional-Integral-Derivative Controller 
 

ASIO Asynchronous Input/Output 
 

Protobuf Google Protocol Buffers Tool 
 

SLAM Simultaneous Localisation and Navigation 
 

FSG Formula Student Germany 
 

FSD Formula Student Driverless 
  
ANN Artificial Neural Network 
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1 Introduction 

Autonomous navigation in automotive vehicles has the potential to significantly increase the 

safety and energy efficiency whilst reducing transit times. Designing a car to consistently drive 

safely in various contexts such as public roads poses many challenges including sensor fusion, 

data analysis, sophisticated control algorithms and reliable safety systems. Beginning in 2009 

The Autonomous SAE Car project at the University of Western Australia, led by Prof. Dr. 

Thomas Bräunl has developed a drive-by-wire, electric SAE car with autonomous capabilities 

with the goal of expanding its abilities to include race track navigation and urban driving. In 

2013 considerable progress was made by Drage who developed the safety systems, controllers, 

road-edge detection and navigation systems capable of autonomously driving through 

recorded GPS waypoints [1]. The path planning was improved by French [2] in 2014 and again 

in 2015 by Churack [3] along with improvements to the road-edge detection. 

 

 

Figure 1: The Autonomous SAE Electric Race Car.  
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1.1  Motivation 

The development of an autonomous vehicle provides a platform for the study of robotics, 

control systems, sensor integration, data analysis, software engineering, and automotive 

electrical hardware design. On top of this the task of developing a driverless race-car provides 

a challenge as safety considerations in both hardware and system control must be prioritised 

whilst maintaining a goal of high performance. 

 

1.2  Goal 

In 2017 Formula Student Germany [4] announced the inclusion of a new competition; 

Formula Student Driverless.  FSD is an international student-based competition to judge the 

performance, engineering practise and design of driverless cars based in Hockenheim, 

Germany. The intention of the REV Autonomous Electric SAE Car Team was to make progress 

towards preparing the car for the requirements [5] of the FSD competition in coming years as 

it is expected that these specifications would become an international standard for driverless 

competition. Particular focus was placed on navigation which would involve developing the 

navigation system to include cone detection as the FSD track is a cone-delineated circuit as 

seen in Figure 2. 

 

 

Figure 2: Diagram of the cone-delineated track parameters in the FSD specification book. Source: [5]  

 

This dissertation outlines the author’s work in designing an updated control system and 

corresponding software architecture, and mapping algorithm suited for cone detection. The 

author discusses the benefits of the design, the results of the implementation of the mapping 

system and potential future improvements arising from this work.  
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2 Literature Review 

Autonomous driving has been an increasingly popular area of research over the last 30 years 

as the field grows and more applications for autonomous vehicles are being explored and 

implemented. Autonomous cars utilise a combination of control systems, sensors, actuators, 

and computer algorithms in a closed-loop controller to achieve various goals including 

exploration [6] [7] [8], speed [9], and safety [10]. Relevant literature in the control systems, 

software architecture and environmental mapping of autonomous vehicles is discussed below. 

2.1  Control Systems and Software Design 

The control pipeline of autonomous systems are often coupled to the software architecture as 

the control design decisions effect the software implementation. The 2005 DARPA Grand 

Challenge; a competition set by DARPA judging the speed with which autonomous vehicles 

could navigate a 142 mile long off-road track, was won by ‘Stanley’ an autonomous vehicle 

whose development was led by Stanford University [11] and represented a major step forward 

in the field of driverless cars.  

2.1.1  Control 

The control structure used an extension of the Three Layer Architecture discussed in [12]. This 

architecture details the use of three layers of control:  

Reactive A low-level control layer responsible for effecting changes based on a rapid 

feedback loop. Example; a PID controller taking wheel speed inputs used to 

maintain vehicle velocity. 

Executive Responsible for providing instructions to the reactive layer based on 

commands given from the deliberation layer. The processes controlled by the 

executive layer usually have fast loop speeds (~1 s) and may include sensor 

interpretation and mapping. 

Deliberation Responsible for high level problem solving and solution generation such as 

calculating an optimal path around a race circuit based on the given map. This 

process usually has high computation times therefore updates infrequently. 

The team behind Stanley [10] implemented an extension of the Three Layer Control system. 

The system architecture was divided roughly into six categories; Sensor Interfaces, Perception, 

Planning and Control, User Interfaces, Vehicles Interfaces, and Global Services. Sensor 

Interfacing and Perception were responsible for constructing relevant data abstractions from 

the sensors and belong to the Executive Layer. Planning and Control derives driving 

instructions and path planning from the Perception classes and are categorised as the 

Deliberation Layer. The Vehicle Interface systems are responsible for receiving the high level 

instructions from the controller and realising these goals by employing a rapid feedback 

control loop to govern the actuator outputs. 

2.1.2  Software Architecture 

The Stanley development team took inspiration from the 2004 winners and adopted the 

following philosophy: ‘Treat autonomous navigation as a software problem’ [10, p.66] To 

realise the desired control scheme in software the design team implemented a completely real-

time, multithreaded system where each module runs separately of all others and all data 

transmission is done globally using timestamped data. This reduces the blocking of software 

processes as each individual system will continually run without stopping to wait for other 

processes to supply data. The timestamped nature of the data allows real-time control to be 
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applied and the guarantee that the data flow from sensors to actuators will be achieved with 

no repeated data.  

To ease the software development and testing process the system was built in a modular way 

where subsections of the code could be run alone. Also, all data was logged and could be 

replayed through the control pipeline using a specifically developed replay module. 

Visualisation systems were developed to provide feedback on the systems state in both run 

time and simulation modes. 

2.2  Environmental Mapping 

The ability of autonomous robots to map their environment is another rapidly expanding area 

of research with the development of rescue robots [14] and other exploration based 

autonomous systems. The detail and speed of robotic mapping is dependent on the desired 

detail and intended navigation style. 

2.2.1  Navigation Accuracy 

For the purposes of navigation based autonomous vehicles it is often the case that low detail 

mapping is accurate enough for the path-planner and controllers to operate successfully.  

H. Weigel et al. discuss the use of camera and LiDAR sensor fusing to deduct lane positions 

and track physical objects [13]. An internal list of detected objects is stored as the car moves. 

Objects detected by the LiDAR are compared with the existing objects in the internal map, 

unmatched objects are added as new objects while matched objects are fused together and the 

internal map is updated. The Mapper removes objects that are outside the observable area of 

the vehicle as they are no longer relevant for path planning. Objects that have not been 

matched in some time are also removed to reduce the impact of false positive object 

identification. 

 

Figure 3: The object detection and integration algorithm.  Source: [13] 

 

2.2.2  Map Accuracy 

Mapping using Simultaneous Localisation and Mapping has been employed in many 

exploration robots as a way to map environments without requiring odometry. In [6] and [7] 

the use of sonar and LiDAR with SLAM algorithms is discussed. In SLAM based systems the 

distance information provided by the sensors is used to construct a map of the environment. 

The map is used to plan the path of the robot, often towards unexplored areas. With each loop 

through the control process the world information is compared with the known system to 

localise the robot and expand the map.  
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3 Control System Design 

The control system for the Autonomous car is required to navigate the vehicle around a 

bitumen circuit delineated by cones. In order to achieve this the car is first driven manually 

around the circuit to collect waypoints: intermittent position values of the desired path. When 

driving autonomously the control system must continuously interpret the data provided by 

the sensors and produce instructions for the motors. The car is a closed-loop control system 

using sensor data and the given waypoints as inputs and the cars position as the output. 

 

 

Figure 4: A simplified overview of the control scheme for the autonomous SAE car. 

 

3.1  Requirements 

The control system has three primary requirements: 

1. The car must drive without human input around the intended track from start to finish. 

2. The car must avoid hitting cones. 

3. The car must be safe. 

 

3.1.1  Navigation 

As stated above, the car will be manually driven around the circuit prior to the autonomous 

lap. Once this is complete there will be no human input to the system and any human input 

necessitated by the other requirements (primarily safety) represents a failure to comply with 

this requirement. For this reason all primary safety systems and navigation controls must be 

designed to work autonomously. 

 

3.1.2   Obstacle Avoidance 

The described navigation system is capable of meeting the requirement of avoiding the cones 

because it attempts to drive a path defined by a manual drive during which no obstacles will 

be hit. However, the navigation system cannot precisely match the manual drive path as errors 

in the localisation cause noisy results for both the localisation of the waypoints and the 
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obstacles. For this reason the control system must incorporate a feedback loop to adjust its 

control parameters for error mitigation. This feedback loop consists of sensing the current car 

position and the position and dimensions of objects in the path of the vehicle.  

The system is required to avoid all cones but must also avoid other objects that may be in its 

path and potentially moving such as people near the track. This requires that the desired path 

be updated regularly enough for reliable avoidance. 

 

3.1.3  Safety 

The safe operation of the system is the highest priority in each of the relevant subsystems of 

the car. Safety controls have been built into the hardware in both the electrical systems and 

the low level controllers. In the context of the control system it must be ensured that the car 

will not cause injury to people or damage to equipment. As this is the highest priority 

requirement, human intervention systems have been included and the expectation is for the 

autonomous instructions to be suitable for handling low magnitude threats, such as driving 

over cones, but greater threats will be managed by remotely disabling the control system and 

bring the car to a stop. 

As the control system is required to avoid hitting any obstacles, the planner must provide 

suitable paths, safe driving at speeds that allow the path to be followed with reasonable 

accuracy and prioritising stopping over progressing through an object.  

 

3.2  System Capabilities 

3.2.1  Existing Features 

At the beginning of the project the car was equipped with an integrated control system 

previously capable of navigating through GPS waypoints using GPS and IMU fused 

localisation. The LiDAR provided raw data used to detect road edges though the existing 

controller did not integrate road edge avoidance. 

See [2] for a more in-depth overview of the existing systems. 

 

Localisation 

The localisation comprised of the fusion of GPS coordinates recorded at 1 Hz with acceleration 

and bearing data provided by the IMU. A Kalman Filter [15] had previously been implemented 

to improve the accuracy of the position data though the project members were not able to 

reproduce this functionality resulting in considerable inaccuracies in the GPS data. Position 

discrepancies of up to 5 metres were noted during testing. 

The bearing of the vehicle was found by fusing the magnetometer readings from the IMU, 

which record angle against the earth’s magnetic field, and the GPS tracking angle found by 

comparing subsequent GPS position readings. Due to the inaccuracies in the localisation 

system it was recognised that further development would be necessary to navigate through 

waypoints with low positional error.  
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Object and Road-Edge Detection 

The system was capable of examining the object data from the LiDAR to display object 

positions as well as running a road-edge detection algorithm on the raw data. The road-edge 

detection algorithm takes the central data points and those near them and tests whether they 

meet flatness criteria.  After compensating for the polar coordinate system of the LiDAR 

readings the road provides geometrically flat data within a tolerance range so no great changes 

in depth should be noted along the width of the road. Starting from the central readings, points 

at a wider angle are iteratively tested in a stepwise process where the correlation coefficient 

between the given point and the line of best fit to the road is considered at each point. The 

road edge is the point at which the correlation coefficient is the highest whilst the slope 

condition is still being met as the next point (the road edge) will diverge from the linear fit. 

This approach was improved with the implementation of a Kalman Filter which creates a time-

averaged estimate of the road edge-position assisting in the prediction of the current road 

edge. 

 

Control Algorithms 

The existing control system uses a series of GPS coordinates (waypoints) to define the goal 

positions of the car. Waypoints are removed when the car comes within 2.5 metres of them at 

which point the next three waypoints are used to generate the intended movement of the car. 

 

Heading 

The steering control algorithm generates a cubic spline as the base-frame using the next three 

waypoints. A proportional controller is used to control the steering angle using the bearing 

from the GPS and IMU as discussed above to deduce the angle error. 

 

Speed 

The speed is controlled using two PID controllers, one for control of the brake and the other 

for control of the throttle. The desired speed is produced by assessing the intended turning 

angle of the base-frame with two options for desired speed being available based on whether 

the turning angle is above or below a given angle. 

 

3.2.2  Features in Development by Others 

The project team consists of 8 students with varying levels of involvement and responsibility. 

During the year features were assigned to students to develop in parallel with the author’s 

work. 

Odometry 

To improve the localisation of the vehicle wheel speed sensors are being developed to provide 

high frequency odometry. Hall Effect sensors are used on the front two wheels to detect pulses 

caused by the motion of magnets attached to the wheels. These pulses are counted and recent 

measurements are averaged over time to provide current wheel speeds. The rear wheels are 

treated similarly though the pulses are provided by the encoders inside the motors. The 

steering angle is measured by reading the encoder output of the steering motor.  
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The intention of the odometry project is to provide a live, accurate approximation of the 

position offset and angle offset of the car with respect to its starting position. This estimation 

can then be fused with the existing GPS and IMU data to provide a potentially much more 

accurate localisation of the vehicle with higher update frequency. 

Path Planner 

An improved path planner is being developed with integrated object avoidance. A set of 

waypoints and a set of objects are provided to the path planner which generates a base-frame; 

a curve through the waypoints in the correct order. The manoeuvre generator takes the current 

position of the vehicle and generates a series of candidate manoeuvres. These manoeuvres are 

checked for collisions with objects and graded for quality. A higher quality manoeuvre may be 

defined as a path with lower curvature or higher distance from objects. The best candidate is 

selected and a series of car positions is derived from the path. 

Vision 

Prior to this year the only object detection system was through use of the LiDAR. The LiDAR 

is accurate but does not detect features such as object colour which may be useful as the 

interior and exterior cones will be different colours. An Artificial Neural Network is being 

developed that detects cones using video data from a mounted webcam. The neural network 

provides coordinates for cones it detects which can be fused with the LiDAR object data. 

 

3.3  Design Considerations 

The requirements stated earlier define the goal for the control system though there are other 

factors which affect the implementation. The goal for the Autonomous SAE Electric Car of 

driving through a cone-delineated circuit was set this year but prior development on the 

project both this year and in previous years was tailored to successful driving on public roads 

and race tracks without cones. This functionality should be preserved where possible and work 

done with the current goal in mind should facilitate future work in other contexts. Cone 

detection and avoidance is a necessity for success but the design of the control system should 

be such that it is easily expanded to handle other object detection scenarios.  

The decision to have a manual exploration drive prior to autonomous navigation allows the 

existing path planner to be used while the new path planner is being developed as the manual 

drive provides the waypoints that are required. However, the exploration drive does not align 

with urban driving so the systems dependence on information gained during exploration is 

kept to a minimum and the control system is designed to be able to drive without an 

exploration drive. 

The neural network that returns cone positions is specifically tailored to cone detection and 

cannot be extended to capture other object types easily. For this reason the object avoidance 

is designed to work without the vision system though it will lack the benefits of colour 

detection. 
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3.4  Design Process 

After assessing the existing capabilities of the vehicle the following four control schemes were 

considered before beginning development: 

Control Scheme 1: GPS waypoints are used to dictate the path of the car with live 

object detection used for object avoidance. The manoeuvre 

generator receives only the objects currently detected. 

Control Scheme 2: GPS waypoints are used to dictate the path while object 

detection is achieved through application of the mapper which 

provides information of all objects in the system. 

Control Scheme 3:  Waypoints are created by assessing the object positions and 

planning a path through them. Object avoidance is inherently 

achieved through the waypoint generation. 

Control Scheme 4: Localisation is achieved through object detection removing the 

dependency on the localisation sensors. The path is generated 

the same as Control Scheme 3. 

 

Control Scheme 4 was ruled out early on as the urban driving requirements of the car did not 

align with a SLAM system and as development of the odometry systems was already underway. 

Control Scheme 1 was also ruled out as it had less potential for speed around the circuit and 

limited future improvements. Development began with Control Schemes 2 and 3 still in 

discussion; each uses a persistent mapper though Control Scheme 3 requires more 

sophisticated object analysis to detect left/right classifications of the objects.  

At the time of writing the subsystems required to implement Control Scheme 2 have been 

completed and will be integrated together over the next few weeks for system testing. The 

inclusion of object-based waypoints has been rejected as accurate localisation is a pre-

requisite for both mapping and GPS waypoint generation so the benefits over using GPS 

waypoints for path-planning are minimal. 
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3.5  System Design  

At the start of the exploration drive the angle and position of the car are recorded and used to 

define the origin. The car is then driven around the circuit storing regular position waypoints 

and positional data about the cones. A Baseframe is generated from the waypoints that 

encodes directional information for the manoeuvre generator and an initial manoeuvre is 

generated. 

 

 

Figure 5: The control loop used when in autonomous drive mode of the SAE vehicle. 
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Localisation 

The Odometer requests the data listed in Table 1 

 

 Position Velocity Acceleration Bearing 

Wheel Speed Sensors  Yes   

Steering Angle Sensor    Yes 

IMU   Yes Yes 

GPS Yes    

Table 1: Localisation Sensors and the corresponding System Input Data 

The data is fused to produce a current offset (x,y) pair and bearing with reference to the 

starting point of the cars exploration drive. 

 

Object Mapping 

The LiDAR object data and the object data from the Vision Neural Network is read in by the 

Mapper. All object data is transformed from the cars reference frame to the reference frame 

of the origin. The new object information is compared to the existing object data and used to 

improve the accuracy of the object localisation. 

 

Path Planner 

The object data and car’s position are sent to the Path Planner which generates a collection of 

potential manoeuvres. These manoeuvres are filtered for collisions and paths not traversable 

by the vehicle and rated based on curvature criteria. The manoeuvre is discretised into a 

desired future configuration which is stored. 

 

Controller 

The control requests the desired position from the Path Planner and using PID controllers for 

the acceleration and braking, and a P controller to dictate the steering angle. These 

instructions are sent to the motor controllers which apply the electrical power. 

This control loop is repeated until the vehicle reaches the end of the Path Planner Baseframe.  
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4 Software Structure 

At the beginning of the project the software was run on a Raspberry Pi 3 with a Linux operating 

system. To facilitate the inclusion of computer vision, which requires higher processing 

speeds, this was replaced with an NVidia Jetson TX1 computer specifically design with parallel 

processing in mind. The existing software had not been designed in a manner that facilitated 

the introduction of new features and proved difficult to make design changes so a new software 

structure was designed with the intention of porting the existing functionality into it. 

The software restructure process did not include re-writing the code responsible for the 

functionality; instead, it was the reorganisation of existing functionality into a new system 

framework that facilitated error detection, replacement of sub-systems and implementation 

of new features. 

 

4.1  Design Considerations 

The existing software was built to perform the intended functionality with limited 

consideration for software design and suffered from lack of management as the code-base was 

passed on to subsequent teams. This rapid prototyping development style is appropriate for 

producing functionality quickly but becomes problematic as the functionality grows, a 

problem further exacerbated when the members who understand the existing system no 

longer maintain it. The new structure was designed with the following considerations. 

 

4.1.1  Separated Data Acquisition and Processing 

Data acquisition and data processing are handled by separate systems. The data acquisition 

classes are an interface between the hardware and software and provide access to the most 

recent unaltered data on request. This allows the timing of data collection to be handled by the 

main program loop without introducing disruptions to the process as it waits for new data. 

Also, if the hardware is replaced, the only class that needs altering is the data acquisition class 

as it is decoupled from any processes that use the data. 

Testing new features on the car is not always possible as software development may occur in 

times of non-operation of the vehicle. For this reason it is important to be able to simulate the 

processes of the car. By decoupling the data collection to other processes the raw data can be 

recorded and replayed during simulation to test additional functionality. Recording raw data 

as opposed to filtered data allows testing of the filters themselves. 

 

4.1.2  Modularity 

The Autonomous SAE Electric Race Car project is continued over multiple years with new 

developers joining and leaving the project often. Each developer typically touches on all parts 

of the system though the majority of their individual work will be focussed on the improvement 

or replacement of a single subsystem. This development behaviour is reliant on students being 

able to make changes to or replacements of a subsystem without compromising the others. To 

achieve this the software architecture must be modular: It must have individual functions 

contained to well defined sub-sections of the code-base. This structure encourages reduced 

dependencies between functions and the limitation of influence one section has over any other. 
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4.1.3  Simplicity 

Many of the developers are not experts in software engineering or computer science and while 

the expectation is that students learn from their work incorporating tools with steep learning 

curves will ultimately reduce progress on the project over time as each new developer will need 

to spend more time learning the system instead of developing. Any tools incorporated in the 

system need to be justified with this in mind. 

4.2  Design Process 

A new copy of the existing software was created to develop the intended software structure 

whilst allowing further work on the existing system. Initially, an attempt was made to 

restructure the software by extracting subsystems into new structures whilst maintaining the 

ability for the code to be built and run. The road-edge detection was extracted and the new 

LiDAR reader was created, though this process exposed the high difficulty of altering the code 

structure.  

An assessment of the viability of this restructuring method was made and it was decided to do 

a bottom-up approach: build the framework skeleton first and insert the existing functionality 

into the premade class structures. This approach allowed a clean design slate with far fewer 

limitations as the software architecture could be completely redesigned following sound 

software design principles whilst maintaining a runnable version of the code for separate 

development. 

The first step was constructing a skeleton of the software: creating classes with empty 

functions that would define the ownership and inheritance structure, and the ordering of 

processes. Next, the LiDAR object detection, filtering, and visualisation were added and tested 

followed by the vision object detection system. At the time of writing the software structure is 

designed in its entirety though still requires the transplantation of core functionality before 

performance testing can commence. 

 

4.3  Software Design 

The software system is broken up into different tiers of objects that have restricted access to 

only the classes that they own with the exception of a few global utility data structures. This 

acts much like a traditional corporate structure; few members exist at the top and have high 

level control over the system and dictate the distribution of work by giving commands to 

managers of different sectors who in turn distribute it to the lower level workers who specialise 

in one job. 

 

Tier 1 - Main 

The highest tier their exists only one class, the main class that controls the high level flow of 

the program and owns manager objects that handle generalised tasks such as data acquisition, 

mapping, and path planning etc. The movement of data at lower levels must go through a 

common higher tier node as opposed to being passed directly between low level classes to stop 

the coupling of functions. A generalised overview of the top levels can be seen in Figure 6. 
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Figure 6: Class ownership diagram of the Tier 1 and Tier 2 classes. 

 

The main class is responsible for dictating the control flow as discussed in section 3 and the 

movement of data between the sub-systems. For example: The Visualiser uses object data 

provided by the Mapper, this information is requested by main and passed to the Visualiser as 

opposed to the Visualiser directly requesting it from the Mapper. This allows the Mapper to be 

altered or replaced without needing any changes to be made to the Visualiser as long as the 

data by the new Mapper is provided in the existing format. 

 

Tier 2 – Sensor Manager 

The Sensor Manager is responsible for requesting data from the individual sensors who in turn 

interface with receiver classes which handle the acquisition of information from the hardware. 

The various receivers run in separate threads to the main control process and update local 

data variables when new data comes in which guarantees that the Main class always has access 

to the latest available data on request. 

 

Figure 7: Sensor Manager class ownership structure. 
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Tier 2 – Mapper and Visualiser 

The Mapper receives object information including positions and dimensions of the car, 

physical objects and waypoints with reference to the starting position of the car. The most 

recent object information is available to the Main class on request. Two data processing classes 

are utilised to improve the accuracy of the object information that will be discussed in  

Section 6. The Visualiser displays the object data provided by the Mapper and is discussed in 

Section 5. 

 

Figure 8: Mapper class ownership 

 

Tier 2 – Path Planner and Controller 

The Path Planner receives object data and vehicle position data to produce a series of desired 

car positions. A mathematical curve is generated by the Baseframe class which the Maneuver 

class uses to generate potential car positions. The Controller is given these desired positions 

and outputs instructions to the low level motor controllers. Development of a new controller 

is under development so the software structure is not yet well defined. 

 

Figure 9: Path Planner class ownership 
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5 Simulation and Visualisation 

To aid in the development of the Mapper, Vision, and Path-Planner a data visualisation and 

simulation system was designed and implemented on the Autonomous car and made available 

for personal computers.     

 

5.1   Design Considerations 

The Vision and LiDAR object detection, and Mapper 

output required a visual reference to verify the 

correlation between the real word and the sensor’s 

interpretations. The visualiser has the following 

requirements: 

 Display the objects provided by the mapper. 

 Limit the impact on the performance of the 

control software. 

 Be runnable on personal computers. 

 Run in parallel to the control software. 

 

5.2 Design Process 

SDL2 [16] Simple DirectMedia Layer version 2 was 

chosen as the graphics platform due to it being 

lightweight, performance focussed C++ library; 

limiting the impact on the performance of the 

software without requiring incorporating a new 

programming language to the system. 

The viewing window was programmed to run 

separately to the control program and can scale to fit 

the screen installed on the vehicle or any computers 

it is run on. 

 

5.3  Simulation 

During the project there were multiple periods during which the car could not be driven due 

to hardware upgrades and bug fixes. To decouple the testing of software with the state of the 

hardware a basic simulator was developed. The data acquisition systems were designed to 

store data in a format that allows them to be replayed through the software. Once the data 

acquisition was successfully implemented functions were built to feed the data back through 

the software at a scalable rate to enable performance testing. 

 

  

Figure 10: Object Visualiser window 
displaying objects detected by the LiDAR 
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6 Object Detection 

Two approaches were considered for the detection of cones using the LiDAR. Raw data 

processing using an extension of the existing road-edge detection algorithm and filtration of 

the LiDAR object data.  

The road-edge detection algorithm discussed in Section 3.2.1 could be extended to find cones 

placed on bitumen as the disruption of linearity in horizontal depth measurements when 

encountering a road edge are mathematically similar to that of a cone. However the algorithm 

is built to find only 2 road edges and would need considerable alteration and testing to deduce 

the accuracy and reliability of cone detection. 

The second method; using the LiDAR’s internal object detection, whilst not as open to 

alteration, would likely be more reliable. This method was chosen as an initial option as it 

could be tested for reliability sooner than a new algorithm could be developed.  

 

6.1  Data Acquisition with Boost::ASIO 

The existing program for receiving LiDAR data had drawbacks that made replacing it a more 

desirable option than altering the existing code. The data interpretation process was heavily 

integrated into the control program which made it impossible to receive LiDAR data without 

the entire control software running successfully; a process that required the other sensors and 

network of the car to initialise successfully. The data acquisition was also implemented 

synchronously so the control program would wait for the data to be interpreted when it was 

requested. 

A replacement LiDAR receiver program was developed using the Boost::ASIO C++ library [17]. 

Boost::ASIO is an asynchronous input/output library designed to manage data input and 

output in its own thread. Boost was chosen as the software already incorporates the Boost 

libraries and it is platform independent meaning that it would run on the Raspberry Pi 3, the 

Jetson TX1 and most computers that may be used in the future. 

 

6.2  Serialisation with Protobuf 

The LiDAR produces a large amount of data which must be stored both in the runtime memory 

of the software and on the on-board hard-drive for simulation. Protobuf – a data serialisation 

library developed by Google [18] was chosen as a container for the LiDAR data as it is language 

independent, has low memory overhead, and facilitates hard drive storage of information. 

Once stored, Protobuf objects can be created from the binary files in many programming 

languages allowing objects to be passed between different languages. 
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7 Mapping 

The object data supplied by the LiDAR are given with positions relative to the car which is 

useful for potential collision detection but not for the path planning methods discussed in 

Section 3.4.1. The control system requires that an accurate representation of the physical 

world and the car’s position within it be available on request. To do this the Mapper class was 

created to place objects in an absolute reference frame as well as filtering and improving the 

data. 

 

7.1  Design Process 

The Mapper stores its best estimate at the world around it which it improves when it receives 

new information. This improvement method involves checking each of the new objects with 

the existing objects for a ‘match’ and updating the estimate based on the properties of the new 

object. Two algorithms were developed to achieve this; an object matching algorithm and a 

time smoothing algorithm. 

The design for the Mapper began with an assessment of the LiDAR object position detection 

accuracy. This was achieved by printing out the object information live as the LiDAR detected 

large cones (500 mm) placed at known positions with respect to the car. The position accuracy 

of the cones was found to be within 300 mm at distances of less than 50 m which roughly 

correlates to the width of the base of the cones.  

The ability of the Mapper to correctly match objects is dependent on the accuracy of the LiDAR 

and the accuracy of the car localisation. As it was assumed that the car localisation would have 

low error (< 1 m) compared to the gaps between cones (3.5 m minimum [5]) the Mapper’s 

position tolerance could be increased to 1.75 m without introducing false positives in the 

matching algorithm. 

As the odometry was not complete at the time of writing the Mapper was not able to be tested 

in a live environment. Instead, a session of LiDAR object data was recorded during a drive 

between cones and used during simulation. As the odometry of the drive was not available the 

session was video recorded and the cars movement was extracted from the video and emulated 

in the simulation. The time smoothing parameters were tuned to produce the desired results 

which are discussed in Section 5.2.3. 

 

7.2  System Design 

Object Localisation 

The LiDAR provides Cartesian coordinates of the size and position of objects. The localisation 

uses the latest car position and rotation measurements to transform the coordinates to the 

absolute reference frame. This is done using the following formulae: 
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𝑑𝑐,𝑐→𝑜 = √𝑦𝑐,𝑜
2 + 𝑥𝑐,𝑜

2 

 

𝜃𝑤,𝑐→𝑜 = arctan (
𝑥𝑐,𝑜
𝑦𝑐,𝑜

) + 𝜃𝑤,𝑐 

 

𝑦𝑤,𝑜 = 𝑑𝑐,𝑜 cos(𝜃𝑤,𝑐→𝑜) + 𝑦𝑤,𝑐 

 

𝑥𝑤,𝑜 = 𝑑𝑐,𝑜 sin(𝜃𝑤,𝑐→𝑜) + 𝑥𝑤,𝑐 

 
 
Where the first subscript denotes the reference 
frame and the second denotes the object/s. 
 
Note: Angles are measured clockwise from the 
y-axis.  

Figure 11: The object (red) detected by the vehicle 
(green) in the reference frame of the Mapper (blue). 

The green axis is the reference frame of the car. 

Object Filtering 

The context of the autonomous drive provides clean data as the flat bitumen environment 

lacks geometric features other than the cones; however, false positives are still provided by the 

LiDAR possibly due to dust or marks on the screen or unavoidable noise due to the scattering 

of light. The object filter works towards providing only object information for relevant objects 

by rejecting false positives based on distance and size. Objects that are too small or too far 

away from the car are deleted to reduce processing time and erroneous path planning. 

 

Time Smoothing 

During testing of the cone detection it was found that the detection would be missed 

periodically with the cones flickering in and out of detection even when static. Also, 

occasionally objects would be briefly detected that had no obvious physical counterpart. Both 

sets of behaviour are undesired as the Mapper needs to develop a permanent list of the relevant 

objects in the system. To counter this time-sensitive behaviour the Time Smoother was 

developed to combine the available data into a more relevant and accurate assessment of the 

environment. 

Each frame of LiDAR data contains each object the LiDAR is currently detecting. After a frame 

is recorded and filtered the objects are stored in the Time Smoother and assigned an age value, 

match counter, and a confidence value. For each subsequent frame the detected objects are 

compared with the existing objects for matches, an object is considered a match if they have 

dimensions and positions within the tolerances seen below. 

Position: The positions of two objects are considered a match if the distance between the 

two object centres is less than some constant D. 

Size: The sizes of two objects are considered a match if the height of the larger object 

is less that (1 + Sy) times that of the smaller object and the width of the wider 

object is less than (1 + Sx) times that of the narrower object. 
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When a match is found a weighted average of the positions and dimensions of the object is 

found and applied to the object and the confidence value is incremented. If a match is not 

found the object is added to the system and assigned low confidence. The objects then undergo 

confidence decay where each confidence value is reduced by a static amount. Objects with 

confidence reduced to below zero are removed from the system.  

Note: the confidence value for objects that lie outside the LiDAR’s current detection range are 

not reduced as the Mapper needs to track cones that it has previously passed.  

 

7.3  Parameter Tuning 

The object-match size and position matching values (D, Sx and Sy) can be increased to improve 

the chance of new objects being paired with an existing object. Increasing these values too high 

causes objects close together to be misinterpreted as a single object while reducing them too 

far causes redundancies as new objects are added to the existing list. This has the ongoing 

effect of slowing down the path planning as it has more objects to calculate that provide little 

to no benefit to the planner. 

The Time-Smoother avoid redundancies and false-positives in object detection by decaying 

the confidence of each object over time and deleting those with zero or lower confidence. The 

confidence and object deletion algorithm, and the optimal values found through observation 

are as follows: 

 

  

 

 

 

 

 

Parameter Value 

Sx 0.7 

Sy 0.7 

D 1.5m 

conf_limit 20 

confidence_decay 1 

match_conf 2 

Table 2: Optimal algorithm parameters 
for time-smoothing 
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7.4  Results 

The car was driven in a straight line through a 
lane behind the engineering workshops (seen 
right) to record data for the simulation. After 
emulating the odometry as discussed above 
the Mapper was able to deduce the positions of 
the cones and map its surroundings with 
success. 
 
The drive provided a total of 464 ‘frames’ of 
object data. Each frame contains a snapshot of 
the LiDAR’s observation and can contain any 
number of objects.  
 
Without filtering or Time-smoothing the 
Mapper presented the results seen in Figure 
13. A total of 3580 objects were discovered 
over the 464 frames. The filtered results 
(right) provides a similar level of detail with 
only 84 objects. This shows a massive 
reduction in redundant information and 
confirms the viability of the Mapper as an 
object provider for the path planner. 
 
 
 
 

 
Figure 12: The testing environment used during the 
test recording. The corresponding visualiser output 

is seen in figure 13. 

 

Figure 13: The Mapper output with no object smoothing or deletion (left) compared to the same data set with 
object smoothing and deletion (right). The red rectangle is the vehicle’s current position. 
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8 Conclusion 

This project demonstrated the successful implementation of an environmental mapper using 

LiDAR technology with the capabilities of displaying object data from other sources including 

the cone-detecting computer vision system. The mapper is able to detect and store relevant 

information from the environment whilst reducing redundancies that would cause 

performances losses in a live drive. To enable troubleshooting and aid future development a 

standalone, low-overhead visualiser was programmed and installed on the vehicle to display 

object data and odometry during both live drives and during simulation on separate systems. 

A new control scheme and software system was designed and partially implemented with 

considerable focus on the ease of future developments on the vehicle. Using sound software 

engineering paradigms the software was built to enable simultaneous development, testing of 

subsystems, exchangeability of modules, and expansion of functionality.  

 

9 Future Work 

Unfortunately due to the various subsystems being developed in parallel at different rates the 

software system was not able to be implemented and tested on the car as new developments 

were made on the pre-existing branch to maintain functional progress on the vehicle. This 

integration along with testing will be achieved over the following weeks as the team prepares 

for demonstration. 

Beyond the software integration the visualiser will be extended to display the intended 

manoeuvre and Baseframe of the vehicle to expose the decision making of the system to the 

observers. The visualisation data will be asynchronously supplied to computers on the network 

so that the same image feed can be observed outside the vehicle. 

Currently the control and visualisation on board the Jetson TX1 are run in serial with the path-

planner which could be altered so that all three run on separate threads to reduce blocking due 

to the processing requirements of each module.  
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