
0

School of Electrical, Electronic, and Computer Engineering

Autonomous Vehicle Reliability and Localization

Manu Adina-Zada (21135495)

Supervisor: Professor Dr. Thomas Bräunl

Submitted:

Word Count:

1

Nomenclature

SAE Society of Automotive Engineers

REV Renewable Energy Vehicles

UWA University of Western Australia

LiDAR Light Detection And Ranging

GPS Global Positioning System

IMU Inertial Measurement Unit

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

SLAM Simultaneous Localization And Mapping

ROS Robot Operating System

GNSS/INS Global Navigation Satellite System / Inertial Navigation System

PCB Printed Circuit Board

IC Integrated Circuit

2

Abstract
Autonomous vehicles need to orientate themselves in the environment to be able to generate

maneuverers to achieve a specific goal. Few sensors exist for this purpose, such as IMU, GPS and

odometry. However, these sensors have different precisions and their own advantages and

disadvantages. Hence, in the following dissertation different configurations of sensor fusion are going to

be explored.

Since a standard Kalman filter can’t be applied due to the non-linearity of the system model, the sensor

fusion was performed by an extended Kalman filter (EKF). Since, odometry and IMU rely on past

estimates to determine current position, these sensors become unreliable long term because of the

accumulation of past errors. GPS on the other hand, doesn’t require past estimates which makes it good

for measuring the position long term. However, due to the discrete jumps and high variance of ±1m the

estimations from the GPS are poor initially. After applying an EKF, the results have shown that the filter

slightly improved the position estimate, due to utilizing the advantages of odometry and IMU.

3

Acknowledgements
I would like to thank the following people,

Dr. Thomas Braunl for providing very interesting and practical projects to the University of Western

Australia. In addition, I thank Dr. Braunl for providing advice, vision and leadership.

REV SAE team for their teamwork and assistance throughout the year.

Family and friends for supporting me throughout the duration of this course.

4

Contents
Nomenclature ... 1

Abstract ... 2

Acknowledgements ... 3

1.0 Introduction .. 5

2.0 Literature Review .. 6

2.1. Kalman Filter ... 8

2.2 Extended Kalman Filter Model .. 9

3. Methodology ... 12

3.1 Robot Operating System (ROS) ... 12

3.2 Sensors .. 12

3.2.1 IMU .. 12

3.2.2. GPS .. 12

3.2.3. Odometry .. 12

3.3 Extended Kalman Filter Integration .. 13

3.4 PCB .. 15

4. Results ... 18

4.1 PCB .. 18

4.2 The Extended Kalman Filter .. 19

5. Future Work .. 22

5.1 Simultaneous Localization And Mapping (SLAM) ... 22

5.2 Unscented Kalman Filter (UKF) ... 23

6. Conclusion ... 25

Bibliography .. 26

Appendix A .. 28

5

1. Introduction
The autonomous vehicles are becoming more prevalent in our society. This is due to driverless cars

having the potential to significantly reduce accidents, transit times, and reduce costs for industries (i.e.

mining and taxi services). Companies such as Uber, Baidu, Google and Tesla have entered the research

and development to attempt to produce a safe, fully autonomous and accessible vehicle.

The University of Western Australia have also entered this field in 2010. Initially the SAE vehicle has

started as an electric vehicle and was developed into having autonomous capabilities over time. The

vehicle in the current state has the required hardware for autonomous operation, however the software

layer is insufficient and requires further development. Therefore, the focus of this thesis is on one of the

lacking areas, which is the localization of the vehicle. Since the robot needs to know where it is in the

environment, it needs to have an ability to track its position. Hence, a standard approach is to have

sensors, such as GPS, IMU and odometry. Since sensors experience a lot of noise, to achieve the best

precision, sensor fusion is performed which will be discussed further in this paper.

One of the other issues with the SAE vehicle was the reliability. Since a lot of hardware was made on

prototype breadboards, the system was highly unreliable. One of the main culprits was the low-level

circuit that’s responsible for steering, breaking and acceleration. Hence, it’s an important piece for the

SAE vehicle to function. To improve the reliability, the author converted the low-level circuit into a PCB.

The process will be further discussed in the later sections.

6

2. Literature Review
State estimation is one of the most important problems in autonomous navigation. Having an accurate

state estimation is crucial for making optimal decisions for future control inputs to effectively navigate

the environment. If the robot has a target destination, the robot needs to know it’s current state which

consists of position, velocity, acceleration and heading to correctly execute the right maneuvers to reach

the goal. To get the current state, the robot is usually equipped with sensors, such as GPS, odometry and

IMU. However, these are susceptible to noise and imperfections which introduce uncertainty to the

measurements. Hence, the filters goal is to use all the available sensor data, as well as the robot’s own

dynamics to obtain a more precise estimate of the robot’s state.

The first filter that was used for state estimation is the Kalman filter. The filter was introduced by R.E.

Kalman in 1960 for linear systems with Gaussian process and measurement noise [1]. The Kalman filter

ended up being a popular estimator, where it can be seen in aerospace and aircraft industries to

seismology and weather forecasting [1]. Since the standard Kalman filter could only be applied for linear

systems, a couple of variations of the Kalman filter were introduced to deal with non-linear systems [1].

One of the variations is the Extended Kalman filter, where it deals with non-linearity by approximating a

linear equivalent before performing the required filtering sequence [1]. Since the Extended Kalman filter

poorly approximates the linear equivalent for highly non-linear systems, a better approach was

introduced. The new approach is the Unscented Kalman filter [1]. The UKF approximates the Gaussian

equivalent of a non-Gaussian distribution and achieves better precision in comparison to EKF while

having similar time complexity [1]. Both methods are better described in 2.1 and 2.2.

An alternative method for non-linear systems is the Markov Chain Monte Carlo filter or known as

Particle filter [1]. The advantage of a particle filer is that it can be applied on systems with non-Gaussian

distributions [1]. It functions by simulating the system evolution multiple times and choosing the state

estimate as a weighted average of all simulations [1]. This has been applied to a lot of robotic

applications, SLAM in particular [1]. Previously the particle filter wasn’t as adopted as it now due to high

computational cost. However, now due to the rise in computational power these filters are becoming

more prevalent. In addition, more efficient variations of the particle filter such as Rao-Blackwellized

particle filter has been developed that combines Kalman and particle approach [1].

In 2013, Thomas Drage has implemented a standard Kalman filter for estimating the position and

Elmenreich algorithm for heading [2]. For position, he had a prediction step and used GPS and IMU for

the correction step [2]. This is an adequate approach, however due to odometry being introduced by

7

Mitchell Poole in 2017 the position estimate could be further improved. In addition, the Kalman

operated in 2D space, and a better estimate could be achieved using the 3D space. Additionally, since

the orientation requires sine and cosine functions, it introduces non-linearity to the system. Hence, the

original Kalman isn’t sufficient. Furthermore, if a variation of a Kalman filter that accepts non-linearity is

to be used, then the Elmenreich becomes redundant since the whole state (position and orientation)

can be handled with one filter.

In 2013, Thomas Drage fused the heading using the following equation, by using the Elmenreich

method,

𝑍 = 𝑤𝐺𝑋𝐺 +𝑤𝐼𝑋𝐼

where the orientation, is a combination of two readings, one from GPS and the other is from IMU [2].

The 𝑤𝐺 and 𝑤𝐼 are weights that adjust how much influence the readings 𝑋𝐺 and 𝑋𝐼 have [2]. This

method avoids the problem of non-linearity with the standard Kalman filter. However, since this method

isn’t using the prediction to improve the certainty of the orientation, this is an inferior method to the

Kalman approach. Hence, as stated in the previous paragraph, to improve the certainty a Kalman type

filter that accepts non-linearity should be used.

8

2.1. Kalman Filter
The Kalman Filter attempts to get the most optimal estimate with the data provided. The filter achieves

this through recursive sets of actions [3]. The filter consists of two steps, the prediction and correction

[3]. In the prediction stage, the Kalman filter attempts to predict the future state using the current state

[3]. In the correction stage, the filter uses the measurements acquired to correct the prediction [3]. The

magnitude of correction that is going to be performed is dependent on the uncertainty of measurement

and the uncertainty of the prediction [3].

The Kalman Filter’s prediction is denoted by the following expression [3],

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 +𝐵𝑘𝑢𝑘 +𝑤𝑘

where 𝑥𝑘−1 is the previous estimate, 𝑢𝑘 is the control matrix and 𝑤𝑘 is the process noise [3]. The A is

the state transition matrix, and B is the control input matrix [3].

The Kalman Filter’s correction is denoted by the following [3],

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧 − 𝐻𝑘�̂�𝑘)

where 𝐾 is the Kalman gain that dictates how much of the correction is going to be performed, and 𝑧 is

the measurement [3]. The remaining term 𝐻𝑘 is the matrix that transforms the predicted state into the

measurement space [3].

The Kalman Filter relies on one of the properties of the Gaussian distribution [3]. The key property that

the filter is taking advantage of is that when two or more Gaussian distributions are multiplied, the

result will have a Gaussian distribution as well [3]. Hence, by using the Gaussian functions of two

distributions, a new mean and variance can be calculated [3].

The new calculated mean and variance will then equal to [3],

Where:

𝑁(𝜇𝑝, 𝜎𝑝
2) predicted distribution

𝑁(𝜇𝑚, 𝜎𝑚
2) measurement distribution

𝑁𝑓(𝜇𝑓 , 𝜎𝑓
2) filtered distribution

𝑁𝑓(𝜇𝑓 , 𝜎𝑓
2) = 𝑁(𝜇𝑝, 𝜎𝑝

2) ∗ 𝑁(𝜇𝑚, 𝜎𝑚
2)

9

=
1

√2𝜋𝜎𝑝
2

𝑒
−
(𝑥−𝜇𝑝)

2

2𝜎𝑝
2
∗

1

√2𝜋𝜎𝑚
2
𝑒
−
(𝑥−𝜇𝑚)

2

2𝜎𝑚
2

⇒ 𝜇𝑓 = 𝜇𝑝 + (
𝐻𝜎𝑝

2

𝐻𝜎𝑝
2 + 𝜎𝑚

2) (𝜇𝑚 −𝐻𝜇𝑝)

⇒ 𝜎𝑓
2 = 𝜎𝑝

2 −
𝜎𝑝
4

𝜎𝑝
2 + 𝜎𝑚

2

Hence, the Kalman Gain is,

𝐾 =
𝐻𝜎𝑝

2

𝐻𝜎𝑝
2 + 𝜎𝑚

2

The Kalman gain determines how much of the correction is needed. If prediction is uncertain compared

to measurement, then 𝜎𝑝
2 ≫ 𝜎𝑚

2 . This results in the Kalman gain to tend to go to 1 which means that

more correction is going to be performed. However, when the opposite is true, where 𝜎𝑝
2 ≪ 𝜎𝑚

2 the 𝐾

will tend to go to 0. Hence, less correction is going to be performed due to uncertain measurement.

2.2 Extended Kalman Filter Model
The standard Kalman filter relies on the linear model. When a linear transformation is applied to a

Gaussian distribution, the output retains Gaussian [4]. However, when a non-linear transformation is

applied to a Gaussian distribution, the output becomes non-Gaussian as shown by Figure 1. Since the

Figure 1, The Effect of a Non-Linear Transformation on
the Gaussian Distribution

10

Kalman filter relies on the Gaussian distributions, if a model is non-linear then the filter can’t perform

its’ function.

Since the computation of robotic movements require direction, sine and cosine functions are needed.

These functions are non-linear, and as a result the standard Kalman filter can’t be applied. The extended

Kalman filter solves this problem by linearizing the non-linear function. To achieve this, the EKF uses first

order Taylor series approximations [5].

The linear function is approximated by the following [6],

𝑓(𝑢𝑘 , 𝑥𝑘−1) ≈ 𝑓(𝑢𝑘, 𝜇𝑘−1) +
𝑑𝑓(𝑢𝑘 , 𝜇𝑘−1)

𝑑𝑥𝑘−1
(𝑥𝑘−1 − 𝜇𝑘−1)

Another local point 𝜇𝑘−1 is used to approximate a linear function around 𝑥𝑘−1 [6]. The differential can

be obtained from Jacobian of 𝑓(𝑢𝑘) [6]. The same principle is applied to the measurement model [6].

With an extended Kalman filter, the current pose is predicted using the past measurements [7]. As

shown,

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1

where 𝑥𝑘 is the current pose at time 𝑘, and the 𝑓 is a non-linear transition function that converts the

past state to the current state [7]. The 𝑤𝑘−1 is the process noise that is normally distributed [7]. As of

now, the SAE vehicle is using 2D coordinates. Hence the state 𝑥 is composed of the x-coordinate, the y-

coordinate and yaw. The state measurements that are being received are expressed as,

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘

where 𝑧𝑘 is the measurement at time 𝑘 [7]. The ℎ is a non-linear function that converts the state into

measurement space [7]. The last variable, 𝑣𝑘 is the measurement noise that is normally distributed [7].

The first step of the EKF filter is to predict the next state and the next error covariance using the current

state and current estimate error covariance [7]. The following two equations describe this,

𝑥𝑘 = 𝑓(𝑥𝑘−1)

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄

where 𝑓 is composed of standard kinematics equations [7]. The matrix 𝐹 is a Jacobian of 𝑓 and 𝑃 is the

process error covariance [7]. The following sequence 𝐹𝑃𝑘−1𝐹
𝑇 is to predict the future process error

11

covariance using the current process error covariance using the Jacobian of 𝑓 [7]. The remaining term 𝑄

is the process noise covariance [7].

The correction sequence that occurs for the EKF is identical to the standard Kalman filter. However, the

linearized versions of 𝑓 and ℎ are used, and 𝐹 and 𝐻 are Jacobian of linearized 𝑓 and ℎ [7]. The following

steps are [7],

1. Compute Kalman Gain,

𝐾 = 𝑃𝑘𝐻
𝑇(𝐻𝑃𝑘𝐻

𝑇 + 𝑅)−1

2. Perform the correction,

𝑥𝑘 = 𝑥𝑘 + 𝐾(𝑧 − 𝐻𝑥𝑘)

3. Calculate new process error,

𝑃𝑘 = (𝐼 − 𝐾𝐻)𝑃𝑘(𝐼 − 𝐾𝐻)
𝑇 + 𝐾𝑅𝐾𝑇

12

3. Methodology

3.1 Robot Operating System (ROS)
In 2018 most of the software was scrapped or adapted to convert to ROS-based system. ROS greatly

reduces the complexity of developing a software system for a robot. ROS provides low-level device

control, implementation of commonly-used tools, message-passing between processes, and package

management [8]. Hence, instead of creating an independent system where a ‘broker’ would manage the

communication between ‘modules’ (programs that have a specific function) ROS readily provides these

services. Hence, the user only has to worry about creating ‘nodes’ (programs that perform a certain

function) that listen and talk to other nodes [8].

3.2. Sensors

3.2.1 IMU
A single sensor that has both capabilities of a GPS and IMU was used (Xsens MTi-G-710). To implement

the sensor into the system, an available ROS Xsens driver package was used. The Xsens package works

by receiving the sensor measurements and then inputting these readings into ROS messages. Other

nodes can then subscribe to these messages to use the data given by that driver. Another node that will

utilize these messages will be the ‘robot_localization’ package.

When it came to the covariance matrix of the IMU, the Xsens ROS driver used the default values

specified by the manual.

3.2.2. GPS
The GPS functionality of the driver didn’t add the covariance to the GPS type message. Since, the Xsens

Mti-G-710 has the capability of estimating its’ own horizontal and vertical accuracy this information just

needed to be passed to the node. Hence, the vertical and horizontal accuracy was simply added to the

ROS GPS type message. Depending on the environment, the accuracy would rise indicating poor

precision if there were a lot of obstacles surrounding the sensor, and the accuracy would fall if the area

was clear indicating better precision.

3.2.3. Odometry
The error was empirically estimated to be around 0.04 per meter. To calculate the error in terms of x

and y coordinates, the error had to go through the Ackermann model. The equations for the model are

as follows,

Where:

13

𝑑𝑙𝑒𝑓𝑡 is the distance the left wheel has travelled since the last reading

𝑑𝑟𝑖𝑔ℎ𝑡 is the distance the right wheel has travelled since the last reading

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 the distance travelled by the vehicle since the last reading

Initially, the distance the vehicle has travelled is determined,

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
𝑑𝑙𝑒𝑓𝑡 + 𝑑𝑙𝑒𝑓𝑡

2

To get the velocity of the vehicle,

𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒
∆𝑡

𝑥 and 𝑦 components of velocity can then be found by using the steering angle given by the servo,

𝑣𝑥 = 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∗ cos𝜑

𝑣𝑦 = 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∗ sin𝜑

Thus, the 𝑥 and 𝑦 coordinates can be determined,

𝑥𝑛 = 𝑥𝑛−1 + 𝑣𝑥∆𝑡

𝑦𝑛 = 𝑦𝑛−1 + 𝑣𝑦∆𝑡

Hence, the error should accumulate over time. However, the covariance values for x and y didn’t get

passed through to the Jetson from the low-level system due to an error in communication between

these systems. Therefore, the covariance values for x and y were put as a static in the control program.

This resulted in poor results, this is further discussed in the Results section.

3.3 Extended Kalman Filter Integration
For sensor fusion, the ‘robot_localization’ ROS package was used. This package provides a node that

contains an EKF algorithm. In addition, the package can support multiple sensor and is able to transform

GPS data for fusion. The advantage of using this package is that it handles all the sensor messages in the

background. This involves syncing up the messages that are arriving at different times and ensuring that

the EKF still runs when a sudden abruption is caused (i.e. sensors is damaged). The package can work in

3D or 2D mode.

14

For ROS packages, the nodes can be reconfigured once it’s ran or it can be configured in the ‘param’ file.

The ‘param’ file was set up so that the EKF is performed at 20 Hz.

For each sensor, the inputs need to be specified. The package provides a matrix,

(

𝑥 𝑦 𝑧
𝜃 𝜑 𝜓
𝑣𝑥 𝑣𝑦 𝑣𝑧

�̇� �̇� �̇�
𝑎𝑥 𝑎𝑦 𝑎𝑧)

Where x is an axis for forward and backward movements, y is an axis that spans left and right, and z axis

is the vertical axis up and down. The symbol 𝜃 represents rotation around the x axis, 𝜑 is rotation

around y, and 𝜓 is the rotation around z. For the package, to enable each sensor input, each position in

the matrix needs to be marked as true or false.

The odometry was configured as follows,

(

𝑇 𝑇 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹)

Where T is true and F is false. The odometry is limited, as it can only provide 𝑥, 𝑦 and 𝜓. The issue with

our system is that yaw is taken from the commands that are sent to the steering servo. This is

suboptimal, since the steering command that is sent to low level is oftentimes different than the

steering that occurs in reality. Therefore, the covariance value for yaw is assigned as a high value and it

is also disabled in the param file.

The IMU can provide all components of velocities and accelerations. In addition, it also provides all the

rotations 𝜃, 𝜑 and 𝜓. Hence, the configuration was set as the follows,

(

𝐹 𝐹 𝐹
𝑇 𝑇 𝑇
𝐹 𝐹 𝐹
𝑇 𝑇 𝑇
𝑇 𝑇 𝑇)

The GPS is able to only provide x, y and z coordinates. The corresponding fields are marked as true.

15

(

𝑇 𝑇 𝑇
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹)

IMU and odometry provide continuous data, and by ROS convention these sensors operate in ‘odom

frame’. In odom frame, the pose (position and heading) can drift over time and the pose can only

change smoothly. This means that there should be no discrete jumps. Hence, the IMU and odometry

fusion is run on one node. Another node is then run simultaneously for discontinuous data such as GPS.

The GPS operates in ‘map frame’ where drift is absent and discrete jumps are expected in-between

readings.

3.4 PCB
The PCB was previously created on a breadboard. Due to the exposed wiring and poor soldering, this

resulted in numerous faults occurring in a period of two months. When each fault occurred, the repair

would take a long time due to the entangled wiring and large amounts of solder joining multiple lanes

and elements together as shown by Figure 2. Therefore, the aim for the PCB was to improve reliability as

well as to add an additional noise protection to the low-level circuit.

The first step was to trace the wiring and solder to create a schematic of the low-level circuit. The

resulting schematic is shown in appendix A. The EAGLE software was used due to it being capable of

both, the schematic and PCB creation.

Figure 2, The state of low level before PCB (top layer on the left, and bottom layer on the right)

16

The created schematic was then used to create the PCB. To reduce complexity, the number of layers was

kept to 2, the top side and the bottom side. The PCB dimensions were needed to be identical to the

previous breadboard circuit, so it could fit in the existing enclosure. Hence, the only parameter that

could be controlled was the number of layers, and the advantage of having 2 layers is that it’s cheap.

For all the connections between components, the traces were routed in paths that have shortest

distances. Similarly, the components were arranged in a way to reduce the distances between each

connected component as well. It’s generally preferred to keep the trace length short to avoid the trace

behaving like a transmission line [9]. When the length of the trace is in range of the signal’s wavelength,

the trace obtains the problems associated with the transmission line, such as time delay, reflections, and

crosstalk [9]. Since the signal passes through the trace at finite speed, the signal takes some time to

reach the destination [9]. Hence, there’s more propagation delay if the trace is longer. In addition, the

transmission lines are prone to reflections. If the impedance changes in the signal chain (e.g. source –

trace – component) then the reflections will occur that cause overshoots or undershoots [9]. To avoid

the reflections, the impedances need to match the characteristic impedance of the trace [9]. Another

issue associated with transmission lines is crosstalk. When two traces are in parallel they may influence

each other [9]. Due to the electromagnetic field, one trace can be influenced by another trace by an

inductive and capacitive coupling [9]. Hence, a general rule is to keep the traces apart by a distance of

twice the trace width [9]. This rule was followed when creating the low-level PCB. Overall, to avoid the

issues associated with the transmission line, it’s best to keep the trace lengths short.

When designing the board, creating vias was avoided. Vias are used to connect layers together. They are

made by drilling a hole and pouring copper into the hole, as shown by Figure 3. The vias have increased

impedances compared to traces, hence they are prone to creating reflections [9]. When creating the

low-level PCB, the vias were avoided but in the expense of trace length, as shown in appendix A.

Figure 3, Via

17

To further reduce radiation, the bend of the trace and trace positions were also considered. When the

trace bends by a 90 degree angle, the capacitance increases in the region of the corner. The change in

the impedance causes reflections [9]. Thus, it’s best to have two 45 degree bends instead, as shown by

Figure 4 [9]. This was kept in mind when designing the PCB, as shown in Appendix A, where 90 degree

bends are absent. The crosstalk can also occur between adjacent layers if the traces in both layers are in

a similar position and are in parallel [9]. Hence, it’s better to place two traces orthogonally if the position

can’t be changed [9]. In the designed low-level PCB, this isn’t an issue since most traces aren’t in

parallel.

Most ICs are prone to noise or ripples in the supply pins that in turn cause performance degradation

[10]. For power supplies or the ICs, the decoupling capacitors are utilized as an effective way to reduce

the noise when a steady DC voltage is needed [10]. The decoupling capacitors are used because they

oppose quick changes in voltage [11]. Therefore, when the voltage spikes the capacitor absorbs the

excess voltage and when the voltage drops the capacitor supplies the energy required to keep the

voltage stable [11]. The designed low-level PCB has the decoupling capacitor (C23) at the isolation side

of the circuit, as shown in Appendix A. The other PCB that was designed for odometry circuit has a

decoupling capacitor for each IC and input power pins, also shown in Appendix A.

For both the low-level PCB and odometry PCB, the majority of ICs were chosen to be the through-hole

instead of the surface mount. The through-hole components are generally larger and to solder them to

the board, the pins have to go through a hole [12]. The surface-mount components on the other hand,

are much smaller and are soldered on the surface of the board [12]. Since, the surface-mount

components require experience to solder and are oftentimes more expensive, the through-hole

components were chosen [12]. The added benefit of through-hole components is that they are more

reliable, better secured to the board, and can withstand higher temperatures [12].

Figure 4, Optimal trace bend [9]

18

Another design decision was choosing the trace width and thickness. The trace width is decided by the

current, thickness of copper and temperature [13]. When it comes to thickness, the manufacturers

usually have two options, 1 oz or 2 oz/ft^2. Since the maximum current in the circuit is 0.5A, the trace

width required for this much current is low. Since, there is no need to reduce the trace width further by

choosing 2 oz, the 1 oz/ft^2 is reasonable. To determine the trace width, a graph provided by the

IPC2221A was used (or similarly a direct formula can be used) as shown Figure 5 [13]. Since there aren’t

any components that produce a lot of heat, a temperature rise of 10 degrees was expected. Hence, the

trace width chosen was 10mil with thickness of 1oz/ft^2. The final PCB version that was printed and put

together is shown in Appendix A.

4. Results

4.1 PCB
The low-level PCB was implemented to the SAE vehicle. The board didn’t cause any major issues aside

from minor problems that required slight adjustments. One such problem was that the Arduino Mega

2560 had a pin that didn’t sink the current properly, and as a result, the connection was rerouted to

another pin that was functional. Another issue was due to poor soldering on one of the relay pins. To

solve the issue, the pin was re-soldered. Aside from those minor issues which were fixed, no other

problems were encountered in four months since the PCB was implemented. Hence, in terms of the

Figure 5, Conductor Thickness and Width for External Layers [13]

19

reliability, the PCB conversion was successful since no low-level faults occurred after several months of

testing.

The odometry PCB was printed, but it still needs to be implemented due to inexperience with the

surface-mount soldering. Soldering a microcontroller was proven to be difficult, hence the

implementation will be done in the future with a person who’s more experienced in this area. Once

implemented, the PCB version of odometry should be much more reliable due to the use of decoupling

capacitors. The old breadboard odometry circuit omitted any noise protection, so it is unreliable in

comparison.

4.2 The Extended Kalman Filter
Due to the error in communication between the low-level and the Jetson, the odometry’s covariance

values didn’t get through to the Jetson. Since, other variables were successfully received, the source of

this error is most likely the low-level software. Even though attempts have been made, due to the time

constraints, the error couldn’t be fixed on time.

In the following table, the odometry measurements are compared to the fused odometry and IMU

position estimate. To gather the data, the vehicle was driven in a relatively straight path. The ground

that the vehicle was driven on didn’t have any changes in elevation and as a result the Z coordinate was

omitted. The data was gathered from three points in time.

Table 1: Data Taken at 50.88s

Position Odometry Fused: Odometry + IMU

X 1.42999 1.43639

Y 0.02999 0.02504

Covariance X 0.01600 0.01303

Covariance Y 0.01600 0.01344

Table 2: Data Taken at 100.91s

Position Odometry Fused: Odometry + IMU

X 41.0699 41.0727

Y 13.9399 13.9012

Covariance X 0.01600 0.01318

Covariance Y 0.01600 0.01317

Table 3: Data Taken at 150.89s

Position Odometry Fused: Odometry + IMU

X 58.0000 57.9703

20

Y 27.6800 27.6584

Covariance X 0.01600 0.01318

Covariance Y 0.01600 0.01326

As shown by the tables, due to static odometry’s covariance values the filtered covariance values don’t

experience significant change. If the odometry functioned correctly, the expected covariance values of

odometry and filtered data should’ve risen over time. The positive result that could be seen, is that the

fused covariance values for X and Y are lower. This demonstrates that the filter is functioning as it was

intended. Another observation is that there’s slight adjustment made by the filter. This demonstrates

that the adjustment isn’t that significant in the short term. Hence, if odometry covariance data

accumulated, it would be expected for the adjustment to be much more significant in the long term.

Theoretically, due to the accumulation of errors by the IMU and odometry, the GPS is expected to offset

the drift. However, as a result of the time constraints and issues associated with GPS, the fused GPS data

couldn’t be retrieved on time.

An EKF was already implemented by Tom Moore in 2015 using the same ‘robot_localization’ package on

a differential drive robot. The results from this implementation better demonstrate the capabilities of

this filter. The first figure shown below demonstrates the reference path in red (i.e. ground truth) and

the odometry position estimate from odometry by yellow. As it can be seen from Figure 6, initially the

odometry was accurate, but due to the buildup of error over time the position estimate and heading

became very poor [7]. The next figure shows the effect of fusing the IMU + odometry on the left and

fusing IMU + odometry + GPS on the right. As it can be seen in Figure 7, at the start IMU + odometry

position estimates were fairly accurate, but due to accumulation of errors the estimate became

imprecise long term [7]. However, in comparison to solely using odometry, the fusion with IMU greatly

improved the estimate [7]. When GPS was introduced to the fusion of IMU and odometry, the Figure 7

Figure 6, Left - Reference Path (Red); Right - Odometry Estimate (Yellow)

21

demonstrates that the estimate is greatly improved long term [7]. Similar behavior was expected in this

project’s implementation despite having an Ackermann model. However, due to the problems that were

described previously, these results weren’t obtained.

Figure 7, Left - IMU + Odometry (Cyan); Right - Odometry + IMU + GPS (Blue)

22

5. Future Work
The future work that could be done is the SLAM and the unscented Kalman filter. UKF solves the

disadvantage of EKF and is generally considered as superior to EKF. SLAM further improves the position

estimate and since the EKF is an important part of SLAM, it is also considered as future work.

5.1 Simultaneous Localization And Mapping (SLAM)
SLAM is an algorithm that is responsible for mapping an unknown environment while simultaneously

navigating the environment using the generated map [14]. The whole purpose of SLAM is to use the

environment to update robot’s position [14]. The environment is mapped by vision (cameras), radar and

LiDAR [14]. The generated map is used to track the positions of landmarks as the robot moves around

[14]. The EKF is used extensively in SLAM [14]. The EKF is applied for position estimates of landmarks, as

well as for the robot’s position estimate [14]. The overview of SLAM is shown by Figure 8, however

instead of having just odometry, the REV project has IMU and GPS.

When the robot has moved, the robot receives a new position estimate from EKF through it’s sensors

(i.e. odometer, IMU, GPS) [14]. Then, the landmarks are extracted from the new observation of the

environment when the robot is in the new position [14]. The robot then tries to associate the new

landmarks to the landmarks previously seen [14]. If the robot identifies that it has re-observed some

landmarks, it uses this information to update its position using the EKF [14].

Figure 8, Overview of SLAM [14]

23

SLAM will provide an additional source for estimating position. Especially, with a LiDAR sensor that

provides an accurate data, the position estimate will further be improved. However, SLAM

implementation is more complex and the cost of the equipment required is very high.

5.2 Unscented Kalman Filter (UKF)

When the model is highly non-linear, the linear approximation of EKF can be inaccurate. If the local

point 𝜇𝑘 is used to generate the linear approximation, and the point at 𝑥𝑘 is very far from 𝜇𝑘 due to high

non-linearity, then the linear approximation becomes poor as shown by the Figure 10. The Unscented

Kalman filter addresses the problem by deterministic sampling approach [15]. The state’s gaussian

distribution is first approximated by carefully chosen sampled points that completely capture the mean

and variance of the distribution [15]. These sampled points are then transformed by the non-linear

model and the output then represents a gaussian approximate of the non-gaussian distribution [15]. The

process is shown by right hand side of the Figure 9. It should be noted that the time complexity of UKF is

Figure 10, Poor Linear Approximation of the Non-
Linear Function [16]

Figure 9, Different methods of dealing with Non-Linearity [15]

24

equivalent to EKF, and the estimation by the UKF is accurate to the 3rd order of Taylor’s series expansion

[15]. Hence, the UKF is a superior approach for dealing with non-linearities.

25

6. Conclusion
The extended Kalman filter shows promise, however more work needs to be done on the

implementation and extraction of the results. Due to the wide spread use of the EKF, the improvement

in position estimate is expected. The results support this, where a slight improvement in covariance is

seen. However, once implemented with GPS and with proper odometry covariance accumulation, the

improvement in position estimate should be much greater than what it is currently shown. In the future,

the position estimate can be further improved with UKF and SLAM.

The PCB greatly improved the reliability of the low-level circuit. Without the loose wiring and exposed

chunks of solder, the causes behind numerous faults decreased. Since the design practices for reducing

the transmission line effects were followed, the general performance of the circuit also improved. In

addition, with the added noise protection, it is expected for the components of the circuit to last longer.

26

Bibliography

[1] R. Ivanov, "State Estimation Filters," Department of Computer and Infomation Science,

Philadelphia.

[2] T. Drage, "Development of a Navigation Control System for," The University of Western Australia,

Perth, 2013.

[3] R. Faragher, "Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation,"

IEEE SIGNAL PROCESSING MAGAZINE, vol. 29, no. 5, pp. 128-132, 2012.

[4] M. Taboga, "Lectures on Probability and Statistics," StatLect, 2010. [Online]. Available:

https://www.statlect.com/probability-distributions/normal-distribution-linear-combinations.

[Accessed 4 May 2018].

[5] M. Byron, K. V and S. Maneesh, "Derivation of Extended Kalman Filtering and Smoothing

Equations," 2004.

[6] D. Morrell, "Extended Kalman Filter Lecture Notes," Arizona State University, Phoenix, 1997.

[7] T. Moore and D. Stouch, "A Generalized Extended Kalman Filter Implementation for the Robot

Operating System," Springer, Massachusetts, 2014.

[8] "ROS Introduction," Open Source Robotics Foundation, [Online]. Available:

http://wiki.ros.org/ROS/Introduction. [Accessed 22 May 2018].

[9] A. Weiler, A. Pakosta and V. Ankur, "High-Speed Layout Guidelines," August 2017. [Online].

Available: http://www.ti.com/lit/an/scaa082a/scaa082a.pdf. [Accessed 26 May 2018].

[10] "Decoupling Techniques," Analogue Devices, 2009. [Online]. Available:

http://www.analog.com/media/en/training-seminars/tutorials/MT-101.pdf?doc=CN0305.pdf.

[Accessed 26 May 2018].

[11] "Coupling and Decoupling," capacitorguide.com, 2018. [Online]. Available:

http://www.capacitorguide.com/coupling-and-decoupling/. [Accessed 26 May 2018].

[12] "Through-Hole vs. Surface Mount," Optimum Design Associates, 2018. [Online]. Available:

http://blog.optimumdesign.com/through-hole-vs-surface-mount. [Accessed 2018 May 26].

[13] "Generic Standard on Printed Board Design IPC-2221A," May 2003. [Online]. Available:

http://www.sphere.bc.ca/class/downloads/ipc_2221a-pcb%20standards.pdf. [Accessed 26 May

2018].

[14] S. Riisgaard and M. R. Blas, "SLAM for Dummies (A Tutorial Approach to Simultaneous Localization

and Mapping)," 2005. [Online]. Available: https://ocw.mit.edu/courses/aeronautics-and-

27

astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf. [Accessed 20

May 2018].

[15] A. Wan and R. Merwe, "The Unscented Kalman Filter for Nonlinear Estimation," in Adaptive

Systems for Signal Processing, Communications, and Control Symposium, Oregon, 2000.

[16] MATLAB, "Understanding Kalman Filters, Part 5: Nonlinear State Estimators," Youtube, 17 May

2017. [Online]. Available: https://youtu.be/Vefia3JMeHE. [Accessed 21 May 2018].

28

Appendix A

Figure 1A, The Schematic of the Low-Level Circuit

29

Figure 2A, The Layout of Components (Low-Level)

30

Figure 3A, Top Layer of the Low-Level PCB

31

Figure 4A, Bottom Layer of the Low-Level PCB

32

Figure 5A, The Final Constructed PCB

33

Figure 6A, Odometry Circuit Schematic

34

Figure 7A, Layout of Components (Odometry)

Figure 8A, Top Layer of Odometry PCB

35

Figure 9A, Bottom Layer of Odometry PCB

