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Nomenclature 
 

SAE Society of Automotive Engineers 

REV Renewable Energy Vehicles 

UWA University of Western Australia 

LiDAR Light Detection And Ranging 

GPS Global Positioning System 

IMU Inertial Measurement Unit 

EKF Extended Kalman Filter 

UKF Unscented Kalman Filter 

SLAM Simultaneous Localization And Mapping 

ROS Robot Operating System 

GNSS/INS Global Navigation Satellite System / Inertial Navigation System 

PCB Printed Circuit Board 

IC Integrated Circuit 
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Abstract 
Autonomous vehicles need to orientate themselves in the environment to be able to generate 

maneuverers to achieve a specific goal. Few sensors exist for this purpose, such as IMU, GPS and 

odometry. However, these sensors have different precisions and their own advantages and 

disadvantages. Hence, in the following dissertation different configurations of sensor fusion are going to 

be explored. 

Since a standard Kalman filter can’t be applied due to the non-linearity of the system model, the sensor 

fusion was performed by an extended Kalman filter (EKF). Since, odometry and IMU rely on past 

estimates to determine current position, these sensors become unreliable long term because of the 

accumulation of past errors. GPS on the other hand, doesn’t require past estimates which makes it good 

for measuring the position long term. However, due to the discrete jumps and high variance of ±1m the 

estimations from the GPS are poor initially. After applying an EKF, the results have shown that the filter 

slightly improved the position estimate, due to utilizing the advantages of odometry and IMU. 
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1. Introduction 
The autonomous vehicles are becoming more prevalent in our society. This is due to driverless cars 

having the potential to significantly reduce accidents, transit times, and reduce costs for industries (i.e. 

mining and taxi services). Companies such as Uber, Baidu, Google and Tesla have entered the research 

and development to attempt to produce a safe, fully autonomous and accessible vehicle.  

The University of Western Australia have also entered this field in 2010. Initially the SAE vehicle has 

started as an electric vehicle and was developed into having autonomous capabilities over time. The 

vehicle in the current state has the required hardware for autonomous operation, however the software 

layer is insufficient and requires further development. Therefore, the focus of this thesis is on one of the 

lacking areas, which is the localization of the vehicle. Since the robot needs to know where it is in the 

environment, it needs to have an ability to track its position. Hence, a standard approach is to have 

sensors, such as GPS, IMU and odometry. Since sensors experience a lot of noise, to achieve the best 

precision, sensor fusion is performed which will be discussed further in this paper. 

One of the other issues with the SAE vehicle was the reliability. Since a lot of hardware was made on 

prototype breadboards, the system was highly unreliable. One of the main culprits was the low-level 

circuit that’s responsible for steering, breaking and acceleration. Hence, it’s an important piece for the 

SAE vehicle to function. To improve the reliability, the author converted the low-level circuit into a PCB. 

The process will be further discussed in the later sections. 
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2. Literature Review 
State estimation is one of the most important problems in autonomous navigation. Having an accurate 

state estimation is crucial for making optimal decisions for future control inputs to effectively navigate 

the environment. If the robot has a target destination, the robot needs to know it’s current state which 

consists of position, velocity, acceleration and heading to correctly execute the right maneuvers to reach 

the goal. To get the current state, the robot is usually equipped with sensors, such as GPS, odometry and 

IMU. However, these are susceptible to noise and imperfections which introduce uncertainty to the 

measurements. Hence, the filters goal is to use all the available sensor data, as well as the robot’s own 

dynamics to obtain a more precise estimate of the robot’s state. 

The first filter that was used for state estimation is the Kalman filter. The filter was introduced by R.E. 

Kalman in 1960 for linear systems with Gaussian process and measurement noise [1]. The Kalman filter 

ended up being a popular estimator, where it can be seen in aerospace and aircraft industries to 

seismology and weather forecasting [1]. Since the standard Kalman filter could only be applied for linear 

systems, a couple of variations of the Kalman filter were introduced to deal with non-linear systems [1]. 

One of the variations is the Extended Kalman filter, where it deals with non-linearity by approximating a 

linear equivalent before performing the required filtering sequence [1]. Since the Extended Kalman filter 

poorly approximates the linear equivalent for highly non-linear systems, a better approach was 

introduced. The new approach is the Unscented Kalman filter [1]. The UKF approximates the Gaussian 

equivalent of a non-Gaussian distribution and achieves better precision in comparison to EKF while 

having similar time complexity [1]. Both methods are better described in 2.1 and 2.2. 

An alternative method for non-linear systems is the Markov Chain Monte Carlo filter or known as 

Particle filter [1]. The advantage of a particle filer is that it can be applied on systems with non-Gaussian 

distributions [1]. It functions by simulating the system evolution multiple times and choosing the state 

estimate as a weighted average of all simulations [1]. This has been applied to a lot of robotic 

applications, SLAM in particular [1]. Previously the particle filter wasn’t as adopted as it now due to high 

computational cost. However, now due to the rise in computational power these filters are becoming 

more prevalent. In addition, more efficient variations of the particle filter such as Rao-Blackwellized 

particle filter has been developed that combines Kalman and particle approach [1]. 

In 2013, Thomas Drage has implemented a standard Kalman filter for estimating the position and 

Elmenreich algorithm for heading [2]. For position, he had a prediction step and used GPS and IMU for 

the correction step [2]. This is an adequate approach, however due to odometry being introduced by 
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Mitchell Poole in 2017 the position estimate could be further improved. In addition, the Kalman 

operated in 2D space, and a better estimate could be achieved using the 3D space. Additionally, since 

the orientation requires sine and cosine functions, it introduces non-linearity to the system. Hence, the 

original Kalman isn’t sufficient. Furthermore, if a variation of a Kalman filter that accepts non-linearity is 

to be used, then the Elmenreich becomes redundant since the whole state (position and orientation) 

can be handled with one filter. 

In 2013, Thomas Drage fused the heading using the following equation, by using the Elmenreich 

method, 

𝑍 = 𝑤𝐺𝑋𝐺 +𝑤𝐼𝑋𝐼 

where the orientation, is a combination of two readings, one from GPS and the other is from IMU [2]. 

The 𝑤𝐺 and 𝑤𝐼 are weights that adjust how much influence the readings 𝑋𝐺 and 𝑋𝐼 have [2]. This 

method avoids the problem of non-linearity with the standard Kalman filter. However, since this method 

isn’t using the prediction to improve the certainty of the orientation, this is an inferior method to the 

Kalman approach. Hence, as stated in the previous paragraph, to improve the certainty a Kalman type 

filter that accepts non-linearity should be used.  
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2.1. Kalman Filter 
The Kalman Filter attempts to get the most optimal estimate with the data provided. The filter achieves 

this through recursive sets of actions [3]. The filter consists of two steps, the prediction and correction 

[3]. In the prediction stage, the Kalman filter attempts to predict the future state using the current state 

[3]. In the correction stage, the filter uses the measurements acquired to correct the prediction [3]. The 

magnitude of correction that is going to be performed is dependent on the uncertainty of measurement 

and the uncertainty of the prediction [3]. 

The Kalman Filter’s prediction is denoted by the following expression [3], 

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 +𝐵𝑘𝑢𝑘 +𝑤𝑘 

where 𝑥𝑘−1 is the previous estimate, 𝑢𝑘 is the control matrix and 𝑤𝑘 is the process noise [3]. The A is 

the state transition matrix, and B is the control input matrix [3]. 

The Kalman Filter’s correction is denoted by the following [3], 

𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘(𝑧 − 𝐻𝑘�̂�𝑘) 

where 𝐾 is the Kalman gain that dictates how much of the correction is going to be performed, and 𝑧 is 

the measurement [3]. The remaining term 𝐻𝑘 is the matrix that transforms the predicted state into the 

measurement space [3]. 

The Kalman Filter relies on one of the properties of the Gaussian distribution [3]. The key property that 

the filter is taking advantage of is that when two or more Gaussian distributions are multiplied, the 

result will have a Gaussian distribution as well [3]. Hence, by using the Gaussian functions of two 

distributions, a new mean and variance can be calculated [3]. 

The new calculated mean and variance will then equal to [3], 

Where: 

𝑁(𝜇𝑝, 𝜎𝑝
2) predicted distribution 

𝑁(𝜇𝑚, 𝜎𝑚
2 ) measurement distribution 

𝑁𝑓(𝜇𝑓 , 𝜎𝑓
2) filtered distribution 

𝑁𝑓(𝜇𝑓 , 𝜎𝑓
2) = 𝑁(𝜇𝑝, 𝜎𝑝

2) ∗ 𝑁(𝜇𝑚, 𝜎𝑚
2 ) 



9 
 

=
1

√2𝜋𝜎𝑝
2

𝑒
−
(𝑥−𝜇𝑝)

2

2𝜎𝑝
2
∗

1

√2𝜋𝜎𝑚
2
𝑒
−
(𝑥−𝜇𝑚)

2

2𝜎𝑚
2

 

⇒ 𝜇𝑓 = 𝜇𝑝 + (
𝐻𝜎𝑝

2

𝐻𝜎𝑝
2 + 𝜎𝑚

2 ) (𝜇𝑚 −𝐻𝜇𝑝) 

⇒ 𝜎𝑓
2 = 𝜎𝑝

2 −
𝜎𝑝
4

𝜎𝑝
2 + 𝜎𝑚

2  

Hence, the Kalman Gain is, 

𝐾 =  
𝐻𝜎𝑝

2

𝐻𝜎𝑝
2 + 𝜎𝑚

2  

The Kalman gain determines how much of the correction is needed. If prediction is uncertain compared 

to measurement, then 𝜎𝑝
2 ≫ 𝜎𝑚

2 . This results in the Kalman gain to tend to go to 1 which means that 

more correction is going to be performed. However, when the opposite is true, where  𝜎𝑝
2 ≪ 𝜎𝑚

2  the 𝐾 

will tend to go to 0. Hence, less correction is going to be performed due to uncertain measurement. 

2.2 Extended Kalman Filter Model 
The standard Kalman filter relies on the linear model. When a linear transformation is applied to a 

Gaussian distribution, the output retains Gaussian [4]. However, when a non-linear transformation is 

applied to a Gaussian distribution, the output becomes non-Gaussian as shown by Figure 1. Since the 

Figure 1, The Effect of a Non-Linear Transformation on 
the Gaussian Distribution 
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Kalman filter relies on the Gaussian distributions, if a model is non-linear then the filter can’t perform 

its’ function. 

Since the computation of robotic movements require direction, sine and cosine functions are needed. 

These functions are non-linear, and as a result the standard Kalman filter can’t be applied. The extended 

Kalman filter solves this problem by linearizing the non-linear function. To achieve this, the EKF uses first 

order Taylor series approximations [5]. 

The linear function is approximated by the following [6], 

𝑓(𝑢𝑘 , 𝑥𝑘−1) ≈ 𝑓(𝑢𝑘, 𝜇𝑘−1) +
𝑑𝑓(𝑢𝑘 , 𝜇𝑘−1)

𝑑𝑥𝑘−1
(𝑥𝑘−1 − 𝜇𝑘−1) 

Another local point 𝜇𝑘−1 is used to approximate a linear function around 𝑥𝑘−1 [6]. The differential can 

be obtained from Jacobian of 𝑓(𝑢𝑘) [6]. The same principle is applied to the measurement model [6]. 

With an extended Kalman filter, the current pose is predicted using the past measurements [7]. As 

shown, 

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1 

where 𝑥𝑘 is the current pose at time 𝑘, and the 𝑓 is a non-linear transition function that converts the 

past state to the current state [7]. The 𝑤𝑘−1 is the process noise that is normally distributed [7]. As of 

now, the SAE vehicle is using 2D coordinates. Hence the state 𝑥 is composed of the x-coordinate, the y-

coordinate and yaw. The state measurements that are being received are expressed as, 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 

where 𝑧𝑘 is the measurement at time 𝑘 [7]. The ℎ is a non-linear function that converts the state into 

measurement space [7]. The last variable, 𝑣𝑘 is the measurement noise that is normally distributed [7]. 

The first step of the EKF filter is to predict the next state and the next error covariance using the current 

state and current estimate error covariance [7]. The following two equations describe this, 

𝑥𝑘 = 𝑓(𝑥𝑘−1) 

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄 

where 𝑓 is composed of standard kinematics equations [7]. The matrix 𝐹 is a Jacobian of 𝑓 and 𝑃 is the 

process error covariance [7]. The following sequence 𝐹𝑃𝑘−1𝐹
𝑇 is to predict the future process error 
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covariance using the current process error covariance using the Jacobian of 𝑓 [7]. The remaining term 𝑄 

is the process noise covariance [7]. 

The correction sequence that occurs for the EKF is identical to the standard Kalman filter. However, the 

linearized versions of 𝑓 and ℎ are used, and 𝐹 and 𝐻 are Jacobian of linearized 𝑓 and ℎ [7]. The following 

steps are [7], 

1. Compute Kalman Gain, 

𝐾 = 𝑃𝑘𝐻
𝑇(𝐻𝑃𝑘𝐻

𝑇 + 𝑅)−1 

2. Perform the correction, 

𝑥𝑘 = 𝑥𝑘 + 𝐾(𝑧 − 𝐻𝑥𝑘) 

3. Calculate new process error, 

𝑃𝑘 = (𝐼 − 𝐾𝐻)𝑃𝑘(𝐼 − 𝐾𝐻)
𝑇 + 𝐾𝑅𝐾𝑇 
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3. Methodology 

3.1 Robot Operating System (ROS) 
In 2018 most of the software was scrapped or adapted to convert to ROS-based system. ROS greatly 

reduces the complexity of developing a software system for a robot. ROS provides low-level device 

control, implementation of commonly-used tools, message-passing between processes, and package 

management [8]. Hence, instead of creating an independent system where a ‘broker’ would manage the 

communication between ‘modules’ (programs that have a specific function) ROS readily provides these 

services. Hence, the user only has to worry about creating ‘nodes’ (programs that perform a certain 

function) that listen and talk to other nodes [8]. 

3.2. Sensors 

3.2.1 IMU 
A single sensor that has both capabilities of a GPS and IMU was used (Xsens MTi-G-710). To implement 

the sensor into the system, an available ROS Xsens driver package was used. The Xsens package works 

by receiving the sensor measurements and then inputting these readings into ROS messages. Other 

nodes can then subscribe to these messages to use the data given by that driver. Another node that will 

utilize these messages will be the ‘robot_localization’ package.  

When it came to the covariance matrix of the IMU, the Xsens ROS driver used the default values 

specified by the manual. 

3.2.2. GPS 
The GPS functionality of the driver didn’t add the covariance to the GPS type message. Since, the Xsens 

Mti-G-710 has the capability of estimating its’ own horizontal and vertical accuracy this information just 

needed to be passed to the node. Hence, the vertical and horizontal accuracy was simply added to the 

ROS GPS type message. Depending on the environment, the accuracy would rise indicating poor 

precision if there were a lot of obstacles surrounding the sensor, and the accuracy would fall if the area 

was clear indicating better precision. 

3.2.3. Odometry 
The error was empirically estimated to be around 0.04 per meter. To calculate the error in terms of x 

and y coordinates, the error had to go through the Ackermann model. The equations for the model are 

as follows, 

Where: 
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𝑑𝑙𝑒𝑓𝑡 is the distance the left wheel has travelled since the last reading 

𝑑𝑟𝑖𝑔ℎ𝑡 is the distance the right wheel has travelled since the last reading 

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 the distance travelled by the vehicle since the last reading 

Initially, the distance the vehicle has travelled is determined, 

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 
𝑑𝑙𝑒𝑓𝑡 + 𝑑𝑙𝑒𝑓𝑡

2
 

To get the velocity of the vehicle, 

𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒
∆𝑡

 

𝑥 and 𝑦 components of velocity can then be found by using the steering angle given by the servo, 

𝑣𝑥 = 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∗ cos𝜑 

𝑣𝑦 = 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∗ sin𝜑 

Thus, the 𝑥 and 𝑦 coordinates can be determined, 

𝑥𝑛 = 𝑥𝑛−1 + 𝑣𝑥∆𝑡 

𝑦𝑛 = 𝑦𝑛−1 + 𝑣𝑦∆𝑡 

Hence, the error should accumulate over time. However, the covariance values for x and y didn’t get 

passed through to the Jetson from the low-level system due to an error in communication between 

these systems. Therefore, the covariance values for x and y were put as a static in the control program. 

This resulted in poor results, this is further discussed in the Results section.  

3.3 Extended Kalman Filter Integration 
For sensor fusion, the ‘robot_localization’ ROS package was used. This package provides a node that 

contains an EKF algorithm. In addition, the package can support multiple sensor and is able to transform 

GPS data for fusion. The advantage of using this package is that it handles all the sensor messages in the 

background. This involves syncing up the messages that are arriving at different times and ensuring that 

the EKF still runs when a sudden abruption is caused (i.e. sensors is damaged). The package can work in 

3D or 2D mode. 
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For ROS packages, the nodes can be reconfigured once it’s ran or it can be configured in the ‘param’ file. 

The ‘param’ file was set up so that the EKF is performed at 20 Hz.  

For each sensor, the inputs need to be specified. The package provides a matrix, 

(

 
 

𝑥 𝑦 𝑧
𝜃 𝜑 𝜓
𝑣𝑥 𝑣𝑦 𝑣𝑧

�̇� �̇� �̇�
𝑎𝑥 𝑎𝑦 𝑎𝑧)

 
 

 

Where x is an axis for forward and backward movements, y is an axis that spans left and right, and z axis 

is the vertical axis up and down. The symbol 𝜃 represents rotation around the x axis, 𝜑 is rotation 

around y, and 𝜓 is the rotation around z. For the package, to enable each sensor input, each position in 

the matrix needs to be marked as true or false. 

The odometry was configured as follows, 

(

 
 

𝑇 𝑇 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹)

 
 

 

 

Where T is true and F is false. The odometry is limited, as it can only provide 𝑥, 𝑦 and 𝜓. The issue with 

our system is that yaw is taken from the commands that are sent to the steering servo. This is 

suboptimal, since the steering command that is sent to low level is oftentimes different than the 

steering that occurs in reality. Therefore, the covariance value for yaw is assigned as a high value and it 

is also disabled in the param file. 

The IMU can provide all components of velocities and accelerations. In addition, it also provides all the 

rotations 𝜃, 𝜑 and 𝜓. Hence, the configuration was set as the follows, 

(

 
 

𝐹 𝐹 𝐹
𝑇 𝑇 𝑇
𝐹 𝐹 𝐹
𝑇 𝑇 𝑇
𝑇 𝑇 𝑇)

 
 

 

The GPS is able to only provide x, y and z coordinates. The corresponding fields are marked as true. 



15 
 

(

 
 

𝑇 𝑇 𝑇
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹
𝐹 𝐹 𝐹)

 
 

 

IMU and odometry provide continuous data, and by ROS convention these sensors operate in ‘odom 

frame’. In odom frame, the pose (position and heading) can drift over time and the pose can only 

change smoothly. This means that there should be no discrete jumps. Hence, the IMU and odometry 

fusion is run on one node. Another node is then run simultaneously for discontinuous data such as GPS. 

The GPS operates in ‘map frame’ where drift is absent and discrete jumps are expected in-between 

readings. 

3.4 PCB 
The PCB was previously created on a breadboard. Due to the exposed wiring and poor soldering, this 

resulted in numerous faults occurring in a period of two months. When each fault occurred, the repair 

would take a long time due to the entangled wiring and large amounts of solder joining multiple lanes 

and elements together as shown by Figure 2. Therefore, the aim for the PCB was to improve reliability as 

well as to add an additional noise protection to the low-level circuit. 

The first step was to trace the wiring and solder to create a schematic of the low-level circuit. The 

resulting schematic is shown in appendix A. The EAGLE software was used due to it being capable of 

both, the schematic and PCB creation. 

Figure 2, The state of low level before PCB (top layer on the left, and bottom layer on the right) 
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The created schematic was then used to create the PCB. To reduce complexity, the number of layers was 

kept to 2, the top side and the bottom side. The PCB dimensions were needed to be identical to the 

previous breadboard circuit, so it could fit in the existing enclosure. Hence, the only parameter that 

could be controlled was the number of layers, and the advantage of having 2 layers is that it’s cheap. 

For all the connections between components, the traces were routed in paths that have shortest 

distances. Similarly, the components were arranged in a way to reduce the distances between each 

connected component as well. It’s generally preferred to keep the trace length short to avoid the trace 

behaving like a transmission line [9]. When the length of the trace is in range of the signal’s wavelength, 

the trace obtains the problems associated with the transmission line, such as time delay, reflections, and 

crosstalk [9]. Since the signal passes through the trace at finite speed, the signal takes some time to 

reach the destination [9]. Hence, there’s more propagation delay if the trace is longer. In addition, the 

transmission lines are prone to reflections. If the impedance changes in the signal chain (e.g. source – 

trace – component) then the reflections will occur that cause overshoots or undershoots [9]. To avoid 

the reflections, the impedances need to match the characteristic impedance of the trace [9]. Another 

issue associated with transmission lines is crosstalk. When two traces are in parallel they may influence 

each other [9]. Due to the electromagnetic field, one trace can be influenced by another trace by an 

inductive and capacitive coupling [9]. Hence, a general rule is to keep the traces apart by a distance of 

twice the trace width [9]. This rule was followed when creating the low-level PCB. Overall, to avoid the 

issues associated with the transmission line, it’s best to keep the trace lengths short. 

When designing the board, creating vias was avoided. Vias are used to connect layers together. They are 

made by drilling a hole and pouring copper into the hole, as shown by Figure 3. The vias have increased 

impedances compared to traces, hence they are prone to creating reflections [9]. When creating the 

low-level PCB, the vias were avoided but in the expense of trace length, as shown in appendix A. 

Figure 3, Via 
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To further reduce radiation, the bend of the trace and trace positions were also considered. When the 

trace bends by a 90 degree angle, the capacitance increases in the region of the corner. The change in 

the impedance causes reflections [9]. Thus, it’s best to have two 45 degree bends instead, as shown by 

Figure 4 [9]. This was kept in mind when designing the PCB, as shown in Appendix A, where 90 degree 

bends are absent. The crosstalk can also occur between adjacent layers if the traces in both layers are in 

a similar position and are in parallel [9]. Hence, it’s better to place two traces orthogonally if the position 

can’t be changed [9]. In the designed low-level PCB, this isn’t an issue since most traces aren’t in 

parallel. 

Most ICs are prone to noise or ripples in the supply pins that in turn cause performance degradation 

[10]. For power supplies or the ICs, the decoupling capacitors are utilized as an effective way to reduce 

the noise when a steady DC voltage is needed [10]. The decoupling capacitors are used because they 

oppose quick changes in voltage [11]. Therefore, when the voltage spikes the capacitor absorbs the 

excess voltage and when the voltage drops the capacitor supplies the energy required to keep the 

voltage stable [11]. The designed low-level PCB has the decoupling capacitor (C23) at the isolation side 

of the circuit, as shown in Appendix A. The other PCB that was designed for odometry circuit has a 

decoupling capacitor for each IC and input power pins, also shown in Appendix A.    

For both the low-level PCB and odometry PCB, the majority of ICs were chosen to be the through-hole 

instead of the surface mount. The through-hole components are generally larger and to solder them to 

the board, the pins have to go through a hole [12]. The surface-mount components on the other hand, 

are much smaller and are soldered on the surface of the board [12]. Since, the surface-mount 

components require experience to solder and are oftentimes more expensive, the through-hole 

components were chosen [12]. The added benefit of through-hole components is that they are more 

reliable, better secured to the board, and can withstand higher temperatures [12]. 

Figure 4, Optimal trace bend [9] 
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Another design decision was choosing the trace width and thickness. The trace width is decided by the 

current, thickness of copper and temperature [13]. When it comes to thickness, the manufacturers 

usually have two options, 1 oz or 2 oz/ft^2. Since the maximum current in the circuit is 0.5A, the trace 

width required for this much current is low. Since, there is no need to reduce the trace width further by 

choosing 2 oz, the 1 oz/ft^2 is reasonable. To determine the trace width, a graph provided by the 

IPC2221A was used (or similarly a direct formula can be used) as shown Figure 5 [13]. Since there aren’t 

any components that produce a lot of heat, a temperature rise of 10 degrees was expected. Hence, the 

trace width chosen was 10mil with thickness of 1oz/ft^2. The final PCB version that was printed and put 

together is shown in Appendix A. 

4. Results 

4.1 PCB 
The low-level PCB was implemented to the SAE vehicle. The board didn’t cause any major issues aside 

from minor problems that required slight adjustments. One such problem was that the Arduino Mega 

2560 had a pin that didn’t sink the current properly, and as a result, the connection was rerouted to 

another pin that was functional. Another issue was due to poor soldering on one of the relay pins. To 

solve the issue, the pin was re-soldered. Aside from those minor issues which were fixed, no other 

problems were encountered in four months since the PCB was implemented. Hence, in terms of the 

Figure 5, Conductor Thickness and Width for External Layers [13] 
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reliability, the PCB conversion was successful since no low-level faults occurred after several months of 

testing. 

The odometry PCB was printed, but it still needs to be implemented due to inexperience with the 

surface-mount soldering. Soldering a microcontroller was proven to be difficult, hence the 

implementation will be done in the future with a person who’s more experienced in this area. Once 

implemented, the PCB version of odometry should be much more reliable due to the use of decoupling 

capacitors. The old breadboard odometry circuit omitted any noise protection, so it is unreliable in 

comparison. 

4.2 The Extended Kalman Filter 
Due to the error in communication between the low-level and the Jetson, the odometry’s covariance 

values didn’t get through to the Jetson. Since, other variables were successfully received, the source of 

this error is most likely the low-level software. Even though attempts have been made, due to the time 

constraints, the error couldn’t be fixed on time. 

In the following table, the odometry measurements are compared to the fused odometry and IMU 

position estimate. To gather the data, the vehicle was driven in a relatively straight path. The ground 

that the vehicle was driven on didn’t have any changes in elevation and as a result the Z coordinate was 

omitted. The data was gathered from three points in time. 

Table 1: Data Taken at 50.88s 

Position Odometry Fused: Odometry + IMU  

X 1.42999 1.43639 

Y 0.02999 0.02504 

Covariance X 0.01600 0.01303 

Covariance Y 0.01600 0.01344 

 

Table 2: Data Taken at 100.91s 

Position Odometry Fused: Odometry + IMU  

X 41.0699 41.0727 

Y 13.9399 13.9012 

Covariance X 0.01600 0.01318 

Covariance Y 0.01600 0.01317 

 

Table 3: Data Taken at 150.89s 

Position Odometry Fused: Odometry + IMU  

X 58.0000 57.9703 
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Y 27.6800 27.6584 

Covariance X 0.01600 0.01318 

Covariance Y 0.01600 0.01326 

 

As shown by the tables, due to static odometry’s covariance values the filtered covariance values don’t 

experience significant change. If the odometry functioned correctly, the expected covariance values of 

odometry and filtered data should’ve risen over time. The positive result that could be seen, is that the 

fused covariance values for X and Y are lower. This demonstrates that the filter is functioning as it was 

intended. Another observation is that there’s slight adjustment made by the filter. This demonstrates 

that the adjustment isn’t that significant in the short term. Hence, if odometry covariance data 

accumulated, it would be expected for the adjustment to be much more significant in the long term. 

Theoretically, due to the accumulation of errors by the IMU and odometry, the GPS is expected to offset 

the drift. However, as a result of the time constraints and issues associated with GPS, the fused GPS data 

couldn’t be retrieved on time. 

An EKF was already implemented by Tom Moore in 2015 using the same ‘robot_localization’ package on 

a differential drive robot. The results from this implementation better demonstrate the capabilities of 

this filter. The first figure shown below demonstrates the reference path in red (i.e. ground truth) and 

the odometry position estimate from odometry by yellow. As it can be seen from Figure 6, initially the 

odometry was accurate, but due to the buildup of error over time the position estimate and heading 

became very poor [7]. The next figure shows the effect of fusing the IMU + odometry on the left and 

fusing IMU + odometry + GPS on the right. As it can be seen in Figure 7, at the start IMU + odometry 

position estimates were fairly accurate, but due to accumulation of errors the estimate became 

imprecise long term [7]. However, in comparison to solely using odometry, the fusion with IMU greatly 

improved the estimate [7]. When GPS was introduced to the fusion of IMU and odometry, the Figure 7 

Figure 6, Left - Reference Path (Red); Right - Odometry Estimate (Yellow) 
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demonstrates that the estimate is greatly improved long term [7]. Similar behavior was expected in this 

project’s implementation despite having an Ackermann model. However, due to the problems that were 

described previously, these results weren’t obtained. 

 

  

Figure 7, Left - IMU + Odometry (Cyan); Right - Odometry + IMU + GPS (Blue) 
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5. Future Work 
The future work that could be done is the SLAM and the unscented Kalman filter. UKF solves the 

disadvantage of EKF and is generally considered as superior to EKF. SLAM further improves the position 

estimate and since the EKF is an important part of SLAM, it is also considered as future work. 

5.1 Simultaneous Localization And Mapping (SLAM) 
SLAM is an algorithm that is responsible for mapping an unknown environment while simultaneously 

navigating the environment using the generated map [14]. The whole purpose of SLAM is to use the 

environment to update robot’s position [14]. The environment is mapped by vision (cameras), radar and 

LiDAR [14]. The generated map is used to track the positions of landmarks as the robot moves around 

[14]. The EKF is used extensively in SLAM [14]. The EKF is applied for position estimates of landmarks, as 

well as for the robot’s position estimate [14]. The overview of SLAM is shown by Figure 8, however 

instead of having just odometry, the REV project has IMU and GPS. 

When the robot has moved, the robot receives a new position estimate from EKF through it’s sensors 

(i.e. odometer, IMU, GPS) [14]. Then, the landmarks are extracted from the new observation of the 

environment when the robot is in the new position [14]. The robot then tries to associate the new 

landmarks to the landmarks previously seen [14]. If the robot identifies that it has re-observed some 

landmarks, it uses this information to update its position using the EKF [14]. 

Figure 8, Overview of SLAM [14] 
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SLAM will provide an additional source for estimating position. Especially, with a LiDAR sensor that 

provides an accurate data, the position estimate will further be improved. However, SLAM 

implementation is more complex and the cost of the equipment required is very high.  

5.2 Unscented Kalman Filter (UKF) 

When the model is highly non-linear, the linear approximation of EKF can be inaccurate. If the local 

point 𝜇𝑘 is used to generate the linear approximation, and the point at 𝑥𝑘 is very far from 𝜇𝑘 due to high 

non-linearity, then the linear approximation becomes poor as shown by the Figure 10. The Unscented 

Kalman filter addresses the problem by deterministic sampling approach [15]. The state’s gaussian 

distribution is first approximated by carefully chosen sampled points that completely capture the mean 

and variance of the distribution [15]. These sampled points are then transformed by the non-linear 

model and the output then represents a gaussian approximate of the non-gaussian distribution [15]. The 

process is shown by right hand side of the Figure 9. It should be noted that the time complexity of UKF is 

Figure 10, Poor Linear Approximation of the Non-
Linear Function [16] 

Figure 9, Different methods of dealing with Non-Linearity [15] 
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equivalent to EKF, and the estimation by the UKF is accurate to the 3rd order of Taylor’s series expansion 

[15]. Hence, the UKF is a superior approach for dealing with non-linearities. 

 

 

  



25 
 

6. Conclusion 
The extended Kalman filter shows promise, however more work needs to be done on the 

implementation and extraction of the results. Due to the wide spread use of the EKF, the improvement 

in position estimate is expected. The results support this, where a slight improvement in covariance is 

seen. However, once implemented with GPS and with proper odometry covariance accumulation, the 

improvement in position estimate should be much greater than what it is currently shown. In the future, 

the position estimate can be further improved with UKF and SLAM. 

The PCB greatly improved the reliability of the low-level circuit. Without the loose wiring and exposed 

chunks of solder, the causes behind numerous faults decreased. Since the design practices for reducing 

the transmission line effects were followed, the general performance of the circuit also improved. In 

addition, with the added noise protection, it is expected for the components of the circuit to last longer. 
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Appendix A 

Figure 1A, The Schematic of the Low-Level Circuit 
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Figure 2A, The Layout of Components (Low-Level) 
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Figure 3A, Top Layer of the Low-Level PCB 
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Figure 4A, Bottom Layer of the Low-Level PCB 
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Figure 5A, The Final Constructed PCB 
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Figure 6A, Odometry Circuit Schematic 
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Figure 7A, Layout of Components (Odometry) 

Figure 8A, Top Layer of Odometry PCB 
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Figure 9A, Bottom Layer of Odometry PCB 


