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Abstract 

The purpose of this research is to develop and implement robust LiDAR perception, 

including obstacle detection and road edge detection. The goals of this project are to achieve 

autonomous driving through a track delineated by cones and driving on the internal roads of 

UWA. The obstacles and road edges are passed to the path planner to achieve the project 

goals. 

This project utilises two LiDAR systems for testing. A SICK LMS111-10100, mounted on a 

low horizontal plane, and an ibeo LUX 4, mounted at an angle below horizontal in order to 

scan the ground in the distance. The LMS111-10100 scans a single layer while the ibeo LUX 

4 scans four layers and completes in-built object detection and tracking. 

Obstacle detection is achieved by processing the LMS111-10100 data via a Euclidean 

clustering algorithm. Obstacles are classified as large or small based on the number of points 

in each cluster. The closest point of an obstacle is reported to path planning. The objective of 

autonomous driving through a track delineated by cones is met through this perception 

algorithm. The path ahead is mapping to achieve redrive functionalities on a similar track. 

Road edge detection is achieved by processing the ibeo LUX 4 data through partial 

differentiation, statistical analysis and weighted averaging of the results in each layer. Each 

layer is used to identify a region which is likely a road based on exploitation of the features of 

a road such as smoothness and continuity of the edges. The road edge detection algorithm is 

suitable for simplified road driving scenarios but needs improvement in order to achieve 

application of lane keeping due to errors in the exact position of edges. 
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1. Introduction 

1.1 Project Background 

Autonomous driving is a topic of much interest of the public in recent times [1]. With 

commercial autonomous cars accessible to the public expected at the beginning of the next 

decade [1]. The technological advances in communications, controls and embedded systems 

have created an environment conducive with the implementation of fully autonomous driving 

solutions [2]. The benefits including improved safety, convenience, fuel economy and lower 

emissions [2]. One of the main barriers to the adoption of autonomous cars on the roads is 

public trust [3]. [3] highlights the key factors influencing the driverless car adoption are 

performance expectancy, reliability, security and privacy. Thus, research into driverless 

technology should address at least one of these factors. 

 

Figure 1: The Formula SAE-Electric Test Platform 

REV Autonomous has the overarching goals to create an accessible system with two main 

operational milestones: smooth driving around a race track delineated by cones and smooth 

driving on internal UWA roads. The platform for this research project is the Autonomous 

SAE Race car which was converted from petrol to electric by REV [4]. It was originally 

designed and manufactured by UWA Motorsports for Formula SAE, an international design 

and performance competition [4]. The use of this system for autonomous testing affords the 

simplicity of managing and maintaining a smaller platform while still being able to apply the 

same concepts of a full-sized road car. 
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Drive by wire for autonomous driving is implemented through a servo actuating the brake, a 

DC motor actuating the steering and the two rear electric motors for driving. The system 

sensors currently include a ibeo LUX4 4-layer LiDAR [5], a SICK LMS111-10100 2D 

LiDAR [5], an XSENS MTi-G-710 IMU [6] and two FLIR blackfly cameras [7]. At the 

centre of this autonomous system is an NVIDIA TX1 [8]. The vehicle has been the topic of 

numerous master’s final year projects and the system have been proven to be suitable for 

meeting project goals [4]. 

The 2018 REV Autonomous team has chosen to migrate the current system into ROS. 

Leading autonomous research companies such as Apollo use a modified ROS platform [9], 

which boasts project partners such as Ford, Bosch and several other large companies [10]. 

This meaning the open source system has important features for an autonomous platform. 

Key components that ROS offers is the message passing interface which provides inter-

process communication [11]. It also offers a vast library of open source robotics packages, 

diagnostics, visualisation and data logging and playback [11]. These allow a modular 

development scheme in that each node need not be dependent on one another and if there is a 

failure the system will still be able to function. A key factor for this project is that ROS 

allows the REV Autonomous team to develop packages in isolation and test without 

impacting one another. 

The main pillars surrounding autonomous driving are sensing, path planning, mapping and 

execution [12]. Sensing involves taking sensor data to make it into useful information on the 

surrounding environment. Mapping is the useful storage of the information on the 

environment. Path planning is the effective navigation though the perceived environment. 

Finally, execution is the control required to actuate the planned path. 

1.2 Project Scope 

The scope of this research paper is to achieve accurate perception based on data from an array 

of two LiDAR’s. This includes layout for the array, obstacle detection and road edge 

detection. The process should be effective for use in path planning for an autonomous vehicle 

to meet the goals of the REV Autonomous team. A review of current algorithms to achieve 

similar goals is included to provide background to the research. 
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2. Literature Review  

2.1 Obstacle Detection 

The process of obstacle detection is first to extract features from a point cloud and then to 

classify all features. The detection of obstacles must be accurate in order to allow navigation 

through the environment. If the obstacle detection is inaccurate and reports false positives, 

where there is an object where there is not, the path planning algorithm may take drastic 

action. If there is an obstacle where there is not an obstacle reported there may be a collision. 

A Euclidean clustering approach is detailed in [13]. The points are clustered based on the 

distance between the current and the next point in the series. The process follows after 

clustering points to assign shape classifications to objects based on the size of the cluster. The 

approach was concluded to enable navigation through a given test environment. [14] applies a 

similar approach to [13] and yielded similar results. This meaning that this approach is simple 

and effective for use. 

[15] and [16] propose a similar approach to Euclidean clustering but uses a radial masking 

area for clustering. The difference lying in the method for assigning each point to clusters. 

This approach searches in a radial area from each point and those within this are clustered 

and then the next point is moved onto that has no cluster identification number. This 

approach is similar to that presented in [13] but the main difference is the means of stepping 

through the point cloud. The results of this algorithm may merit examination in comparison 

to [13]. Key points from [13,14] and [15] are that the approach to assigning identifications 

are a key consideration. The method used must minimise the number of times points are 

accessed and the number of processor intensive calculations required.  

[17] demonstrates the application of a K-means clustering algorithm. This is an adaptive 

method which requires no initial parameters to be set. These are entirely generated through 

the data set. All methods prior have required parameters to be manually set by the user and 

could likely differ for different scenarios. DBSCAN is mentioned in [17] for its strength in 

clustering points based on this spatial density. [18] presents a method termed parallel 

DBSCAN to achieve accelerated processing by more than 40%. This method would be 

effective for large data sets if a 3D LiDAR with a large number of layers and high resolution 

were to be used. 

[19] proposes an algorithm for tracking multiple moving targets. Tracking is an important 

feature for the application of autonomous cars to improve standards of safety and achieve 
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prediction not possible for human drivers. [19] uses a Kalman filter to fuse tracking results 

from both 3D LiDAR and camera. Furthermore, [20] proposes a simpler approach for object 

detection and tracking by using a single plane of LiDAR points from a 4-layer LiDAR. [20] 

demonstrating the algorithms performance in similar scenarios to [19]. The inclusion of 

object tracking greatly complicating the task of object detection. 

2.2 Road Edge Detection 

The current REV Autonomous road edge detection algorithm was developed by Thomas 

Drage in 2013 [21] and improved by Thomas Churack in 2015 [22]. The Lidar data is 

transformed to the base of the car frame based on physical attachment and IMU readings. The 

summarised algorithm as in [23] is as follows:  

1. Stepping out from the centre of the data set looking for a point cluster which meets 

the slope condition. Interleave left/right until found. 

2. Perform stepping to the left and right (separately) of this cluster, increasing the size. 

Fit lines and record the slope and correlation coefficient at each step. 

3. Road edges are at the point which maximised at each step. 

4. Calculate overall fit line and check that the slope and correlation conditions are met. 

5. Utilise a second order Kalman filter to identify the correct edge value based upon the 

correlation coefficient data. 

It was concluded that this method was suitable for road edge detection of smooth curbed 

roads and complex scenarios featuring uneven roads with poorly defined edges [23]. This 

algorithm performs at an impressive standard. Although the need for research exists to 

improve on the current condition of the autonomous vehicle. 

[24] suggests a two stage approach. Firstly, the road segment and road edge points are 

identified using the elevation information extracted from the range data. Secondly, the 

identified 3D road-edge points are further projected and validated on the 2D ground plane. 

This is reported to improve system robustness and reduce the computational complexity for 

real time applications [24]. This algorithm stands different to that in [21,22,23] with the 

selection of the road area determined by the output of a discrete differential filter. The paper 

presents the idea of temporal smoothing of detected road curbs such as the Kalman filter to 

reduce errors [24]. This idea having been adopted in the algorithm in [23] to much success 

validates this recommendation. 
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Another method that utilises the rate of change in the depth of the point cloud is presented in 

[25]. 

A method for road edge detection is presented in [26] based on LiDAR data histogram 

approach. This uses a high resolution 64-layer LiDAR  to provide clarity in the point cloud. 

This may be achievable if the LiDAR data from a lesser resolution LiDAR is taken from a 

number of frames. [26] states the assumption that, in an urban environment, the ground ahead 

of the vehicle should be flat. This is may not be applicable if not in a specific environment as 

hills and the camber on roads means this is a large approximation. 

The previous methods have involved filtering, statistical analysis and line fitting to detect 

road edges. The use of a fully convolutional neural (FCN) utilising only Lidar scan data is 

discussed in [27]. The proposed approach achieves high level performance on the KITTI road 

benchmark and can provide high accuracy road segmentations in any lighting conditions, also 

working real time on GPU-accelerated hardware [27].  

The FCN was designed specifically for semantic segmentation and was designed to have a 

large receptive field to process high resolution feature maps [27]. The tailored design of this 

FCN could be the driving factor behind the high performance of this method. The Lidar used 

in this paper also has a much higher number of scan layers so the performance with a 4-layer 

platform may greatly differ. 

 [28] proposes a road detection method based on camera and LiDAR, the fusion in both the 

data level and feature level. The Lidar point clouds are projected into the images and obtain 

original height images which are sparse. Then, up sampling these height images via a joint 

bilateral filter so that all pixels will have their own height values [28]. The pairing of LiDAR 

and camera data for processing is a key point raised in this paper. [28] suggests the lack of 

improvement of road edge detection due to keeping each form of vision separate and not 

fusing until the results of each sensor are processed. This statement being potentially 

detrimental to the success of the project as the current structure is that camera and Lidar 

vision are processed separately. [29] draws a simpler approach to [28], transforming the lidar 

point cloud 3D plane into the camera 3D plane and then to the camera coordinate 2D point, 

then vertical and horizontal histograms for rough road detection are undertaken. The article 

concludes that this method can be applied to quickly estimate the approximate road regions 

[29]. 
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A key outcome in the papers proposing methods for the fusion of camera and LiDAR 

processing is the clarification of the strengths of each sensor. The LiDAR is effective at 

detecting objects and generating an accurate hypothesis for their position [30]. While vision 

is used as a classifier responsible for validation or final classification of objects [30]. The 

result of combining LiDAR and camera data prior to processing has reported improvements 

in the false alarm rate in [28,29,30]. A method in which this is applied on the REV 

Autonomous platform may lead to conflicts in the modular structure. The processing power 

required is also not examined in these papers so there may be need for caution in allocation of 

computer resources. 
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3. Experimental Design 

3.1 High Level LiDAR Processing Architecture 

The high-level architecture is presented in Figure 2 below. The LiDAR data requires a ROS 

driver in order to publish the point cloud and complete any pre-processing necessary. The 

point cloud is then processed to determine features and objects in the point cloud. The output 

of this node would then be passed to a LiDAR and camera fusion node in which similar 

objects are fused to make up for any short comings of each sensor approach and reach a more 

accurate and robust solution. This complete environment is then to be passed to path planning 

in order to reach decisions on how to plan the vehicles navigation. 

 

 

Figure 2: Flow Chart of High Level System Overview 

A mapping node would exist between the LiDAR/Camera fusion in order to develop a more 

robust system. A key outcome of mapping is the ability to redrive with more knowledge of 

the environment. In the application of the REV Autonomous team this means moving through 

the track at a faster speed after the first lap is completed. 

Lidar Data

ROS Driver • Point Cloud 
Structure

Lidar 
Perception

• Road Edge 
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• Object 
Detection

LiDAR/Camera 
Fusion
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3.2 LiDAR Setup 

The LiDAR set up design is important to ensure there are limited blind spots and the point 

cloud generated is optimised for use. If there is too much redundant information from two 

LiDAR’s scanning the same area this will be a waste of information. Thus, the approach must 

maximise the usefulness of the point cloud while not creating any dangerous blind spots.  

The LMS111-10100 is mounted on a low horizontal plane which is extremely useful for 

obstacle detection. The low horizontal plane greatly reduces the noise and amount of data 

required to filter out in order to acquire an obstacle. Figure 3 below demonstrates a simple 

example with two obstacles in front of the LiDAR. The resultant point cloud on the right-

hand side displays the clarity with which objects are visualised. This scenario is common-

place in the REV Autonomous team testing on a track delineated by cones. 

 

Figure 3: Horizontal Laser Scan 

The processing to identify these obstacles will be point clustering. With the correct set up of 

the LiDAR the point processing is greatly simplified and will result in less CPU time 

consumed to achieve accurate obstacle detection. A predicted down side to this low 

horizontal plane is that obstacles may be above this plane. Thus, the ibeo LUX4 must scan 

the area above in order to avoid any situations where the scan area does not hit an obstacle in 

front of the car. 

The ibeo LUX 4 is a 4-layer LiDAR which completes its scan at an adjustable angle pitched 

down from the horizontal, from a higher position on the car. This is greatly useful for road 

edge detection as it will be scanning the road at a suitable distance from the vehicle. Also, 

removing the blind spot above the horizontal plane scanned by the SICK LiDAR. The 

suitable distance to scan the road ahead of the car depends on the application plans for the 

car, a higher speed requiring information from further ahead of the car.  
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3.3 Object Detection 

The ibeo LUX 4 LiDAR features on-board object detection and tracking. The resultant from 

this device may be used in conjunction with the robust object detection gathered from the 

SICK LMS111-10100 LiDAR. The will require fusion of the object positions prior being 

published to be fused with the camera object detection results. 

3.4 Obstacle Detection 

Cone detection requires feature extraction and then classification. The processing of this 

problem may be simplified by having a very simple classification scheme. For the application 

in this project the vehicle does not need to know what the object is in front of the car so to 

design an object detection scheme that is robust and meets the scope of this report only needs 

to report the location of an object. Then the car may avoid it regardless of whether it is a 

person or a cone. The assumption that there will be no need to track and predict motion based 

on the classifications like in other papers. This could be dangerous in practice if an animal or 

person were to move into the path of the car and a more processor hungry program could 

have predicted and mitigated the impact of this risk. The layout of the point cloud and a 

situation with two obstacles is displayed below. 

 

Figure 4: Horizontal Laser Scan and Resultant Point Cloud 

A Euclidean clustering algorithm is applied to a horizontal point cloud. The points are 

examined based on their distance and angle to the next point in a series as displayed in Figure 

5 below. This method should be effective at clustering a point cloud which has no incidence 

with the ground. If the point cloud were to include the ground it would be clustered in with 

objects. This would create inaccuracy in the position of objects and potentially the width. If 

the point cloud is going to be incident with the ground a method to remove the points within a 

threshold from the ground plane should be implemented. 
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Figure 5: Point Clustering Dimensions for Two Arbitrary Points A and B 

Given each point on the horizontal plane has point data {𝑥𝑖, 𝑦𝑖} as presented above where 𝑖 =

1,2. Angle 𝛼 is a known parameter from the LiDAR scanning angle. Thus, calculation of the 

distance between both points and the angle 𝛽 between them is given by the following 

equations. 

Equation 1: Distance between two consecutive points 

𝑑3 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

And, 

Equation 2: Angle between the origin and two consecutive points 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑑2 𝑠𝑖𝑛 𝛼

𝑑1 − 𝑑2 𝑐𝑜𝑠 𝛼
) 

The following code is implemented to conduct point clustering. 
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Figure 6: Simplified Clustering Algorithm 

This code is looped through comparing each point 𝑖 to point 𝑖 + 1 until all points have been 

allocated to clusters. This process reduces redundant examination of points as each point is 

only examined a maximum of two times. Figure 7 displays as in one iteration point 𝑖 and 𝑖 +

1 are compared and the following iteration 𝑖 + 1 and 𝑖 + 2. This is the only two times point 

𝑖 + 1 is accessed in the comparison. This architecture selected as the simplest computation 

complexity for accessing points. 

 

Figure 7:Point Comparison Scheme 

 

 

If (distance d3 is less than threshold) 

The two points are identified as being in the 

same cluster. 

Else If (angle β is greater than threshold) 

The two points are identified as being in the 

same cluster. 

Else 

The two points are not in the same cluster. 

Start a new cluster with point i+1 as the 

starting point. 
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An identification number is assigned to each point based on this test, signifying which cluster 

a point belongs to. All clusters are grouped together and their closest point to the car is 

published to the other nodes. Reporting the closest point to the car ensures that each instance 

of the point cloud provides robust information for path planning. Alternatively the centroid of 

the point cluster could be reported and the shape inferred from the number of points in the 

cluster. 

Minor classification of objects is a resultant of this process in the examination of the number 

of points in each cluster. This may indicate whether an object is large or small. This size must 

be considered in path planning to determine whether a collision may occur with the sides of 

the vehicle and the sides of this object.  

3.5 Road Edge Detection 

The features of a road which are exploited in this method are the smoothness and continuity 

of a road. The smoothness is reflected by the rate of change in the depth of each layer in the 

point cloud as presented. These levels may be compared to a threshold for identification of 

the road region. However, as noise increases in the point cloud layer the peaks become less 

pronounced. The continuity is exploited by using the previous road edge positions in the 

previous layer as the proposed position of the road edges in the next layer. If the road were to 

move in a corner a reasonable region is proposed for the next layer. 

For each point in the point cloud the partial differentiation is as follows: 

Equation 3: Partial derivative function for point cloud 

𝜕𝑥

𝜕𝑦
(𝑘) =

𝑥(𝑘) − 𝑥(𝑘 + 1)

𝑦(𝑘) − 𝑦(𝑘 + 1)
 

Figure 8 below represents a typical road profile on the x-y plane. The curbs show two distinct 

changes on either side of the car if located at 0 and road edges at an arbitrary width around 

±65. There are two distinct peaks in the position of the road edges.  
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Figure 8: Plot of a Synthetic Point Cloud Typical of a Road 

 

Figure 9: Plot of the Partial Derivative of a Synthetic Point Cloud Typical of a Road 

Each layer of the point cloud is assigned identification numbers of which points are road area 

and the largest group is the most likely to be the road area. If this area is too small, no edges 

are reported. The groups are defined by the begin and end point and maintain their relation to 

individual points in the cloud. Each point in a group is under the rate of change threshold set 

through testing to ensure the baseline is above the level of noise.  

The following step is to find the standard deviation of the largest group and use it to expand 

out in each direction. The search will continue until a point is greater than 𝑛 standard 

deviations, where 𝑛 is a tunable parameter. This technique will eliminate the likelihood of a 

group being selected due to high noise in a layer. The standard deviation is calculated with 

only respect to the depth information in the following equation. 
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Equation 4: Standard deviation calculation 

𝜎 =
1

𝑁 − 1
√𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 +

𝑠𝑢𝑚2

𝑁
  

 

A method of smoothing the edges reported over time is applied to maintain reasonable order 

in edges reported. This is to avoid situations in which the edges reported have a large jump 

from one position to the other. Thus, the edges from each layer is utilised to facilitate this 

smoothing. After the edges are found in each layer a weighted average of all are taken with 

inclusion of the previous iterations reported road edges. This reduces the impact a greatly 

incorrect road edge will result in an unlikely report. However, this approach falls short when 

the edges are in different positions in each layer. If one layer is a large distance to the right 

and the opposite layer is directly in the path of the car the closest layer is given a higher 

weight than the furthest. Thus, the weights must be higher for the layers that are further 

below horizontal. This approach may only be applied after the first iteration, the formula is 

shown below. 

Equation 5: Weighted average formula 

𝑒𝑑𝑔𝑒𝐿(𝑘) =
(𝑎 𝑒𝑑𝑔𝑒𝑙1(𝑘) + 𝑏 𝑒𝑑𝑔𝑒𝑙2(𝑘) + 𝑐 𝑒𝑑𝑔𝑒𝑙3(𝑘) + 𝑑 𝑒𝑑𝑔𝑒𝑙4(𝑘) + 𝑒 𝑒𝑑𝑔𝑒𝐿(𝑘 − 1))

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒
 

 

Where we have the following, 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 − 𝑡𝑢𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

𝑒𝑑𝑔𝑒𝐿(𝑘) − 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 

𝑒𝑑𝑔𝑒𝑙𝑎𝑦𝑒𝑟=𝑙#(𝑘) − 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟 

𝑘 − 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 
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4. Results and discussion  

The methods are implemented on the Formula SAE-Electric vehicle. The scenarios are on the 

internal roads at UWA for road edge detection and at the RAC Driving Training and 

Education facility for cone driving.  

4.1 LiDAR Setup 

The Sick LMS111-10100 LiDAR is mounted at a point 1.7m forward from the middle of the 

back tires of the car and at a height of 0.3m from the ground with no load in the car. The 

scanning FOV is limited to 180 degrees due to the vehicle chassis at its back on the mounting 

point. The pitch angle may be adjusted to account for a load in the vehicle. A small positive 

angle is applied while there is no person in the car such that when a driver is in the car the 

scan region is close to horizontal.  

The ibeo LUX4 LiDAR is mounted at a height of 1.2m at a position in line with the back 

wheels of the car. The LiDAR is pitched downwards at an angle of 4º below horizontal. The 

mount was constructed with adjustment possible for the angle to be changed at the 

requirements for the testing. 

The roll, pitch and yaw of the whole vehicle due to suspension leads to impacts on the data 

from each LiDAR. ROS offers a transform library which allows declaration of parent and 

child coordinate frames and transforms between them. The transform for each LiDAR is 

linked to the base frame of the vehicle that is declared as the middle of the back wheels. 

Thus, the base link transform is updated for roll, pitch and yaw relative to the global frame 

and the effect is applied into all other child frames. This allows transformation from the 

LiDAR coordinate system into the global frame. 

 

Figure 10: Formula SAE Vehicle Sensor Arrangement 

Sick LMS 

111-10100 

ibeo LUX4 
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The refresh rate of each LiDAR is 12.5 Hz thus a requirement of each algorithm is that is 

functions in real time and is finished processing the current point cloud before the next is 

updated. 
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4.2 Cone Detection 

The cone detection clustering algorithm was implemented on data retrieved from the RAC 

DTEC facility. The cones were laid an equal distance apart with suitable width of the vehicle 

to be able to navigate corners. The car was run autonomously with only object detection from 

the LiDAR and was able to successfully navigate the delineated track. Path planning was 

implemented by a team member to take in cones within a given range from this algorithm and 

navigate through them. The cone detection algorithm ran successfully and robustly as the 

only issues were on path planning. 

In this application the angle criteria is not implemented due to it being unnecessary in most 

tested applications. This would likely have a greater impact on larger objects such as cars in 

the frame. The results display clarity in the cones reported. This proved to not hinder the 

algorithm for the test application. In both scenarios the obstacle detection algorithm meets the 

refresh rate of the LiDAR. 

Figure 10 shows the Formula SAE car inside a corner while Figure 11 displays the 

corresponding object readout on the x-y plane. This shows what the performance under 

conditions of movement while the suspension is affected by the forces of turning. Figure 12 

displays the car approaching the corner, driving straight while Figure 13 displays the 

corresponding object readout on the x-y plane. This shows the performance under motion. 

The wheel base is represented by the red and green axis. 
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Figure 11: Image from On-Board the Formula SAE Vehicle Turning in Cone Track 

 

Figure 12: Cones Reported on the x-y Plane in While Turning in Cone Track 

The approach to a corner lead to six cones being reported on the right-hand side and all three 

of the cones on the left side reported. The remaining four cones on the right side of the track 

have not been picked up by the LiDAR due to the scan angle being strongly affected by 

suspension of the car. As this is a 2D scanner the inherent limitation is such that it is strongly 

affected by changes in roll, pitch and yaw. A way to fix this problem would be to use a sensor 

with more layers. As one layer moves above a certain level, use the layer below in order to 

not lose any information on the environment surrounding the car. 

However, the cones that have been reported are at a range of 8 metres from the car. This is 

suitable for driving at a slow speed but if it were to be increased the vehicle path planner may 

not have time to respond. As this is a corner, sufficient information is maintained due to the 

required slower cornering speed. 

Formula SAE Car 
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Figure 13: Image from On-Board the Formula SAE Vehicle Approaching Corner in Cone Track 

 

Figure 14: Cones Reported on the x-y Plane in the Scenario While Approaching Corner in Cone Track 

While moving relatively straight the clustering algorithm reports objects at a distance of 10 

metres from the vehicle. This data is similarly affected by the roll, pitch and yaw of the 

LiDAR as in case the first scenario. Five cones are observed on the right-hand side and three 

cones are observed on the left-hand side. Figure 13 shows that the number of cones on the 

right-hand side should be higher and the left-hand side shows reasonable results as the fourth 

cone in front of the car is eclipsed by closer ones. 

The LiDAR data is greatly impacted by movement of the car chassis. This is not ideal for 

situations where the vehicle is traversing speed bumps of has the potential of hitting pot 

holes. The test platform suspension is quite rigid also, meaning on a full-size vehicle the 

impact while cornering will be increased. The pitch angle should be moved downwards in 

order to effectively function in this scenario. However, this will lead to the opposite effect, 

Formula SAE Car 
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while under braking the LiDAR will be incident with the ground, requiring a filtering 

algorithm to avoid any false positives. 
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4.3 Road Edge Detection 

The road edge detection algorithm has been implemented on a data set from driving the 

internal roads of UWA.  The road area is clear, and curbs are well defined and paved. The 

path shown in Figure 15 was chosen as the test area. The road width is consistently 4.12m for 

the path driven. The scenario can be broken into two distinct tests, road edge detection while 

driving straight path and road edge detection while cornering. 

 

 

Figure 15: Google Maps Image of Test Route 

 

Each layer of the ibeo LUX 4 has an increasing level of noise as it is reporting further 

distances from the vehicle. It is observed that the algorithm for road edge detection is not 

effective at discerning the edges in the noisiest layer. This is improved by using unique rate 

of change threshold values for each layer. The difference observed after this change was 

implemented proved to be positive and the accuracy of road edge detection was improved. In 

both scenarios the road edge detection algorithm meets the refresh rate of the LiDAR.  

While driving straight the road edge detection algorithm should work the best as all four 

layers of the scan are on the road ahead and thus the curbs are distinct and in similar positions 

in each layer. The cornering scenario will incur issues as curbs will be in different positions 

in each layer. Also, suspension while cornering will affect the amount of noise in each layer 

of the scan. 
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Figure 16: Plot of Road Width While Driving Straight vs. Road Edge Detection Iteration 

 

The road width presented in Figure 16 shows a relatively poor performance at the beginning 

and as the process continues the values became more stable. The average error in this test run 

while driving straight was 13.91% with a maximum error of 22.48% and minimum error of 

0.12%.  

 

Figure 17: Plot of Road Edges While Driving Straight vs. Road Edge Detection Iteration 
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The road edges are reported with error in their width but the positionings are matching that of 

a road while small adjustments are made to the steering of the vehicle whilst driving straight. 

The reported road edges have a low amount of largely reported false positives of where the 

road edges are. This consistency means that the car will not make any large path planning 

decisions and should be able to follow the road given the two edges. The lane keeping in the 

half of the road designated to traffic moving each direction may not be achievable without 

improvements to the algorithm. 
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Figure 18: Plot of Road Width While Cornering vs. Road Edge Detection Iteration 

 

The road width presented in Figure 18 shows a large amount of error when the car begins 

going straight again and then stabilises. The average error in this test run while cornering was 

17.90% with a maximum error of 58.85% and minimum error of 0.30%. The maximum error 

was experienced as the car was in the beginning to stop turning. 
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Figure 19:Plot of Road Edges While Cornering vs. Road Edge Detection Iteration 

 

While cornering the road edges reported shift to the right as the corner begins and shifts back 

to similar positions as driving straight as the corner is completed. A key feature is that the 

edges are smoothly shifted to the right in the beginning. This means the path planner would 

be given information necessary to begin cornering. Once again there are no false negatives in 

front of the vehicle meaning there will be no dangerous false positives even though the error 

as mentioned in the road width is large as the corner finishes.  

The road edges reported in both scenarios are completed without any pre-processing of the 

point cloud before being searched for road edges. A method may be applied to reduce the 

levels of noise in the point cloud. This would make the features more discernable without 

impacting the algorithm. One down side would be the processing required. 

The current state of road edge detection would likely serve for autonomous driving on the 

roads if the lane keeping is not required to be observed. Error in the edges could lead to 

issues when the car is required to follow closely. The best approach would be to follow 

waypoints set in the center of the edges reported. 
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4.4 Discussion of Results 

The obstacle detection algorithm applied to the collected data set performs effectively to 

enable navigation through an environment. The applications of this to a commercial vehicle 

could be possible as a simple solution. A feature this is lacking compared to some of the 

forerunners in the field is object tracking. The differences in a system that includes tracking 

could be the prediction and prevention of a hazardous event. For the scope of this project the 

tracking is not required due to the successful completion of the cone driving scenario. 

The object detection provided from on-board the ibeo LUX4 LiDAR is was not used as a 

supplementary source of objects for the cone driving scenario. The absence of processing 

required in the main system computer means this is a low-intensity approach for improving 

the object detection. If the objects from each LiDAR were fused the environment may be 

clearer and more robust for path planning. 

The road edge detection approach applied detected the road edges in both scenarios with a 

large amount of error. The ways to improve this method could be to change thresholds 

implemented or to attempt a different approach. The literature review in this paper details 

several different approached with the machine learning approach being the likely best choice 

due to the way autonomous systems are progressing. 

The road edge detection algorithm will not cope if there is a car or obstacle in front of the 

vehicle on the road. The algorithm may be improved if fused with object detection and due to 

the knowledge of where objects exist these points may be filtered out and any road edges 

behind the objects be found. This technique would lead to less accuracy since the road edge 

detection will require a number of points to function correctly but could prove useful for 

operation on actual roads. 

Once road edge and object detection is completed the mapping of the positions in the global 

frame needs to be completed. This has not yet been implemented due to the lack of accurate 

odometry of the car which is required for transformation from the LiDAR’s coordinate 

system into the global frame. Once this is implemented the vehicle will be able to map its 

environment by storing cone positions and road edges. Then the re-driving features will be 

able to be implements. 
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5. Conclusions and Topics for Further Investigation  

The algorithms applied here for successful cone driving and prospective road driving meet 

the scope of the project. The obstacle detection algorithm is sufficient for autonomous driving 

on a track delineated by cones. Driving on internal roads may only be met if traffic conditions 

are not to be observed. Thus, the future research should focus on the development of a more 

robust road detection scheme. The results of cone detection is comparable with that presented 

in current literature although is lacking object tracking. The results of object detection is 

lagging behind that in current literature but may be adapted to be comparable over time. Each 

of the algorithms meets the requirements of the real-time processing showing the 

effectiveness and robustness of the code implemented. 

In the future the road edge detection algorithm could be moved to machine learning. This is 

the main perception-based method for the future of autonomous driving. The method with 

machine learning must be of a similar speed and increased accuracy for it to be implemented 

on the vehicle. Alternatively, an approach where the LiDAR and camera data is fused prior to 

processing could lead to positive results and merits investigation based on current literature. 

The inclusion of mapping is vital in future research. It is the next step once accurate obstacles 

and road edges are reported. Future work should consider the functionality of mapping the 

environment in real time with an effective storage strategy. Investigation into a SLAM 

algorithm using the point cloud from both LiDAR’s could meet this. 
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