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Abstract 
 
Autonomous driving systems have increasingly become a topic of anticipation in recent years. In 
development of these systems, it is useful to test potential strategies in a controlled environment, and a 
common means of accomplishing this is using miniature model vehicles on a track, both in a physical 
environment and in simulations. These model vehicles typically include the expensive sensory and 
computational hardware that the full-size road vehicles use.  

The aim of this research was to construct a functional autonomous driving system on the comparatively 
inexpensive Eyebot hardware and software developed at the University of Western Australia, with its 
limited computational power and sensory equipment. The primary focus was on creating a 
comprehensive and reliable model of road markings, aiming to develop a system wherein a vehicle could 
reliably navigate a track in both simulated and physical environments with no errors. Subsequent to this 
aim was to implement more complex driving behaviours.  

Methods would first be developed and tested in a simulated environment, using the Eyesim software to 
run test drives in a virtual environment. After a method was identified as conceptually sound in this 
software, it would then be implemented in the practical environment. From there, the issues in 
transferring from simulation to reality would be identified and software was adjusted accordingly.   

A functional system was created which was capable of navigating the simulated and practical tracks 
while remaining within the road boundaries. Due to spatial constraints the practical track contained 
extreme circumstances relative to the expected environment. The robot was able to successfully 
navigate this track, albeit with a lower rate of successfully detecting lanes.   
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1. Introduction 

1.1. Introduction to Autonomous Vehicles 
Autonomous vehicles have become an object of desire in recent years, with many companies and 
universities racing to implement their own autonomous driving system. Autonomous vehicles are 
typically recognised as having six levels of autonomy [1]: 

• L0 – No Automation 
• L1 – Drive Assistance 
• L2 – Partial Automation 
• L3 – Conditional Automation 
• L4 – High Automation 
• L5 – Full Automation 

The end goal in developing autonomous driving systems is to reach the L5 level of automation, wherein 
the vehicle is capable of directing itself with no human input required. To date, the highest level of 
automation commercially available is L3 in a recent Audi model [2], allowing for driving assistance in 
highly structured environments and parking without user input. However, as the level of vehicle 
automation it has increased, some have begun to worry about the dangers of the adolescent stages of 
autonomous vehicles [3]: they are automated enough that the driver can feel comfortable losing focus 
on the road, but require the human to take over if a problem arises. If the human is not prepared, safety 
issues arise. To this end, some vehicle manufacturers have declared that they will not put a partially 
automated vehicle on the market, instead striving to release a fully automated product [4]. Some have 
since reconsidered their position, but the dangers posed by partially autonomous vehicles remains [5]. 
Consequently, it has become valuable to develop autonomous driving methods in environments where 
the risk to human life is minimal. Part of this is running autonomous vehicles and verifying their 
functionality in simulated environments prior to driving on a road [6]. 

1.2. Model Vehicle Driving Competitions 
One method of developing and testing autonomous driving strategies is on small model vehicles in 
simulated road environments. In universities, it has become commonplace to hold competitions wherein 
model vehicles drive around a track while completing various activities.  

Once a strategy has been validated in these settings it becomes safer to implement it in a full-scale 
model in a controlled environment, with the eventual goal of deploying it on a road with traffic. The 
types of situations that this project wishes to emulate are primarily the Carolo Cup [7], and the Audi 
Autonomous Driving Cup [8]. The kinds of tasks that these competitions require include [9]: 

• Driving within lanes as quickly as possible. 
• Capacity to detect and avoid obstacles. 
• Adherence to all traffic signs. 
• Intelligent navigation of intersections and crossings.  
• Ability to park in both standard and parallel manners. 



1.3. Scope 
The University of Western Australia (UWA) currently has two autonomous driving projects in 
development: a project on a real, full-scale car; and a project using model robots on a small-scale track. 
This project focuses on assisting in the development of the model autonomous driving system. The 
hardware that this project was chosen to be developed on was the UWA Eyebot hardware and software.  

Specifically, this project focuses on developing a system for the Eyebot to perceive lanes and drive 
within them. The aims of this system were to use low-cost image processing methods to allow the robot 
to react within a reasonable time frame, and to design a system which is capable of managing as wide 
an array of situations as possible.  

2. Literature Review 

2.1. Autonomous Vehicle Models 
Autonomous driving system can broadly be divided into the structures described in the following figure 
[10]: sensing, perception, planning and control. In model autonomous vehicles, it is desired to mimic the 
sensory [11] and computational [12] capabilities of a full-scale scar as much as possible. These are the 
aspects in which this project is most limited. There has yet to be a standard for all of the sensors that 
should be present in an autonomous vehicle, and the only sensors common across every 
implementation are cameras. Other commonly used technologies are LIDAR, radar and ultrasonic 
sensors [13]. The inclusion of multiple different types of sensors allows for sensor fusion [14]. This is a 
means of combining the data from multiple sensors to enhance the reliability of the resulting 
environment model [15].  

 

Figure 1 Autonomous Vehicle Model [10] 



2.2. Lane Perception, Interpretation and Control 

2.2.1. Separation of Stages 

2.2.1.1. Low-cost Image Processing 
A previous UWA student devised a method for lane detection that was designed to be suitable for low-
power mobile phones. The essence of this method was to apply a specialised steerable filter to a 
grayscale image, and was formerly regarded as a potential solution for quick lane detection. [16]. 

 

Figure 2 Steerable Filter Applied to Road Image [17] 

A version of this algorithm was available in C++ for testing and potential implementation. [18] 

2.2.1.2. Hough Lines 

2.2.1.2.1. Processing 
A standard image processing method of extracting shapes, and by extension lanes, from an image is 
Hough lines [19]. This is a means of filtering an edge-detected image into groups of lines, and has been 
shown to be effective on a Raspberry Pi [20]. Broadly, the idea is that for each edge in an image, a 
sinusoidal graph can be created for all of the lines defined by polar coordinates that intersect it [21].  

 

Figure 3 Hough Line Polar Graph [21] 

This graph defines all the possible linear lines that can intersect that point on the image, and a graph of 
this nature can be produced for every edge pixel in the image. Each individual graph can be classified as 
belonging to the same line if they have a point of intersection [22]. For instance, in figure 4 below, the 
polar line (𝑟𝑟, 𝜃𝜃) = (9,1) intersect all three data samples. Therefore, it is likely that the three samples all 
belong to the same line characterised by (𝑟𝑟, 𝜃𝜃) = (9,1).  



 

Figure 4 Hough Line Intersecting Polar Graphs [21] 

The benefit of this method is that it has a great deal of tuning parameters which allows for controlling 
data according to the user’s purposes. In this project that is of use because it allows quick elimination of 
lines that are too small to be considered a lane. The tuning parameters include [21]: 

• Threshold: how many points need to intersect at the one point for it to be defined as a line. 
• Minimum line length: the minimum distance between the two furthest points in the line for it to 

be classified as a line.   
• Maximum line gap: The maximum distance between two points for them to be considered in the 

same line. 

The end goal of this processing method is to translate all lines in the image into a useable set of vectors.  

The steps involved in this method are to first apply a Gaussian blur filter to the image. This has the effect 
of blurring out any small details that may be mistaken for a lane. Following this, an edge detection filter 
is applied to eliminate all irrelevant data and leave only edges. Finally, the Hough transform is applied to 
create a set of vectors based on lines in the image [19]. 

2.2.1.2.2. Clustering 
The issue with this method is that the output from the Hough lines process isn’t a guaranteed set of 
lanes, but a set of lines. The lines could belong to the same lane or they could belong to separate lanes; 
the lines might not even belong to a lane at all. Therefore, it is necessary to apply data clustering 
strategies in order to successfully group the lanes. 

Rudimentary means of narrowing the data down involve eliminating lines that are not white, and lanes 
that are too small, but this alone does not suffice. A standard means of grouping the lines is 
agglomerative hierarchical clustering [23]. In this method, each data point (in this instance, line) is given 
its own independent cluster. If the shortest distance between a set of clusters is lower than the set 
threshold value, then the two clusters are merged. This process continues until no more groups satisfy 
the requirements for merging [24]. With respect to this implementation, the lines are clustered 
according to their angle and y-intercept [23]. However, it is clear from that description alone that the 
lanes must be relatively straight for this to be successful. 



2.2.1.3. Neural Network 

2.2.1.3.1. Processing 
Alternatively, there are a variety of methods to extract lanes from an image involving deep learning. One 
of these involves using a convolutional neural network to output a feature map of the lanes [25]. 
Notably, the output of this network is an image. Consequently, it is more akin to filtering out all non-
lane data before a method of processing the data is used. This has the effect of improving reliability of 
the detected lanes, but on its own is not useful for this project. Other methods have built upon this to 
include extraction and clustering of lanes. This is achieved by training a neural network to output 
beginning and ending line values, including depth data so that curves in 3D spaces may be created [26].  

2.2.1.3.2. Planning & Control 
Planning a path for the vehicle to drive typically involves some form of trajectory generation: projecting 
a point in space based on the driving data and attempting to drive there. Path planning must adhere to 
the rules of the road and avoid any obstacles in the vehicle’s path [27]. For driving in more complex 
environments, spline-based trajectory planning is an effective approach that can be generated to remain 
comfortably within lane boundaries [28]. For control of the vehicle according the planned trajectory, a 
PID controller for the steering angle is sufficient [29]. 

2.2.2. End to End Processing 
All of the above methods assume a model wherein the goal is to reliably identify the lanes so that 
planning and control may be handled by separate processed and algorithms. However, this is not always 
the case; a novel means of autonomous driving was implemented by Nvidia wherein an image was fed 
into a neural network, and the networks outputted steering directions [30]. In effect, the perception and 
planning stages are combined into one neural network. This was accomplished by passively taking 
images of the road while a human was driving, and the angle of the driver’s steering wheel was recorded 
at that moment. Subsequently, the network was trained with those steering angles as the output and 
then the vehicle control strategy emulates the desired motion. 



 

Figure 5 End to End Autonomous Driving Neural Network [30] 

This method has proven to be extremely effective, with many implementations and sets of training data 
available. The disadvantage of this method is that the problems in neural networks are difficult to 
diagnose, and if any problem is encountered, exactly what happened cannot be identified [31]. The only 
recourse is to replicate the situation in which it happened and train the network to react correctly. 
Entrusting all tasks to a relatively opaque neural network is a problem because they are not endless in 
their possibilities. Significant criticism has been levelled against the way they have become a catch-all 
solution in computer science.  [31] [32] This criticism becomes especially important to consider when 
implemented on sensitive software such as autonomous vehicles, which are responsible for human lives. 



3. Design Process (Design & Build) 

 

3.1. Requirements 
The requirements of the final design are as follows: 

• The system shall be capable of identifying lanes in the environment. 
• The system shall be capable of driving comfortably within lanes. 
• The system shall be capable of managing minor damage to the lane markings. 
• The system shall be capable of running on the Eyebots.  

3.2. Resources 

3.2.1. Hardware 
As previously specified, the aim of this project was to implement an autonomous driving system on 
UWA’s Eyebots [33]. Consequently, the physical implementations of the project are developed and 
tested exclusively on the Eyebots. These machines contain a Raspberry Pi Model 3B for processing tasks. 
For sensing, they contain one front-facing camera, and 3 Position Sensitive Devices (PSDs), one each on 
the front and sides of the robot. The Eyebot has pre-existing software installed for interfacing with these 
sensing devices. It also has software for sending drive commands to the motors in terms of desired 
linear and angular speed, and an internal coordinates system based on the wheel motion. 

 

Figure 6 The Eyebot 



3.2.2. Software 
The Eyesim simulation system is available for driving virtual versions of the robots [34]. The simulation 
system has functionality for inserting custom objects and floor textures. Using this, driving tracks may be 
created and tested within the simulation system. 

OpenCV was used for image processing in the robots. This software library contains a wide array of 
solutions for image processing. This library was used for non-neural network-based image processing in 
the project. [21] [35] [36] 

Tensorflow was used for neural network functionality in the project. This is a platform for machine 
learning [37] with all of the features necessary to implement the Nvidia end-to-end neural network.   

3.3. Design Philosophy 
There are many valid methods of detecting lanes, so it was important to take into consideration the 
reasons for creating this system. Among this project’s goals were to create a baseline for future projects 
to develop upon it, therefore it was desired to create a system that could be understood by a new user 
entering into the project and provide a means of assisting with the development of future systems. 

Therefore, the general approach of this project was to begin at the method with the least complexity 
and build upwards to include as much as possible.  

3.4. Metrics of Success 
There are several metrics that may be used to evaluate the robustness of these various 
implementations. The primary and most important metric is the car’s capacity to drive comfortably 
within the lanes within the test tracks available. A means of quantifying this would be the total time 
without a failure.   

This is a generic approach that assumes all sections of the track have an equally likely probability of 
failure. In actuality, the track was created to expose the robot to a variety of different circumstances, 
and these will have varying failure rates. Thus it is also necessary to document the reliability for each 
individual driving case.  

Beyond this, an important factor in an autonomous vehicle is its reactivity. If a situation changes, it must 
be able to identify as such and react as quickly as possible. This is naturally dependent upon the rate at 
which input data can be processed. Therefore this quality will be measured in terms of Frames per 
Second (FPS) for each implementation.  

Furthermore, the robot successfully following the track does not mean that is functioning perfectly. It 
indicates that it is successfully detecting lanes, but it does not indicate that it is successfully detecting 
lanes reliably. Therefore it is necessary to indicate a general rate at which lanes are successfully and 
correctly detected.  

Finally, another concern is the amount of data available for interpretation. This is relevant as this data 
would eventually be used for purposes in addition to maintaining lanes, such as parking. It is difficult to 



define a statistical metric for this, so success here will be characterised by how much data has been 
successfully categorised compared to how much data could have been categorised.  

4. Final Design 

4.1. Eyebot Autonomous Driving Model 
Taking into account the limitations of the Eyebot, the revised autonomous driving model is: 

 

Figure 7 Eyebot Autonomous Driving Model 

Flow diagrams of the implemented lane detection methods may be found in the appendix. 

4.2. Low-Cost Method 
The lane processing method based on standard image processing was first attempted. C++ code for the 
method was available within the robotics department of UWA and could be altered to accept images 
from the Eyebot. The code for this had several flaws though: the first being that it ostensibly would only 
function on images of resolution 160x120, which is a smaller than desired image size. The second issue 
was that lanes as the Eyebot sees them are not identical in nature to the lanes that car, which this 
method was tested on, would see. The Eyebot is significantly closer to the ground and consequently the 
lanes can look much larger in the image. Consequently this image processing algorithm would detect far 
away lanes but not the desired lanes. Based on this information, it was decided not to move forward 
with a planning and control method based on this implementation.  

 

Figure 8 Low-Cost Method Running in Simulator 

4.3. Hough Lines Method 

4.3.1. General Processing 
The standard method for preparing the Hough Transform was used. Images were captured from the 
Eyebot camera, converted to grayscale, a Gaussian blur was applied, a canny edge detection filter was 
applied, and then the Hough transform was applied. OpenCV was used for all filtering functionality. As 
previously stated, the Hough transform has three tuning parameters: the line threshold, the minimum 
line length, and the maximum line gap. In order to gain a complete picture of the environment, those 



two parameters were set to the minimum practicable value. The threshold value was manually tuned 
until the camera was detecting all edges with minimal lines of identical nature. The rudimentary post-
processing step of deleting any lines that were not touching white on the raw image was taken to 
further refine the data. 

4.3.2. A Functional Implementation 

4.3.2.1. Selecting Lanes 
As is detailed in the succeeding sections, clustering lanes effectively is a difficult process. Therefore, for 
the initial implementation to validate the concept, a more simplistic approach was used using 
observable rules within the environment. The system was based on the assumption that each section of 
a lane will have two lines: one for the left side of the lane, and another on the right side of the lane. Ergo 
the extracted lines are filtered into two groups based on whether their white side is on the left or right 
of the lane. Smaller lines are omitted as this method does not allow for fine details. Once the groups 
have been split, the two lists of lines are compared to each other. If the space between two lanes has an 
average white colour, they are not too close to each other, and the extrapolated lines do not intersect 
within the image, then the lanes are assumed to belong to the same group and grouped together.  

Lanes were filtered into left lanes and right lanes based on the following set of rules: if a lane is on the 
far left or right of the image then it is classified as the corresponding lane. If the lane does not meet 
either criterion then it is determined to be left or right based on its angle within the image. Lanes are 
selected by choosing the closest one to the vehicle unless many are present; this is assumed to be a 
pedestrian crossing and the closest match to the previous is selected. If the lane’s starting point is not 
within a reasonable range of the expected starting point, that lane is ignored and control is 
accomplished based on the other lane.  

 

Figure 9 The Initial Implementation Detecting a Left Curved Lane 

4.3.2.2. Planning & Control 
A simplistic implementation is again used for planning and control of the vehicle. The robot may be 
calibrated by placing it in the middle of a straight road, parallel to the lanes. The program then uses 
these as the expected values of the robot. The error needs to be taken from a static reference point, and 
there is no guarantee that the existing lanes will intersect any one point. Thus the lanes are extrapolated 
to the bottom of the image and that is used as the reference point for the calibrations. 

The error is passed to a PID controller for which the P, I and D values are manually tuned based on what 
appears to work.  



 

Figure 10 Robot Driving on Track 

4.3.3. An Informative Implementation 
The previous method is sufficient for successfully following the lanes. However, its functionality would 
be limited to the specific task it was created for. It keeps four lines necessary for identifying the nearest 
lanes and discards all other data while naively following the lanes using a simplistic control method. 
With reference to the autonomous vehicle model, the means of perception is extremely limited. 
Therefore, a method that operates using a more complete environment model is desirable for future 
use.  

With this in mind, a driving strategy was built in addition to the previous method with the intention of 
profiling world data to the maximum possible extent, still using the Hough transform as the base image 
processing method. The intention in developing this method was twofold: to group all lines belonging to 
the same lane together, and to accurately map images on the camera to real-world positions. The 
former was accomplished by testing various clustering methods and implementing the most successful 
one, and the latter was accomplished by mapping the relationship between camera positions to distance 
from the vehicle.  

4.3.3.1. Grouping Lanes 

4.3.3.1.1. Agglomerative Clustering 
The difficulty with developing a comprehensive robust lane model is that very few assumptions may be 
made. The number of lanes present in the image is unknown, though the maximum may be defined. 
Furthermore, it is difficult to define which lanes to follow.  

The standard convention when using the Hough transform is agglomerative clustering, as stated 
previously. The lines are grouped by their angle and y-intercept to form clusters. The principle is sound 
on a generally straight road but runs into significant issues on a highly curved track like those used in 
this project.  Another issue with this method which was noticed during testing it was that the camera 
was so close to the ground on the Eyebots that the white lines took up a more substantial portion of the 



screen than they did in the images taken on a standard car. This ultimately led to a difference in results 
clustering robustness when compared to their original intended usage.  

4.3.3.1.2. Spectral Clustering 
This is a clustering strategy wherein a two-dimensional dataset is dimensionally reduced to a one-
dimensional dataset, and clustering is based on the new dataset [38]. In this instance, a distance matrix 
was created for the lines 

This method was tested with the hope that it would be able to identify the special cases for which rules 
were difficult to define. As can be seen in the figures below, it was successful in this task in many 
circumstances and had potential to be successful in all of the available cases with additional tuning. 
However, this method is very computationally expensive to the extent that on the simulator, the frame 
rate would reach as low as 8 frames per second. Given this, this method was discarded and not tested 
on the physical Eyebots.  

4.3.3.1.3. Final Method 
Given the failure of implementing standard clustering methods, a specialised implementation of 
agglomerative clustering was used that best suited the circumstances that the robot would face. This 
idea operated on the assumption observed during development that large lines were considerably more 
reliable for being an approximation of the lane than the small lines. Based on this assumption, the 
clustering algorithm would select the largest line from the unused dataset and start a new lane group. A 
linear line would be calculated from this line, and for each unsorted line, the Sum of Squared Error (SSE) 
would be calculated for the start and end points from the projected linear line. The line with the 
smallest error would be added to the lane group and least squares regression would be used to create a 
new linear line for the lane group. The SSE would be recalculated based on the new lane group. This 
loop continues until either no lines remain unsorted or the lowest SSE value exceeds a specified 
threshold value. 

If the threshold value is exceeded before all lines are sorted, a new lane group is created starting with 
the largest line remaining in the unsorted group. This process continues until all lines are sorted. The 
intent behind implementing this method was to use the larger lines as a reliable baseline for build lanes 
and slowly skewing it in the direction of any curves that exist. 

 

 

 

 



 

  

 

Figure 11 Clustering Successfully in Complex Situations 

4.3.3.2. Mapping Camera Positions to Coordinates 
Many autonomous vehicles contain stereo cameras so that they may extract position data from the 
captured images [39]. The Eyebot contains only a single camera so doing this is not possible. The 
intention of the project was to accomplish autonomous driving on comparatively cheap hardware, 
simply buying and installing stereo cameras would have been inconsistent with the project’s goals. 
However, both the projects that this was based on and this project make use of a uniformly flat surface 
for the road. When being able to make the assumption of a flat surface, it is easy to emulate the effect 
of position sensing by simply placing a reference point within the camera’s field of view and mapping 
the position of that object with respect to the robot. 

4.3.3.2.1. Mapping in the Simulator 
Creating a coordinates transformation system is trivial in the simulator using the already built tools, as 
the PSDs can be set to give exact distances with no error. All that need be done is to place a white line 
on the surface and black a wall directly parallel and perpendicular to that line. The virtual robot is also 
placed perpendicular to the line so that the PSDs may be used to determine distances to the front and 
side walls. The Hough transform may then be used to attain the exact camera coordinates of this line 
and the PSDs may be used to determine the exact real-world coordinates of the end of the line. The 
robot is then simply manually pulled around as much as possible while keeping the end of the line in 
frame and the real-world positions of the walls relative to the robot, and the camera position of the line 
are recorded for as long as desired. 

From there, it is a simple matter of determining the relationships between camera coordinates and the 
simulator coordinates. This method yielded the relationships shown below. 



 

Figure 12 Mapping Image Ground Distance Positions to y-Positions in Images 

 

Figure 13 Mapping Image Sideways Distance to x-Positions for varying y-Positions 
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Figure 14 Building a Function to Get the Gradient for the x-Position vs. Horizontal Distance equation for a given y-Position 

 

Figure 15 Building a Function to Get the Offset for the x-Position vs. Horizontal Distance equation for a given y-Position 

4.3.3.2.2. Mapping in Reality 
When transferring from the simulator to reality, the transformation no longer holds true. This is likely 
because of small imperfections in camera placement and angle when compared to a perfectly 
reproducible simulated object. This method is not practicable in the real world due to the large variance 
in PSD values at any given time. This causes a very imprecise calibration that cannot produce 
coordinates capable of subtle control. 

Instead, accurate generally accurate mapping was accomplished by assuming that the same general 
relationships that the simulator’s camera-position transformations adhered to would also be true in 
reality, and that the goal in transferring to reality was to calibrate that equation with constants which 
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would work. With this in mind, the real-world calibration was accomplished by placing a marking on the 
driving surface and moving the robot so that the marking is at the top and bottom edges of the image, 
as well as the middle of the image. At these points, the front-facing distance was measured directly with 
a tape measure. The relationship between the forward distance of the camera and the y-position of the 
image may then be accurately mapped. 

Following this, the horizontal position of the point with respect to the camera was then measured using 
the same method. The camera was again placed so that the reference point was at the top, middle and 
bottom of the image. At each of these positions, the robot was moved sideways so that the reference 
point was at the middle of the x-position and the far left of the image for each of the three y-positions.  

4.3.3.3. Path Planning 
The intent of creating this more complex environment model is so that the robot may be directed 
towards a specific point in space, rather than using a reactionary control strategy based only on camera 
coordinates. Using this more refined system of lane detection, the position of the nearest lane is 
determined with respect to the robot. Once the lane is selected, the real-world position of the lane’s 
beginning is estimated and the coordinates are transformed so that the x-axis is parallel to the lane and 
the y-axis is perpendicular to the lane [40]. The goal at this point is to select a point to drive towards. If 
the selected lane is estimated to be a left lane then on the local coordinates system the following 
coordinates are set: 

(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + (0,−
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2
−  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊) 

Where Widthrobot is the width of the robot and Offset is the desired distance the robot should be from 
the lane. If a right lane is selected then the coordinates are: 

(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + (0,
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2
+  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊) 

These coordinates are then transformed to their position relative to the robot.  

 

Figure 16 Transforming Coordinates to be Parallel to the Lane and Selecting a Point to Drive to 



4.3.3.4. Control 
The PID error parameter uses the angular speed of the vehicle. To get this, a uniform arc is assumed 
from the robot’s current position to its end position. The length of the arc is estimated in millimetres 
and the desired finish change in angle is assumed to be the angle of the lane relative to the robot. From 
here, the angular speed is determined using the equation: 

𝜔𝜔 =
𝜃𝜃𝜃𝜃
𝑊𝑊

 

Where ω is the angular speed (degrees/second), θ is the finishing angle (degrees), v is the robot’s linear 
speed (mm/s) and d is the length of the arc (mm). 

4.4. End-to-End Neural Network 
A neural network was trained based on the model used by Nvidia. Nvidia did not provide code for 
implementing their network. However, implementations of it have been created by others and made 
available for public use. Rather than spend time translating Nvidia’s model into usable code, one of 
these pre-existing implementations was used [41]. The original model was designed to output a steering 
wheel angle, which the Eyebot does not have, so it was changed to output a parameter for the Eyebot’s 
angular speed. It was made to output in the form degrees per metre to be scalable with speed. 

5. Assessing Driving Methods 

5.1. Performance Assessment 

5.1.1. Lane Keeping Performance 
Running on the real-world track, the two Hough transform methods were run until an error occurred. 
The results are:  

Method Time Running Before 
Error (s) 

Standard 382 
Informative 130 

Table 1 Run Times without an Error 

Notably, the standard method’s failures are rarely for failure to identify lines is often for reasons 
external to the detection algorithms. The real-world driving area is made from two tables connected in 
the centre. The heights of the tables differ by several millimetres, resulting in the back of the robot 
getting caught when driving from the lower table to the higher table. When the robot gets over it, its 
direction is shifted to the left or right.  

The informative method also has a specific, regular point of failure on the track, where two separate 
sections of the track are within view of each other. The lane processing algorithm can misinterpret the 
wrong lanes as the desired lanes to follow, and attempts to follow them instead, resulting in leaving the 
track. The reason that this happens in this method and not in the standard method is that the robot 
control for the informative method wasn’t able to be calibrated to the smoothness of the standard 
method. This resulted in the robot rotating left and right while driving. Occasionally, if it happens in the 



wrong way, this can result in the conditions for identifying a crossing being satisfied, resulting in the 
robot picking the wrong lane to follow. By tuning PID parameters to smooth the robot’s travel, this 
problem could potentially be eliminated.  

5.1.2. Reactivity 
As stated, the measure of success for this is the frame rate of the detection method. The results are as 
follows: 

Method Average Frames 
Per Second 

Standard 16 
Informative 19 

End-to-End Neural Network 7.4 
Table 2 Average Frame Rates 

The decided minimum permissible frame rate was 10 frames per second. The two Hough transform 
methods were well above this threshold and performed satisfactorily. Unfortunately, the neural 
network method was not capable of achieving this standard on a Raspberry Pi. Notably, the informative 
method performed the better than the initial method. This is likely due to the greater degree of planning 
that went into its development resulting in a more efficient algorithm.  

5.1.3. Situation Handling 
The strategies were also assessed based upon their ability to handle various situations. For an 
autonomous vehicle, failing even once is unacceptable, so they will be measured against their ability to 
constantly perform: 

 Driving Method 
Situation Standard Informative Neural Network 
Straight Yes Yes Yes 
Corner Yes Yes Sometimes 
Crossing Yes Yes Yes 
Dual Lines Often Often Sometimes 

Table 3 Driving Capability for Given Circumstances 

The lanes are also measured against the rate at which they are successfully identifying a situation on a 
frame-by-frame basis. 

 Driving Method 
Situation Standard Informative Neural Network 
Straight Yes Yes Not Applicable 
Corner Often Yes Not Applicable 
Crossing Yes Yes Not Applicable 
Dual Lines Often Often Not Applicable 

Table 4 Detection Rate for Given Circumstances 



 

 

Figure 17 Initial Hough Method (left) vs. Informative Method (right) in identifying complex circumstances. 

5.2. Further Criticism of Methods 
The issue with developing lane detection and control methods based on standard image processing 
techniques is that it requires the designer to define every circumstance. For instance, if the lanes to 
follow are defined as the closest lanes to the robot on the left and right, then those conditions will 
follow the wrong lanes when a pedestrian crossing is present. If this is resolved by programming a 
degree of memory into the lane detection, this can result in situations where the wall is closer to the 
previous values than the new positions of the lanes, and the robot will follow the wall.  

This is a problem because the method is trying to define and categorise a chaotic environment which 
will not play by the designer’s rules. If a new situation arises, the designer must program a new means 
of detecting and handling that situation. Then there is the possibility that the new conditions will conflict 
with existing conditions, causing problems for existing situations which previously worked.  

Neural networks solve this problem by training from existing situations. If something goes wrong, the 
network is trained on similar situations to the one that caused a problem until it can deal with them. 
This causes the issue that if something does goes wrong it is very difficult to determine what the exact 
problem that caused it was. However, the limited training of the network severely impacted its ability to 
function. The angular speed may also be a much more sensitive parameter than steering angle, causing 
errors to have a greater impact.  

5.3. Limitations 
The main concern with regard to the validity of these implementations in a broad sense is their 
robustness in a variety of tracks. In simulations there are no boundaries to the tracks available as Eyesim 
allows for easily implementing new tracks that can be created using standard image design tools. 
However, the situation is much more limited in the real-world testing setting. Little space was available 
within the laboratory for creating test tracks, with any tracks created needing to be confined to a small 
area. 

This is an issue because the primary measure of success for a project such as this is successfully 
functioning in a diverse range of circumstances. This is difficult to accomplish in an environment where 
the capacity to test different scenarios is limited to a small area.  

Although the simulator implementations do not share this problem, they are also flawed in that they 
offer a pristine environment where imperfections must be explicitly put in. This runs contrary to the 
real-world scenario where effort must be exerted to eliminate imperfections. 



Another significant flaw in these implementations is the complete dependence on one sensor.  

6. Topics for Further Investigation 
The ultimate goal is still to have a robot performing fully autonomous driving within its environment. 
With relation to lane detection, it would be extremely beneficial to further refine the neural network 
method and refine it to a state where it can drive reliably. The lower frame rate may ultimately be a 
somewhat acceptable sacrifice if it can be made to make the robot drive well enough.  

In terms of creating a fully autonomous system, sign recognition and obstacle detection are natural 
requirements for creating a complete system. Beyond that, other requirements are for the vehicle to be 
capable of performing advanced manoeuvres such as overtaking and parking. Lastly, guided driving 
would be highly desirable. In the current driving method, the robot drives in a straight line. It would be 
desirable for the robot to be given a target point in a map and drive to it in the shortest method 
possible. Given that the current real-world track can be fully traversed by driving straight, this could be 
developed by first having the car drive straight until it reaches the desired point. Once a localisation 
algorithm is working on the straight line, the algorithm could then be refined to take the shortest path 
there using more advanced driving commands.  

7. Conclusions 
Multiple methods were successfully designed and implemented to work within the Eyesim simulation 
system and the test track. The implementations, however, are far from fully robust. The driving 
environments were extremely controlled and the robots nonetheless had limited driving success. When 
inserted into an entirely foreign driving environment that the robot wasn’t designed in, it is possible that 
the Eyebot would not be capable of fully navigating the track in its current state.  

Within the confines of this project, the most success in adhering to lanes was with the original Hough 
lines implementation, with the more informative Hough lines implementation being the second best and 
the neural network having the worst performance. The standard image processing methods are an 
effective way of driving the robot within the limited environments but they are ultimately limited 
solutions in how successful they can be when every possible situation must be accounted for by the 
designer.  

Ultimately, the future of autonomous driving is likely to be heavily reliant on neural networks to 
function. With more training, a neural network is capable of surpassing the Hough lines method in 
driving performance. The methods developed in this project have potential to be effective in training a 
neural network to drive smoothly, but focus in the future should be placed on neural networks.  
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9. Appendix 

Appendix A – Initial Lane Perception & Control Algorithm 

Appendix A.1 - Overview 

 

Appendix A.2 – Hough Lines 

 



Appendix A.3 – Preliminary Sorting  

 

This process is repeated for each line extracted from the image. 



Appendix A.4 – Lane Clustering 

 



Appendix A.5 – Sort Lanes Left and Right 

 



Appendix A.6 – Pick Lanes 

 



Appendix B – Informative Lane Model Algorithm 

Appendix B.1 – Overview 

 

Pick Lanes operates as in the previous section and driving operates as described in the report body. 

Appendix B.2 – Basic Filtering 

 

This is applied for each line. 



Appendix B.3 – Clustering 

 

 

 



Appendix C – Simulation Test Track 

 

Appendix D – Real Test Track 
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