

 i

SIFT-like Keypoint Cluster-Based Traffic Sign
Recognition with Deep Learning

A thesis submitted in partial completion of the requirements for the d egree of

Master of Professional Engineering

(Electrical and Electronic)

at

University of Western Australia

October 2019

Word Count: 7994

University of Western Australia

Faculty of Engineering and Mathematical Sciences

School of Electrical, Electronic and Computer Engineering

Author:

Jordan King (21118935)

Supervisor:

Prof. Thomas Bräunl

School of Electrical, Electronic and
Computer Engineering

 ii

 iii

Thesis Declaration

I, Jordan King, certify that:

This thesis has been substantially accomplished during enrolment in this degree.

This thesis does not contain material which has been submitted for the award of any
other degree or diploma in my name, in any university or other tertiary institution.

In the future, no part of this thesis will be used in a submission in my name, for any
other degree or diploma in any university or other tertiary institution without the prior
approval of The University of Western Australia and where applicable, any partner
institution responsible for the joint-award of this degree.

This thesis does not contain any material previously published or written by another
person, except where due reference has been made in the text and, where relevant, in the
Authorship Declaration that follows.

This thesis does not violate or infringe any copyright, trademark, patent, or other rights
whatsoever of any person.

This thesis contains published work and/or work prepared for publication, some of
which has been co-authored.

Signature:

Date:

 iv

 v

Abstract
State-of-the-art convolutional neural network-based architectures similar to MobileNet were
shown to have the capability to surpass human performance in the German Traffic Sign
Recognition Benchmark (GTSRB) held for IJCNN 2011; however, traffic sign detection systems
that operate in real-time for ARM-based devices with limited computational power (e.g., less
than 200 MFLOPS) have remained elusive. In this paper, a traffic sign detection pipeline is
proposed for inexpensive autonomous driving robots and driver-assistance systems using a
novel approach for ROI candidate generation with SIFT-like keypoint cluster-generated regions
and TensorFlow. The pipeline has been implemented to detect a subset of the traffic signs
present in the Carolo Cup, and has been deployed on mobile driving robots at UWA using the
EyeBot 7 controller platform and a Raspberry Pi 3B with MobileNet for image classification.
The pipeline is highly configurable can operate at an average of 18.80 Hz for QVGA-sized true-
colour video if detecting a subset of signs, achieve an accuracy of 89.10% in the GTSRB, and
yield an IoU of 0.7273 for a modified KITTI semantic segmentation dataset. The novel
detection architecture brings feasibility to inexpensive monocular driver-assistance systems or
autonomous driving robots, but the skeleton may be repurposed. The ROI proposal method
lend itself to applications where computational power is limited, SIFT-like keypoints are
already generated, or when the environment is sparse; for example, when using inexpensive
ARM-based devices such as Raspberry Pi, if the robot is already using ORB-SLAM, or in
underwater environments.

 vi

 vii

Contents
Thesis Declaration .. iii

Abstract ... v

Contents .. vii

1 Introduction .. 1

1.1 The Carolo-Cup .. 1
1.2 Robot architecture .. 3
1.3 Problem Statement ... 4
1.4 Document Structure ... 5

2 Related Work and Theory .. 7

2.1 Traffic Sign Recognition Methods .. 7
2.1.1 Support-Vector Machine of Histogram of Orientated Gradient Features 8

2.2 Deep Learning-based Approaches ... 9
2.2.1 Neural Networks .. 9
2.2.2 Convolutional Neural Networks ... 10
2.2.3 Activation Functions .. 11
2.2.4 Pooling Layers and Upsampling ... 13
2.2.5 MobileNet ... 14
2.2.6 Region-proposal CNNs and Single-Stage Object Detection 16
2.2.7 SegNet .. 17

3 Methodology .. 18

3.1 The Founding Principle, or Arche .. 18
3.2 Translation and Rotational Invariant Keypoints ... 19
3.3 Module Interaction ... 19
3.4 The Keypoint Cluster-Based Object Detection Pipeline .. 21

4 Region Proposal .. 22

4.1 Binary Histograms .. 22
4.2 Keypoint-Dense Regions ... 24
4.3 Binary Pseudo-Pixelwise Image Segmentation ... 27

4.3.1 Design Philosophy .. 28
4.3.2 Proposed Architecture .. 28
4.3.3 Training ... 29
4.3.4 Evaluation .. 32

5 Classification ... 35

5.1 Overview ... 35
5.2 The German Traffic Sign Recognition Benchmark ... 35
5.3 Training .. 36

5.3.1 Training Set ... 37
5.3.2 Dataset Augmentation ... 38
5.3.3 Training Results ... 38

5.4 Evaluation with State-of-the-Art Recognition Methods ... 42
5.5 Runtime Optimisation .. 45

 viii

6 Tracking and Reliability .. 49

6.1 Tracking .. 49

6.2 Reliability ... 49

6.3 The Class Reliability Metric ... 50

6.4 The Weighted Class Reliability Metric ... 50

7 Conclusion ... 52

7.1 Thesis Summary .. Error! Bookmark not defined.

7.2 Contributions ... Error! Bookmark not defined.

7.3 Future Work .. Error! Bookmark not defined.

Bibliography ... 54

 ix

 1

1 Introduction

Spearheaded by initiatives such as the Renewable Energy Vehicle (REV) Project and

the Carolo Cup, the future of mobility will precipitate two major technological

revolutions: electric cars, and then autonomous cars. The integration of fully-

autonomous vehicles for real-world, complex scenarios has captured the attention of

researchers from many fields, industry, and the general public; however, the

tremendous benefits of state-of-the-art advances in robotics and computer vision are

not exclusive to fully-autonomous cars.

SAE International, otherwise known as the Society of Automotive Engineers, have

defined six levels of driving automation in their J3016 standard that encapsulate a

range of automation levels including no automation, Advanced Driver-Assistance

Systems (ADAS), and full self-driving automation [1]. Vehicle autonomy is not solely

related to the capability of the vehicle to drive without human intervention, but may

also relate advanced technology that integrates a given aspect of intelligence.

In this paper, the topic of traffic sign detection and recognition is explored and three

different methods are proposed. The aim is to develop a traffic sign detection and

recognition system that can be deployed to participate in the Carolo Cup autonomous

driving student competition, but is also scalable to the real-world. In theory, the

developments could ported to a mobile phone, or be used as the module in an

inexpensive monocular driver assistance system.

1.1 The Carolo-Cup

The Carolo-Cup, organised by the Technischen Universität Braunschweig (in English:

Technical University of Braunschweig, Germany), is an international competition for

students to implement solutions for autonomous vehicles in areas such as lane following,

parking on a sideways parking strip, and obstacle detection and avoidance [2].

 2

This competition and others similar offer a platform to develop solutions for

autonomous vehicles that are not practical or safe to implement on the real-scale

vehicles. In the scope of sign recognition, there are 17 signs that are introduced as can

be seen below.

Figure 1: The traffic signs in the Carolo-Cup [3]

There are two categories of events in the Carolo Cup: static events and dynamic events.

In the dynamic events, the performance of the driving robots is evaluated with respect

to the Free Drive and Parking discipline, and the Obstacle Evasion Course.

Category 1: Free Drive and Parking

In the first dynamic event of the Carolo Cup, vehicles autonomously traverse the

furthest possible track distance in a given time [4]. In addition to lane following, the

cars are evaluated with respect to their capacity to detect and recognise parking signs.

1. Introduction and Background

 3

If a parking zone is identified, the car’s capability to perform parallel and perpendicular

parking is assessed.

Category 2: Obstacle Evasion Course

The second of the dynamic events adds both static and dynamic obstacles to the road,

and removes the parking manoeuvre challenges.

Team KitCar won the Basic Cup in 2018 with entry Dr. Drift [5]. There are no papers

that are immediately available that may be used to compare their implementation of

traffic sign recognition and detection to that proposed in this paper.

1.2 Robot architecture

EyeBot is an embedded controller platform that has been developed by Prof. Bräunl

and the Robotics and Automation lab at UWA for a family of small autonomous mobile

robots which include driving robots, walking robots, autonomous airplanes and

autonomous underwater vehicles [6] [7] [8]. The current iteration of robots, Eyebot 7,

employs a Raspberry Pi 3B+ single-board computer for high-level control of the robot,

connecting with additional sensors such as LiDAR or IMU, and user-interfacing [7].

The Eyebot I/O USB expansion board version 2.63, called the Eyebot I/O Board, is

physically linked to the Pi via USB, and RoBIOS-7 software installed on the Pi allows

the Pi to employ the I/O board functionality [6]. The I/O board allows for the user

to control low-level function of the robot including motors, servos and PSDs [6].

 4

Figure 2: TheEyeBot7 I/O Board

The I/O board may be deployed in a host of robot builds; however, the robot that is

the focus of the thesis will be the SoccerBot as shown below. The construction of the

SoccerBot is described in tremendous detail in [6]. The SoccerBot is a differential-drive,

wheeled robot equipped with an LCD screen; PSDs located on the left-hand side, right-

hand side, and front of the robot; and a PiCamera attached on top of a servo [6].

Figure 3: SoccerBot mobile driving robot

1.3 Problem Statement

This work is written as part of the research conducted by the Robotics and Automation

Lab at UWA; specifically, the autonomous driving robots research group that has been

assembled to complete the tasks presented by the Carolo Cup competition.

1. Introduction and Background

 5

The sign recognition, parking, and obstacle avoidance challenges are contingent on the

ground robots being able to detect traffic signs and obstacles. A traffic sign recognition

that operates in real-time with inexpensive and computationally limited hardware—

e.g., the Raspberry Pi 3B—is the underlying goal of this work

In terms of hardware compatibility, it may only use the existing sensors on the robot:

a front-facing camera and front, left and right-facing PSDs. In terms of software

compatibility, it must be able to be run on the robot in conjunction with the lane-

detection program developed for the Carolo-Cup competition.

To operate in real-time, the system must be able to run at a minimum of 8Hz for a

QVGA-size (320x240 pixels) image. If feasible, any solution should endeavour to

operate at a higher rate than 8Hz or use a resolution greater than QVGA.

In terms of the larger body of literature at UWA, the work aims to be scalable and to

have the capability to be implemented in real-world environments. In order to achieve

this goal, benchmarks are discussed with respect to real-world datasets and state-of-

the-art techniques and methods.

1.4 Document Structure

In this first chapter, the background information, goal and context for the thesis project

has been defined thereby forming the basis for the rest of the document.

The related work and theory are discussed in-depth in Chapter 2. It includes an analysis

of current state-of-the-art methods and information to provide a backdrop to interpret

the rest of the paper.

An outline of the overall architecture and pipeline of the traffic sign recognition and

detection system is provided in Chapter 3.

The techniques and methods for region proposal are proposed in Chapter 4. There are

three techniques discussed in detail including keypoint-dense region proposal and

binary semantic image segmentation.

 6

Chapter 5 will delve into the recognition module proposed and provide a significant

level of insight relating to benchmarking CNNs on the Raspberry Pi 3B hardware.

Chapter 6 serves to discuss the localisation and reliability of the detections, and what

is termed ‘profiling’ which is a essentially a time-wise committee of CNNs.

Chapter 7 is the conclusion of the thesis and includes a reflection on the results, an

outlook and any recommendations or any modifications to method.

 7

2 Related Work and Theory

In this section of the paper, a review is completed of the literature relating to the

following: (i) traffic sign recognition approaches, and (ii) deep neural network-based

object detection approaches. The two sets of approaches may be referred later in the

paper as ‘specialised’ traffic sign recognition methods or ‘generic’ object detection

methods respectively.

It should be noted by the reader that the majority of the literature review is completed

in this section; however, for comparison purposes additional sources will be referred to

in the corresponding chapters.

2.1 Traffic Sign Recognition Methods

In-depth overviews of specialised traffic sign detection and recognitions approaches are

available in the following papers: [9] [10] [11]. In the interest of completion, the author

has opted to include a brief overview.

Specialised methods for traffic sign recognition are frequently composed of three stages

or processes: pre-processing, detection, and recognition [11].

The methods of traffic sign detection are traditionally divided into colour-based, shape-

based, and learning-based approaches [9] [10]. Learning-based methods can be further

sub-divided into those that employ deep learning techniques such as CNNs.

It is not feasible to discuss an implementation of each approach, but they will be

touched upon when comparing results in Chapter 5. The rest of this section will focus

on a machine-learning approach that has seen a significant amount of success: Real-

Time Detection and Recognition of Road Traffic Signs [12]. Similar methods were

employed to win the German Traffic Sign Detection Benchmark, and it is possible that

similar methods are used in conjunction with GPS data in industry.

 8

2.1.1 Support-Vector Machine of Histogram of
Orientated Gradient Features

In Greenhalgh and Mirmehdi’s paper (2012), a real-time approach for traffic sign

detection is proposed with traffic signals being recognised using Histogram of Gradients

(HOG) features, and a cascade of linear Support Vector Machine (SVMs) classifiers

[12].

The proposed method can be divided into a detection and recognition stage. In the

detection stage, the image undergoes thresholding at a range of levels. If a region

maintains its shape then it is designated as a maximally stable extremal region

(MSER). [12]

Figure 4: The flow diagram of the proposed solution [12]

These regions are then classified using a cascade of multiclass SVMs [12]. Support

vector machines are simple algorithms that can be used to classify an object after it

has been given a set of supervised training examples. In simple terms, it optimally

specifies a line, otherwise known as a hyperplane, that divides a multidimensional space

containing descriptions of different object classes. A HOG vector is used to classify the

shape of the region.

There are algorithms similar to that presented in this paper [12]—that is, using HOGs

and SVM, or employing MSERs—that will be used for evaluation and comparison

purposes later in the paper. The paper is one of the most heavily cited sources on traffic

sign detection, and it is possible that ADAS manufacturers may employ related

methods for real-time detection.

2. Related Work

 9

2.2 Deep Learning-based Approaches

2.2.1 Neural Networks

An artificial neural network (ANN), otherwise referred to as a neural network (NN), is

a multivariate statistical model that broadly simulates the structure of a brain [13]

[14]. They are composed of simple units, called ‘neurons’, divided into layers and

interlinked by weight connections and biases [15]. In the analogy, the input to each

‘neuron’ represents the dendrite and the output from the neuron represents the axon

terminals. The input layer of the ANN contains an explanatory tensor that is used to

calculate a dependent tensor contained in the output layer [13].

Figure 5: The anatomy of a neuron via Wikimedia Commons, used under the Creative

Commons Attribution-Share Alike 3.0 Unported license

Neural networks lie in the field of machine learning, and can be considered a general

purpose mathematical model. At a high-level, a neural network can be trained via

‘supervised learning’; that is, by providing a set of training data and its corresponding

answer. They are differentiable and therefore if there is any error, the error can be

backpropagated and weights amended. In order to grasp the inner workings of an ANN,

it is imperative to understand what is happening at the neuron-level.

 10

Figure 6: Representation of a singular neuron

In the Perceptron model [16], each neuron in a hidden layer—that is, not in the input

or output layer—is connected to every single neuron in the layer before and a bias by

a weight. The output of each neuron is equal to the activation function applied to the

value stored within the neuron itself. There are a variety of activation functions that

exist, as will be discussed in the following sections.

2.2.2 Convolutional Neural Networks

Convolutional neural network layers differ from the fully-connected neural networks in

how each neuron in the hidden layers is calculated. In a convolutional layer, weights

are assigned to a kernel, frequently referred to as a filter, rather than between each

neuron-pair.

2. Related Work

 11

Figure 7: A demonstration on how convolutional layers work in a CNN using an image of
UWA's Winthrop Hall as an example

The kernel size and number of kernels in a convolutional layer are subject to the choice

of the developer. The kernel is convolved over the input tensor according to a given

stride length, and the sum of each product between the input tensor and the kernel

weights corresponds to the neuron value in the next proceeding layer.

2.2.3 Activation Functions

The Perceptron model and convolutional neural networks both employ activation

functions. The purpose of an activation function can be reasoned as two-fold: they

introduce non-linearity to the network, and they can they can be set to encourage

convergence during training. If an activation function were not used, then the network

would default to linear regression which may or may not be useful depending on the

application.

The activations functions discussed in the paper will be limited to Sigmoid, ReLU,

Leaky-ReLU and Softmax.

 12

Sigmoid:

!"#$(&) = 	
1

1 − ,-.

Figure 8: Visualisation of the sigmoid activation function

Rectified Linear Unit (ReLU):

!"#$(&) = /	&, & ≥ 0
0, 3. 5.

Figure 9: Visualisation of the Rectified Linear Unit (ReLU) activation function

2. Related Work

 13

Leaky-ReLU:

!"#$(&) = / &, & ≥ 0
	6&, 3. 5.

Figure 10: Visualisation of the Leaky-ReLU Activation Function

Softmax:

!"#$(7)8 = 	
,.9

∑ ,.;<
=>?

Softmax is frequently used as the final activation function in classifier architectures.

The value output is dependent not only on the input, but all neurons in the preceding

layer.

2.2.4 Pooling Layers and Upsampling

There are a wide array of pooling and upsampling layers, but the types employed in

this thesis have been max pooling, mean pooling, and upsampling.

Max Pooling:

An N-pool size max pooling layer ascertains the maximum local value in a N-N region

and uses that value to populate the next layer which will be 1/Nth the size of the input

layer.

 14

Mean Pooling:

Similar to max pooling above, but the mean local value populates the proceeding layer

instead of the maximum value.

Upsampling:

An N-sized upsampling layer will repeat each row and column of data N times in the

output layer effectively increasing the width and height of the layer.

2.2.5 MobileNet

Howard et al. proposed MobileNets as a class of lightweight convolutional neural

networks based on the principle of depthwise separable convolutional layers [17]. The

key contribution of the paper was the implementation of depthwise separable

convolutional layers to dramatically decrease model size and the number of multiply-

accumulate operations required for inference.

2. Related Work

 15

Figure 11: (a) Typical kernels for CNNs, referred to in this paper as standard convolution (b)
Depth-wise kernels. (c) Point-wise kernels. Dk is the width of the kernel, M is the depth of the

input layer, N is the depth of the output layer [17].

A depthwise separable convolution layer is not a single convolution but a depthwise

convolution followed by a pointwise convolution. A 3×3 depthwise separable layer has

the theoretical underpinnings to run 8 to 9 times faster than a standard a 3×3

convolutional layer of equal size with only a small loss to accuracy [17].

The structure of a MobileNet is given in Table 1 below. MobileNet employs ReLU

activation functions for the hidden layers, and Softmax at the end of the network.

 16

Table 1: The Body Architecture of MobileNet [17]

2.2.6 Region-proposal CNNs and Single-Stage Object
Detection

The advent of the region-proposal family of convolutional neural networks has

dramatically increased the prevalence of CNN-based detectors in the object recognition

sphere. For a more in-depth review of the state-of-the-art in CNNs, the author would

recommend reading [18] [19] [20] [21].

The rest of this section will entail a discussion about single-stage CNNs that can be

deployed to low-power and low-cost embedded devices for real-time large-scale object

detection. They operate at real-time for a slew of devices including mobile phones and

a range of embedded devices such as Jetson Nano.

As opposed to the R-CNN family of detectors, the You Only Look Once (YOLO) model

[22], RetinaNet [23], and the Single Shot MultiBox Detector (SSD) [24] do not propose

a set of ROIs using a Selective Search algorithm. In these architectures, an image in

2. Related Work

 17

processed via a single CNN which provides a confidence for a classification as well as

bounding box coordinates for any likely objects.

The relatively computationally-limited nature of the Raspberry Pi 3B means that it is

not possible to simply use an object detection architecture such as SSD MobileNet-V2

[24] [17]. Nvidia have performed benchmarks for the Raspberry Pi 3 and similar single-

board computers and found that for inputs with resolution 480×272 or greater that

SSD MobileNet-V2 did not run [25]. Input images of 300×300 on SSD MobileNet-V2

ran at 1 Hz, and 416×416 Tiny YOLO V3 is able to run at 0.5 Hz [25]. Alternatively,

using image classification instead of object detection, MobileNet-V2 can be run at 2.5

Hz for 300×300 images [25].

2.2.7 SegNet

SegNet is an encoder-decoder fully convolutional neural network architecture for

pixelwise semantic segmentation; that is, it attempts to label each pixel in a given

image according to a set of classes [26].

Figure 12: The architecture of SegNet [26]

The encoder-decoder structure of the net is practical for two primary reasons: it will

aid convergence and it has the capability to run in real-time on high-end GPUs. SegNet

relies heavily on the pooling and upsampling layers that were discussed in Section 2.2.4.

 18

3 Methodology

The following chapter will provide a high-level overview of the design methodology.

The subsequent chapters will provide an in-depth explanation of each module; however,

it will be beneficial to the reader to understand the interaction between each module

and the role they play individually.

3.1 The Founding Principle, or Arche

The field of robotic vision largely overlaps with that of computer vision, but the two

differ with respect to their overarching goal: in the domain of robotic vision, problems

operate in real-time, run in parallel to other software, and should prioritise reliability.

In this capacity, the traditional computer vision-orientated object detection pipeline

may not be optimal for robotic vision tasks.

Figure 13: The traditional neural network-based object detector pipeline

3. Methodology

 19

The pipeline proposed in this paper seeks to remedy two aspects of the traditional

object detection pipeline. The proposed architecture seeks to build up a ‘detection

profile’ for each given object. When an object is detected, rather than the robot erasing

data about the object in the next frame, objects are tracked between frames and each

detection of the object is added to its detection profile to measure the ‘reliability’ of

that object being detected correctly. It can be considered similar to a time-wise

committee of convolutional neural network classifiers and increases redundancy.

3.2 Translation and Rotational Invariant

Keypoints

The key property of SIFT-like keypoints that may be exploited for this problem is their

ability to be tracked between frames irrespective of scale and transform variance. They

may naïvely be understood as a corner with a given orientation and magnitude

The property of visual salience loosely corresponds to how well a region stands out and

gains visual attention. It may be subdivided into high-level and low-level visual

salience. An example of high-level visual salience would be the colour red: as a species,

humans are evolutionary hardcoded to view the colour red and think danger.

Corners may be considered an example of low-level visual salience. A count of the

number of SIFT-like keypoints in a region can be used as a metric to order ROIs.

3.3 Module Interaction

The pipeline begins by reading an image from the camera sensor. A SIFT-like feature

detector then calculates all the keypoints in the image for a given set of parameters.

These will act as a metric for low-level visual salience.

In the next stage, region proposal occurs: the true-colour image is processed and a

binary image is generated. This binary image will be used to represent high-level visual

 20

saliency. The binary image will be used to cluster the previously generated keypoints,

and then each of these clusters is used to specify a region of interest (ROI). A list of

ROIs is generated and ordered by the priority. The number of ROIs classified in each

frame is limited because a high-accuracy image classifier is computationally expensive.

The second purpose to clustering keypoints is to constrain matches. Keypoint matching

between frames and tracking object detections is computationally expensive if each

keypoint from a frame is trying to match with each keypoint from another frame. To

reduce the power required and to ensure that the system operates in real-time, keypoint

matches between frames are constrained to each nearby cluster.

The tracking and localisation module itself plays a role before classification occurs for

each frame and essentially supresses any ROIs that likely contain objects that have

been detected and classified recently. As mentioned previously, keypoints are matched

between nearby clusters between frames; therefore, the set of possible keypoints are

constrained and the program is able to run at a greater FPS. When a cluster is

identified as belonging to an existing detection profile, the bounding box describing the

location of the detection is updated. If sufficient time has passed since the last

detection, then the new ROI is classified and the detection profile updated. If an object

can no longer be tracked – for example, if the robot has moved and the traffic sign is

no longer in view—then the detection profile is erased.

3. Methodology

 21

3.4 The Keypoint Cluster-Based Object Detection

Pipeline

Figure 14: The proposed pipeline for traffic sign detection and recognition

 22

4 Region Proposal

In this section of the paper, three methods employed for region proposal throughout

the project will be detailed. The first approach may be considered a more traditional

approach to region proposals for traffic signs; however, the latter methods may be

considered novel approaches within the field of robotic vision. The majority of this

section will dedicated to the third approach which will be compared in detail with

state-of-the-art segmentation algorithms and represents a key contribution of the

paper.

4.1 Binary Histograms

The first method for region proposals is to employ colour segmentation-based candidate

generation using binary histograms. The process itself is relatively simple and straight-

forward so it will not be covered in detail for conciseness.

A true-colour image is captured by the PiCamera, and then is transformed form the

RGB to HSI colourspace. A lookup table of empirically defined values is then used to

binarize the image and generate a mask. A histogram is calculated for each axis where

the foreground pixels vote into each corresponding bin.

4. Region Proposal

 23

Figure 15: (a): the true-colour input image captured on the PiCamera (b): on the left each
pixel assigned within the RGB colour-space, and on the right is each pixel assigned within the
HSI colour-space. The hue is in the range [0,180) due to the OpenCV implementation’s use of

the uint8 datatype

It is difficult to choose thresholds to generate the binary image within the RGB colour-

space as can be seen in the Figure 15 (b). In order to account for the effects of changes

in illumination, reflections and other spectral phenomena, the image is translated to

the HSI colour-space.

This approach is able to function in EyeSim and generate all the signs of interest;

however, as can be seen in Figure 15 (a), the presence of white light especially in the

walls of the Mobile Robots Laboratory make it difficult to function in the real-world.

(b)

(a)

 24

The binary histogram approach is the simplest of the approaches employed in the

project for region proposal. It is also the fastest as it is able to achieve a mean FPS of

18.80Hz with object recognition. In its present form it comes with a caveat: only a

critical subset of the traffic signs may be detected which includes stop signs, parking

signs, pedestrian crossing signs and give way signs. The non-coloured speed limit and

unlimit signs are invisible to this method of detection.

4.2 Keypoint-Dense Regions

The method proposed in this section will again only comprise a brief section, but is an

interesting contribution that may be useful for similar tasks.

The principle is to use a sliding window across an input that has keypoints generated

and mark all window positions greater than a certain thresholds. As discussed

previously, keypoints can act as a metric for low-level visual salience and keypoint-

dense areas may correspond to areas with objects. It should be understood that

clustering keypoints based on square regions is not very efficient; however, it is an

approach that could be used to detect any large scale object in a sparse environment.

Figure 16: An example of the traffic sign detection pipeline ignoring white light. (Top Left) a
true-colour input image of a stop sign on the Carolo Cup track recreated at the UWA Mobile
Robots Lab. (Top Right) HSI thresholding has been applied to the input image to generate a
binary image. (Bottom Left) histograms are generated for both the x-axis and the y-axis as

shown in dark grey, a threshold for each axes in shown in light grey. (Bottom Right) the input
image with a bounding box (yellow), classification and confidence displayed

4. Region Proposal

 25

It does not rely on any training and could be deployed for a range of tasks where

accurate localisation is not required.

Algorithm 1 Keypoint-Dense Region Proposal

INPUT: Input Image with width w and height h
OUTPUT: List of rectangles, ROIs
DATA: Vector of SIFT-like keypoints, keypoints
j ⟵0
while j <	h do:

i ⟵ 0
while i <	w do:

count⟵0
for all kp such that kp ∈ keypoints do:

if kp in RECT(i, j, i+xs, j+ys) do:
count ⟵count+1

end if
if count ≥THRESHOLD do:

append RECT(i, j, i+xs, j+ys) to ROIs
end if

end for
i ⟵i + STEP

end while
j ⟵ j + STEP

end while
return ROIs

 26

The sliding window generates a great deal of ROIs in most scenarios; therefore, non-

maxima suppression is then applied as can be seen in Figure 17 below. The Carolo Cup

map itself is sparse enough that this approach can be used; however, it does fail when

using real-life camera feeds. The most similar method that could be found was using

keypoint density to optimise R-CNN

Figure 17: An example of Keypoint-Dense Region Proposal using EyeSim

4. Region Proposal

 27

4.3 Binary Pseudo-Pixelwise Image Segmentation

In this section, a novel low-computational cost binary image segmentation network

architecture inspired by SegNet and MobileNet is proposed and evaluated in

comparison to existing semantic pixel-wise labelling algorithms. Figure 18 demonstrates

a sample of the results using this approach with a modified KITTI semantic

segmentation dataset [27].

 Figure 18: A sample of results of the pixel-wise traffic sign detection approach. The confidence
threshold employed for binarization here is 0.9

 28

4.3.1 Design Philosophy

The goal is to implement a real-time convolutional neural network architecture to label

each pixel of an image as foreground or background where foreground corresponds to

regions labelled as a traffic sign..

In order to operate in real-time on a Raspberry Pi 3B, the network must be minimal

and very efficient.. The network is too shallow to achieve results not dissimilar to a

colour filter with limited spacial information; however, the rest of the pipeline

architecture should be able to account for this matter.

4.3.2 Proposed Architecture

The architecture is heavily inspired by the encoder and decoder convolutional layers of

SegNet; however, it aims to implement MobileNet’s depth-wise separable convolutional

layers instead of the two-dimensional convolutional layers of SegNet. There are a

number of tuneable hyperparameters for latency, size and accuracy.

In order to ensure that the network will be able to achieve the task satisfactorily in

terms of accuracy and speed, there are five different hyperparameters proposed:

i. The width multiplier, derived from MobileNet, is directly related to depth of

the hidden layers. It is denoted ‘D’.

ii. The resolution multiplier, also related to MobileNet, directly resizes the input

image size. It is denoted ‘E’.

iii. The resizing coefficient is used to control the resizing in the encoder and decoder

layers. It is denoted ‘F’.

iv. The depth gradient is used to control the rate at which the depth of the hidden

layers increases in the encoder layers and decreases in the decoder layers. It is

denoted ‘G’.

v. The initial depth is used to specify the initial depth of hidden layers. Larger

values will likely provide more accurate results at the cost of performance. It is

denoted ‘H’.

4. Region Proposal

 29

4.3.3 Training

The fundamental issue that affects training the convnet is the lack of datasets available

for semantic pixelwise segmentation. The amount of work required to make a semantic

pixel-wise labelled data is tremendous; therefore, it was deemed infeasible to construct

a dataset during the timespan given. There were three datasets found that offered

potential for training: KITTI [27], Cityscapes Dataset [28], and WildDash [29].

The KITTI dataset was in the end able to be used albeit with a number of

modifications. The KITTI dataset only contains 200 images for training. It also has an

input resolution of 1242×375, which is very impractical for the proposed network which

accepts images of resolution 320×240. The solution was to divide the images into two

horizontally-wise, and then resize each to 320×240.

The resultant dataset was heavily imbalanced; that is, there was an unequal

representation of instances corresponding to foreground and background.

There are two options to account for the imbalanced relative class frequencies: i) apply

a sample weight to each input image, or ii) apply a class weight for the true label of

each image. If this were not to occur, in this case it would label every single pixel black

and not converge.

Figure 19: An example post-processed image from the KITTI dataset (L) with
corresponding binary mask (R) [27]

 30

In order to facilitate training the following split was employed: a randomly selected

10% of the total images were designated for training purposes, 80% of the remainders

were designated as the training set and the rest comprised the validation set. In order

to expand the training dataset, the training set was augmented via Keras [30] using

the parameters given in Table 2.

Table 2: Image Data Generator Parameters (Region Proposal)

Parameter Value

Brightness [-0.10, 0.10]

Rotation [-0.05, 0.05]

Shear [-0.05, 0.05]

Width Shift [-0.10, 0.10]

Height Shift [-0.10, 0.10]

Zoom [0, 0.10]

Prior to training each combination of hyperparameters, a learning rate range test was

conducted after 30 epochs to evaluate which learning rate should be selected for long-

term training. The test is similar to that devised by Leslie N. Smith [31].

Figure 20: Learning rate hyperparameter test (Region Proposal)

1.0
0E

-07

1.0
0E

-06

1.0
0E

-05

1.0
0E

-04

5.0
0E

-04

1.0
0E

-03

5.0
0E

-03 0.0
1 0.1 1 10 100

1

10

100

Learning Rate

Lo
sse

s

LR Range Test

Validation

4. Region Proposal

 31

In Figure 20 there is a dark blue line on the left hand side of the graph, this corresponds

to the region where the learning rate hyperparameter is too low the loss is trapped in

a local minima. The purple line on the right hand side of the graph corresponds to a

region where the learning rate is too high so it does not converge.

Figure 21: Training and Validation Loss vs. Epoch

Figure 22: Validation IoU and FPs over the range of epochs

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

Lo
sse

s

Epoch

Loss

Train

Validation

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200 220 240

Pe
r c

en
t

Epoch

Validation IoU and False Positives against Epoch

IoU
FP

 32

4.3.4 Evaluation

In this section, the results using the binary pseudo-pixelwise segmentation method are

presented. It should be noted that only a subset of all possible network architectures

will be discussed because there are many different combinations of hyperparameters.

The output from the network itself after inference is two-dimensional matrix containing

floating point numbers from zero to one. In similar networks, these values are referred

to as the confidence of the network. It should be noted that these values are calculated

via a loss function, and are not a probability in any real capacity. In Figure 23, an

example output is presented with a mapping.

Figure 23: An example output of the network

The metric employed to compare methods in the KITTI dataset is intersection-over-

union, otherwise referred to as ‘IoU’ or the Jaccard Index. It is defined as the area of

intersection divided by the area of union as exemplified in Figure 24.

A pixel is designated as a True Positive (TP) if it is classified as foreground when it is

a foreground pixel; inversely, a pixel is designated as True Negative (TN) if it is

Figure 24: An example of IoU. The green region represents the intersection, and the union is
comprised of the orange areas and the green area

4. Region Proposal

 33

classified as a background pixel and it is a background pixel. If a pixel is designated

foreground when it is background, then it is a False Positive (FP). Likewise, if it is

classified as background and it is foreground then it is a False Negative (FN).

The PASCAL VOC definition for IoU is employed by KITTI to compare methods for

semantic segmentation as given below:

I3J = 	
K(LM)

K(LM) + K(OM) + K(OK)

The pixel-wise labels for the test set of images are not publicly available so comparisons

with existing methods are only able to completed using the validation set of images.

Figure 25: Comparison between outputs of three CNNs when using different hyperparameters expressed
in the form (D, E, F, G, H)T. From left to right: (1.0, 1, 2, 2, 64)T, (0.25, 1, 2, 2, 64)T, (0.25, 2, 4, 2, 8) T.
From top to bottom: true-colour image input, confidence map output from CNN, binary mask with

confidence threshold of 0.9, and bitwise AND operation between mask and input image

 34

Table 3: Evaluating and Comparing Semantic Segmentation Methods on the
KITTI dataset. *Method only detects traffic signs and no other classes, and

IoU was calculated on validation set

Method Class IoU

Proposed method where (D, E, F, G, H)T = (1.0,
1, 2, 2, 64)T

0.7273*

Improving Semantic Segmentation via Video
Propagation and Label Relaxation [32]

0.7282

Unsupervised Domain Adaption to Improve
Image Segmentation Quality Both in the
Source and Target [33]

0.5950

SegStereo: Exploiting Semantic Information
for Disparity Estimation [34]

0.5910

SDNet: Semantic Guided Depth Estimation
Network [35] 0.5114

Pixel-wise Attentional Gating for
Parsimonious Pixel Labelling [36] 0.4796

In terms of real-time performance on the Raspberry Pi, irrespective of the

hyperparameters used the fastest it is able to run is at a rate of 1.62Hz. This translates

to it falling short of real-time inference speed goal; however, it is likely that it would

run in real-time on a Raspberry Pi with either a Movidius Neural Compute Stick, a

Google Coral Accelerator or a Jetson Nano.

When compared to similar methods using the KITTI dataset, it must be understood

that it is not an equal comparison and in actuality the proposed network would perform

worse than the results indicate in Table 3; however, the proposed method has shown

that it is able to obtain respectable results for simple cases such as those provided in

Figure 25, and shown that it may be feasible with training hyperparameter tweaking.

The greatest improvement will come from training with a larger set of training images.

 35

5 Classification

In this chapter of the paper, an overview is given with respect to the current state-of-

the-art methods for real-time traffic sign recognition, the implementation of the CNN-

based classifier will be detailed, metrics are provided and the implemented method for

region classification will be evaluated with respect to existing solutions.

5.1 Overview

Traffic sign recognition remains a challenging area of research with many contributors

due in part to the multitude of challenges introduced through lighting and blurring

effects, occlusion and partial-occlusion, and sign deterioration. To complicate the task

further, applications will generally require any solutions to operate in real-time.

The convolutional neural network architecture MobileNet was employed or its well-

documented large-scale image classification ability as exemplified through Imagenet

accuracy, and because it is able to run in real-time on embedded devices [17].

5.2 The German Traffic Sign Recognition

Benchmark

The German Traffic Sign Recognition Benchmark (hereafter referred to as the

‘GTSRB’) was a multi-class traffic sign recognition classification competition held at

the International Joint Conference on Neural Networks (IJCNN) 2011 [37]. Stallkamp

et al., built a dataset consisting of more than 50, 000 traffic sign training images in 43

different classes, with two test sets containing more than 10, 000 images each [37]. The

GTSRB dataset represents the most extensive traffic sign recognition dataset publicly

available.

 36

Figure 26: The 43 classes of traffic signs in the GTSRB dataset [37].

The GTSRB dataset is challenging and life-like: the effect of blur, lighting effects,

occlusion are all present as may be seen in Figure 27. The goal with training on this

dataset is to demonstrate the feasibility of using the chosen classification CNN

architecture for image classification when given a wide range of traffic signs under

diverse array of conditions.

Figure 27: A sample of the GTSRB dataset [37].

5.3 Training

As discussed earlier within the paper, MobileNet has seen significant success for the

purpose of large-scale image recognition especially when considering its latency and

size. It is due to these properties that it is likely that MobileNet will be used for a

range of object detection going into the future for robotics applications; therefore, in

this section there will be a significant amount of data relating to the training of

MobileNets of a wide range of input sizes and width multipliers for use with the

Raspberry Pi that should be insightful for readers whom are working in fields that

relate to robotic vision.

5. Classification

 37

5.3.1 Training Set

The dataset was generated by annotating video sequences recorded on German roads

in March, October and November in 2010 [37]. The size of the images vary from 15×15

to 222×193 and are stored in RGB colour format.

There are two sets of data provided: a training set, and a test set. The test set is not

to be used for learning, but to evaluate the method. Techniques involving deep learning

require developers to further subdivide the training dataset into an aptly named

‘training set’, and a ‘validation set’. A randomly selected 80% went to be used directly

as the training set, and the remaining 20% was used for validation.

The dataset is unbalanced as demonstrated by [37] below in Figure 28 – that is, there

was an unequal representation of each traffic sign class.

Figure 28: The relative class frequency among the dataset [37]

There are two options to account for the imbalance relative class frequencies: i) apply

a sample weight to each input image, or ii) apply a class weight for the true label of

each image. In either case, the weight will then be employed by the loss function to

compensate for the dataset imbalance. If this were not to occur, the neural network

would likely not try to adapt for any lower relative frequency classes and thereby lose

 38

overall accuracy. In the context of this dataset, a class weight was applied as there was

no benefit to assigning a sample weight for each of the 10, 000 images.

5.3.2 Dataset Augmentation

The GTSRB dataset is extensive and contains a diverse array of life-like images;

however, the complexity of a CNN-based classification architecture like MobileNet

leans towards a propensity to overtrain. In order to mitigate overtraining and to

encourage the ‘generalisation’ capabilities of the convolutional neural network, data

augmentation was undertaken via Keras [30].

Table 4: Image Data Generator Parameters (Classification)

Parameter Value

Brightness [-0.15, 0.15]

Rotation [-0.15, 0.15]

Shear [-0.10, 0.10]

Width Shift [-0.05, 0.05]

Height Shift [-0.05, 0.05]

Zoom [0, 0.15]

The data augmenter accepts a batch of images before they are fed to the CNN for

training and undertakes the parameterised set of randomised transformations specified

above. The batch of training images is then sent to the CNN for training after each

transformation has been completed.

5.3.3 Training Results

In this section, the details following the end-to-end training of MobileNet for the task

of traffic sign recognition are discussed. There were thirty MobileNets trained in total

with varying hyperparameters where the width multiplier, D ∈ {0.125, 0.25, 0.5, 0.75,

5. Classification

 39

and 1.0}, and where the input size, E ∈ {32×32, 48×48, 64×64, 80×80, 96×96,

128×128}. The choice to evaluate such a wide array is for future use: MobileNets have

proven powerful for a wide range of tasks, and benchmarking them will prove useful

for future developers. The results will primarily focus on a full-sized 128×128 network,

but the accuracies for each will be presented.

Figure 29: Training and validation loss where α=1.0, and β= 128×128

Figure 30: Top-1 Predictive Accuracy for the training and validation datasets where D = 1.0,
and	β = 	128 × 128

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

Lo
sse

s

Epoch

Loss

Train

Validation

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Epoch

Top-1 Classification Accuracy

Train

Validation

 40

As can be seen in the Figure 29 above, the loss begins to converge after training begins

and only fifteen epochs are required to achieve a near 100% accuracy. It should be

noted that the training accuracy is lower than the validation accuracy which alludes

to the neural network being trained on sets more difficult than the training sets. It

takes longer to converge because it is learning ways to compensate for changes in data

– for example, it may need to compensate for reduced luminosity.

In order to mitigate the effect of randomness, a seed was set for the random number

generators in the TensorFlow and NumPy backends. It should be possible to entirely

replicate these results.

Table 5: Comparing Top-1 Accuracy, Top-5 Accuracy, and F1 Score against
MobileNet Input Resolution and Depth Multiplier

Hyperparameters
Top-1

Accuracy

Top-5

Accuracy
F1 Score Input

Resolution

Depth

Multiplier, D

128×128 1.0 88.73% 98.00% 0.89

128×128 0.75 88.86% 97.97% 0.89

128×128 0.5 87.40% 97.38% 0.87

128×128 0.25 88.46% 98.26% 0.89

128×128 0.125 86.89% 97.96% 0.87

96×96 1.0 84.53% 96.88% 0.85

96×96 0.75 86.35% 97.40% 0.86

96×96 0.5 81.77% 97.09% 0.82

96×96 0.25 78.00% 96.54% 0.78

96×96 0.125 72.01% 95.57% 0.73

5. Classification

 41

Hyperparameters
Top-1

Accuracy

Top-5

Accuracy
F1 Score Input

Resolution

Depth

Multiplier, D

80×80 1.0 89.10% 98.10% 0.89

80×80 0.75 85.36% 97.76% 0.85

80×80 0.5 82.19% 96.94% 0.82

80×80 0.25 77.05% 95.72% 0.77

80×80 0.125 62.94% 91.67% 0.63

64×64 1.0 82.32% 96.58% 0.82

64×64 0.75 81.76% 96.90% 0.82

64×64 0.5 80.82% 96.62% 0.81

64×64 0.25 64.70% 91.96% 0.65

64×64 0.125 48.84% 83.75% 0.49

48×48 1.0 78.99% 96.52% 0.79

48×48 0.75 74.22% 95.47% 0.74

48×48 0.5 63.47% 90.51% 0.64

48×48 0.25 56.93% 89.35% 0.58

48×48 0.125 39.64% 79.77% 0.41

32×32 1.0 69.63% 95.03% 0.70

32×32 0.75 65.46% 92.64% 0.66

 42

Hyperparameters
Top-1

Accuracy

Top-5

Accuracy
F1 Score Input

Resolution

Depth

Multiplier, D

32×32 0.5 61.35% 89.99% 0.61

32×32 0.25 67.51% 93.71% 0.68

32×32 0.125 34.65% 76.74% 0.35

The table above summarises a great wealth of information and provides a detailed

summary of the recognition capability of each model. It should prove invaluable when

selecting MobileNet training hyperparameters for a slew of applications. The general

pattern is that decreasing the input resolution or width multiplier leads to a drop-off

in accuracy; however, it does not always hold true. Interestingly, the most accurate

model according to the test set has an input resolution of 80×80 pixels. These

discrepancies are likely due to the larger neural networks overtraining or becoming

trapped in local minima. They could however also be the result of image resizing before

being classified.

5.4 Evaluation with State-of-the-Art Recognition

Methods

In this section, the results obtained are compared the other approaches proposed for

the GTSRB. The first comparisons that will be made are with state-of-the-art solutions

that have been developed since the competition started.

 43

Table 6: Benchmarking MobileNet for Traffic Sign Recognition VS State-of-the-Art Methods

Method
Speed

Limits

Other

Prohibitions
Derestriction Mandatory Danger Unique Total

128×128 MobileNet

where ! = 1.0
92.45% 92.45% 96.63% 84.47% 81.14% 86.17% 88.73%

CNN with 3 Spatial
Transformers [38]

99.47% 99.87% 98.89% 99.77% 99.07% 99.22% 99.71%

Committee of CNNs [39] 99.09% 99.93% 99.72% 99.89% 97.96% 99.51% 99.46%

Color-blob-based
COSFIRE filters for
object recognition [40]

97.63% 99.93% 94.17% 99.83% 98.67% 100.00% 98.97%

Human Performance [37] 98.61% 99.93% 98.89% 99.72% 98.03% 98.63% 98.84%

Multi-Scale CNNs [41] 95.95% 99.87% 94.44% 97.18% 92.08% 98.73% 98.31%

Random Forests [42] 95.37% 99.13% 87.50% 99.27% 93.73% 98.63% 96.14%

LDA on HOG [43] 91.44% 96.80% 85.83% 97.18% 90.61% 98.43% 95.68%

 44

The confusion matrix visualises cases of mistaken identity; that is, when the classifier

predicts the incorrect class. The diagonal line indicates that the majority of the

classifications were correct. The error will naturally be more dense in regions of the

corresponding to traffic signs having a similar appearance.

The results of state-of-the-art solutions on the same test set may be seen in Figure 32.

The top-left hand corner of the confusion matrices correspond to the speed limit signs.

Figure 31: Confusion Matrix for 128×128
MobileNet model where ! = 1.0

Figure 32: Confusion matrices for GTSRB competitors in the 2011 competition [37]

5. Classification

 45

It should be expected that these are the most difficult to classifier for each algorithm.

The effect of blur in particular can make distinguishing the numbers particularly

difficult even for a human as can be seen in (c). These comparisons are not exactly fair

as MobileNet has been designed to run in real-time even on embedded systems such as

the Raspberry Pi 3B. The results do indicate however, that MobileNet can provide a

valuable tool for developing traffic sign recognition systems on inexpensive hardware

especially when there is a limited subset of signs such as those within the Carolo Cup.

5.5 Runtime Optimisation

In this section, results relating to the runtime optimisation of MobileNet for a

Raspberry Pi 3B will be presented. This data should be particularly useful for readers

tuning their own implementations for latency, size, and input resolution.

In order to conduct the following tests, each model inferred the class of 1000 images of

randomised RGB noise. The time taken for each inference was recorded in order to

calculate the mean, maximum and minimum inference times for each model. This

information should be useful readers wishing to develop embedded system MobileNet-

based object detection systems.

Figure 33: A randomised 128×128 RGB noise image

 46

Table 7: Benchmarking the relationship between input resolution, width
multiplier, model size, and mean inference time on a Raspberry Pi 3B for

TensorFlow Lite

Architecture Input
Resolution

Width
Multiplier, α

Model Size
(MB, 3 s.f.)

Mean Inference
Time, T'((ms)

MobileNet [17] 32×32 0.125 0.0967 0.11
32×32 0.25 0.254 0.21
32×32 0.5 0.875 0.51
32×32 0.75 1.89 0.99
32×32 1.0 3.29 1.53
48×48 0.125 0.0967 0.23
48×48 0.25 0.254 0.44
48×48 0.5 0.875 0.97
48×48 0.75 1.89 1.92
48×48 1.0 3.29 3.15
64×64 0.125 0.0967 0.42
64×64 0.25 0.254 0.73
64×64 0.5 0.875 1.80
64×64 0.75 1.89 3.61
64×64 1.0 3.29 5.87
80×80 0.125 0.0967 0.51
80×80 0.25 0.254 1.05
80×80 0.5 0.875 2.75
80×80 0.75 1.89 5.47
80×80 1.0 3.29 8.46
96×96 0.125 0.0967 0.74
96×96 0.25 0.254 1.54
96×96 0.5 0.875 4.15
96×96 0.75 1.89 8.31
96×96 1.0 3.29 13.34
128×128 0.125 0.0967 1.16
128×128 0.25 0.254 2.76
128×128 0.5 0.875 7.16
128×128 0.75 1.89 14.56
128×128 1.0 3.29 24.03

It should be noted that the model size is dependent singularly on the width multiplier.

This aligns with expectations as it corresponds to each of the kernel weights of the

CNN architecture. The inference time is dependent on both the width multiplier and

input resolution because they control the number of multiply accumulate floating point

operations that will need to be completed by the Raspberry Pi CPU.

5. Classification

 47

The benchmarks above may be used to ascertain which models can be used when

attempting to achieve a given inference time. Together with the accuracy results given

in the training results section, a user can ascertain the most appropriate input

resolution and width multiplier combination to meet accuracy, latency and size

requirements.

Figure 34: Benchmarks for MobileNet inference time on the Raspberry Pi 3B against width
multiplier where) ∈ {0.125, 0.25, 0.50, 0.75, 1.00}. The inverse of the inference time is useful to
calculate the maximum FPS attainable. For example, the upper limit for) = 0.75 indicates the
maximum FPS for a 128x128 MobileNet three-quarters the size of a typical 128x128 MobileNet is

approximately 10Hz

 48

The intended use of the traffic sign detection and recognition system will be on the

SoccerBots to complete the obstacles presented in the Carolo Cup; therefore, the power

to disseminate between similar signs is not paramount. In order to minimise the

computational cost of the traffic sign recognition, a classifier neural network of size

80×80 and width multiplier of 0.25 was employed. This network has been shown to be

infer a Top-5 accuracy of greater than 95%, and hence it is likely to be sufficient for

the Carolo Cup. The specified combination of hyperparameters should also have the

capability to classify approximately 100 image frames per second on the Raspberry Pi

3B.

 49

6 Tracking and Reliability

The following chapter details the tracking and reliability modules of the traffic sign

detection. It explores the two methods employed for tracking, and the novel approach

to ascertain the reliability of a detection.

6.1 Tracking

In the lifetime of the project, there are two methods that have been employed to track

ROIs between adjacent frames:

i. firstly, the Euclidean distance between the centres of ROIs if given below a

specified threshold;

ii. secondly, the proportion of SIFT-like keypoints matched clusters exceeds a

specified threshold.

The former requires less computational power; however, it may be exploited and there

is no guarantee that it will actually be tracking the object. It is susceptible to error,

and may be inappropriate for applications where a high degree of reliability is

mandatory.

The latter approach requires forethought to implement, but it has the capability to

operate in real-time on the Raspberry Pi 3B+ and ensures a degree of similarity when

tracking objects.

6.2 Reliability

This section will expand on the framework discussed in Chapter 3. It will detail how

each detection is used to build up a detection profile for an object and the calculations

involved. The operating principle is that it should emulate a committee of classifiers,

but do so over time.

 50

6.3 The Class Reliability Metric

The reliability coefficient is composed of two elements: the first accounts for time

redundancy, and the second accounts for parallel reliability. The reliability

coefficient metric is defined as

12 = 31 −
1

!567
89(1 − ;2,<)

67

<>?

 (6.1)

where 12 is the reliability coefficient of object ; ;2,< is the confidence of the jth prediction

of object i ; @2 is the number of detections of object i; and, ! and A are empirically

tuned constants.

The first element accounts for the number of detections of a particular object class. If

a particular object class has been detected multiple time the reliability should increase,

but if it has only been detected a very limited number of times it should be capped at

a maximum limit. The maximum limit is effectively set by the first element.

The second element factors in the confidence output by the neural network classifier.

The confidence will lie between 0 and 1. The detections can be considered as parallel

reliability elements and the reliability should increase the more a particular object class

is detected.

A reliability coefficient is calculated for each object class detected and they form a

vector referred to as the class reliability coefficients.

6.4 The Weighted Class Reliability Metric

To account for situations where more than one class has been ascribed to an object, a

weighted reliability coefficient is employed.

The Softmax function, otherwise known as the Boltzmann or Gibbs distribution, is

frequently employed in neural networks as the activation function. In this case, it is

6. Tracking and Reliability

 51

being used to weight each reliability coefficient where the reliability coefficient is non-

zero. The Softmax function is given as

B(C)D =
EF7

∑ EF7H
<>?

 (6.2)

where 12 is the reliability coefficient of object i; C is the vector of class reliability

coefficients; and M is the total number of different object classes that have been

detected for a given detection profile.

Subsequently, each reliability coefficient is weighted according to the corresponding

output of the Softmax function as

I2 = 12 ∙ B(C')2 (6.3)

where I2 is the weighted reliability coefficient of object i; 12 is the reliability coefficient

of object; and B(C')2 is the Softmax function applied to the vector of non-zero class

reliability coefficients.

The object class with the maximum weighted reliability coefficient is the object class

that the pipeline predicts the detected object belongs. The corresponding weighted

reliability coefficient may be used to measure provide a likelihood that the detected

object belongs to a particular class.

There are no similar metrics that the author is aware of that can be used for comparison

purposes; however, it can be related to a committee of CNNs method.

 52

7 Conclusion

This work has been written to implement and evaluate traffic sign recognition and

detection on the ground robots at the UWA Robotics and Automation Lab. The use-

case of the software is for it to be employed for the Carolo Cup autonomous driving

student competition. In undertaking the project, a significant amount of work was

completed benchmarking and optimising for the Raspberry Pi 3B and similar embedded

devices. The approach was multi-faceted and the problem divided methods used for

region proposal and classification.

Three methods were employed for region proposal, the latter two being novel albeit

with mixed success. The first approach was successful in the regard that it met the

inference time benchmark of 8Hz; however, only a subset of the signs were predicted.

The second approach was able to operate in the benchmark specified and had the

potential to detect all signs, but it was unscalable for the real-world. The third method

involved end-to-end training of a new pixel-wise image segmentation CNN that would

theoretically be scalable for the real-world, but it was unable to run in real-time for

the Raspberry Pi, and furthermore the detections lagged behind state-of-the-art

methods as specified in Table 3. This problem however could be rectified with

alternative hardware such as the Jetson Nano, and by obtaining more training data.

In terms of future developments, two approaches that seem promising are using white

and coloured maximally stable extremal regions or further developing the CNN

architecture.

In terms of the methods used for classification, the applicability of MobileNet for traffic

sign recognition has been thoroughly investigated, and benchmarks are now available

that can be used to compare it to state-of-the-art methods that are designed entirely

for traffic sign recognition. The data collected should also prove useful for readers

interested in computer vision for embedded platforms.

In summary, this thesis has explored a number of techniques that represent novel

contributions for the task of traffic sign recognition and detection. The SIFT-like

 53

keypoint cluster-based pipeline itself has the capability to act a committee of CNNs in

itself which could be useful for a range of real-time object detection applications. The

benchmarks completed also represent a basis from which future students can build

upon and evolve future work.

 54

Bibliography

[1] SAE International, “Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor Vehicles,” SAE
International, 2018.

[2] S. Zug, C. Steup, C. Berger, O. Landsiedel, F. Schuldt, J. Rieken, T.
Form, R. Matthaei and J. B. Scholle, “Technical evaluation of the Carolo-
Cup 2014 - A competition for self-driving miniature cars,” in 2014 IEEE
International Symposium on Robotic and Sensors Environments (ROSE)
Proceedings, Timisoara, Romania, 2014.

[3] Technische Universität Braunschweig, “Carolo-Cup Regulations 2018,” 19
December 2017. [Online]. Available: https://wiki.ifr.ing.tu-
bs.de/carolocup/en/system/files/Carolo-Cup%20Regulations_1.pdf.
[Accessed April 2019].

[4] Technische Universität Braunschweig, “Carolo-Cup Regulations 2019,” 10
July 2018. [Online]. Available: https://wiki.ifr.ing.tu-
bs.de/carolocup/en/system/files/180710_Carolo-Cup%20Regulations.pdf.
[Accessed June 2019].

[5] Technische Universitat Braunschweig, “Carolo Cup 2018 - Ergebnisse,” 14
February 2018. [Online]. Available: https://wiki.ifr.ing.tu-
bs.de/carolocup/system/files/Ergebnisse_2018.pdf. [Accessed March 2019].

[6] T. Bräunl, M. Pham, F. Hidalgo, R. Keat and H. Wahyu, “EyeBot 7 User
Guide,” 29 August 2018. [Online]. Available:
http://robotics.ee.uwa.edu.au/eyebot/EyeBot7-UserGuide.pdf. [Accessed
March 2019].

[7] T. Bräunl, “EyeBot: a family of autonomous mobile robots,” in ANZIIS’99
& ANNES’99 & ACNN’99. 6th International Conference on Neural
Information Processing. Proceedings (Cat. No.99EX378). Vol. 2. IEEE,
1999. 645– 649 vol.2, Perth, 1999.

[8] T. Bräunl, “EyeBot 7,” 2019. [Online]. Available:
http://robotics.ee.uwa.edu.au/eyebot/. [Accessed March 2019].

[9] Y. Saadna and A. Behloul, “An overview of traffic sign detection and
classification methods,” International Journal of Multimedia Information
Retrieval, pp. 193-210, September 2017.

 55

[10] K. Brkic, “An Overview of Traffic Sign Detection Methods,” Department
of Electronics, Microelectronics, Computer and Intelligent Systems Faculty
of Electrical Engineering and Computing , Unska, 2010.

[11] P. Dewan, R. Vig, N. Shukla and B. K. Das, “An Overview of Traffic
Signs Recognition Methods,” International Journal of Computer
Applications (0975 – 8887), vol. 168, no. 11, pp. 7-11, 2017.

[12] J. Greenhalgh and M. Mirmehdi, “Real-Time Detection and Recognition of
Road Traffic Signs,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 4, pp. 1498 - 1506, 2012.

[13] G. Arminger and D. Enache, “Statistical Models and Artificial Neural
Networks,” in Data Analysis and Information Systems. Studies in
Classification, Data Analysis, and Knowledge Organisation, Berlin,
Heidelberg, Springer, 1996, pp. 243-260.

[14] A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis, “Deep
Learning for Computer Vision,” Computational Intelligence and
Neuroscience, vol. 2018, p. 13, 2018.

[15] H. Abdi, D. Valentin and B. Edelman, Neural Networks, London: SAGE,
1999.

[16] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information
Storage and Organisation in the Brain,” Psychological Review, vol. 65, no.
6, pp. 386-408, 1958.

[17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017.

[18] S. Albawi, T. A. Mohammed and A.-Z. Saad, “Understanding a
Convolutional Neural Network,” ICET2017, Antalya, 2017.

[19] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” UC Berkeley,
2014.

[20] G. Ross, “Fast R-CNN,” 2015.
[21] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks”.
[22] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look

Once: Unified, Real-Time Object Detection,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016.

 56

[23] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal Loss for
Dense Object Detection,” in 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, 2017.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C.
Berg, “SSD: Single Shot MultiBox Detector,” 2015.

[25] NVIDIA Corporation, “Jetson Nano: Deep Learning Inference
Benchmarks,” 2019. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-
benchmarks. [Accessed June 2019].

[26] V. Badrinarayanan, A. Kendall and R. Cipolla, “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481-2495, 2 January 2017.

[27] H. Alhaija, S. Mustikovela, L. Mesch, A. Geiger and C. Rother,
“Augmented Reality Meets Computer Vision: Efficient Data Generation
for Urban Driving Scenes,” International Journal of Computer Vision
(IJCV), 2018.

[28] M. Cordts, M. Omran, S. Ramos, T. Rehfeld and M. Enzweiler, “The
Cityscapes Dataset for Semantic Urban Scene Understanding,” in Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[29] O. Zendel, K. Honauer, M. Murschitz and D. Steininger, “WildDash -
Creating Hazard-Aware Benchmarks,” in The European Conference on
Computer Vision (ECCV), Munich.

[30] F. Chollet, “Keras,” 2015. [Online]. Available: https://keras.io.
[31] L. Smith, “Cyclical Learning Rates for Training Neural Networks,” in

IEEE Winter Conference on Applications of Computer Vision (WACV),
2017.

[32] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao and B.
Catanzaro, “Improving Semantic Segmentation via Video Propagation and
Label Relaxation,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, 2019.

[33] J.-A. Bolte and M. Kamp and A. Breuer and S. Homoceanu and P.
Schlicht and F. Hüger and D. Lipinski and T. Fingscheidt, “Unsupervised
Domain Adaptation to Improve Image Segmentation Quality Both in the
Source and Target Domain,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 2019.

 57

[34] G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia, “SegStereo: Exploiting
Semantic Information for Disparity Estimation,” in European Conference
on Computer Vision (ECCV), Munich, 2018.

[35] M. Ochs, A. Kretz and R. Mester, “SDNet: Semantic Guided Depth
Estimation Network,” in German Conference on Pattern Recognition
(GCPR), Dortmund, 2019.

[36] S. Kong and C. Fowlkes, “Pixel-wise Attentional Gating for Parsimonious
Pixel Labeling,” in arXiv 1805.01556, 2018.

[37] Institut für Neuroinformatik, “The German Traffic Sign Recognition
Benchmark,” 16 April 2019. [Online]. Available:
http://benchmark.ini.rub.de/dev/index.php?section=gtsrb&subsection=ne
ws. [Accessed June 2019].

[38] Á. Arcoa-García, J. A. Arcoa-García and L. M. Soria-Morillo, “Deep
neural network for traffic sign recognition systems: An analysis of spatial
transformers and stochastic optimisation methods,” Neural Networks, vol.
99, pp. 158-165, 2018.

[39] D. Cireşan, U. Meier, J. Masci and J. Schmidhuber, “Multi-column deep
neural network for traffic sign classification,” Neural Networks, vol. 32, pp.
333-338, 2012.

[40] B. Gecer, G. Azzopardi and N. Petkov, “Color-blob-based COSFIRE filters
for object recognition,” Image and Vision Computing, vol. 57, pp. 165-174,
2017.

[41] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale
Convolutional Networks,” in International Joint Conference on Neural
Networks, San Jose, CA, 2011.

[42] F. Zaklouta, B. Stanciulescu and O. Hamdoun, “Traffic sign classification
using K-d trees and Random Forests,” in The 2011 International Joint
Conference on Neural Networks, San Jose, CA, 2151-2155.

[43] J. Stallkamp, M. Schlipsing, J. Salmen and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, vol. 32, pp. 323-332, 2012.

[44] S. Zug, C. Steup, J.-B. Scholle, C. Berger, O. Landsiedel, F. Schuldt, J.
Rieken, R. Matthaei and T. Form, “Technical evaluation of the Carolo-
Cup 2014 - A competition for self-driving miniature cars,” in 2014 IEEE
International Symposium on Robotic and Sensors Environments (ROSE)
Proceedings, Timisoara, 2014.

 58

[45] B. C. Zanchin, R. Adamshuk, M. M. Santos and K. S. Collazos, “On the
instrumentation and classification of autonomous cars,” in IEEE
Internation Conference on Systems, Man, and Cybernetics (SMC), Banff,
AB, Canada, 2017.

[46] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.
[47] S. Singh, “Critical Reasons for Crashes Investigated in the National Motor

Vehicle Crash Causation Survey,” NHTSA’s National Center for Statistics
and Analysis, Washington, DC, 2015.

[48] Y. Saadna and A. Behloul, “An overview of traffic sign detection and
classification methods,” International Journal of Multimedia Information
Retrieval, vol. VI, no. 3, pp. 193-210, September 2017.

[49] A. R. Pathak, M. Pandey and S. Rautaray, “Application of Deep Learning
for Object Detection,” International Conference on Computational
Intelligence and Data Science, pp. 1706-1717, 2018.

[50] A. Koestler and T. Bräunl, “Mobile Robot Simulation with Realistic Error
Models,” in Proceedings of the Second International Conference on
Autonomous Robots and Agents, Palmerston North, New Zealand, 2004.

[51] R. Hussain, J. Lee and S. Zeadally, “Autonomous Cars: Social and
Economic Implications,” IT Professional, vol. 20, no. 6, pp. 70-77, Nov.-
Dec. 2018.

[52] M. Hirz and B. Walzel, “Sensor and object recognition technologies for
self-driving cars,” Computer-Aided Design and Applications, pp. 501-508,
January 2018.

[53] A. Finn, J. Adam, M. Del Rose, B. Kania, J. Overholt, U. Silva, J.
Bornstein, A. Hsieh and S. Lacroix, “Evaluating autonomous ground-
robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 689-706, September
2012.

[54] P. Dewan, R. Vig, N. Shukla and B. K. Das, “An Overview of Traffic
Signs Recognition Methods,” Internation Journal of Computer
Applications, vol. 168, no. 11, pp. 7-11, June 2017.

[55] T. Bräunl, “EyeBot7,” 2019. [Online]. Available:
http://robotics.ee.uwa.edu.au/eyebot/. [Accessed June 2019].

[56] T. Bräunl, M. Pham, F. Hidalgo, R. Keat and H. Wahyu, “EyeBot 7 User
Guide,” 29 August 2018. [Online]. Available:
http://robotics.ee.uwa.edu.au/eyebot/EyeBot7-UserGuide.pdf. [Accessed
June 2019].

 59

[57] T. Bräunl, Embedded Robotics - Mobile Robot Design and Applications
with Embedded Systems, Third Edition, Heidelberg Berlin: Springer-
Verlag, 2008, pp. (XIV, 541).

[58] J. Billington, “Audi and Volkswagen to use advanced lidar technology in
autonomous mobility fleet,” Autonomous Vehicle International, 21
December 2018. [Online]. Available:
https://www.autonomousvehicleinternational.com/news/sensors/audi-and-
volkswagen-to-use-advanced-lidar-technology-in-its-autonomous-mobility-
fleet.html. [Accessed April 2019].

[59] S. Albawi, T. A. Mohammed and S. Alzawi, “Understanding of a
Convolutional Neural Network,” in The International Conference on
Engineering and Technology, At Antalya, 2017.

[60] National Highway Traffic Safety Administration, “Preliminary Statement
of Policy Concerning Automated Vehicles,” [Online]. Available:
https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles_
Policy.pdf. [Accessed June 2019].

[61] “FPGA-Based Traffic Sign Recognition for Advanced Driver Assistance
Systems,” Journal of Transportation Technologies, vol. 3, no. 1, pp. 1-16,
2013.

[62] FPL, “FlatBuffers,” [Online]. Available:
https://google.github.io/flatbuffers/. [Accessed June 2019].

[63] EyeSim VR Team, “EyeSim VR User's Manual,” 13 November 2018.
[Online]. Available: http://robotics.ee.uwa.edu.au/eyesim/ftp/EyeSim-
UserManual.pdf. [Accessed March 2019].

[64] Audi, “Audi Autonomous Driving Cup 2018,” Audi AI, 2018. [Online].
Available: https://www.audi-autonomous-driving-
cup.com/competition/overview/. [Accessed June 2019].

[65] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-
Moreno and F. Lopez-Ferreras, “Road-Sign Detection and Recognition
Based on Support Vector Machines,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 2, pp. 264-278, 2007.

[66] U.S. Department of Transportation, “Preparing for the Future of
Transportation,” October 2018. [Online]. Available:
https://www.transportation.gov/av/3/preparing-future-transportation-
automated-vehicles-3. [Accessed June 2019].

 60

[67] J. F. Khan, S. M. A. Bhuiyan and R. R. Adhami, “Image Segmentation
and Shape Analysis for Road-Sign Detection,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 1, pp. 83-96, 2011.

 61

