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Abstract 
State-of-the-art convolutional neural network-based architectures similar to MobileNet were 
shown to have the capability to surpass human performance in the German Traffic Sign 
Recognition Benchmark (GTSRB) held for IJCNN 2011; however, traffic sign detection systems 
that operate in real-time for ARM-based devices with limited computational power (e.g., less 
than 200 MFLOPS) have remained elusive. In this paper, a traffic sign detection pipeline is 
proposed for inexpensive autonomous driving robots and driver-assistance systems using a 
novel approach for ROI candidate generation with SIFT-like keypoint cluster-generated regions 
and TensorFlow. The pipeline has been implemented to detect a subset of the traffic signs 
present in the Carolo Cup, and has been deployed on mobile driving robots at UWA using the 
EyeBot 7 controller platform and a Raspberry Pi 3B with MobileNet for image classification. 
The pipeline is highly configurable can operate at an average of 18.80 Hz for QVGA-sized true-
colour video if detecting a subset of signs, achieve an accuracy of 89.10% in the GTSRB, and 
yield an IoU of 0.7273 for a modified KITTI semantic segmentation dataset. The novel 
detection architecture brings feasibility to inexpensive monocular driver-assistance systems or 
autonomous driving robots, but the skeleton may be repurposed. The ROI proposal method 
lend itself to applications where computational power is limited, SIFT-like keypoints are 
already generated, or when the environment is sparse; for example, when using inexpensive 
ARM-based devices such as Raspberry Pi, if the robot is already using ORB-SLAM, or in 
underwater environments.  
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1 Introduction  

Spearheaded by initiatives such as the Renewable Energy Vehicle (REV) Project and 

the Carolo Cup, the future of mobility will precipitate two major technological 

revolutions: electric cars, and then autonomous cars. The integration of fully-

autonomous vehicles for real-world, complex scenarios has captured the attention of 

researchers from many fields, industry, and the general public; however, the 

tremendous benefits of state-of-the-art advances in robotics and computer vision are 

not exclusive to fully-autonomous cars.   

SAE International, otherwise known as the Society of Automotive Engineers, have 

defined six levels of driving automation in their J3016 standard that encapsulate a 

range of automation levels including no automation, Advanced Driver-Assistance 

Systems (ADAS), and full self-driving automation [1]. Vehicle autonomy is not solely 

related to the capability of the vehicle to drive without human intervention, but may 

also relate advanced technology that integrates a given aspect of intelligence.  

In this paper, the topic of traffic sign detection and recognition is explored and three 

different methods are proposed. The aim is to develop a traffic sign detection and 

recognition system that can be deployed to participate in the Carolo Cup autonomous 

driving student competition, but is also scalable to the real-world. In theory, the 

developments could ported to a mobile phone, or be used as the module in an 

inexpensive monocular driver assistance system. 

 

1.1 The Carolo-Cup 

The Carolo-Cup, organised by the Technischen Universität Braunschweig (in English: 

Technical University of Braunschweig, Germany), is an international competition for 

students to implement solutions for autonomous vehicles in areas such as lane following, 

parking on a sideways parking strip, and obstacle detection and avoidance [2].  
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This competition and others similar offer a platform to develop solutions for 

autonomous vehicles that are not practical or safe to implement on the real-scale 

vehicles. In the scope of sign recognition, there are 17 signs that are introduced as can 

be seen below. 

 

Figure 1: The traffic signs in the Carolo-Cup [3] 

 
There are two categories of events in the Carolo Cup: static events and dynamic events. 

In the dynamic events, the performance of the driving robots is evaluated with respect 

to the Free Drive and Parking discipline, and the Obstacle Evasion Course.  

 

Category 1: Free Drive and Parking 

In the first dynamic event of the Carolo Cup, vehicles autonomously traverse the 

furthest possible track distance in a given time [4]. In addition to lane following, the 

cars are evaluated with respect to their capacity to detect and recognise parking signs. 
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If a parking zone is identified, the car’s capability to perform parallel and perpendicular 

parking is assessed.  

 

Category 2: Obstacle Evasion Course 

The second of the dynamic events adds both static and dynamic obstacles to the road, 

and removes the parking manoeuvre challenges.  

 

Team KitCar won the Basic Cup in 2018 with entry Dr. Drift [5]. There are no papers 

that are immediately available that may be used to compare their implementation of 

traffic sign recognition and detection to that proposed in this paper. 

 

1.2 Robot architecture 

EyeBot is an embedded controller platform that has been developed by Prof. Bräunl 

and the Robotics and Automation lab at UWA for a family of small autonomous mobile 

robots which include driving robots, walking robots, autonomous airplanes and 

autonomous underwater vehicles [6] [7] [8]. The current iteration of robots, Eyebot 7, 

employs a Raspberry Pi 3B+ single-board computer for high-level control of the robot, 

connecting with additional sensors such as LiDAR or IMU, and user-interfacing [7].  

The Eyebot I/O USB expansion board version 2.63, called the Eyebot I/O Board, is 

physically linked to the Pi via USB, and RoBIOS-7 software installed on the Pi allows 

the Pi to employ the I/O board functionality [6].  The I/O board allows for the user 

to control low-level function of the robot including motors, servos and PSDs [6].  
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Figure 2: TheEyeBot7 I/O Board 

 
The I/O board may be deployed in a host of robot builds; however, the robot that is 

the focus of the thesis will be the SoccerBot as shown below. The construction of the 

SoccerBot is described in tremendous detail in [6]. The SoccerBot is a differential-drive, 

wheeled robot equipped with an LCD screen; PSDs located on the left-hand side, right-

hand side, and front of the robot; and a PiCamera attached on top of a servo [6].  

 

Figure 3: SoccerBot mobile driving robot  

1.3 Problem Statement 

This work is written as part of the research conducted by the Robotics and Automation 

Lab at UWA; specifically, the autonomous driving robots research group that has been 

assembled to complete the tasks presented by the Carolo Cup competition.  



1. Introduction and Background 
 

 

 5 

The sign recognition, parking, and obstacle avoidance challenges are contingent on the 

ground robots being able to detect traffic signs and obstacles. A traffic sign recognition 

that operates in real-time with inexpensive and computationally limited hardware—

e.g., the Raspberry Pi 3B—is the underlying goal of this work  

In terms of hardware compatibility, it may only use the existing sensors on the robot: 

a front-facing camera and front, left and right-facing PSDs. In terms of software 

compatibility, it must be able to be run on the robot in conjunction with the lane-

detection program developed for the Carolo-Cup competition.  

To operate in real-time, the system must be able to run at a minimum of 8Hz for a 

QVGA-size (320x240 pixels) image. If feasible, any solution should endeavour to 

operate at a higher rate than 8Hz or use a resolution greater than QVGA.   

In terms of the larger body of literature at UWA, the work aims to be scalable and to 

have the capability to be implemented in real-world environments. In order to achieve 

this goal, benchmarks are discussed with respect to real-world datasets and state-of-

the-art techniques and methods.  

1.4 Document Structure 

In this first chapter, the background information, goal and context for the thesis project 

has been defined thereby forming the basis for the rest of the document. 

The related work and theory are discussed in-depth in Chapter 2. It includes an analysis 

of current state-of-the-art methods and information to provide a backdrop to interpret 

the rest of the paper.  

An outline of the overall architecture and pipeline of the traffic sign recognition and 

detection system is provided in Chapter 3.   

The techniques and methods for region proposal are proposed in Chapter 4. There are 

three techniques discussed in detail including keypoint-dense region proposal and 

binary semantic image segmentation.  
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Chapter 5 will delve into the recognition module proposed and provide a significant 

level of insight relating to benchmarking CNNs on the Raspberry Pi 3B hardware. 

Chapter 6 serves to discuss the localisation and reliability of the detections, and what 

is termed ‘profiling’ which is a essentially a time-wise committee  of CNNs.  

Chapter 7 is the conclusion of the thesis and includes a reflection on the results, an 

outlook and any recommendations or any modifications to method. 
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2 Related Work and Theory 

In this section of the paper, a review is completed of the literature relating to the 

following: (i) traffic sign recognition approaches, and (ii) deep neural network-based 

object detection approaches. The two sets of approaches may be referred later in the 

paper as ‘specialised’ traffic sign recognition methods or ‘generic’ object detection 

methods respectively.  

It should be noted by the reader that the majority of the literature review is completed 

in this section; however, for comparison purposes additional sources will be referred to 

in the corresponding chapters.   

2.1 Traffic Sign Recognition Methods 

In-depth overviews of specialised traffic sign detection and recognitions approaches are 

available in the following papers: [9] [10] [11]. In the interest of completion, the author 

has opted to include a brief overview. 

Specialised methods for traffic sign recognition are frequently composed of three stages 

or processes: pre-processing, detection, and recognition [11]. 

The methods of traffic sign detection are traditionally divided into colour-based, shape-

based, and learning-based approaches [9] [10]. Learning-based methods can be further 

sub-divided into those that employ deep learning techniques such as CNNs. 

It is not feasible to discuss an implementation of each approach, but they will be 

touched upon when comparing results in Chapter 5. The rest of this section will focus 

on a machine-learning approach that has seen a significant amount of success: Real-

Time Detection and Recognition of Road Traffic Signs [12]. Similar methods were 

employed to win the German Traffic Sign Detection Benchmark, and it is possible that 

similar methods are used in conjunction with GPS data in industry.  
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2.1.1 Support-Vector Machine of Histogram of 
Orientated Gradient Features 

In Greenhalgh and Mirmehdi’s paper (2012), a real-time approach for traffic sign 

detection is proposed with traffic signals being recognised using Histogram of Gradients 

(HOG) features, and a cascade of linear Support Vector Machine (SVMs) classifiers 

[12].  

The proposed method can be divided into a detection and recognition stage. In the 

detection stage, the image undergoes thresholding at a range of levels. If a region 

maintains its shape then it is designated as a maximally stable extremal region 

(MSER). [12] 

 
Figure 4: The flow diagram of the proposed solution [12] 

These regions are then classified using a cascade of multiclass SVMs [12]. Support 

vector machines are simple algorithms that can be used to classify an object after it 

has been given a set of supervised training examples.  In simple terms, it optimally 

specifies a line, otherwise known as a hyperplane, that divides a multidimensional space 

containing descriptions of different object classes. A HOG vector is used to classify the 

shape of the region.  

There are algorithms similar to that presented in this paper [12]—that is, using HOGs 

and SVM, or employing MSERs—that will be used for evaluation and comparison 

purposes later in the paper. The paper is one of the most heavily cited sources on traffic 

sign detection, and it is possible that ADAS manufacturers may employ related 

methods for real-time detection.  
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2.2 Deep Learning-based Approaches 

2.2.1 Neural Networks 

An artificial neural network (ANN), otherwise referred to as a neural network (NN), is 

a multivariate statistical model that broadly simulates the structure of a brain [13] 

[14]. They are composed of simple units, called ‘neurons’, divided into layers and 

interlinked by weight connections and biases [15]. In the analogy, the input to each 

‘neuron’ represents the dendrite and the output from the neuron represents the axon 

terminals. The input layer of the ANN contains an explanatory tensor that is used to 

calculate a dependent tensor contained in the output layer [13].  

 
Figure 5: The anatomy of a neuron via Wikimedia Commons, used under the Creative 

Commons Attribution-Share Alike 3.0 Unported license 

Neural networks lie in the field of machine learning, and can be considered a general 

purpose mathematical model. At a high-level, a neural network can be trained via 

‘supervised learning’; that is,  by providing a set of training data and its corresponding 

answer. They are differentiable and therefore if there is any error, the error can be 

backpropagated and weights amended. In order to grasp the inner workings of an ANN, 

it is imperative to understand what is happening at the neuron-level.  
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Figure 6: Representation of a singular neuron 

 
In the Perceptron model [16], each neuron in a hidden layer—that is, not in the input 

or output layer—is connected to every single neuron in the layer before and a bias by 

a weight. The output of each neuron is equal to the activation function applied to the 

value stored within the neuron itself. There are a variety of activation functions that 

exist, as will be discussed in the following sections.  

 

2.2.2 Convolutional Neural Networks 

Convolutional neural network layers differ from the fully-connected neural networks in 

how each neuron in the hidden layers is calculated. In a convolutional layer, weights 

are assigned to a kernel, frequently referred to as a filter, rather than between each 

neuron-pair.  
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Figure 7: A demonstration on how convolutional layers work in a CNN using an image of 
UWA's Winthrop Hall as an example 

 
The kernel size and number of kernels in a convolutional layer are subject to the choice 

of the developer.  The kernel is convolved over the input tensor according to a given 

stride length, and the sum of each product between the input tensor and the kernel 

weights corresponds to the neuron value in the next proceeding layer.  

2.2.3 Activation Functions 

The Perceptron model and convolutional neural networks both employ activation 

functions. The purpose of an activation function can be reasoned as two-fold: they 

introduce non-linearity to the network, and they can they can be set to encourage 

convergence during training. If an activation function were not used, then the network 

would default to linear regression which may or may not be useful depending on the 

application.  

The activations functions discussed in the paper will be limited to Sigmoid, ReLU, 

Leaky-ReLU and Softmax. 
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Sigmoid: 

!"#$(&) = 	
1

1 − ,-. 

 

Figure 8: Visualisation of the sigmoid activation function 

 

Rectified Linear Unit (ReLU): 

!"#$(&) = /	&, & ≥ 0
0, 3. 5.  

 

 

Figure 9: Visualisation of the Rectified Linear Unit (ReLU) activation function 
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Leaky-ReLU: 

!"#$(&) = / &, & ≥ 0
	6&, 3. 5.  

 

Figure 10: Visualisation of the Leaky-ReLU Activation Function 

 

Softmax: 

!"#$(7)8 = 	
,.9

∑ ,.;<
=>?

 

 

Softmax is frequently used as the final activation function in classifier architectures. 

The value output is dependent not only on the input, but all neurons in the preceding 

layer. 

2.2.4 Pooling Layers and Upsampling 

There are a wide array of pooling and upsampling layers, but the types employed in 

this thesis have been max pooling, mean pooling, and upsampling.  

Max Pooling: 

An N-pool size max pooling layer ascertains the maximum local value in a N-N region 

and uses that value to populate the next layer which will be 1/Nth the size of the input 

layer.  
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Mean Pooling: 

Similar to max pooling above, but the mean local value populates the proceeding layer 

instead of the maximum value.  

 

Upsampling: 

An N-sized upsampling layer will repeat each row and column of data N times in the 

output layer effectively increasing the width and height of the layer. 

  

2.2.5 MobileNet 

Howard et al. proposed MobileNets as a class of lightweight convolutional neural 

networks based on the principle of depthwise separable convolutional layers [17]. The 

key contribution of the paper was the implementation of depthwise separable 

convolutional layers to dramatically decrease model size and the number of multiply-

accumulate operations required for inference.  
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Figure 11: (a) Typical kernels for CNNs, referred to in this paper as standard convolution (b) 
Depth-wise kernels. (c) Point-wise kernels. Dk is the width of the kernel, M is the depth of the 

input layer, N is the depth of the output layer [17]. 

A depthwise separable convolution layer is not a single convolution but a depthwise 

convolution followed by a pointwise convolution. A 3×3 depthwise separable layer has 

the theoretical underpinnings to run 8 to 9 times faster than a standard a 3×3 

convolutional layer of equal size with only a small loss to accuracy [17].  

The structure of a MobileNet is given in Table 1 below. MobileNet employs ReLU 

activation functions for the hidden layers, and Softmax at the end of the network.  
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Table 1: The Body Architecture of MobileNet [17] 

 

 

2.2.6 Region-proposal CNNs and Single-Stage Object 
Detection 

The advent of the region-proposal family of convolutional neural networks has 

dramatically increased the prevalence of CNN-based detectors in the object recognition 

sphere. For a more in-depth review of the state-of-the-art in CNNs, the author would 

recommend reading [18] [19] [20] [21].  

The rest of this section will entail a discussion about single-stage CNNs that can be 

deployed to low-power and low-cost embedded devices for real-time large-scale object 

detection. They operate at real-time for a slew of devices including mobile phones and 

a range of embedded devices such as Jetson Nano.  

As opposed to the R-CNN family of detectors, the You Only Look Once (YOLO) model 

[22], RetinaNet [23], and the Single Shot MultiBox Detector (SSD) [24] do not propose 

a set of ROIs using a Selective Search algorithm. In these architectures, an image in 



2. Related Work 
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processed via a single CNN which provides a confidence for a classification as well as 

bounding box coordinates for any likely objects.  

The relatively computationally-limited nature of the Raspberry Pi 3B means that it is 

not possible to simply use an object detection architecture such as SSD MobileNet-V2 

[24] [17]. Nvidia have performed benchmarks for the Raspberry Pi 3 and similar single-

board computers and found that for inputs with resolution 480×272 or greater that 

SSD MobileNet-V2 did not run [25]. Input images of 300×300 on SSD MobileNet-V2 

ran at 1 Hz, and 416×416 Tiny YOLO V3 is able to run at 0.5 Hz [25]. Alternatively, 

using image classification instead of object detection, MobileNet-V2 can be run at 2.5 

Hz for 300×300 images [25].  

 

2.2.7 SegNet 

SegNet is an encoder-decoder fully convolutional neural network architecture for 

pixelwise semantic segmentation; that is, it attempts to label each pixel in a given 

image according to a set of classes [26]. 

 

Figure 12: The architecture of SegNet [26] 

The encoder-decoder structure of the net is practical for two primary reasons: it will 

aid convergence and it has the capability to run in real-time on high-end GPUs. SegNet 

relies heavily on the pooling and upsampling layers that were discussed in Section 2.2.4. 
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3 Methodology 

The following chapter will provide a high-level overview of the design methodology. 

The subsequent chapters will provide an in-depth explanation of each module; however, 

it will be beneficial to the reader to understand the interaction between each module 

and the role they play individually.  

3.1 The Founding Principle, or Arche 

The field of robotic vision largely overlaps with that of computer vision, but the two 

differ with respect to their overarching goal: in the domain of robotic vision, problems 

operate in real-time, run in parallel to other software, and should prioritise reliability. 

In this capacity, the traditional computer vision-orientated object detection pipeline 

may not be optimal for robotic vision tasks.  

 

Figure 13: The traditional neural network-based object detector pipeline 
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The pipeline proposed in this paper seeks to remedy two aspects of the traditional 

object detection pipeline. The proposed architecture seeks to build up a ‘detection 

profile’ for each given object. When an object is detected, rather than the robot erasing 

data about the object in the next frame, objects are tracked between frames and each 

detection of the object is added to its detection profile to measure the ‘reliability’ of 

that object being detected correctly. It can be considered similar to a time-wise 

committee of convolutional neural network classifiers and increases redundancy.  

3.2 Translation and Rotational Invariant 

Keypoints 

The key property of SIFT-like keypoints that may be exploited for this problem is their 

ability to be tracked between frames irrespective of scale and transform variance.  They 

may naïvely be understood as a corner with a given orientation and magnitude 

The property of visual salience loosely corresponds to how well a region stands out and 

gains visual attention. It may be subdivided into high-level and low-level visual 

salience. An example of high-level visual salience would be the colour red: as a species, 

humans are evolutionary hardcoded to view the colour red and think danger. 

Corners may be considered an example of low-level visual salience. A count of the 

number of SIFT-like keypoints in a region can be used as a metric to order ROIs.  

3.3 Module Interaction 

The pipeline begins by reading an image from the camera sensor. A SIFT-like feature 

detector then calculates all the keypoints in the image for a given set of parameters. 

These will act as a metric for low-level visual salience.  

In the next stage, region proposal occurs: the true-colour image is processed and a 

binary image is generated. This binary image will be used to represent high-level visual 
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saliency. The binary image will be used to cluster the previously generated keypoints, 

and then each of these clusters is used to specify a region of interest (ROI). A list of 

ROIs is generated and ordered by the priority. The number of ROIs classified in each 

frame is limited because a high-accuracy image classifier is computationally expensive. 

The second purpose to clustering keypoints is to constrain matches. Keypoint matching 

between frames and tracking object detections is computationally expensive if each 

keypoint from a frame is trying to match with each keypoint from another frame. To 

reduce the power required and to ensure that the system operates in real-time, keypoint 

matches between frames are constrained to each nearby cluster.  

The tracking and localisation module itself plays a role before classification occurs for 

each frame and essentially supresses any ROIs that likely contain objects that have 

been detected and classified recently. As mentioned previously, keypoints are matched 

between nearby clusters between frames; therefore, the set of possible keypoints are 

constrained and the program is able to run at a greater FPS. When a cluster is 

identified as belonging to an existing detection profile, the bounding box describing the 

location of the detection is updated. If sufficient time has passed since the last 

detection, then the new ROI is classified and the detection profile updated. If an object 

can no longer be tracked – for example, if the robot has moved and the traffic sign is 

no longer in view—then the detection profile is erased. 
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3.4 The Keypoint Cluster-Based Object Detection 

Pipeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: The proposed pipeline for traffic sign detection and recognition 
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4 Region Proposal 

In this section of the paper, three methods employed for region proposal throughout 

the project will be detailed. The first approach may be considered a more traditional 

approach to region proposals for traffic signs; however, the latter methods may be 

considered novel approaches within the field of robotic vision. The majority of this 

section will dedicated to the third approach which will be compared in detail with 

state-of-the-art segmentation algorithms and represents a key contribution of the 

paper.   

4.1 Binary Histograms 

The first method for region proposals is to employ colour segmentation-based candidate 

generation using binary histograms. The process itself is relatively simple and straight-

forward so it will not be covered in detail for conciseness.  

A true-colour image is captured by the PiCamera, and then is transformed form the 

RGB to HSI colourspace. A lookup table of empirically defined values is then used to 

binarize the image and generate a mask. A histogram is calculated for each axis where 

the foreground pixels vote into each corresponding bin.  



4. Region Proposal 
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Figure 15: (a): the true-colour input image captured on the PiCamera (b): on the left each 
pixel assigned within the RGB colour-space, and on the right is each pixel assigned within the 
HSI colour-space. The hue is in the range [0,180) due to the OpenCV implementation’s use of 

the uint8 datatype 

It is difficult to choose thresholds to generate the binary image within the RGB colour-

space as can be seen in the Figure 15 (b). In order to account for the effects of changes 

in illumination, reflections and other spectral phenomena, the image is translated to 

the HSI colour-space.  

This approach is able to function in EyeSim and generate all the signs of interest; 

however, as can be seen in Figure 15 (a), the presence of white light especially in the 

walls of the Mobile Robots Laboratory make it difficult to function in the real-world.  

(b) 

(a) 
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The binary histogram approach is the simplest of the approaches employed in the 

project for region proposal. It is also the fastest as it is able to achieve a mean FPS of 

18.80Hz with object recognition. In its present form it comes with a caveat: only a 

critical subset of the traffic signs may be detected which includes stop signs, parking 

signs, pedestrian crossing signs and give way signs. The non-coloured speed limit and 

unlimit signs are invisible to this method of detection.  

 

4.2 Keypoint-Dense Regions 

The method proposed in this section will again only comprise a brief section, but is an 

interesting contribution that may be useful for similar tasks.   

The principle is to use a sliding window across an input that has keypoints generated 

and mark all window positions greater than a certain thresholds. As discussed 

previously, keypoints can act as a metric for low-level visual salience and keypoint-

dense areas may correspond to areas with objects. It should be understood that 

clustering keypoints based on square regions is not very efficient; however, it is an 

approach that could be used to detect any large scale object in a sparse environment. 

Figure 16: An example of the traffic sign detection pipeline ignoring white light. (Top Left) a 
true-colour input image of a stop sign on the Carolo Cup track recreated at the UWA Mobile 
Robots Lab. (Top Right) HSI thresholding has been applied to the input image to generate a 
binary image. (Bottom Left)  histograms are generated for both the x-axis and the y-axis as 

shown in dark grey, a threshold for each axes in shown in light grey. (Bottom Right) the input 
image with a bounding box (yellow), classification and confidence displayed 
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It does not rely on any training and could be deployed for a range of tasks where 

accurate localisation is not required.  

 

Algorithm 1 Keypoint-Dense Region Proposal 

INPUT: Input Image with width w and height h 
OUTPUT: List of rectangles, ROIs 
DATA: Vector of SIFT-like keypoints, keypoints 
j ⟵0  
while j <	h do: 

i ⟵ 0  
while i <	w do: 

count⟵0  
for all kp such that kp ∈ keypoints do: 

if kp in RECT(i, j, i+xs, j+ys) do: 
count ⟵count+1  

end if 
if count ≥THRESHOLD do: 

append RECT(i, j, i+xs, j+ys) to ROIs 
end if 

end for 
i ⟵i + STEP 

end while 
j ⟵ j + STEP 

end while 
return ROIs 
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The sliding window generates a great deal of ROIs in most scenarios; therefore,  non-

maxima suppression is then applied as can be seen in Figure 17 below. The Carolo Cup 

map itself is sparse enough that this approach can be used; however, it does fail when 

using real-life camera feeds. The most similar method that could be found was using 

keypoint density to optimise R-CNN 

 

 

 

 

 

 

 

 

Figure 17: An example of Keypoint-Dense Region Proposal using EyeSim 
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4.3 Binary Pseudo-Pixelwise Image Segmentation 

In this section, a novel low-computational cost binary image segmentation network 

architecture inspired by SegNet and MobileNet is proposed and evaluated in 

comparison to existing semantic pixel-wise labelling algorithms. Figure 18 demonstrates 

a sample of the results using this approach with a modified KITTI semantic 

segmentation dataset [27].  

 Figure 18: A sample of results of the pixel-wise traffic sign detection approach. The confidence 
threshold employed for binarization here is 0.9  
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4.3.1 Design Philosophy 

The goal is to implement a real-time convolutional neural network architecture to label 

each pixel of an image as foreground or background where foreground corresponds to 

regions labelled as a traffic sign..  

In order to operate in real-time on a Raspberry Pi 3B, the network must be minimal 

and very efficient.. The network is too shallow to achieve results not dissimilar to a 

colour filter with limited spacial information; however, the rest of the pipeline 

architecture should be able to account for this matter.  

4.3.2 Proposed Architecture 

The architecture is heavily inspired by the encoder and decoder convolutional layers of 

SegNet; however, it aims to implement MobileNet’s depth-wise separable convolutional 

layers instead of the two-dimensional convolutional layers of SegNet. There are a 

number of tuneable hyperparameters for latency, size and accuracy.  

In order to ensure that the network will be able to achieve the task satisfactorily in 

terms of accuracy and speed, there are five different hyperparameters proposed: 

i. The width multiplier, derived from MobileNet, is directly related to depth of 

the hidden layers. It is denoted ‘D’.  

ii. The resolution multiplier, also related to MobileNet, directly resizes the input 

image size. It is denoted ‘E’. 

iii. The resizing coefficient is used to control the resizing in the encoder and decoder 

layers. It is denoted ‘F’. 

iv. The depth gradient is used to control the rate at which the depth of the hidden 

layers increases in the encoder layers and decreases in the decoder layers. It is 

denoted ‘G’. 

v. The initial depth is used to specify the initial depth of hidden layers. Larger 

values will likely provide more accurate results at the cost of performance. It is 

denoted ‘H’. 
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4.3.3 Training 

The fundamental issue that affects training the convnet is the lack of datasets available 

for semantic pixelwise segmentation. The amount of work required to make a semantic 

pixel-wise labelled data is tremendous; therefore, it was deemed infeasible to construct 

a dataset during the timespan given. There were three datasets found that offered 

potential for training: KITTI [27], Cityscapes Dataset [28], and WildDash [29].  

The KITTI dataset was in the end able to be used albeit with a number of 

modifications. The KITTI dataset only contains 200 images for training. It also has an 

input resolution of 1242×375, which is very impractical for the proposed network which 

accepts images of resolution 320×240. The solution was to divide the images into two 

horizontally-wise, and then resize each to 320×240.  

 

 

The resultant dataset was heavily imbalanced; that is, there was an unequal 

representation of instances corresponding to foreground and background.  

There are two options to account for the imbalanced relative class frequencies: i) apply 

a sample weight to each input image, or ii) apply a class weight for the true label of 

each image. If this were not to occur, in this case it would label every single pixel black 

and not converge.  

Figure 19: An example post-processed image from the KITTI dataset (L) with 
corresponding binary mask (R) [27] 
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In order to facilitate training the following split was employed: a randomly selected 

10% of the total images were designated for training purposes, 80% of the remainders 

were designated as the training set and the rest comprised the validation set. In order 

to expand the training dataset, the training set was augmented via Keras [30] using 

the parameters given in Table 2.  

Table 2: Image Data Generator Parameters (Region Proposal) 

Parameter Value 

Brightness  [-0.10, 0.10] 

Rotation  [-0.05, 0.05] 

Shear  [-0.05, 0.05] 

Width Shift  [-0.10, 0.10] 

Height Shift  [-0.10, 0.10] 

Zoom  [0, 0.10] 

 

Prior to training each combination of hyperparameters, a learning rate range test was 

conducted after 30 epochs to evaluate which learning rate should be selected for long-

term training. The test is similar to that devised by Leslie N. Smith [31].  

 

 

 

 

 

 

Figure 20: Learning rate hyperparameter test (Region Proposal) 
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In Figure 20 there is a dark blue line on the left hand side of the graph, this corresponds 

to the region where the learning rate hyperparameter is too low the loss is trapped in 

a local minima. The purple line on the right hand side of the graph corresponds to a 

region where the learning rate is too high so it does not converge.  

 

 
Figure 21: Training and Validation Loss vs. Epoch 

 

 
Figure 22: Validation IoU and FPs over the range of epochs 

 
 
 

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

Lo
sse

s

Epoch

Loss 

Train

Validation

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200 220 240

Pe
r c

en
t

Epoch

Validation IoU and False Positives against Epoch

IoU
FP



 

 32 

4.3.4 Evaluation 

In this section, the results using the binary pseudo-pixelwise segmentation method are 

presented. It should be noted that only a subset of all possible network architectures 

will be discussed because there are many different combinations of hyperparameters.  

The output from the network itself after inference is two-dimensional matrix containing 

floating point numbers from zero to one. In similar networks, these values are referred 

to as the confidence of the network. It should be noted that these values are calculated 

via a loss function, and are not a probability in any real capacity. In Figure 23, an 

example output is presented with a mapping. 

 

Figure 23: An example output of the network 

The metric employed to compare methods in the KITTI dataset is intersection-over-

union, otherwise referred to as ‘IoU’ or the Jaccard Index. It is defined as the area of 

intersection divided by the area of union as exemplified in Figure 24.  

 
 

 
A pixel is designated as a True Positive (TP) if it is classified as foreground when it is 

a foreground pixel; inversely, a pixel is designated as True Negative (TN) if it is 

Figure 24: An example of IoU. The green region represents the intersection, and the union is 
comprised of the orange areas and the green area 
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classified as a background pixel and it is a background pixel. If a pixel is designated 

foreground when it is background, then it is a False Positive (FP). Likewise, if it is 

classified as background and it is foreground then it is a False Negative (FN). 

The PASCAL VOC definition for IoU is employed by KITTI to compare methods for 

semantic segmentation as given below: 

I3J = 	
K(LM)

K(LM) + K(OM) + K(OK) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pixel-wise labels for the test set of images are not publicly available so comparisons 

with existing methods are only able to completed using the validation set of images.  

Figure 25: Comparison between outputs of three CNNs when using different hyperparameters expressed 
in the form (D, E, F, G, H)T. From left to right: (1.0, 1, 2, 2, 64)T, (0.25, 1, 2, 2, 64)T, (0.25, 2, 4, 2, 8) T. 
From top to bottom: true-colour image input, confidence map output from CNN, binary mask with 

confidence threshold of 0.9, and bitwise AND operation between mask and input image 
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Table 3: Evaluating and Comparing Semantic Segmentation Methods on the 
KITTI dataset. *Method only detects traffic signs and no other classes, and 

IoU was calculated on validation set  

Method Class IoU 

Proposed method where (D, E, F, G, H)T = (1.0, 
1, 2, 2, 64)T 

0.7273* 

Improving Semantic Segmentation via Video 
Propagation and Label Relaxation [32] 
 

0.7282 
 

Unsupervised Domain Adaption to Improve 
Image Segmentation Quality Both in the 
Source and Target [33] 

0.5950 
 

SegStereo: Exploiting Semantic Information 
for Disparity Estimation [34] 

0.5910 

 

SDNet: Semantic Guided Depth Estimation 
Network [35] 0.5114 

Pixel-wise Attentional Gating for 
Parsimonious Pixel Labelling [36] 0.4796 

 

In terms of real-time performance on the Raspberry Pi, irrespective of the 

hyperparameters used the fastest it is able to run is at a rate of 1.62Hz. This translates 

to it falling short of real-time inference speed goal; however, it is likely that it would 

run in real-time on a Raspberry Pi with either a Movidius Neural Compute Stick, a 

Google Coral Accelerator or a Jetson Nano. 

When compared to similar methods using the KITTI dataset, it must be understood 

that it is not an equal comparison and in actuality the proposed network would perform 

worse than the results indicate in Table 3; however, the proposed method has shown 

that it is able to obtain respectable results for simple cases such as those provided in 

Figure 25, and shown that it may be feasible with training hyperparameter tweaking.  

The greatest improvement will come from training with a larger set of training images. 
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5 Classification 

In this chapter of the paper, an overview is given with respect to the current state-of-

the-art methods for real-time traffic sign recognition, the implementation of the CNN-

based classifier will be detailed, metrics are provided and the implemented method for 

region classification will be evaluated with respect to existing solutions.  

5.1 Overview 

Traffic sign recognition remains a challenging area of research with many contributors 

due in part to the multitude of challenges introduced through lighting and blurring 

effects, occlusion and partial-occlusion, and sign deterioration. To complicate the task 

further, applications will generally require any solutions to operate in real-time. 

The convolutional neural network architecture MobileNet was employed or its well-

documented large-scale image classification ability as exemplified through Imagenet 

accuracy, and because it is able to run in real-time on embedded devices [17].   

5.2 The German Traffic Sign Recognition 

Benchmark 

The German Traffic Sign Recognition Benchmark (hereafter referred to as the 

‘GTSRB’) was a multi-class traffic sign recognition classification competition held at 

the International Joint Conference on Neural Networks  (IJCNN) 2011 [37]. Stallkamp 

et al., built a dataset consisting of more than 50, 000 traffic sign training images in 43 

different classes, with two test sets containing more than 10, 000 images each [37]. The 

GTSRB dataset represents the most extensive traffic sign recognition dataset publicly 

available.  
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Figure 26: The 43 classes of traffic signs in the GTSRB dataset [37]. 

The GTSRB dataset is challenging and life-like: the effect of blur, lighting effects, 

occlusion are all present as may be seen in Figure 27. The goal with training on this 

dataset is to demonstrate the feasibility of using the chosen classification CNN 

architecture for image classification when given a wide range of traffic signs under 

diverse array of conditions.  

 

Figure 27: A sample of the GTSRB dataset [37]. 

 
5.3 Training 

As discussed earlier within the paper, MobileNet has seen significant success for the 

purpose of large-scale image recognition especially when considering its latency and 

size. It is due to these properties that it is likely that MobileNet will be used for a 

range of object detection going into the future for robotics applications; therefore, in 

this section there will be a significant amount of data relating to the training of 

MobileNets of a wide range of input sizes and width multipliers for use with the 

Raspberry Pi that should be insightful for readers whom are working in fields that 

relate to robotic vision.  
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5.3.1 Training Set 

The dataset was generated by annotating video sequences recorded on German roads 

in March, October and November in 2010 [37]. The size of the images vary from 15×15 

to 222×193 and are stored in RGB colour format.  

There are two sets of data provided: a training set, and a test set. The test set is not 

to be used for learning, but to evaluate the method. Techniques involving deep learning 

require developers to further subdivide the training dataset into an aptly named 

‘training set’, and a ‘validation set’. A randomly selected 80% went to be used directly 

as the training set, and the remaining 20% was used for validation.  

The dataset is unbalanced as demonstrated by [37] below in Figure 28 – that is, there 

was an unequal representation of each traffic sign class.  

 

 
Figure 28: The relative class frequency among the dataset [37] 

There are two options to account for the imbalance relative class frequencies: i) apply 

a sample weight to each input image, or ii) apply a class weight for the true label of 

each image. In either case, the weight will then be employed by the loss function to 

compensate for the dataset imbalance. If this were not to occur, the neural network 

would likely not try to adapt for any lower relative frequency classes and thereby lose 
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overall accuracy. In the context of this dataset, a class weight was applied as there was 

no benefit to assigning a sample weight for each of the 10, 000 images.  

5.3.2  Dataset Augmentation 

The GTSRB dataset is extensive and contains a diverse array of life-like images; 

however, the complexity of a CNN-based classification architecture like MobileNet 

leans towards a propensity to overtrain. In order to mitigate overtraining and to 

encourage the ‘generalisation’ capabilities of the convolutional neural network, data 

augmentation was undertaken via Keras [30].  

Table 4: Image Data Generator Parameters (Classification) 

Parameter Value 

Brightness  [-0.15, 0.15] 

Rotation  [-0.15, 0.15] 

Shear  [-0.10, 0.10] 

Width Shift  [-0.05, 0.05] 

Height Shift  [-0.05, 0.05] 

Zoom  [0, 0.15] 

 

The data augmenter accepts a batch of images before they are fed to the CNN for 

training and undertakes the parameterised set of randomised transformations specified 

above. The batch of training images is then sent to the CNN for training after each 

transformation has been completed.  

5.3.3 Training Results 

In this section, the details following the end-to-end training of MobileNet for the task 

of traffic sign recognition are discussed. There were thirty MobileNets trained in total 

with varying hyperparameters where the width multiplier, D ∈ {0.125, 0.25, 0.5, 0.75, 
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and 1.0}, and where the input size, E ∈ {32×32, 48×48, 64×64, 80×80, 96×96, 

128×128}. The choice to evaluate such a wide array is for future use: MobileNets have 

proven powerful for a wide range of tasks, and benchmarking them will prove useful 

for future developers. The results will primarily focus on a full-sized 128×128 network, 

but the accuracies for each will be presented.  

 

Figure 29: Training and validation loss where α=1.0, and β= 128×128 

 

Figure 30: Top-1 Predictive Accuracy for the training and validation datasets where D = 1.0,
and	β = 	128 × 128 
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As can be seen in the Figure 29 above, the loss begins to converge after training begins 

and only fifteen epochs are required to achieve a near 100% accuracy. It should be 

noted that the training accuracy is lower than the validation accuracy which alludes 

to the neural network being trained on sets more difficult than the training sets. It 

takes longer to converge because it is learning ways to compensate for changes in data 

– for example, it may need to compensate for reduced luminosity.  

In order to mitigate the effect of randomness, a seed was set for the random number 

generators in the TensorFlow and NumPy backends. It should be possible to entirely 

replicate these results.  

Table 5: Comparing Top-1 Accuracy, Top-5 Accuracy, and F1 Score against 
MobileNet Input Resolution and Depth Multiplier 

Hyperparameters 
Top-1 

Accuracy 

Top-5 

Accuracy 
F1 Score Input 

Resolution 

Depth 

Multiplier, D 

128×128 1.0 88.73% 98.00% 0.89 

128×128 0.75 88.86% 97.97% 0.89 

128×128 0.5 87.40% 97.38% 0.87 

128×128 0.25 88.46% 98.26% 0.89 

128×128 0.125 86.89% 97.96% 0.87 

96×96 1.0 84.53% 96.88% 0.85 

96×96 0.75 86.35% 97.40% 0.86 

96×96 0.5 81.77% 97.09% 0.82 

96×96 0.25 78.00% 96.54% 0.78 

96×96 0.125 72.01% 95.57% 0.73 
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Hyperparameters 
Top-1 

Accuracy 

Top-5 

Accuracy 
F1 Score Input 

Resolution 

Depth 

Multiplier, D 

80×80 1.0 89.10% 98.10% 0.89 

80×80 0.75 85.36% 97.76% 0.85 

80×80 0.5 82.19% 96.94% 0.82 

80×80 0.25 77.05% 95.72% 0.77 

80×80 0.125 62.94% 91.67% 0.63 

64×64 1.0 82.32% 96.58% 0.82 

64×64 0.75 81.76% 96.90% 0.82 

64×64 0.5 80.82% 96.62% 0.81 

64×64 0.25 64.70% 91.96% 0.65 

64×64 0.125 48.84% 83.75% 0.49 

48×48 1.0 78.99% 96.52% 0.79 

48×48 0.75 74.22% 95.47% 0.74 

48×48 0.5 63.47% 90.51% 0.64 

48×48 0.25 56.93% 89.35% 0.58 

48×48 0.125 39.64% 79.77% 0.41 

32×32 1.0 69.63% 95.03% 0.70 

32×32 0.75 65.46% 92.64% 0.66 
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Hyperparameters 
Top-1 

Accuracy 

Top-5 

Accuracy 
F1 Score Input 

Resolution 

Depth 

Multiplier, D 

32×32 0.5 61.35% 89.99% 0.61 

32×32 0.25 67.51% 93.71% 0.68 

32×32 0.125 34.65% 76.74% 0.35 

The table above summarises a great wealth of information and provides a detailed 

summary of the recognition capability of each model. It should prove invaluable when 

selecting MobileNet training hyperparameters for a slew of applications. The general 

pattern is that decreasing the input resolution or width multiplier leads to a drop-off 

in accuracy; however, it does not always hold true. Interestingly, the most accurate 

model according to the test set has an input resolution of 80×80 pixels. These 

discrepancies are likely due to the larger neural networks overtraining or becoming 

trapped in local minima. They could however also be the result of image resizing before 

being classified.  

 

5.4 Evaluation with State-of-the-Art Recognition 

Methods 

In this section, the results obtained are compared the other approaches proposed for 

the GTSRB. The first comparisons that will be made are with state-of-the-art solutions 

that have been developed since the competition started. 
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Table 6: Benchmarking MobileNet for Traffic Sign Recognition VS State-of-the-Art Methods 

Method 
Speed 

Limits 

Other 

Prohibitions 
Derestriction Mandatory Danger Unique Total 

128×128 MobileNet 

where ! = 1.0 
92.45% 92.45% 96.63% 84.47% 81.14% 86.17% 88.73% 

CNN with 3 Spatial 
Transformers [38] 

99.47% 99.87% 98.89% 99.77% 99.07% 99.22% 99.71% 

Committee of CNNs [39] 99.09% 99.93% 99.72% 99.89% 97.96% 99.51% 99.46% 

Color-blob-based 
COSFIRE filters for 
object recognition [40] 

97.63% 99.93% 94.17% 99.83% 98.67% 100.00% 98.97% 

Human Performance [37] 98.61% 99.93% 98.89% 99.72% 98.03% 98.63% 98.84% 

Multi-Scale CNNs [41] 95.95% 99.87% 94.44% 97.18% 92.08% 98.73% 98.31% 

Random Forests [42] 95.37% 99.13% 87.50% 99.27% 93.73% 98.63% 96.14% 

LDA on HOG [43] 91.44% 96.80% 85.83% 97.18% 90.61% 98.43% 95.68% 
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The confusion matrix visualises cases of mistaken identity; that is, when the classifier 

predicts the incorrect class. The diagonal line indicates that the majority of the 

classifications were correct. The error will naturally be more dense in regions of the 

corresponding to traffic signs having a similar appearance.  

 

 

 

 

 

 

 

 

The results of state-of-the-art solutions on the same test set may be seen in Figure 32. 

The top-left hand corner of the confusion matrices correspond to the speed limit signs. 

Figure 31: Confusion Matrix for 128×128 
MobileNet model where ! = 1.0  

Figure 32: Confusion matrices for GTSRB competitors in the 2011 competition [37] 
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It should be expected that these are the most difficult to classifier for each algorithm. 

The effect of blur in particular can make distinguishing the numbers particularly 

difficult even for a human as can be seen in (c). These comparisons are not exactly fair 

as MobileNet has been designed to run in real-time even on embedded systems such as 

the Raspberry Pi 3B. The results do indicate however, that MobileNet can provide a 

valuable tool for developing traffic sign recognition systems on inexpensive hardware 

especially when there is a limited subset of signs such as those within the Carolo Cup.  

5.5 Runtime Optimisation 

In this section, results relating to the runtime optimisation of MobileNet for a 

Raspberry Pi 3B will be presented. This data should be particularly useful for readers 

tuning their own implementations for latency, size, and input resolution. 

In order to conduct the following tests, each model inferred the class of 1000 images of 

randomised RGB noise. The time taken for each inference was recorded in order to 

calculate the mean, maximum and minimum inference times for each model. This 

information should be useful readers wishing to develop embedded system MobileNet-

based object detection systems.  

 

 

 

 

 
Figure 33: A randomised 128×128 RGB noise image 
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Table 7: Benchmarking the relationship between input resolution, width 
multiplier, model size, and mean inference time on a Raspberry Pi 3B for 

TensorFlow Lite 

Architecture Input 
Resolution 

Width 
Multiplier, α 

Model Size 
(MB, 3 s.f.) 

Mean Inference 
Time, T'( (ms) 

MobileNet [17] 32×32  0.125 0.0967 0.11 
32×32 0.25 0.254 0.21 
32×32 0.5 0.875 0.51 
32×32 0.75 1.89 0.99 
32×32 1.0 3.29 1.53 
48×48  0.125 0.0967 0.23 
48×48 0.25 0.254 0.44 
48×48 0.5 0.875 0.97 
48×48 0.75 1.89 1.92 
48×48 1.0 3.29 3.15 
64×64 0.125 0.0967 0.42 
64×64 0.25 0.254 0.73 
64×64 0.5 0.875 1.80 
64×64 0.75 1.89 3.61 
64×64 1.0 3.29 5.87 
80×80 0.125 0.0967 0.51 
80×80 0.25 0.254 1.05 
80×80 0.5 0.875 2.75 
80×80 0.75 1.89 5.47 
80×80 1.0 3.29 8.46 
96×96 0.125 0.0967 0.74 
96×96 0.25 0.254 1.54 
96×96 0.5 0.875 4.15 
96×96 0.75 1.89 8.31 
96×96 1.0 3.29 13.34 
128×128 0.125 0.0967 1.16 
128×128 0.25 0.254 2.76 
128×128 0.5 0.875 7.16 
128×128 0.75 1.89 14.56 
128×128 1.0 3.29 24.03 

 

It should be noted that the model size is dependent singularly on the width multiplier. 

This aligns with expectations as it corresponds to each of the kernel weights of the 

CNN architecture. The inference time is dependent on both the width multiplier and 

input resolution because they control the number of multiply accumulate floating point 

operations that will need to be completed by the Raspberry Pi CPU. 
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The benchmarks above may be used to ascertain which models can be used when 

attempting to achieve a given inference time. Together with the accuracy results given 

in the training results section, a user can ascertain the most appropriate input 

resolution and width multiplier combination to meet accuracy, latency and size 

requirements.   

Figure 34: Benchmarks for MobileNet inference time on the Raspberry Pi 3B against width 
multiplier where ) ∈ {0.125, 0.25, 0.50, 0.75, 1.00}. The inverse of the inference time is useful to 
calculate the maximum FPS attainable. For example, the upper limit for ) = 0.75 indicates the 
maximum FPS for a 128x128 MobileNet three-quarters the size of a typical 128x128 MobileNet is 

approximately 10Hz 
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The intended use of the traffic sign detection and recognition system will be on the 

SoccerBots to complete the obstacles  presented in the Carolo Cup; therefore, the power 

to disseminate between similar signs is not paramount. In order to minimise the 

computational cost of the traffic sign recognition, a classifier neural network of size 

80×80 and width multiplier of 0.25 was employed. This network has been shown to  be 

infer a Top-5 accuracy of greater than 95%, and hence it is likely to be sufficient for 

the Carolo Cup. The specified combination of hyperparameters should also have the 

capability to classify approximately 100 image frames per second on the Raspberry Pi  

3B.
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6 Tracking and Reliability 

The following chapter details the tracking and reliability modules of the traffic sign 

detection. It explores the two methods employed for tracking, and the novel approach  

to ascertain the reliability of a detection.   

6.1 Tracking 

In the lifetime of the project, there are two methods that have been employed to track 

ROIs between adjacent frames: 

i. firstly, the Euclidean distance between the centres of ROIs if given below a 

specified threshold; 

ii. secondly, the proportion of SIFT-like keypoints matched clusters exceeds a 

specified threshold. 

The former requires less computational power; however, it may be exploited and there 

is no guarantee that it will actually be tracking the object. It is susceptible to error, 

and may be inappropriate for applications where a high degree of reliability is 

mandatory. 

The latter approach requires forethought to implement, but it has the capability to 

operate in real-time on the Raspberry Pi 3B+ and ensures a degree of similarity when 

tracking objects.  

 

6.2 Reliability 

This section will expand on the framework discussed in Chapter 3. It will detail how 

each detection is used to build up a detection profile for an object and the calculations 

involved.  The operating principle is that it should emulate a committee of classifiers, 

but do so over time. 
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6.3 The Class Reliability Metric 

The reliability coefficient is composed of two elements: the first accounts for time 

redundancy, and the second accounts for parallel reliability.  The reliability 

coefficient metric is defined as 

12 = 31 −
1

!567
89(1 − ;2,<)

67

<>?

 (6.1) 

where 12 is the reliability coefficient of object ; ;2,< is the confidence of the jth prediction 

of object i ; @2 is the number of detections of object i; and, ! and A are empirically 

tuned constants. 

The first element accounts for the number of detections of a particular object class. If 

a particular object class has been detected multiple time the reliability should increase, 

but if it has only been detected a very limited number of times it should be capped at 

a maximum limit. The maximum limit is effectively set by the first element.  

The second element factors in the confidence output by the neural network classifier. 

The confidence will lie between 0 and 1. The detections can be considered as parallel 

reliability elements and the reliability should increase the more a particular object class 

is detected.  

A reliability coefficient is calculated for each object class detected and they form a 

vector referred to as the class reliability coefficients.  

6.4 The Weighted Class Reliability Metric 

To account for situations where more than one class has been ascribed to an object, a 

weighted reliability coefficient is employed. 

The Softmax function, otherwise known as the Boltzmann or Gibbs distribution, is 

frequently employed in neural networks as the activation function. In this case, it is 
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being used to weight each reliability coefficient where the reliability coefficient is non-

zero. The Softmax function is given as 

B(C)D =
EF7

∑ EF7H
<>?

 (6.2) 

where 12 is the reliability coefficient of object i; C is the vector of class reliability 

coefficients; and M is the total number of different object classes that have been 

detected for a given detection profile. 

Subsequently, each reliability coefficient is weighted according to the corresponding 

output of the Softmax function as 

I2 = 12 ∙ B(C')2 (6.3) 

where I2 is the weighted reliability coefficient of object i; 12 is the reliability coefficient 

of object; and B(C')2 is the Softmax function applied to the vector of non-zero class 

reliability coefficients. 

The object class with the maximum weighted reliability coefficient is the object class 

that the pipeline predicts the detected object belongs. The corresponding weighted 

reliability coefficient may be used to measure provide a likelihood that the detected 

object belongs to a particular class. 

There are no similar metrics that the author is aware of that can be used for comparison 

purposes; however, it can be related to a committee of CNNs method.
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7 Conclusion 

This work has been written to implement and evaluate traffic sign recognition and 

detection on the ground robots at the UWA Robotics and Automation Lab. The use-

case of the software is for it to be employed for the Carolo Cup autonomous driving 

student competition. In undertaking the project, a significant amount of work was 

completed benchmarking and optimising for the Raspberry Pi 3B and similar embedded 

devices. The approach was multi-faceted and the problem divided methods used for 

region proposal and classification.  

Three methods were employed for region proposal, the latter two being novel albeit 

with mixed success. The first approach was successful in the regard that it met the 

inference time benchmark of 8Hz; however, only a subset of the signs were predicted. 

The second approach was able to operate in the benchmark specified and had the 

potential to detect all signs, but it was unscalable for the real-world. The third method 

involved end-to-end training of a new pixel-wise image segmentation CNN that would 

theoretically be scalable for the real-world, but it was unable to run in real-time for 

the Raspberry Pi, and furthermore the detections lagged behind state-of-the-art 

methods as specified in Table 3.  This problem however could be rectified with 

alternative hardware such as the Jetson Nano, and by obtaining more training data. 

In terms of future developments, two approaches that seem promising are using white 

and coloured maximally stable extremal regions or further developing the CNN 

architecture.  

In terms of the methods used for classification, the applicability of MobileNet for traffic 

sign recognition has been thoroughly investigated, and benchmarks are now available 

that can be used to compare it to state-of-the-art methods that are designed entirely 

for traffic sign recognition. The data collected should also prove useful for readers 

interested in computer vision for embedded platforms.  

In summary, this thesis has explored a number of techniques that represent novel 

contributions for the task of traffic sign recognition and detection. The SIFT-like 
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keypoint cluster-based pipeline itself has the capability to act a committee of CNNs in 

itself which could be useful for a range of real-time object detection applications. The 

benchmarks completed also represent a basis from which future students can build 

upon and evolve future work.  
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