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Abstract

Unmanned Aerial Vehicles (UAVs) present myriad opportunities for innovation and
automation. Stealth Technologies seeks to integrate UAVs into a ground based autonomous vehicle
platform for applications in security, defence, and more. For this innovation to be practical, then
there needs to be a reliable and precise way for drones to land on the ground vehicle, ideally without
needing to stop every time a drone needs to take off or land.

This project aims to build on past research to develop a robust system for the landing of a
small hexacopter UAV on a moving platform, using onboard camera and image-processing to
identify and follow the ground vehicle. It is proposed that an optical fiduciary tag system, AprilTag,
is used to locate the vehicle and an Extended Kalmann Filter is used to provide accurate state
estimation through sensor fusion of the onboard IMU, GPS, and AprilTag position estimate from
the camera feed.

In this report, a proposed system architecture is presented, consisting of 3 hardware
processor devices — a PixHawk flight controller and a Raspberry Pi 4 mounted to the UAV, and a
ground station computer on the vehicle — as well as a number of Robot Operating System (ROS)
nodes running on these devices. The viability of AprilTag fiduciary detection system running on
various devices and over varying distances using an 8MP camera sensor with a fisheye lens
downscaled to 640x480 resolution is explored and applied to the proposed design of a landing
algorithm. The current progress towards implementing the entire architecture is shown, and a plan
for further work to complete it is put forward.
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1 Introduction

The age of automation is here [1|. The robotic workforce is growing exponentially, and as
computers become more intelligent, an increasing number of fields are opening up to automation.
No longer is the robot limited to a sterile, predictable fabrication plant; cutting edge computing
and intelligent systems mean that robotics is increasingly finding real world applications. Riding
this wave is Perth based company Stealth Technologies. Leveraging technical expertise in machine
learning, robotics, and autonomous driving, Stealth is developing the AxV autonomous electric
vehicle platform for applications in security, perimeter testing, defence, and more [2].

1.1 Motivation

In recent years, Unmanned Aerial Vehicles (UAVs) have exploded in popularity,
affordability, and utility. Primitive UAVs have been in use since as early as 1916 [3]. It was not
until the early 2000s however that the now ubiquitous quadcopter saw a rise to prominence. From
around 2005-2010, a number of advances in electronics technology brought about a revolution in
micro UAVs, with cheap Lithium ion batteries, Inertial Measurement Units (IMUs), Global
Positioning System (GPS) units, and flight controllers leading to a massive surge in popularity [4].
The ease of use the multirotor vehicle system with vertical take-off and landing capabilities,
combined with the ability to hover in place precisely, allow for myriad applications. From
agriculturalists to military users, the usefulness of this new vehicle has been proved time and time
again.

Stealth Technologies aims to utilise this versatility to expand the capabilities of their
ground based AxV platform with UAV integration. The UAVs may be equipped with a number of
sensors — visual, thermal, LIDAR, and more — which together with the ability to cover rough terrain
will greatly increase the effective sensing range of the ground vehicle. Additionally, UAVs may be
employed to deliver payloads, for example delivering parcels to online shopping customers. The
ability to launch and land potentially swarms of UAVs without stopping would be a massive boon
to the usefulness of the AxV platform.

1.2 Objectives

The main objectives of this report are to research the viability and possible methods of
integrating a UAV launch and land system into the existing AxV platform. Primary focus is
directed at implementing the functionality to launch and land the UAV without stopping the
ground vehicle, in particular investigating the capabilities and limitations of the AprilTag fiduciary
detection system. This includes looking into hardware and software architectures that will
streamline development and have a high chance of leading to an eventual successful product.

2 Literature Review

It must be noted that the landing of quadcopters on moving platforms is not a novel idea;
it has been studied and demonstrated before numerous times. However there is little in the way of
reliability reports and from what little video footage was found, the landings appeared extremely
rough, involving simply shutting off the motors when above the target [5]. Clearly a feasible landing
method must be gentle and have proven reliability to be used in a commercial product, to ensure
longevity of the quadcopter and minimise maintenance costs.

2.1 Relevant Patents

In 2016, Ford was granted a patent on a UAV system to deploy from the trunk of a car
[6]. As reported in the patent application, the primary utility would be in emergency scenarios —
the drone could be employed to scout ahead and around the vehicle, finding the optimal, safest
path for the car to take. Although as of 2020 Ford has not reported plans to integrate this into
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any upcoming vehicles, the interest that such a huge player in the automotive industry has taken
in this premise demonstrates the promise it holds.

Online commerce giant Amazon was in 2016 granted a patent for UAVs delivering packages
to land on transportation vehicles for temporary transport, to increase range and efficiency of
drone-enabled shipping. Whilst this is not exactly the same use case as Stealth, as the patent
outlines the use of non-affiliated trucks as “hitchhiking” vessels, rather than UAV deployment from
a central vehicle, it shows again that large industry players are showing interest in this area, and
here particularly in the landing of UAVs on moving vehicles.

It should be noted that although this and other similar patents do not seem to conflict with
Stealth’s particular use case, the author recommends appropriate legal counsel be sought to ensure
no infringement.

2.2  Scientific Literature

Araar, Aouf, and Vitanov [7] report successfully landing a quadcopter on a moving platform
with an average error of 13 c¢cm from the pad at speeds of approximately 2 km/h. They report
difficulties with turbulence from the ground effect when landing, which were mitigated by
introducing a minimum tracking altitude below which the vehicle steps into an automated landing
protocol. This solution may result in worse accuracy performance at high speeds, especially if there
is any variation in ground vehicle trajectory.

The primary method of locating the vehicle relative to the UAV was through the visual
fiduciary tag system AprilTag, a theme common to many of the papers researched. AprilTag is a
library of square, pixelated images similar to a QR code that may be detected by a camera and
analysed to generate an estimated pose relative to the camera. A gimballed camera was used to
track the tags. An array of progressively smaller AprilTags was used (Figure 1) so that the UAV
may detect them from afar, but also keep some in field of view when coming in very close for
landing. This technique could be easily adapted and used to improve both maximum and minimum
detection range, though fewer tags would probably prove sufficient. The Extended Kalman Filter
(EKF) was also compared with an Extended He filter for state estimation, and it was found that
the EKF outperformed the Extended He in all situations. These filters are used to combine the
data from multiple sensors into one best estimate of position.

FIGURE 1: APRILTAG ARRAY USED ON THE LANDING PAD BY ARAAR, AOUF, AND
VITANOV [7]

Herisse et al. [8] report successful landing on a moving platform at walking speed using an
“optical flow” method. This method does not use any fiduciary markers like AprilTags; it instead
measures the speed at which the object it is looking at is moving relative to itself, and from that



deduces some positional data. The algorithm, while interesting, is both extremely complex to
implement, and computationally expensive. With the availability of more practical options, this
route was not explored further.

Borowczyk et al. [9] report successful landing of a DJI Matrice 100 quadcopter at up to
50km/h using a single large AprilTag, and transmitted GPS readings from the ground vehicle. A
gimbal mounted camera was used to track the AprilTag from afar, and a fixed wide-angle lensed
camera was relied on once the drone was close to the target. The combination of these two camera
types adds significant complexity, but also allows for the best of both options — long detection
distance from the narrow Field of View (FoV) gimballed camera, and up close reliable detection
from the wide angle lensed camera.

A Proportional Navigation (PN) controller was employed to approach the ground vehicle.
Once the UAV was close enough to the vehicle, this was switched to a Proportional Derivative
(PD) controller for the final landing phase. As seen in the video of their demonstration, [5] the
landing is quite rough at higher speeds as the quadcopters maximum speed was approached. This
indicates that landing speeds should likely be kept well under the UAV’s top speed to ensure
successful landings.

Feng et al. [10] report on the somewhat novel approach of landing on a moving platform
in an entirely simulated environment. Using a Kalman Filter on simulated noisy measurements,
they were able to successfully land at up to 12 m/s by tracking an AprilTag with a gimballed
camera. The control algorithm was Model Predictive Control (MPC), which is akin to a PID
controller, but with the ability to predict changes in the system dependant variables caused by
changes in the independent variables.

Olivares-Mendez, Mondragon, and Campoy [11] report on landing a single-rotor UAV on a
stationary platform using “fuzzy logic” control. Fuzzy control works with probabilities of
measurements being correct, rather than assuming true or false. This approach gave limited success,
with average landing errors of 0.73m. This is unacceptably high for our application, so will not be
considered.

Baca et al. [12] report landing a hexacopter on a ground vehicle moving at 15 km/h. A
custom fiduciary marker was used rather than AprilTags, as this was part of an international
competition. This marker provided much the same utility as AprilTags, so there is little point in
investigating a customised approach. A fixed downwards facing camera with a fisheye lens was
used. This required an additional processing step to undistort the image, but increased field of view
substantially. A laser rangefinder was also used to great effect to assist in the landing phase. An
Unscented Kalman Filter (UKF) was used for state estimation, and a nonlinear controller used to
make the UAV track the predicted path of the ground vehicle. The nonlinear control is reported
to give faster response than the linear PID approach, meaning the UAV can react faster to
unexpected turbulence or wind interference.

Lee, Jung, and Shim [13] report using a colour based tracking system to land on a slow
moving vehicle. Despite them finding some success in this method, the reliance on a unique colour
to track introduces inherent limitations. A red box was used as the tracking marker, and it is noted
that the presence of any other red objects in the scene may easily throw off the UAV. This severely
limits its use for outdoor applications with inconsistent lighting and weather conditions, and thus
it was decided not to pursue this method of tracking the ground vehicle.

Kim et al. [14] also utilised a colour thresholding based tracking system to land on a slow
moving target. State estimation was done with a UKF, and a non-linear controller was used for
the landing approach.

Paris, Lopez, and How [15] achieved landing on a platform moving at 4.7 km/h in turbulent
wind conditions induced with leaf blowers, using a vertical AprilTag setup. Model Predictive
Control is used to plan the landing trajectory, and a Boundary Layer Sliding Control (BLSC)



algorithm is implemented to combat the turbulence present. Due to the large amounts of turbulence
created by fast moving vehicles, this may prove a valuable approach.

The approaches utilised by the various papers are summarised in Table 1 for the readers
convenience.

TABLE 1: COMPARISON OF METHODS AND RESULTS OF PREVIOUS RESEARCH

Paper Ground Average Detection State Control
Vehicle Error method Estimator Algorithm
Speed (cm)
(km/h)
Araar, Aouf, | 2 13 AprilTag  array, | EKF PID
and Vitanov gimballed camera
[7]
Herisse et al. | Not Not Optical Flow Not reported | PID
8] reported reported
Borowczyk et | 50 Not AprilTag, EKF PN and PID
al. 9] reported gimballed and
fisheye cameras
Feng et al |43 15 AprilTag, KF MPC
[10] (simulated) gimballed camera
Olivares- 0 73 Custom fiduciary | EKF Fuzzy
Mendez et al. marker, fixed control, PD
camera.
Baca et al. |15 Not Custom fiduciary | UKF Trajectory
[12] reported marker, fixed prediction,
camera. Nonlinear
control
Lee, Jung, | Not Tracking Colour EKF PID
and Shim [13] | reported only,  no | thresholding,
landing fisheye camera
Kim et al. [14] | Not Not Colour UKF Nonlinear
reported reported thresholding, fixed control
fisheye camera
Paris, Lopez, | 4.7, plus | Not AprilTag, static | EKF MPC, BLSC
and How [15] | induced reported camera
wind

2.2  Proposed Approach

Based on the successes of the examined literature, it was decided to use AprilTag fiduciaries
as the primary method of locating the landing target relative to the drone. Similarly, the best
method for combining multiple sensor measurements (IMU, GPS & AprilTag detection) into one
best position estimate was found to overwhelmingly be the EKF.

The landing process can generally be broken into 4 phases:

1. Autonomous flight using GPS navigation to the coordinates of the ground vehicle.
Once visual contact with the fiduciary is made, switch to a second control algorithm to
position the drone above the vehicle using the AprilTag pose information.

3. Once near the vehicle, begin final descent phase to just above landing pad.

4. When drone is sufficiently close to the landing pad, motors are abruptly shut off.



Step 1 is trivial to implement, as all flight controllers have waypoint mission functionality
inbuilt. For step 2, the accuracy of the algorithm is less important than the speed at which the
UAYV can close the distance to the ground vehicle. Proportional Navigation involves plotting a
course such that the target stays at a constant bearing from the UAV. This in theory results in
the shortest path to the target, as long as the target maintains a constant course. Due to the
simplicity of the PN algorithm and its proven effectiveness [9], this is the leading candidate for
step 2.

Step 3, the final descent, is the most critical phase. Due to the variety of algorithms used
in the literature, and the lack of objective means of comparison (most did not include average error
in landing), it is difficult to make an initial educated choice based off this data alone. The two
methods that stand out are the simple PID control, and Model Predictive Control. PID would be
simple to implement, and has proven success up to 50 km /h. Therefore this the leading candidate
for an initial implementation of step 2. If this does not provide sufficient accuracy and reliability
of landing, then the MPC and BLSC algorithms can be explored.

Shutting off the motors completely for the final landing may not seem the gentlest or most
reliable landing method, but the challenges of landing on a moving platform necessitate it. A normal
stationary landing involves a slow, steady descent for the final portion. When the flight controller
senses contact is made with the ground (drone is no longer descending), the motors are slowly
powered down. The pitch at which the drone must fly to maintain forward momentum means that
a steady touchdown cannot be achieved on a moving landing; as soon as the front legs touch down,
the pitch of the drone will change and thus lose speed, missing contact with the landing pad. Thus
the best option is to achieve a very close approach to the target landing zone in step 3, then simply
shut off the motors.

3 Hardware Selection

It was decided that before investing in a new UAV, existing hardware owned by UWA
would be utilised to explore the viability of the concept without a large upfront investment.

3.1  UAYV and Flight Controller

Two options of UAV were available to choose from. These were the DJI Matrice 100
quadcopter, and DJI F550 hexacopter. Both of these platforms have been demonstrated to be
capable for this task in previous research [9] [10] [12]. The flight controller is a piece of hardware
that runs the innermost control loops of the UAV control software. A defining difference between
the Matrice 100 and the F550 is the flight controller used. The Matrice 100 uses a proprietary DJI
flight computer integrated into the drone. This runs closed source software, designed to be
controlled by the DJI Onboard SDK [16]. The disadvantage of this is that migrating to any other
platform in the future would require a redesign as this SDK is designed exclusively for DJI products,
primarily the Matrice series.

As the final Stealth Technologies UAV will have very sensitive applications potentially
including private security, military, and national security it is worth also considering the potential
danger of using closed-source foreign made products. In 2017, the U.S. Army issued a ban on all
DJI products [17], and more recently, the U.S. Department of the Interior grounded its entire fleet
of 800 Chinese made drones. There are fears that the data collected by these products may be
making its way back to the People’s Republic of China, where it can be accessed by the Chinese
Communist Party under a national security law passed in 2017 [18].
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FIGURE 2: UWA's DJI F550 HEXACOPTER

For these reasons, we decided to move forward with open-source software where possible
and the DJI F550 hexacopter (Figure 2). Although the F550 frame is a DJI product, it has a
PixHawk flight controller onboard running open-source software — either PX4 stack or ArduCopter.
Many other suitable drones that could be purchased in the future also run this software — for
example the VOXL m500 Development Drone, a U.S. developed UAV.

3.2 Omboard Computer

The flight controller is designed only to run the control algorithms essential to the drone’s
flight, and very little else. Therefore in order to perform any complex tasks not covered by the
autopilot software — such as image processing, communication with a ground station, and the
landing algorithm itself — there must be another processor onboard issuing commands to the flight
controller. There are a variety of potentially suitable embedded processors for this task. The main
computationally intensive task that needs to be accomplished by the processor is running the
AprilTag algorithm at a sufficiently fast rate. The literature suggested a rate of 15-30 Hz [7] [9]
[10], so 15 Hz was used a minimum acceptable detection rate criterion.

The F550 drone was already equipped with a Raspberry Pi 3B mounted to the bottom of
the frame, so this was the first processor tested. At a resolution of 640x480, the Pi 3B was able to
run the AprilTag detection algorithm at a rate of 9 Hz. As this was below the 15 Hz criterion
decided upon previously, other solutions were investigated.

The NVIDIA Jetson product line was a very promising candidate. This includes the Jetson
Nano and Jetson TX2, which contain similar CPUs to the Raspberry Pi 3 but with additional 128
and 256 core GPUs respectively, which should greatly improve the speed of any parallelisable
process [19]. The NVIDIA Isaac SDK is an engine developed specifically for computationally
expensive embedded processing utilizing the Jetson product range, for applications in edge Al and
computer vision. There exists an Isaac “nodelet” for GPU-accelerated AprilTag detection, meaning
that implementation on this platform is theoretically achievable. However, in practice the nodelet
would only accept images in a YUYV format, whereas our camera would output an RGB format
image stream. Upon attempting to modify the nodelet, it was discovered that the entire Isaac SDK
is closed-source, despite being advertised as open-source. Additionally, the NVIDIA program used
to flash the Operating System continually installed unworking OpenCV versions, so we were unable
to create another nodelet to convert between RGB and YUYV image formats.
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It is worth mentioning the possibility of offloading the resource-intensive image processing
task to the ground vehicle, which already has powerful computational abilities. This would require
compressing the image-stream and sending it over a Wi-Fi link to the vehicle, and then receiving
the detected AprilTag poses over the same link. This was considered, but due to the potential
instabilities and latencies involved in the Wi-Fi transmission, it was decided that the most reliable
results would be found with an onboard processor.

Finally it was decided to upgrade the Raspberry Pi 3B to a Raspberry Pi 4. In some
benchmarks, the model 4 has more than double the processing power as the 3B [20]. The core
AprilTag algorithm ran with a steady detection rate of 19 Hz on this platform, passing the 15 Hz
criterion.

3.3 Camera

There were two broad categories of camera type to choose from — ordinary or fisheye lens.
An ordinary camera has a narrow field of view, and thus higher angular resolution. The fisheye
lens greatly increases field of view, but at the cost of a lower angular resolution as each pixel covers
a larger angle. The IMX219 camera module has a CSI interface, a port that both the Raspberry Pi
and Jetson Nano had available, so this was selected. Without the fisheye lens option, the IMX219
module has a diagonal FoV of approximately 80°. With the fisheye lens, the diagonal FoV is more
than doubled to 175°, seen in Figure 3.

80" 175°

FIGURE 3: COMPARING DIAGONAL FIELD OF VIEW OF RASPBERRY P1 CAMERA V2 WITH
AND WITHOUT FISHEYE LENS

The advantage of a very wide FoV lies in the robustness of the tag detection up close. The
closer the UAV is to the target, the more a slight sideways perturbation will change the angle
between the camera and the target. With a small FoV camera, this may result in the AprilTag
moving outside the camera’s view frustum. This can be compensated for with a gimballed camera
that actively tracks the AprilTag [9], at the cost of extra complexity in both the mechanical system
and the software that applies the gimbal transformation to the detected AprilTag’s pose.

Fisheye lenses also introduce significant distortion into the image, especially around the
edges. This may cause issues with AprilTag detection and make the pose estimation less accurate.
If distortion proves problematic, then undistort transformations can be applied to the image, using
camera characteristics found by calibration programs [21]. Thus for the sake of simplicity and
robustness, a fixed downwards-facing fisheye lensed IMX219 camera was chosen. In hindsight, a
USB interfaced camera should have been used. This is because the CSI port, although officially

12



supported by all the embedded systems we used it on, had far less support in software and drivers
than cameras that used the USB port. This is discussed in more depth in sections 3.2 and 4.3.

4 System Overview & Software
Implementation

4.1 Software Selection — ROS

Robot Operating System (ROS) is a set of libraries and tools used in a wide variety of
robotics applications [22]. Development is highly streamlined with pre-made modular “nodes” that
can be run and utilized completely independent of user-written code. Each node is designed to work
on a specific task and communicates with others through “topics”. There are pre-existing nodes
that will provide most of the functionality required from the software. Specifically, there is an
AprilTag node that can perform real-time detection of AprilTags on an image stream published to
a topic, and a MAVROS node which can provide two-way serial communication with the PixHawk
flight controller through the MAVLink messaging protocol. Additionally, the Stealth Technologies
ASV runs ROS, meaning establishing communication would be trivial once connected by Wi-Fi.
All of this made ROS the obvious choice going forward.

4.2 System Overview

The proposed overview for the entire system can be seen in Figure 4, consisting of 5 discrete
hardware components, and a number of abstracted software components within.

Landing
Algorithm

Camera
Video
Feed
Raspbe L2
FI‘Ji 4 m Camera F550
Driver UAY
Node
A
AprilTag GFPS MU A
Ground ROS data data Mofor
Vehicle Mode Controls
Tag Pose v
Estimation u ¥ |
Position ﬂ'.l(raoar d‘a
EKF AL
Vehicle Pu;—‘lu’
GFS Fasition (USB) osition
Coordinafes command
> MAVROS Node »{  Motor

(WiFi)

Target Fosition  ~ \_ Controller
UAV (MAVLINK .
Bosition command) chlli-‘;ahu;rk

Controller

FIGURE 4: OVERVIEW OF PROPOSED SYSTEM ARCHITECTURE

The PixHawk and F550 components are already implemented, as the PX4 flight controller
software handles all communication with the UAV and internal calculations. The main area of
focus is setting up the software that will be running on the Raspberry Pi. The AprilTag and
MAVROS nodes need to be installed and set to read and publish on the correct topics. The
MAVROS node also needs to be able to detect the Pixhawk device over USB and send and receive
messages. This meant creating a Udev rule to assign the USB device a specific name and giving
that name to the MAVROS node to use as the target address. The user account also had to be
added to the dialout group to allow access to the USB port as a serial device.
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4.3  Camera Driver

Due to the recent release date of the Raspberry Pi 4 (2019) and its radically different
processor from previous generations, it does not support as much legacy software as the 3B. The
only Ubuntu release fully supported and readily installable on the Pi 4 is 20.04. This meant that
rather than using the older and more mature ROS Melodic as was done on the Raspberry Pi 3B,
which is supported on Ubuntu 18.04, we were forced to use ROS Noetic. ROS Noetic was only
released in May 2020, meaning it has far fewer packages available right out of the box. Fortunately
the AprilTag and MAVROS nodes were available, but the RaspiCam node used to get the camera
feed on the Pi 3B was not. This meant a camera driver node had to be written.

Leveraging online learning & tutorials [23], a simple node was created with OpenCV in
C++ to publish the image stream and the camera info topic to the correct places, both required
inputs for the AprilTag node. Unfortunately this node does not support any video modes other
than 640x480, as calling the OpenCV functions to change camera resolution would instantly crash
the node.

4.4  AprilTags

In order to maximise both detection range and up-close fidelity, it is proposed to use an
AprilTag array similar to that shown in Figure 5 on the ground vehicle. The larger AprilTag
(approx. 30cm) can be detected from further away providing increased range, whilst the small tag
(approx. 8cm) allows for greater detection reliability and precision up close [7], as it will be less
distorted on a fisheye lens, and less likely to be partially off frame.

FIGURE 5: PROPOSED APRILTAG ARRAY
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5 AprilTag Detection & Limitations

Angular resolution 8 of each tag pixel is inversely proportional to distance d from the
camera and linearly proportional to the width w of the AprilTag.

bl g
X — X
d’ w

EQUATION 1

Therefore assuming detection will fail at a certain angular resolution threshold, it is
expected that the maximum detection distance D should increase linearly with tag width:

D xw
EQUATION 2

In order to validate this expected relationship, AprilTags of various sizes were tested to
determine their maximum detection distance from the camera. This was taken as the distance at
which the detection would first begin to flicker as the AprilTag was slowly moved away from the
camera. Results from initial testing using the IMX219 sensor with a fisheye lens running at 640x480
resolution, shown in Table 2 and Figure 6 confirms a linear relationship as expected, but with a
small offset. This could be due to the fisheye distortion behaving differently at very close distances.
As we are not concerned with using very small AprilTags at very close distances, this should not
pose a problem.

AprilTag Size (cm) Maximum Reliable Detection Range (m)
8.0 £ 0.05 1.9 £ 0.05
14.0 £ 0.05 3.1 £0.05
30.3 £ 0.05 6.1 £ 0.05

TABLE 2: APRILTAG DETECTION DISTANCE VS SIZE, USING FISHEYE LENS AT 640X480
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AprilTag Detection Distance vs Tag Size,
using fisheye lens at 640x480

10 ]
R?=0.9987

)

Maximum Detection Range (m

0 10 20 30 40 50
AprilTag Size (cm)

FIGURE 6: APRILTAG DETECTION DISTANCE VS SIZE, USING FISHEYE LENS AT 640X480

Using the relationship found, the minimum AprilTag size required for a certain desired
maximum detection range may be estimated. Note that the usual limitations and uncertainties on
extrapolation are in play here, but given the very high RZ = 0.9997 value, this relationship should
provide a sufficiently accurate estimate of required tag size.

Should longer detection range be required than the largest feasible AprilTag size permits,
then either a smaller FoV camera can be selected, or the AprilTag algorithm can be run at a higher
resolution. The effect of both can also be achieved by increasing the feed resolution, then cropping
the image edges to the desired size. Increasing the resolution of the image scales the processing
time required approximately linearly with the number of pixels in the image [24], so in theory a
doubling of vertical and horizontal resolution would quarter the detection framerate. Assuming a
similar angular resolution per pixel to distance relationship as observed in Figure 6, this would
mean using resolution to increase the detection distance D by a factor would decrease framerate F
by the square of that factor:

EQUATION 3

As the current detection rate is 19 Hz, in order to stay above the 15 Hz detection rate
criterion, the resolution cannot be increased substantially if the Raspberry Pi 4 is to be kept as the
processor. Using different processors would allow higher resolutions to be explored.

It is noted that the fisheye distortion is greatest around the edges of the image, but the
AprilTags were detectable right up to the edge of the image, as seen in Figure 7. Thus the distortion
should not impact detection ability sufficiently to warrant concern. The distortion may introduce
an error into the estimated poses, especially near the edge. If this is found to be the case, further
effort should be directed towards undistorting the image before passing to the AprilTag node.
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FIGURE 7: APRILTAG BEING DETECTED NEAR EDGE OF FOV OF FISHEYE LENSED
CAMERA

6 Preliminary Flight Testing
6.1 Offboard Control with MAVROS

Before testing AprilTag tracking and landing onboard the UAV, it was necessary to first
demonstrate simple offboard control commands. This involved using MAVROS to send the
commands to the PixHawk using the MAVLink protocol and ensuring that the UAV performed
the command as requested.

Connecting both the onboard Raspberry Pi and a laptop to a portable Wi-Fi network
allowed Secure Shell (SSH) access onto the Pi to run a ROS node, which sent a take-off and position
hold at 2m above take-off point command to the PixHawk. Upon receiving the command the UAV
successfully took off, but extreme instability in the form of rapid oscillations and drift was observed
when attempting to hold at the requested position. A recording demonstrating the instability can
be viewed at https://photos.app.goo.2l/E6m1Kbb8JQDWeBYm6.

A common cause for instabilities is incorrect calibrations in the flight controller. The IMU
and motor Electronics Speed Controllers (ESCs) were recalibrated, but the instability persisted.
The flight controller PX4 software was replaced with the ArduCopter software, but this again did
not resolve the instability.

Unfortunately, this instability made it infeasible to continue trials with the F550. In order
to fix this and enable the F550 to continue to be used as a research platform by UWA in the future,
it is recommended that the flight controller is replaced with the latest PixHawk unit. The internal
IMU of the PixHawk being faulty is judged to be the most likely cause of this issue. However, this
is not guaranteed to fix the problem; it may be that there is a problem with some other hardware
— the frame, propellors, motors, or a combination of the above.
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7 Conclusion

Although disappointingly an AprilTag assisted automated landing was not achieved,
significant progress has been made in devising and implementing a robust and extendable
framework for the control and vision processing of a multirotor device using ROS. The viability of
multiple embedded computing platforms was evaluated, before settling on Raspberry Pi 4 and
confirming its ability to run the AprilTag detection algorithm at above 15 Hz.

The capabilities of the AprilTag detection algorithm on a wide angle 640x480 image were
investigated, and it was found that detection distance correlated linearly with tag width. This
relationship can be used in the future to determine required AprilTag sizes depending on the
distance requirements of the chosen landing algorithm.

It is recommended that the UWA F550 platform is upgraded to the newest PixHawk flight
controller, in an effort to eliminate the extreme instabilities observed in the test flight. It is also
recommended that Stealth Technologies invests in a new UAV platform as soon as possible, so that
work may continue on this project.

8 Plan for Future Work

Stealth Technologies has elected to purchase the VOXL m500 Development Drone for
continuation of this work. The m500 has a SnapDragon 820 mobile processor for low-power high
performance computing, an integrated flight controller running the PX4 Stack, and ROS
compatibility. This means that much of the work done so far should be transferrable to the new
platform. The main outstanding work is deciding on and implementing the actual landing algorithm.
An Extended Kalman Filter (EKF) needs to be run on the drone to fuse the position estimation
given by the flight controller with the detected AprilTag pose to create a relative position estimate
relative to the ground vehicle target. From the literature, there are then several approaches to the
landing algorithm that could be employed. These include a combination of proportional navigation
to approach the vehicle and a PID to land, or a model predictive controller with boundary layer
sliding control system. These control algorithms need to be analysed in depth to determine which
will give the best results for our system. Once the best approach is selected, it will need
implementation as a ROS node.

Aside from the actual landing algorithm, there are hardware features that need to be
considered too. There will need to be an automated system for securing the UAV to the vehicle
after landing, and an automated method of charging the UAV onboard the vehicle so that it may
embark on multiple missions after recharging. These solutions will need to be devised once the
precision of the landing sequence is known, so they may be tailored to fit the uncertainties
associated with it.

These tasks are expected to be continued by the author over the 2020-2021 Summer period,
as well as worked on by a fellow MPE student who is currently also working on a thesis with
Stealth Technologies.
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Appendix 1. Camera Driver ROS Node

#include <cv_bridge/cv_bridge.h>

#include <image_transport/image_transport.h>
#include <opencv2/highgui/highgui.hpp>

#include <ros/ros.h>

#include <sensor_msgs/image_encodings.h>

#include <camera_info_manager/camera_info_manager.h>

/7
//
//
//

//
//
/7

Author: Addison Sears-Collins

Website: https://automaticaddison.com

Description: A basic image publisher for ROS in C++
Date: June 27, 2020

Expanded by Timothy Masters
Masters Research Project, University of Western Australia
September 2020

int main(int argc, char** argv)

{

ros::init(argc, argv, "video _pub_cpp");
ros: :NodeHandle nh; // Default handler for nodes in ROS

// © reads from your default camera
const int CAMERA_INDEX = 0;
cv::VideoCapture capture(CAMERA_INDEX);
if (!capture.isOpened()) {
ROS_ERROR_STREAM("Failed to open camera with index " << CAMERA_INDEX <<

";

ros: :shutdown();
}
capture.set(cv: :CAP_PROP_FRAME_WIDTH, 640.0);
capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480.0);
capture.set(cv: :CAP_PROP_FPS, 40.0);

/** camera calibration information */
camera_info_manager: :CameralnfoManager cinfo(nh);
// get current Cameralnfo data
cinfo.setCameraName("Came");
cinfo.loadCameraInfo("file:///home/stealth/.ros/camera_info/Cam@.yaml");

sensor_msgs: :Cameralnfo ci(cinfo.getCameralnfo());

// Image_transport is responsible for publishing and subscribing to Images
image_transport::ImageTransport it(nh);

auto image_pub = it.advertiseCamera("camera/image_rect", 1);

// Publish to the /camera/image_rect topic
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cv::Mat frame;//Mat is the image class defined in OpenCV
sensor_msgs: :ImagePtr msg;

ros::Rate loop_rate(390);

while (nh.ok()) {
if(capture.isOpened()){
// Load image
capture.read(frame);
// Check if grabbed frame has content
if (frame.empty()) {
ROS_ERROR_STREAM("Failed to capture image!");
ros: :shutdown();
}
// Convert image from cv::Mat (OpenCV) type to sensor_msgs/Image
(ROS) type and publish
msg = cv_bridge::CvImage(std_msgs::Header(), "bgrs8",
frame).toImageMsg();
//pub_frame.publish(msg);
image pub.publish(*msg,ci);

//cv::imshow("camera"”, image);//display camera feed direct to screen
cv::waitKey(1); // Display image for 1 millisecond

ros::spinOnce();
loop_rate.sleep();

// Shutdown the camera
capture.release();

22



	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1  Motivation
	1.2  Objectives

	2 Literature Review
	2.1  Relevant Patents
	2.2 Scientific Literature
	2.2 Proposed Approach

	3 Hardware Selection
	3.1  UAV and Flight Controller
	3.2  Onboard Computer
	3.3  Camera

	4 System Overview & Software Implementation
	4.1  Software Selection – ROS
	4.2  System Overview
	4.3  Camera Driver
	4.4  AprilTags

	5 AprilTag Detection & Limitations
	6 Preliminary Flight Testing
	6.1  Offboard Control with MAVROS

	7 Conclusion
	8  Plan for Future Work
	Appendix 1. Camera Driver ROS Node

