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Abstract

The growing ubiquity of electric vehicles is often characterised through its increasing auton-
omy and connectivity. This has led to catalyse the foundations of smart cities and intelligent
transportation systems, where the applications of electromobility is often given a pivotal role
towards their realisation.

As the title suggests, this thesis presents its investigations into electromobility applications
across two key fronts — (1) computer vision-based autonomous driving, and (2) data
management and analyses of electric vehicle charging stations.

The study into vision-based navigation aims to address the problem of developing an
autonomous driving system that predominantly utilises the camera as the vehicle’s primary
environmental perception sensor. This research gap is attributed to the greater algorithmic
complexity in computer vision, as compared to LiDARs or radars. Additionally, the gen-
eral attainability of cameras, and the diminishing cost of parallel computation has further
contributed towards the motivation for this study. To this end, the requirements for visual
navigation are centred upon localisation and scene understanding. More specifically, this the-
sis describes applications pertaining to visual odometry and semantic segmentation following
an extensive literature survey. These methods are first tested for its feasibility on datasets
and mobile robots, and then verified on an autonomous Formula SAE electric car as the test
bed, enabling the vehicle to perform object detection, lane keeping and dead reckoning in
real-time. Experiments were conducted for road scenes and traffic cone drives, yielding fast
and accurate results for detections, classifications and odometry.

The electric vehicle charging station network managed by The REV Project comprise
of 23 AC stations at 7 kW and one DC station at 50 kW. Each station is connected to a
centralised server over the mobile network, perpetually transmitting telemetric data to the
server’s daemons. The data generated from these stations effectuates the investigation into the
charging behaviours across AC and DC stations, leading to the study of electric vehicle trends
around Perth. Results from this study comprise of a combination of time series analyses
that compares the cycles and energy consumption between AC and DC charges among local
stations. A web-based telemetry monitoring platform, REView, is further described in this

thesis. In addition to the charging stations, REView consolidates data from the project’s



xiv

electric vehicle fleet and solar power generation into a unified framework that features on-
demand monitoring for connected infrastructures. These are further detailed according to its
back-end processes, encompassing its communication architectures, data management, data
visualisation and presentation.

The cumulation of works that are presented here conforms to The REV Project’s goal that
describe contributions towards the fields of intelligent vehicles and the Internet of Vehicles.
These contributions are exemplified in this thesis through the successful application of visual
autonomous driving, and the analyses towards the electric vehicle trends in Perth, which

should subsequently encourage further developments in this area.
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Chapter 1
Introduction

Intelligent vehicles and transportation are attracting tremendous traction in recent years.
These interests are not only limited to public perceptions and academia, but participations
from major corporations beyond the automotive and computing industries are also greatly
contributing toward the developments in this area. The solutions stemmed are actively
deployed across various sectors, including transportation, mining, defence, agriculture,
telecommunications, energy and trade. As a result, many new vehicles are progressively
perceptive and autonomous; they are also becoming more environmentally friendly, often
relying on renewable energy sources to mitigate their carbon footprint. It is therefore not
uncommon to see them incorporating both elements into the same product. Case in point,
many autonomous vehicles are electrically driven, such as the example given in Fig. 1.1. Itis

often noticeable that autonomous, connected and electric vehicles are inextricably linked.

1.1 Autonomous Driving

The general attainability of precise sensors and high performance compute hardware have
driven recent interests in autonomous driving. Autonomous cars (also known as self-driving
cars or driverless cars) perform autonomous driving by processing sensor data using an
advanced control system that actively calculates the vehicle’s navigation trajectory with
obstacle avoidance. The sensors are often a combination of LiDARs, radars, sonar, GPS,
local odometry, cameras and inertial measurement units (IMUs), which collectively compute
through a process known as sensor fusion. Results from sensor fusion therefore enable the
vehicle to achieve self-localisation or dead reckoning, along with scene understanding and
object tracking. An example of an autonomous car is photographed in Fig. 1.2, showing its

roof-mounted cameras and positioning sensors.
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Fig. 1.1 An EasyMile EZ10 driverless shuttle at a UWA charging station.

While autonomous cars have been developed as early as the 1980s [1], many would
argue that it was not until the DARPA Grand Challenge [2] before mainstream research into
autonomous driving commenced. Since then, the developments in this area have been growing
at a rapid pace. Market research reports published in 2018-2019 [3-5] have estimated the
global capitalisation of autonomous vehicles to be valued at US$55 billion in 2019, with a
35 per cent average compound annual growth rate (CAGR). Further, the Global Automotive
& Transportation Research Team at Frost & Sullivan [6] is expecting this figure to raise up to
US$173 billion by 2030, and also stated that shared mobility services such as ride-hailing
are to contribute towards a 65 per cent share.

Legislations pertaining to autonomous driving is also increasing in response to its growth.
As of May 2019, according to the National Conference of State Legislatures (NCSL), 29
states in the United States have enacted autonomous vehicle legislations [7]. The NCSL
has also set up a publicly available Autonomous Vehicle State Bill Tracking Database that
is easily searchable to cover various topics from commercialisation to vehicle testing [8].
In Australia, the National Transport Commission (NTC) has been tasked by the Australian
Government to draft legislations relating to autonomous vehicles at the federal level [9],
including vehicle standards and safety concerns. This is performed while collaborating with
various state governments, including Western Australia’s Department of Transport [10] to

ensure nationwide consistency.
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Fig. 1.2 An autonomous car with its sensors visibly mounted on its roof.

Safety is often a salient aspect of any successful development or legislation of autonomous
vehicles. This landscape intends to minimise the human factor in driving, noting that human
errors caused 94 per cent of all vehicle accidents in the United States [11], which would imply
that an ideal autonomous vehicle penetration will reduce accidents by up to 90 per cent [12].
Similarly, 51 per cent of road fatalities in Australia are caused by the driver in 2018 [13].
In order to encourage the penetration and public perception towards autonomous vehicles,
MIT’s Technology Review has noted the lack of an industry standard for the safety of
autonomous vehicles, and have published a brief report relating to the safety regulations [14].

With the economics, legislation and safety setting the development baseline, autonomous
driving applications have since evolved from advanced driver-assistance systems (ADAS),
where it initially incorporated features including adaptive cruise control, automated parking,
blind spot detection, lane departure warning, automatic lane centring and collision avoidance.
Driving automation often consolidates these features with active navigation and control,
minimising the need for driver intervention. To this end, SAE International has classified
driving automation into five different levels under its J3016 “Levels of Driving Automation”
standard, ranging from Level O (manual driving) to Level 5 (fully autonomous driving) [15].
The official SAE J2016 graphic is given as Fig. 1.3. An increase in driving automation level
would typically require greater computation complexity, often using more sensors than its
preceding level. Automotive manufacturers have begun the inclusion of Level 3 automation

features in production vehicles since 2018, most notably with Tesla’s Autopilot feature.
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Fig. 1.3 The official graphic for the SAE J3016 standard as of January 2019 [16].

Trials for Level 4 and 5 automation are being conducted by technological corporates
such as Google (Waymo) and Uber. It is currently less favoured by production vehicles as
the addition of high accuracy sensors would render the ownership cost prohibitive. In the
case of positioning, conventional GPS devices have a reporting accuracy of approximately
10 metres, which is inadequate for autonomous navigation; many applications instead use
differential GPS or real-time kinematic (RTK) to obtain accurate positioning, incurring
higher implementation costs. On the perception front, vehicles often use LiIDARSs or radars to
survey their immediate environment, thereby enabling them to detect or classify objects, and
perform obstacle avoidance when necessary. LiDARs are typically preferred over radars in
for object tracking and mapping, as it provides distance measurements accuracies in the order
of millimetres. They are also capable of producing high definition maps, enabling precise
localisation for the vehicles. These vehicles often install multiple LiDARSs on their chassis to
achieve a 360° perception of its surroundings, often in addition to having dedicated LiDARs
for mapping. This further increases the implementation costs, especially considering that
individual LiDARSs often cost tens of thousands of dollars.
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Due to the lower cost of cameras compared to LiDARs, newer applications are starting
to favour using the camera as the vehicle’s main perceptive sensor. These applications use
computer vision methods to achieve localisation and object classification, often through
a single input. However, computer vision algorithms are often more complex, requiring
greater computation and memory footprints. This is particularly true when compared against
LiDAR-based methods, as they only output a series of measurements, as opposed to a series
of complete images that a camera outputs. Nevertheless, with the arrival of high-performance
parallel computers, computer vision methods are more likely to better utilise these hardware
platforms to achieve more desirable outcomes. These methods have been demonstrated to
deliver results pertaining to accurate localisation, mapping and scene understanding; ideally
replacing the need for LiDARs, radars, IMUs and local odometry. Using the cameras offer
a more cognitive approach to autonomous driving, whereby it mimics a human’s visual
perception of the world while driving. Tesla has always maintained a critical position towards
LiDARs and favouring the cameras due to its cost and due impracticality, with its CEO Elon
Musk claiming that “Anyone relying on LiDAR is doomed”, during his keynote address at
the 2019 Tesla Autonomy Investor Day [17].

This thesis describes works that contribute towards using the camera as the primary sensor
for autonomous driving, viz. visual autonomous driving. By evaluating these algorithms
on the testbed shown in Fig. 1.4, it was found that algorithms relating to environmental
perception and localisation can be substituted with computer vision methods. For instance,
visual odometry is used in place of wheel odometry and inertial measurements; object
classification, detection and tracking be done using the camera in place of LiDARs. Computer
vision methods are therefore more versatile as multiple algorithms are able to leverage on
a single data source. By doing so, these sensors can then supplement computer vision

measurements as an alternative to improve upon classification or measurement accuracies.

1.2 Electromobility

The increased awareness of climate change at the turn of the century is contributing to the rise
in sustainable and renewable energy sources worldwide. Heightened levels of greenhouse
gas emissions have prompted international treaties, most notably the United Nations Frame-
work Convention on Climate Change (UNFCCC). The UNFCCC Paris Agreement saw 195
ratifications to tackle issues relating to global warming, with a focus to reduce greenhouse
gas emissions, and to increase the share of renewable energy and energy efficiency, limiting
warming to under 1.5-2°C [18]. This agreement came into force on 4 November 2016.

Carbon dioxide (CO,) remains by far the largest contributor to greenhouse gas emissions (82
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Fig. 1.4 The REV Project’s autonomous Formula SAE Electric test vehicle.

per cent) [19]. In part, transport is responsible for 23 per cent of global emissions, and is
projected to increase to 50 per cent by 2050; car emissions constitute half of this figure [20].
In Australia, transport remains the second largest source of greenhouse gas in the country,
emitting 102 million tonnes (18 per cent) of CO, in 2018, and is projected to reach 111
million tonnes by 2030 at its current rate [21].

Noting that a vehicle’s CO; emissions increases with its fuel consumption and type, the
automotive industry is making efforts to reduce the carbon footprint of production vehicles
with the introduction of green vehicles that run on alternative fuels, including electricity.
Electromobility (or e-mobility) is a portmanteau of electric and mobility that is often used
to describe electric driving in light of its renaissance that began in the late 2000s. Since the
late 2010s, it is mainly used to describe electric vehicles (EVs), particularly electric cars as a
relation to current motoring trends.

Electromobility was first conceptualised in the 1900s, back when climate change was
unlikely to be a concern. The rationale to produce electric cars back then was to mitigate
rising fossil fuel prices while being less noisy. However, it was quickly phased out of favour
due to subsequent advancements with the internal combustion engine (ICE) [22]. Still, the
availability and know-hows in electromobility continued to persist and improve over the years
with overhead line-based transportation, and components such as motors and controllers
have become faster and more efficient. Throughout the century, several attempts have been
made to reintroduce electric driving to the market, more recently with the General Motors
EV1 [23], but inadequate battery technologies and slow charging speeds have restricted their
market penetration. These cars often use lead- and nickel-based batteries which are often

heavy and have lower energy densities that are insufficient to sustain a suitable driving range.
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The electromobility resurgence in the late 2000s was catalysed by climate change
awareness and government incentives. This began with the introduction of hybrid electric-
petroleum vehicles as a compromise between low tailpipe emissions and a limited electric
range, as the batteries can be charged off its engine, ceding its reliance on charging stations.
With the push towards zero tailpipe emissions by government lobbyists with additional
incentives, automotive manufacturers have begun producing plug-in hybrid and battery EVs
that mainly run on electric motors. Around the same time, the proliferation of lithium-ion
batteries in personal electronic devices has benefited from improved affordability and energy
density, to which these are adopted by EVs [24]. Using lithium-ion cells introduces longer
ranges and high speed charging to the vehicle, which is in line with current electromobility
trends. Another energy storage that is gaining attention with EVs is the hydrogen fuel cell,
which uses a redox reaction to generate electricity. These vehicles do not need to be charged,
but rather rely on hydrogen as fuel, which requires them to be filled up at hydrogen filling
stations. This requires hydrogen to be processed (often through electrolysis), transported and
stored multiple times throughout its production chain, constituting to high energy usages and
emissions that are three times higher than a battery EV [25] even before it can be used as
vehicle fuel. This is in addition to safety concerns during transport as hydrogen is highly
flammable. This is in contrast to rechargeable batteries that can easily be charged off the
grid.

The charging of EVs can occur at a standard electrical outlet, or at EV charging stations
(see Fig. 1.5) which are capable of delivering faster charges, and can be installed in public
or private car parks or garages. Charging station deployments are actively effectuated,
often by local public authorities and corporate enterprises, especially in developed countries.
PlugShare [26] is a website that maps charging station locations through crowdsourcing,
and currently tracks them in more than 112,000 locations worldwide with at least 170,000
outlets. Many of these stations belong to a charging station network, which is a collective
system of charging stations owned or managed by governments, automotive companies or
charging station manufacturers; a notable example is the Tesla Supercharger [27] network.
Many networks are capable of connecting to the Internet, which enables usage monitoring
and tracking for station users and administrators. Connected charging infrastructures such as
these are often also capable of facilitating smart charging or vehicle-to-grid (V2G) systems.

Regulations and incentives have been drafted across various countries either in prepara-
tions or in attempts to stimulate EV penetration due to increasing benefits beyond its carbon
footprint. These benefits include the running cost of the vehicle, as [28] has calculated
that an average EV (18 kWh/100 km) is up to five times cheaper to run per kilometre than
a typical ICE vehicle (11.1 L/100 km), and are up to 90 per cent more energy efficient.
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Fig. 1.5 UWA’s AC and DC charging stations.

Noting the higher initial cost of EV ownership, many countries have incentivised EV uptakes
across varying degrees [29]. Compared to successful initiatives such as in Norway [30],
the consumer acceptance of EVs is still low in Australia, and researches to encourage local
EV uptakes have been limited [31]. Notwithstanding, the Australian Senate has established
a Select Committee on Electric Vehicles to investigate this issue, resulting in a table of a
report [32]. The notable recommendations presented in this report include a development of
national strategy for EVs and charging infrastructures, and setting up a national EV target.
Researches in these areas will likely expedite the implementations of the recommendations.

This thesis presents works that address this area through a quantitative analysis of EV
charging behaviours using data that was collected from charging stations around Perth.
Comparisons are drawn across different charging station types, taking into account a variety
of usage scenarios to better visualise the current EV landscape, where it can be used to

supplement policy roadmaps to encourage uptake.

1.3 Connected Mobility

With the availability of low-cost GPS tracking, fleet operators have often relied on vehicle
tracking systems to remotely manage and monitor fleets of vehicles. Modern tracking devices
are capable of Internet connectivity to transmit telemetry data to a centralised remote server.
In addition to location information, this data can include diagnostics from various sensors on
the vehicle. In the case of EVs, this can include battery and charging information.
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Further advancements in vehicular communications have incited this to evolve as part of
the efforts in vehicle-to-everything (V2X) communications. V2X covers vehicular commu-
nication across several aspects including but not limited to V2I (vehicle-to-infrastructure),
V2V (vehicle-to-vehicle), V2C (vehicle-to-cloud) and V2G (vehicle-to-grid) [33]. These
technologies often communicate through a wired or wireless network over a machine to
machine (M2M) channel. In the case of wireless connectivity, mobile networks such as
4G are often favoured due to its high transmission speeds, with the incoming 5G standard
likely being favoured upon mass deployment, as optimisations are present to facilitate this
application. Using mobile networks for V2X applications is often referred to as cellular V2X
(C-V2X) [34].

With the advent of cloud and edge computing and the Internet of things (IoT), applications
pertaining to V2C communications are becoming increasingly prominent, which include
the works described in this thesis. V2C has specifically evolved from fleet management
systems whereby the addition of a cloud infrastructure presents the application with intelligent
control and monitoring [35]. In the case of an EV ecosystem, a V2C system is capable of
consolidating data relating to the EV, charging infrastructures, user behaviours and other
stakeholders to present a unified framework for the entire ecosystem. This establishes part
of the foundation that leads to intelligent transportation in a smart city, where data from
the driving ecosystem is mutually shared for traffic and grid optimisation with low latency
connectivity [36, 37], setting the foundation for the Internet of vehicles (IoV).

These communication technologies are easily incorporated into intelligent transportation
systems (ITS) to result in smart traffic management and planning; autonomous vehicles
will be able to drive cooperatively using a collective perception similar to multi-agent or
swarm robotics system. Automotive manufacturers have begun producing vehicles with
limited connectivity, but market researches have predicted this market to expand by 45 per
cent by 2020 with a 19 per cent CAGR [38]. These implications have not gone unnoticed
by governments. In Australia, the governments of Western Australia [39] and New South
Wales [40] have studied and produced reports relating to connected vehicles, and the Queens-
land Government’s Cooperative and Automated Vehicle Initiative (CAVI) [41] has been
established to devise policies pertaining to this matter.

Part of the work described in this thesis intends to establish some preliminary research into
connected vehicles in Western Australia. It describes a cloud platform that aggregates data
from edge computing that is delivered through a network of smart EV charging stations and
an EV fleet. This performs according to a V2C and infrastructure-to-cloud communications
system, thereby facilitating data management and reporting to deliver results relating to

diagnostics, monitoring and usage forecasts. It is also configured to be extensible to account
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for the exponential growth in vehicular and infrastructure data, serving as a pragmatic entry

into forthcoming big data researches.

1.4 Contributions

The series of works presented in this thesis aims to formulate pragmatic solutions pertaining
to the camera as the main sensor for autonomous driving, and interpreting data from EVs
and charging infrastructures in a meaningful way. It is multidisciplinary whereby cohesion is
ensured under the context of designing system frameworks for autonomous electric vehicle
applications.

To this end, the main contributions of this thesis are summarised as follows:

* A literature survey pertaining to visual road recognition with specific emphasises on
the methods for autonomous driving applications. Learning methods are presented
against conventional methods; recent works relating to academia and the industry are
discussed. [Chapter 2]

* A literature survey pertaining to visual odometry with specific emphasises on au-
tonomous driving applications. These are categorised according to the types of camera

used in relation to the current state of research. [Chapter 3]

* An incorporation of visual odometry and semantic segmentation into a multi-robot
system. This introduces visual navigation onto an existing system to improve odo-
metric accuracies, and to enable scene understanding for dynamic object recognition.
[Chapter 4]

* An implementation of semantic segmentation on a physical LiDAR-based autonomous
driving testbed. This proposed method uses a low-cost monocular camera to segment

road regions and lane markings for road centring. [Chapter 5]

* An autonomous driving software framework that is modularly unified to interface
sensors with control modules independently. This framework uses protocol buffers
to streamline module interoperability to provide an optimised compute performance.
[Chapter 6]

* A hybrid extension to the aforementioned software framework using Robot Operating
System (ROS). Algorithmic additions to path planning and visual navigation are

included, along with sensor interfaces and safety functionalities. [Chapter 7]



1.5 Thesis Outline 11

* A hardware-in-the-loop (HIL) simulation system for autonomous driving without real-
time constraints. The compute hardware is identical to that used on the autonomous

driving testbed using the same ROS integration. [Chapter 8]

* A web-based software framework for electromobility telematics. It aggregates and
curates data from connected vehicles, charging infrastructures and energy sources,
interpreting it for meaningful real-time monitoring and visualisation. [Chapter 9]

* An analysis of EV charging behaviours on charging stations in Western Australia.
Comparisons are drawn across the types and locations of charging stations for their

adoption rate, and cost model presented subsequently. [Chapter 10]

1.5 Thesis Outline

This thesis comprises of 11 chapters, wherein two chapters present on background reviews,
five on autonomous driving frameworks or methods and two on electromobility telematics.
The 10 chapters that are subsequent to this introductory chapter are structured as follows:

Chapter 2 presents a survey into the current state of research on methods for computer
vision-based road recognition. The backgrounds into the methods are first presented
categorically according to conventional (non-learning) and machine learning meth-
ods, followed by the implementations of these methods. Conventional methods are
presented structurally, following common implementations including horizon and
vanishing point detection, region of interest isolation, image classification and model
fitting; machine learning methods relate to support vector machines and deep learning
approaches, covering popular datasets and image segmentation algorithms. These
methods are further reviewed for their implementations in relation to autonomous
driving. This is presented first as commercial implementations, covering works from
corporates and startups, before presenting on recent academic works with practical

implementations.

Chapter 3 presents a review on visual odometry methods for autonomous driving across
three approaches — monocular, stereoscopic and visual-inertial. Related applications
are discussed for each approach, focusing on works with practical implementations.
This is followed by tables that summarise the methods and their presented applications
with any applicable datasets. A discussion is drawn to analyse the practicality of the

works presented, emphasising on their viability for autonomous driving applications.
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Through this review it was known that many works truncate upon experimental vali-
dations on datasets, and never proceeded with a tangible implementation, leading to
a scarcity in their implementations for autonomous vehicles. This chapter concludes
by drawing the necessity of such implementations, as the dynamism of real-world

environments must be accounted for.

Chapter 4 describes an implementation of visual odometry and semantic segmentation onto

a multi-robot system. The proposal of this implementation acts as a preliminary testbed
for the visual navigation algorithms to test their application feasibility before they are
ported onto an actual road vehicle. In addition, the incorporation of these algorithms
intends to improve upon the existing multi-robot system’s localisation accuracy, as
well as supplementing navigation with scene understanding. In particular, as the
existing system localises upon wheel odometry, the introduction of visual odometry
intends to mitigate the error accumulation caused by wheel slip, a common problem
that occurs in wheel odometry systems. Navigation on the system is performed in a
decentralised manner, such that navigational algorithms run independently on each
robot without relying on an external or central computer. Evaluations on the visual
navigation algorithms have ascertained the feasibility of their implementations in
solving problems relating to odometry and object classification while being resilient

against environmental dynamics.

Chapter 5 focuses on the application of a semantic segmentation method onto an au-

tonomous driving testbed. The existing testbed is equipped with a LiDAR for object
detection, and the addition of visual navigation intends to supersede that to achieve
scene understanding and object perceptibility. A low-cost USB camera is mounted
onto the vehicle’s frame, where it and the other sensors are physically calibrated for
camera-LiDAR distance measurements. Semantic segmentation is then applied to the
camera recordings and its pixel accuracy is subsequently measured. Experimental
results have shown that segmentation is adequate for road markings and lane detection

on Perth roads.

Chapter 6 explores the first iteration for an improved software framework for the au-

tonomous driving testbed. The original framework heavily relied on a central Control
module which required all sensors and submodules to run. The proposed framework
is more efficient whereby it is programmed using a C++ interface across all modules.
Existing modules are either translated or reprogrammed, which streamlines and opti-
mises individual algorithms to run on the testbed’s embedded computer, enabling high

performances throughout the software architecture. Module interoperability is ensured
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using protocol buffers, which separate them into independent classes. Experimental re-
sults have validated the efficiency of the software framework, which is given in outputs

relating to localisation, odometry, path planning, control and semantic segmentation.

Chapter 7 proposes a hybrid enhancement to the C++-based software framework as a high-
level control system. This new framework is based on ROS, and modularly combines
sensor data and navigation processing for autonomous driving, while simultaneously
ensures vehicle safety and provides data visualisation. It is capable of navigating along
with a set of predefined waypoints, or along a cone-delimited path. Visual navigation is
once again presented for road and lane detection using semantic segmentation, visual
odometry and cone tracking. A HIL simulator is also presented to introduce a parallel
development platform using identical compute hardware. Experiments were conducted
for sensor fusion, waypoint driving, cone driving and the simulator, where results
have collectively demonstrated the system’s robustness and adequacy for practical

implementations.

Chapter 8 expands on the HIL simulation system described to elaborate on its features.
Using a HIL system enables algorithmic prototyping to be rapidly deployed while
reducing such risks when compared to a physical system. This is a CARLA-based
simulation system at the front-end, whereas autonomous driving routines are per-
formed using identical ROS-based compute hardware across real-world and simulation
testbeds to illustrate realistic constraints in relation to its computation footprint. This
include using identical ROS modules for LiDAR point clouds and camera visuali-
sations. Comparisons were made between the simulation and the physical system,
with articulations on the cone detection (LiDAR and vision-based) and path planning
algorithms. Evaluations were drawn to benchmark these algorithms, in addition to
vehicle dynamics and computation requirements, where it was verified that the tests
conducted are transferable between physical and simulation systems.

Chapter 9 introduces the electromobility research in this thesis by detailing the software
framework used to collect and process telemetry data from various EVs and their
infrastructures. A centralised cloud server is developed for this telematics platform
which EVs, charging infrastructures and power sources push data to. The application
layer is entirely web-based and is capable of pulling data in real-time for user mon-
itoring and visualisations. This is presented for charging stations, EV fleet tracking
and energy generation, wherein for each section, the back-ends and algorithms are
elaborated to result in visualisations. Gamification is presented for vehicle tracking

to encourage economical driving, and monetisation options are presented as bills to
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inform users of energy usage in charging stations. The results generated from this
telematics platform were summarised as usages pertaining to charging infrastructures
and energy generation, as well as heat maps for EV tracking. A forecast of the charging
infrastructures’ usage is also presented and analysed as a precursor to predicting the
local EV penetration. All platform modules were written in a modular approach to

encourage future improvements and expansions.

Chapter 10 investigates EV charging behaviours by analysing data on the telemetry platform.

This begins with a background on various types of EV charging worldwide, followed
by charging speeds and cycles. Data is collected from charging stations managed
by The REV Project, with comparisons drawn using data from the RAC Electric
Highway in Western Australia. Data is analysed through various time series analysis,
which investigated station usage frequencies and energy consumption over a predefined
period; samples are given in hours-of-day and days-of-week to study usage patterns.
A cost model is drawn to estimate the costs for running and maintaining different
types of charging stations, and external scenarios such as parking bay rentals are also
considered. These analyses are validated using a similar study, and it was concluded
that slower charging stations are becoming obsolete and are shifting towards personal

installations, whereas public installations will prefer fast-charging stations.

Chapter 11 concludes this thesis with a summary of the contributions made, along with

suggestions to outline future research directions.



Chapter 2

A Methodological Review of Visual Road
Recognition Procedures for Autonomous
Driving Applications

The current research interest in autonomous driving is growing at a rapid pace, attracting
great investments from both the academic and corporate sectors. In order for vehicles to
be fully autonomous, it is imperative that the driver assistance system is adapt in road and
lane keeping. In this paper, we present a methodological review of techniques with a focus
on visual road detection and recognition. We adopt a pragmatic outlook in presenting this
review, whereby the procedures of road recognition is emphasised with respect to its practical
implementations. The contribution of this review hence covers the topic in two parts —
the first part describes the methodological approach to conventional road detection, which
covers the algorithms and approaches involved to classify and segregate roads from non-road
regions; and the other part focuses on recent state-of-the-art machine learning techniques
that are applied to visual road recognition, with an emphasis on methods that incorporate
convolutional neural networks and semantic segmentation. A subsequent overview of recent
implementations in the commercial sector is also presented, along with some recent research

works pertaining to road detections.

2.1 Introduction

The field of autonomous driving is attracting much attention lately, ever since its feasibility
was established in the 2007 DARPA Urban Challenge [42]. These days, technological and

automotive corporates are expediting the announcements of autonomous vehicles to the
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consumer market alongside electric vehicles, which are also becoming imminently available.
From a research standpoint, this area is also well-documented in the literature. Conventional
systems often rely on radar and subsequently, LiDAR to detect road kerbs and edges, but
with the advancement of computer vision, cameras are quickly replacing these sensors as the
preferred sensor to detect and recognise roads. Cameras also benefit from being versatile
and low-cost, in addition to its ubiquity which enables the deployment of visual autonomous
driving on a larger scale.

Using cameras for road detection and recognition however introduces challenges whereby
it is heavily reliant on the robustness of the image processing algorithms to accurately recog-
nise road regions, often in real-time. This is unlike LiDAR and/or radar-based approaches
that usually relies on the processing of the sensor’s measurement values to classify roads
from non-road regions around the vehicle. A robust algorithm for road recognition should
account for the dynamic variations of road types, conditions and illumination, as well as
seasonal and weather changes pertaining to the road scene, while being able to accurately
perform road classification.

A comprehensive background study and review on this topic was presented in 2013 [43],
whereby the authors have discussed the problems faced by visual road detection and recogni-
tion, particularly in the two categories of common roads — structured (with lane markings)
and unstructured (without lane markings). Like most visual computing problems, visual
road detection is also susceptible to variations of lighting, along with weather and seasonal
changes. Solutions to visual road detection are similar to most visual computing approaches,
whereby a captured image frame will first undergo preprocessing to reduce noise and other
imperfections. The image will subsequently have its features detected and extracted using
algorithms such as Scale-Invariant Feature Transform (SIFT) [44] or Speeded-Up Robust
Features (SURF) [45], and then distinguishing these features as road areas. These extracted
features will correspond to areas on the image where road and non-road regions are distin-
guished. This is essentially a sequential process of image preprocessing, feature extraction
and model fitting [46]. Aspects that are unique to visual road detection are the prevalence of
the horizon and the vanishing point of the road. The horizon is the boundary of the frame
where the sky and land meets; the vanishing point is the point where the road converges
to. These aspects along with the road establish the region of interest (ROI) where visual
processing can be carried out.

With the advent of deep learning, convolutional neural networks (CNN) are increasingly
being incorporated into road detection algorithms to train and classify roads with improved
accuracy [47—49]. Using CNN introduces high processing requirements and increases the

complexity of the algorithm. Such an algorithm is usually trained offline at a dedicated
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server or workstation to obtain a dataset related to the driving environment. Datasets for
road detection includes KITTI [50] and Daimler [51]. Conversely, there are proposals of fast
and simple algorithms that perform road recognition without the need of another computer
and does not require training [52, 53]. This further classifies visual road recognition into
supervised and unsupervised algorithms, indicating the presence or absence thereof a training
classifier within the algorithm. This being said, the application of CNNs onto an image
processing problem means that computation using the graphics processing unit (GPU) is
rapidly gaining in popularity. The high parallelism of GPU architectures is especially suitable
for the parallel nature of visual and deep learning applications such as road detection. The
Nvidia DRIVE [54] solution is a testament to this, whereby an industrial GPU maker is
currently developing GPU solutions to autonomous driving that is centred around deep
learning and computer vision. Additionally, other specialised hardware such as Mobileye’s
Automated Driver Assistance System (ADAS) is the core technology utilised by many of
their 27 automotive manufacturer partners across 313 models for their autonomous driving
feature [55].

This paper is organised as follows. Section 2.2 presents works covering the procedural
implementation of road detection using standard classification methods, including the detec-
tion of vanishing points, region of interests, image classification and model fitting. Methods
that incorporate machine learning, particularly on CNN and its methods, are presented in
Section 2.3. Section 2.4 presents commercial implementations with regards to products and
courses with road recognition, and Section 2.5 presents the current trends and works in recent

years for road detection before this the concluding remark is presented in Section 2.6.

2.2 Conventional Methods

Road recognition for autonomous driving generally follows the methods described in Sec-
tions 2.2.1 to 2.2.5 chronologically. More specifically, many implementations start with a
preprocessing stage to filter image noise and other inconsistencies, followed by a horizon
detection algorithm to crop the horizon so that the image is processed only at the road
portion that is below the horizon line. Researchers may then use vanishing point detection
to orient or localise the vehicle on the road. Regions of interests may be used to isolate the
process on road or lane marking edges for image classification. During image classification,
methods include using a combination of either edge detection, colour histograms, textural
comparison, machine learning or neural networks; which is then typically classified in binary
(non-road/road regions) through methods such as Gaussian filtering or confidence voting.



18 Visual Road Recognition Review

Finally, the navigational boundaries are marked on the edges with lines and subsequently

plotting the centre path for the vehicle to drive on.

2.2.1 Horizon Detection

Horizon detection algorithms are typically used for road detection to crop the image frame,
thereby reducing overall computational requirements. Horizon detection is generally applied
onto a preprocessed image to calculate the boundary of the skyline for an image frame.
The area above the horizon will be isolated and ignored for the rest of the computation. A
fast horizon detection algorithm is favourable to present minimal processing and memory
footprint with reference to the overall visual road recognition solution. While the fastest and
simplest approach may be to fix the horizon at a constant pixel location according to the
camera’s orientation, this assumes that the vehicle is always traversing on a perfectly even
terrain with no variations of pitch nor incline, which is generally unachievable under normal
driving circumstances. Horizon detection is either edge-less or edge-based [56]. Edge-less
approaches use edge classification whereby the horizon is detected by removing non-horizon
edges through the refinement of the edge map; in an edge-less approach, each pixel location
is classified according to their probability of it being on the horizon. An edge-based approach
was proposed by Lie et al. [57], where a multi-stage graph was generated from an edge map
using a dynamic programming algorithm. An edge-less approach was proposed by Ahmad
et al. [58] which instead uses a classification map to find the horizon line that incorporates
machine learning and dynamic programming. According to the authors, using an edge-less
approach will not require the assumption of the horizon line being close to the top of the
image frame. An example of the process of using an edge-less algorithm is illustrated in
Fig. 2.1. Ahmad et al. went on to propose a method that fuses edge-based and edge-less
approaches [56], outperforming both edge-based and edge-less approaches. On the deep
learning front, Verbikas and Whitehead [59] incorporated CNN into horizon detection, which
outperforms other classifiers in their experiments in accuracy. CNN was applied to train

classifiers to recognise sky and ground features with spatial feature extractors.
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Fig. 2.1 An edge-less horizon detection algorithm generates a dense classifier score image
(DCS)) (b) from a query image (a) using trained classifiers, where a threshold is then applied
(c) before it plots the horizon line (d). Reprinted with permission from [58]

2.2.2 Vanishing Point Detection

This is typically used in tandem or as an alternative to horizon detection to localise the vehicle
with respect to the image frame. The vanishing point is a point on an image where a pair or
more parallel lines in 3D space converges to. According to Rother [60], the detection of a
vanishing point consists of an accumulation step and a search step. The accumulation step
clusters line segments that share a common vanishing point and the search step searches for
dominant line clusters. Rother noted that the random sample consensus (RANSAC) method
could be used to speed up vanishing point detection, to which Bazin and Pollefeys [61]
proposed an approach that uses only three lines to achieve this. They proposed this approach
for a three-degrees of freedom (3DoF) robotic manoeuvrability system similar to a ground
vehicle. This effectively enables the system to estimate its rotation based on its captured
visual lines and vanishing point. Kong, Audibert and Ponce [62] described an approach to
road detection that centres around vanishing point detection, and their method is as illustrated
in Fig. 2.2. They proposed the Locally Adaptive Self-Voting (LASV) algorithm that estimates
the vanishing point based on a confidence model in a local region for texture orientation
estimation. While it is more accurate than conventional voting approaches, Zhu et al. [63]
noted that this approach does not perform well in suburban environments with dense roadside
vegetation and fixtures. They subsequently utilised a colour histogram method to compare
the captured image against an a priori model to obtain the vanishing point. Still, line voting
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remains a popular method to achieve vanishing point detection and it is also used by Zhu et
al. and other recent works [64—-68].

Fig. 2.2 Vanishing point estimation of seven desert road images showing the LASV algorithm.
Reprinted with permission from [62].

2.2.3 Region of Interest Isolation

ROI isolation methods are used as a popular approach to recognise road segments from
non-road segments. An ROI is usually identified and defined in frames before these image
segments are classified. Instead of needing to process the entire frame, using an ROI isolates
image processing to a frame’s specific region to further reduce computing requirements. This
may be used in tandem with horizon detection where certain regions below the horizon line
are designated as the ROI. For road recognition, the ROI is generally a definitive region
that encompasses both road and non-road regions or lane markings, as classification can
then be drawn from processing that ROI. While conventional ROIs are usually fixed at a
predetermined location on a frame, this assumes that the road boundary will always be on the
same frame location [69, 70]. To circumvent this, adaptive ROI algorithms were proposed as
a more robust solution that adjusts to illumination changes [71] or the location of vanishing
points [72].
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2.2.4 Image Classification

Image classification is used in this context to classify an image into road and non-road areas
using a binary classifier [53]. Roads are recognised through a combination of the road lane
markings and road boundary. Lane markers are usually painted in high contrast from the
road surface to be conspicuous to the drivers, and visual processing also benefits from this
whereby good edge detection results can be obtained more easily. Conversely, variations
in road lane appearances such as colours, lines and condition from wear and tear may pose
a challenge for lane detection algorithms [73]. Works that attempt to circumvent these
variations include [74, 75]. Some roads, especially non-gravel roads, are unstructured and
have no lane markings at all. In these circumstances, lane detection algorithms will not
work, and road boundary detection algorithms will be applied. On urban roads, the road
boundary is perceived as the region where the asphalt meets an unpaved ground. Works that
detect road boundaries may also use kerbs [76] or highway barriers [77]. More robust road
boundary detection algorithms aim to work across different road types, including dirt roads
and snow roads [62]; or variations to illumination and weather such as night driving and
rain [78, 79]. Techniques used for both road lane and boundary detection may vary, but they
may also share some similarities, especially with the usage of edge detection algorithms.
For instance, stereoscopic sensors can be used to perceive the tangible road boundaries in
urban areas, which works as an alternative to radar or LiDAR [80], or in conjunction for
added robustness [81]. Non-urban roads commonly share the same plane as non-road areas,
so such detection algorithm should be purely appearance-based. An example of such an
algorithm was proposed by Cristéforis et al. [53], where they applied a mixture of Gaussians
(MOG) model onto an image’s ROI on HSV colour space that is converted from RGB. This
more commonly known as the Gaussian mixture model (GMM). The GMM is a form of
Bayesian classification, which performs decision making using the probability theory based
on the maximum likelihood estimation (MLE). As its name suggests, a GMM a combination
of several Gaussian distributions and hence the MLE is derived from the weighted sum
of the Gaussians as the probability density function [82]. In the context of road detection,
GMM analyses the colour distribution of the road and estimates the colour model based its
similarities with similar model groups. Gaussian models are widely used as a supervised
learning approach to image classification. Other works that incorporate a Gaussian model
include [83, 84]. Alkhorshid et al. [85] used a histogram obtained from the calculation of
frequency distribution of pixel values, and subsequently used candidate training to classify
whether or not the ROI is fully, partially or not part of a road region; this is modelled after

the AdaBoost classifier [86] that is employed to minimise weighted errors. Other methods of
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classification include using textural features [87, 88], which assumes a homogeneous road

texture that is compared to non-road textures.

2.2.5 Model Fitting

Once road and non-road regions have been classified in the image, navigational boundaries
must be marked (fitted) to prevent the vehicle from veering off course. These boundaries
can be marked more easily on marked roads using edge detection algorithms that benefit
from the large gradient values. Edge filters such as the Sobel and Canny filters are commonly
used [89-91]. Regions of the high gradient can then be plotted according to the filters’
results. These plots will result in the road or lane boundary, and they can either be parametric,
semi-parametric or non-parametric [46]. Parametric models comprise mostly of straight
lines [62]; semi-parametric models comprise of splines [92] and polynomial curves [93, 94];
and non-parametric models comprise of continuous arbitrary lines [53]. Urban roads typically
have well-defined lane markings and boundaries, hence these navigational boundaries can
be marked with a parametric or semi-parametric model, effectively reducing computation
complexity. Rural and unpaved roads may require the use of semi or non-polynomial models.
Outliers are commonly present with fitting models, therefore it is also common to implement
RANSAC for outlier rejection at this stage. Aly [83] used RANSAC to fit lines and splines in
his lane detection algorithm, and it is applied after performing a simplified Hough transform
for lane line counting. With the road/lane boundaries marked, the vehicle can then be guided
to drive at the centre of the road/lane by finding the distance between its left and right
boundaries. In addition to road boundaries, model fitting can also be applied for marking
the horizon and path for navigation, such as the approach used by Cristéforis et al. [S3]. A
popular technique of model fitting in road recognition is the Hough transform [95]. The
Hough transform is a shape analysis technique typically used to extract shape features from an
image. Road detection and recognition works commonly apply Hough line transform on an
edge-detected image to detect lane markings and road edges according to the aforementioned
line models. This achieves road segmentation, splitting road sections for vehicles to recognise
areas such as lanes and non-road areas. The Hough transform uses a voting procedure to
fit lines. This means that each point that may correspond to a line section votes for the
likelihood that a line section may be from. More votes are cast when more points lie on the
same line, and lines with higher votes will be fitted [96]. Fig. 2.3 illustrates an example of
lane detection using Hough transform, the blue and red lines mark the left and right edge
of the lane respectively, where a driving rule can be established to ensure that the vehicle
does not cross these boundaries while driving. Works that employ the Hough transform or a
similar voting approach to classify road and non-road regions are [49, 62, 63].
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Fig. 2.3 Lane detection with Hough transform performed using OpenCV

2.3 Learning Methods

Many works are implementing learning methods these days for road recognition, where
support vector machines (SVMs) [97, 98], neural networks [99] and AdaBoost [100] are
among the more commonly implemented approaches. A neural network approach was
proposed as early as 2003 by Conrad and Foedisch [101] using Matlab’s Neural Network
Toolbox. The authors compared this approach to an SVM approach and noted that while
SVMs are more accurate, their computation times are long for road classification tasks. It is
noted that SVM has historically been a mainstream learning method for road recognition,
with newer implementations incorporating dynamic programming to account for the changes
in road scenes [102]. Learning methods on road recognition is seeing a rise in popularity also
due to the increased demand in autonomous driving, and the KITTI benchmark suite also
includes are road and lane detection evaluation benchmark since 2013 [103]. This benchmark
categorises road scenes according to a combination of roads types including urban marked,
unmarked, multiple marked lanes/roads. There are currently 336 benchmark submissions for
the categories to date, using various methods such as SVM [104], CNN [105, 106] and may
incorporate other sensors such as LiDAR [107].

Due to the increased availability of parallel computers nowadays, recent works are more
commonly implementing convolutional neural networks for road recognition in favour of
SVM and custom networks. CNNs are feedforward neural networks with more than one
convolution layer. This convolution layer applies a function repeatedly over the output of
other functions, which greatly benefit from parallel computation. For road recognition, CNNs
are commonly used for object detection and image segmentation, which are used on road

scenes to detect and discern areas in the image that encompasses an object, where in addition
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to roads, it also segments other elements such as pedestrians, vehicles, vegetation and road
signs. This process is commonly known as semantic segmentation. Semantic segmentation
classes objects in an image according to its pixels, thereby improving the system’s compre-
hension towards road scenes in addition to road classification over conventional learning
methods, allowing for a more holistic autonomous driving system that also incorporates
features such as road sign understanding, pedestrian and vehicle detection, and collision
avoidance [108-110]. Thoma [111] and Garcia-Garcia et al. [112] published surveys of
semantic segmentation, which include a good background study of the underlying approaches
of semantic segmentation. While the KITTI benchmark suite has not yet incorporated a
semantic segmentation benchmark, it does provide a list of resources of KITTI images
with semantic labels. MultiNet [109] is an example that combines semantic segmentation,
classification and detection for road scenes that is consolidated from the same encoder to
minimise time redundancy. Results were tested and benchmarked on KITTI’s road dataset
where it is found to be capable of real-time processing.

Semantic segmentation uses neural networks and is hence trained and tested on datasets.
The review paper by Garcia-garcia et al. [112] provides a detailed analysis of the datasets used
in semantic segmentation, categorising them into 2D, 2.5D and 3D datasets. The KITTI [113],
CamVid [114] and Cityscapes [115] datasets are more commonly associated with training
and testing semantic segmentation for urban road scenes. The KITTI Vision Benchmark Suite
is an actively maintained project by the Karlsruhe Institute of Technology and the Toyota
Technological Institute of Chicago. Images were obtained by driving a car around Karlsruhe,
Germany, covering a variety of road scenes. This benchmark suite spans across several
categories including optical flow, stereo vision, visual odometry, and road/lane detection. The
road/lane detection evaluation benchmark consists of 289 and 290 training and test images
respectively. Additionally, the CamVid dataset was proposed in 2008 containing 367 training
and 233 testing images. Images were obtained from the City of Cambridge, England by
driving a car around. This dataset was created for semantic segmentation and each training
image pixel is labelled with a different shade of grey corresponding to one of the twelve
classes for road scene objects, forming the ground truth. Finally, the Cityscapes dataset was
obtained from 50 cities in Germany from a road vehicle across three seasons. This is a 5000-
image dataset whereby 2975, 500 and 1525 images are categorised for training, validation
and testing respectively. The authors of Cityscapes made comparisons to KITTI and CamVid
and noted that semantic labelling can be easily achieved with their smaller datasets and that
the Cityscapes dataset provides a better challenge for new semantic segmentation approaches
with its much larger dataset. Table 2.1 summarises the datasets presented here according to

its publication data and number of sample images for training and testing.
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Table 2.1 Summary of road datasets presented

Image Samples
Dataset Year

Training Testing

KITTI-Road [113] 2013 289 290
CamVid [114] 2009 367 233
Cityscapes [115] 2016 2975 1525

Examples of works that focuses on semantic segmentation for road scene recognition
are SegNet [110], KittiSeg [109] and ENet [116]. SegNet was proposed by Badrinarayanan
et al. as a CNN architecture that is often implemented on the Caffe [117] framework. Its
architecture uses an encoder-decoder network that is followed by a pixelwise classification
layer, where the encoder and decoder networks consist of 13 convolutional layers each. The
encoder network is the same as the VGG16 [118] network, which performs convolutions
to obtain a set of feature maps. The decoder network then upsamples the feature map of
each corresponding encoder, producing dense feature maps that are then batch normalised.
A soft-max classifier at the output then individually classifies each pixel into one of twelve
object classes to form the output image as illustrated in Fig. 2.4. SegNet’s proposal was
compared against fully convolutional network decoding technique, also based on the VGG16
network, and DeconvNet [119], which uses fully connected layers. The authors tested
SegNet on the CamVid dataset and SegNet’s road scene segmentation results showed that
while DeconvNet and SegNet yielded favourable results, SegNet’s computational cost was
significantly lesser due to its network being smaller. KittiSeg is the segmentation sequence
of MultiNet whereby encoding is performed using the first 13 layers of the VGG16 network
like SegNet. The fully connected layers of the VGG architecture is then transformed for
decoding, thereby employing a fully connected network architecture. The authors used
the KITTI Road Benchmark dataset for training and noted that the network converged
quickly with high road segmentation efficiencies, which placed their KittiSeg on top of
KITTT’s road leaderboard at the time of its publication. An example of KittiSeg’s input and
output on the Cityscapes dataset is as illustrated in Fig. 2.5. Paszke et al. noted that the
VGG16 architecture that these works are based on are very large and hence less suitable for
embedded and mobile applications, leading to the proposal of ENet [116]. Since real-time
semantic segmentation requires a frame rate of at least 10 frames per second (fps), this is
difficult to achieve on embedded computers. ENet is a custom-designed neural network
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architecture proposed for high computational speed and accuracy that is designed based on
ResNets [120]. Performance tests showed that ENet is about 17 times faster than SegNet while
running on an Nvidia Jetson TX1 [121] embedded computer while being significantly more
memory efficient. Training and testing benchmarks were performed across the Cityscapes,
CamVid and SUN RGB-D [122] datasets with their results compared against SegNet. By
measuring the intersection over union (IoU) matrices, ENet was able to outperform SegNet
in the Cityscapes dataset, as well as the CamVid dataset in six of its eleven classes. Treml
et al. [123] subsequently proposed a new architecture that improves on the accuracy of
ENet, while being implementable on embedded computers for real-time inference. This
architecture follows SegNet whereby it uses an encoder-decoder pair. The authors modified
a SqueezeNet [124] architecture for its encoder network favouring its low latencies, and a
parallel dilated convolution layer [125] as its decoder to retain high computation performance
while using fewer parameters. Testing and training were performed on the Cityscapes dataset
over the Caffe framework. Results were compared against ENet, outperforming it in its
IoU matrices in both class and category, while compromising on slightly lower framerates
on the Jetson TX1, but still exceeding the 10 fps requirement for autonomous driving. A
summary of the semantic road segmentation algorithms are presented in Table 2.2, listing
each algorithm according to its encoder-decoder network, and the datasets used for their

experiments.

Fig. 2.4 SegNet’s input (left) and output (right) for a typical Western Australian road scene.
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Fig. 2.5 KittiSeg’s input (left) and output (right) on the Cityscapes dataset using a Tensor-
flow [126] implementation. Reprinted with permission from [127]

Table 2.2 Summary of semantic road segmentation algorithms presented

Algorithm Year Encoder Decoder Dataset
SegNet [110] 2015 VGG16 Custom CamVid
KittiSeg [109] 2016 VGG16 Fully convoluted KITTI Road

ENet [116] 2016 bottleneck bottleneck CamVid, Cityscapes

Treml et al. [123] 2016 SqueezeNet 1.1 Parallel dilated Cityscapes
convolutions

2.4 Commercial Implementations

Commercial implementations of road recognition in the automotive industry are largely
based on the availability of original equipment manufacturers (OEMs) that supply advanced
driver-assistance system (ADAS) computers and sensors. Mobileye [55], Nvidia [54], Velo-
dyne [128] and FLIR [129] are few of the OEMs involved in manufacturing autonomous driv-
ing systems. Mobileye is reputed for their ADAS system-on-chip (SoC) called EyeQ [130],
where in addition to lane keeping, it is capable of supporting sensor fusion, visual com-
puting, path planning etc. towards full (Level 5 [131]) autonomous driving while being
power-efficient. Nvidia’s DRIVE PX [54] system uses its graphics processing unit (GPU)
architectures to deliver on fast learning performance on mobile vehicles. They recently
announced the Drive PX Xavier computer, which is an SoC that integrates a new GPU
architecture, an eight-core central processing unit (CPU) and a computer vision accelerator
with a 20 Watt requirement [132], making it ideal for real-time road recognition tasks. Nvidia
has also published a work describing the mapping camera pixels to steering commands using
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an end-to-end approach on a CNN, which is processed by the Drive PX [133]. Velodyne and
FLIR are well-known OEMs that manufacture LiDAR and camera systems respectively for
autonomous driving. Aside from OEMSs, corporates that research into autonomous driving
algorithms includes Google [134] and Uber [135], as well as automotive manufacturers such
as BMW [136], Volvo [137] and Daimler [138].

Road recognition and detection techniques are also becoming more accessible to the
masses. As part of an effort to produce an open-sourced autonomous car, Udacity has
introduced its Self-Driving Car Nanodegree Programme, which includes road and lane
detection as part of its Term 1 curriculum [139]. Specifically, Project 1: Finding Lane
Lines, and Project 4: Advanced Lane-Finding. In Project 1, students utilised OpenCV’s
functions such as Canny edge detection and Hough transform for road and lane detection.
Project 4 expands on this to classify lane boundaries, as well as to provide the vehicle’s
estimated position on the road and the road’s curvature. Binary images of road scenes are
perspectively transformed into a bird’s-eye view, where lane pixels are subsequently detected
for a polynomial model fitting. The model fitted lanes can then determine the road’s curvature.
Fig. 2.6 shows the final output of a Project 4 report, which includes marked lane boundaries

with estimations of the lane curvatures and the vehicle’s position.

Fig. 2.6 The Self-Driving Car Nanodegree’s Term 1, Project 4 output. Reprinted with
permission from [140].

comma.ai [141] is a startup company by George Hotz that specialises in providing assisted
and autonomous driving systems to the consumer market. Their goal is to achieve fully
autonomous driving with existing road vehicles with after-market devices. Most of the
software that comma.ai creates are open-sourced, which includes its autonomous driving
system, openpilot [142]. openpilot performs adaptive cruise control and lane keeping that

can be retrofitted to existing cars. comma.ai also includes semantic segmentation for road
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scenes [143], where they have experimented with SegNet and ENet, and proposed a solution
based on ENet and ReSeg with VGG convolutional layers [144] dubbed Suggestions Network
(SugNet) to automatically label ground truths. This is in addition to the recurrent neural
network approach that they took with autoencoders to learn a driving simulator as part of

their initial research, which generates realistic road image predictions [145].

2.5 Recent Works

Recent research developments in road detection are inclining towards supervised learning
and neural networks. For instance, Brust et al. [47] described an approach that uses an image
patch that is fed into a CNN for label estimation, dubbed the Convolutional Patch Network.
The image patch is used as the spatial prior for this method, which corresponds to a position of
an object from a small group of pixels in the image frame. Among the other implementation
methods proposed by the authors is a normalised initialisation approach to neural network
parameters, thereby circumventing the vanishing gradient problem. For benchmarking, the
authors used the KITTI dataset in a bird’s-eye view. This means that a transformation was
done to convert dashboard view (ego view) images into bird’s-eye view, to which [103]
claimed that road detection is more efficient this way. Training weights are therefore chosen
according to the pixel sizes after this conversion, as the authors noted that any classification
errors that happens near the horizon pixels in ego view will escalate to many more pixels
in bird’s-eye view. Experiments performed by the authors for road detection yields a 10%
improvement over that of Alvarez et al., which is largely contributed to the addition of spatial
priors into the network. Visual road recognition implementations for autonomous driving
are sometimes performed on mobile robots due to local legislation and safety concerns
on autonomous vehicles [146]. Ofjill et al. [146] developed a road-following system that
incorporates supervised and self-reinforcement learning called symbiotic online learning
of associations and regression (SOLAR). The system is initially trained by a human driver
with a recording camera for the system to learn the road’s appearance, whereupon sufficient
training, the system will be capable of taking over controls from the driver. The system
predicts visual feature vectors of subsequent frames using a Hebbian associate learning
procedure [147], allowing the system to perform self-feedbacks for reinforcement learning.
The authors implemented SOLAR on a remote controllable robot car in environments that
simulate real roads, and subsequently compared its autonomous driving capability and
learning time to qHebb [147], along with a CNN approach with the Caffe framework. Results
showed that the CNN approach is incapable of running in real time with long learning times.

Comparisons with gHebb notes that SOLAR is able to simultaneously improve learning
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speeds due to its reinforcement learning. Another work that implements road detection on
a mobile robot for testing is the visual road following approach by Krajnik et al. [148]. It
shares some similarities with Cristéforis et al.’s [53] work whereby it produces a path guide
for the autonomous navigation of a mobile robot. This work, however, emphasises on their
photometric methods that adjust to the reflectance of captured objects for shadow removal,
hence providing an illumination invariant solution for visual road recognition. For testing,
the authors implemented two threads in parallel; one for manoeuvring the robot, and the
other calculates the robot’s orientation with respect to the path boundary. This effectively
ensures that the robot navigates at the centre of the path. An image captured by the robot’s
onboard camera is processed into an intrinsic image — a process that decomposes an image
into multiple layers of intrinsic properties. Using intrinsic images enables the algorithm to
be illumination invariant. The authors subsequently used the intrinsic images to compute the
robot’s path through histogram equalisation, which segments the path from the background,
thus binary classifying them into path and non-path regions. The robot’s orientation for
navigation is then calculated from a probability distribution estimation of intrinsic pixels
from a histogram based on Shannon entropy [149]. Experiments were conducted offline
using datasets and online on a mobile robot, and the results proved that using intrinsic images

allows the robot to move autonomously across different illumination conditions.

2.6 Conclusion

This paper presented a review of literature that covers the visual road recognition process
according to its associated methods, followed by methods that incorporate machine learning,
and a brief review of current commercial implementations. In a typical chronology, a
methodological approach starts with horizon detection under the assumption that all road
regions are below the horizon, which effectively isolates and segregates the sky portion above
the horizon from any image processing. Subsequently, detecting vanishing points allows us
to find the point of convergence between the road and the horizon, enabling horizon and road
segmentation to be performed corresponding to that vanishing point. The road region below
the vanishing point can be further segmented for computation efficiency by the introduction
of the region of interests, which usually encapsulates the road or its edges where computation
can be concatenated. Computational processes for visual road detection generally involves
binary image classification, which classifies roads from non-road regions using techniques
ranging from Gaussian models to histograms. Recently, many works incorporate CNN for
visual classification with improved accuracies. With image classification complete, model

fitting is applied to visually distinguish roads from non-road areas. There is also a recent
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shift in road recognition approaches using deep learning whereby semantic segmentation
is increasingly utilised for road detection, along with other objects in road scenes. From
a hardware perspective, visual road recognition is quickly replacing conventional methods
such as using LiDAR and radar due to the rapid improvements in the cost and availability
of image sensors. With the general availability of datasets and libraries such as KITTI
and OpenCV, along with open-source deep learning libraries such as Caffe and Tensorflow,
visual road recognition is now easily implementable and evaluated even in embedded systems.
Additionally, recent approaches in visual road recognition are steadily addressing the research
challenges presented in this area, which encompass those that are generally found in visual
computing, such as illumination invariance and camera distortions. Therefore, a robust
visual road recognition system should provide high accuracies while maintaining real-time
computation capabilities that are able to compensate for the dynamic changes in road scenes

at any time.
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Chapter 3

A Review of Visual Odometry Methods
and Its Applications for Autonomous
Driving

The research into autonomous driving applications has observed an increase in computer
vision-based approaches in recent years. In attempts to develop exclusive vision-based
systems, visual odometry is often considered as a key element to achieve motion estimation
and self-localisation, in place of wheel odometry or inertial measurements. This paper
presents a recent review to methods that are pertinent to visual odometry with an emphasis on
autonomous driving. This review covers visual odometry in their monocular, stereoscopic and
visual-inertial form, individually presenting them with analyses related to their applications.
Discussions are drawn to outline the problems faced in the current state of research, and to
summarise the works reviewed. This paper concludes with future work suggestions to aid
prospective developments in visual odometry.

3.1 Introduction

Autonomous driving has come a long way since it was first promoted in the DARPA Urban
Challenge back in 2007 [42]. With major car manufacturers lobbying their technologies
in autonomous driving, the ownership of autonomous vehicles is set to rise in the future.
Current autonomous vehicles rely on a variety of sensors to achieve self-localisation and
obstacle avoidance. These can include a combination of laser scanners, radar, GPS, and
camera. However, the installation of sensor arrays on a vehicle greatly increases its cost

and complexity. At the same time, the increasing affordability and ubiquity of cameras
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and high-performance graphics processing units (GPUs) are catalysing the resurgence of
image processing and computer vision applications. In other words, these applications that
were once computationally expensive, are gradually replacing tasks that were performed
using other sensors and methods. These tasks include the motion estimation of the vehicle,
where precise odometry is crucial for the accurate localisation of the autonomous vehicle.
The odometry problem exists such that conventional GPS sensors are unable to provide the
necessary road lane precision (/= 3 m), and that it is unable to function indoors such as inside
tunnels and buildings. Additionally, standard wheel odometry suffers from accumulating drift
errors that increase over time. While the use of sensors such as high precision differential
GPS and inertial sensors could alleviate this problem, they are significantly more expensive
to purchase than a standard camera setup.

Visual odometry (VO) is a research area that is becoming increasingly popular in recent
years. Ground vehicles and robots rely on odometry to measure and record their traversed
path as they navigate, making this an essential component for autonomous navigation. Visual
odometry is odometry that is performed by analysing visual data such as one from a mounted
camera. This concept was first proposed by Moravec in [150], and the term “visual odometry”
was coined by Nistér et al. in [151]. Conventional wheel odometry estimates a robot’s position
by measuring the wheel rotation using sensors from the servos. A common issue experienced
by wheel odometry is wheel slip, whereby pose estimations becomes incrementally inaccurate
from the occasional loss of traction from the wheels. Visual odometry negates this problem.

VO techniques can be classified according to their utilised imagery — either stereoscopic
or monocular visual odometry, and their processing techniques — either feature-based or
direct (image/appearance-based). These methods can either use a combination of feature
matching, feature tracking or optical flow [152, 153]. Since a majority of visual odometry
implementation recreates a 3D navigation environment from a set of captured images, most
approaches are of a stereoscopic approach that utilises a pair of mounted cameras on the
robot. By accounting for the cameras’ capture frame rate and the distance between them, the
robot’s displacement and velocity from an object can be calculated with ease through the
triangulation of image features [154]. Therefore, the monocular visual odometry problem is
more complex and it is not until recently that we are starting to see an increasing trend in this
area. Monocular visual odometry achieves motion estimation and environment recreation
through a combination of a series of at least three 2D images in series, along with its bearing
data. An adaptation of the parallel tracking and mapping (PTAM) algorithm [155] is used in
many monocular implementations. PTAM is originally devised for augmented reality (AR)
implementations, but its speed and robustness while relying only on existing map features

made it a popular choice for researchers of visual odometry.
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On the processing techniques front, feature-based approaches achieve motion estimation
by extracting image features such as lines and edges, and tracking them in subsequent
frames; by calculating the Euclidean distances of each feature points between frames, the
displacement and velocity vectors can be calculated. Direct approaches use pixels in an
image frame and track the changes in pixel intensity [156], where pixel selection can either
be all pixels (dense) or sparsely selected (sparse). In feature-based approaches, feature
matching detects and tags existing features on a given set of frames. Feature extraction and
matching techniques such as Scale Invariant Feature Transform (SIFT) [44], Features From
Accelerated Segment Test (FAST) [157], Speeded Up Robust Features (SURF) [45], Binary
Robust Independent Elementary Features (BRIEF) [158] and Oriented FAST and Rotated
BRIEF (ORB) [159] are some of the more commonly implemented ones in literature. Feature
tracking techniques allow features to be tracked across subsequent frames. This is usually
used in tandem with features obtained from a feature extraction technique. Feature tracking
is essential for visual odometry, as it allows the robot to achieve a consistent measurement
to localise itself [153]. Varying conditions in the environment such as lighting conditions
and dynamic obstacles can impede accuracy with outliers. To circumvent this, many works
employ the Random Sampling Consensus (RANSAC) [160] outlier rejection scheme or a
variation of it; more recently, Buczko and Willert have also proposed an outlier detection
scheme for monocular [161] and stereoscopic [162] approaches. Finally, optical flow allows
the robot to estimate its distance from an environmental object by tracking its features from
the robot’s camera feed. With optical flow, the robot can perform obstacle detection and
avoidance during navigation. An optical flow algorithm outputs an image pattern that relates
to the movement of objects within the robot’s field of view (FOV). Examples of popular
optical flow algorithms include the Lucas and Kanade’s [163], Horn and Schunck’s [164],
Farneback’s [165], and SimpleFlow [166] algorithms. Optical flow algorithms can either
be dense (tracks a full frame) or sparse (tracks extracted features). Dense optical flow
requires greater computation performance, whereas sparse optical flow methods employ
feature extraction prior to its computation to make it less intensive.

It is also common for researchers to use a combination of the three processing techniques
to achieve robust optical flow. For example, Wang and Schmid [167] used a combination
of SURF descriptors, RANSAC for outlier rejection, and dense optical flow to achieve the
prediction of human actions. Liu et al. [168] proposed an optical flow approach based on
the Maximum Likelihood Estimation (MLE), which is implemented on a mobile robot and
compared against their RANSAC development for optical flow; they concluded that their
MLE approach is more accurate than the RANSAC approach. More recently, Kroeger et

al. [169] proposed a faster approach for dense optical flow computation using the dense



36 Visual Odometry Review

inverse search (DIS) [170] method, noting that many optical flow proposals have neglected
time complexity in favour of accuracy. The authors’ evaluation of the DIS fast optical flow
showed that while it introduced slight estimation errors, it is much faster even when compared
to newer optical flow methods.

This paper reviews monocular and stereoscopic VO methods according to their pro-
cedures to achieve motion estimation, as well as their methods of evaluation. A shorter
section on visual-inertial odometry is also presented to explore works that combine inertial
measurements for VO. The review of these VO methods intends to gauge their suitability
for use in real-time, on-line autonomous driving, which is motivated by the research gap in
VO applications for autonomous vehicles. The aim of this article is hence to understand the
current trends in VO and to determine if the current state of VO is adequate enough to be
utilised in autonomous vehicles.

This paper reviews monocular and stereoscopic VO methods according to their pro-
cedures to achieve motion estimation, as well as their methods of evaluation. A shorter
section on visual-inertial odometry is also presented to explore works that combine inertial
measurements for VO. The review of these VO methods intends to gauge their suitability
for use in real-time, on-line autonomous driving, which is motivated by the research gap in
VO applications for autonomous vehicles. The aim of this article is hence to understand the
current trends in VO and to determine if the current state of VO is adequate enough to be

utilised in autonomous vehicles.

Monocular VO Stereoscopic VO
o Single camera « RGB + range imaging
o Lower implementation o Higher implementation
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o Higher computation o Lower computation
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« No depth information o Uses depth information
o Susceptible to image for tracking
distortions
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Fig. 3.1 Types of VO approaches as classified by their imagery methods. Visual-inertial
odometry is VO that is fused with inertial measurements.
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Fig. 3.2 Processing techniques used in VO according to their approaches and their pixel
tracking methods for direct approaches.

Figures 3.1 and 3.2 summarise the scope of this paper. The remainder of this paper
is organised according to imagery techniques given in Figure 3.1, whereby Sections 3.2
through 3.4 describes monocular VO, stereoscopic VO and visual-inertial odometry re-
spectively; Section 3.5 presents critical discussions from our review findings in relation to
autonomous driving before the conclusion is drawn in Section 3.6. Reviews will empha-
sise on the VO approaches and for direct methods, the pixel tracking density according to
Figure 3.2, which is further elaborated in Section 3.2.

3.2 Monocular Visual Odometry

Using a monocular camera setup for VO benefit implementations that are lower in cost
and complexity. A monocular setup will also alleviate the decrease in depth measurement
accuracies as the distance between the camera and the scene increases beyond the stereo
baseline. This setup, however, introduces several challenges in addition to the lack of depth
measurements on a stereoscopic setup. This was pointed out by Yang et al. [171], where they
have investigated several challenges that pertain to this area namely photometric calibration,
motion bias, and (assuming that a roller shutter camera is used) the rolling shutter effect.
Photometric calibration is required as the pixel intensity for a same 3D point will experience

varying values due to the changes in camera adjustment such as optical exposures and gains;
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motion bias notes that VO performances are different for forward and backward playback
on the same sequence; and the rolling shutter effect is predominantly present in rolling
shutter cameras whereby an image will distort in while a camera is in motion as the frame
is captured line by line. The authors then analysed these challenges using a feature-based
method, a semi-direct method, and a direct method, which are ORB-SLAM [172], SVO [173]
and DSO [174] respectively. The several conclusions drawn from this analysis allowed us
to deduce that direct methods are more robust with photometric calibration while being
insensitive to pixel discretisation artefacts; while it is affected by the rolling shutter effect, in
terms of autonomous driving, using a global shutter camera will nullify this.

For feature-based VO, Chien et al. [175] compared the SIFT, SURF, ORB and A-
KAZE [176] feature extraction methods for monocular VO. Experiments were conducted on
the KITTI dataset using OpenCV 3.1, and concluded that while SIFT is the most accurate at
extracting features, ORB is less computationally intensive, the A-KAZE method sits between
SIFT and ORB in computational requirements and accuracy. We hence decided that as our
autonomous driving implementation uses an embedded computer, the ORB method is better
suited for our applications.

Prominent monocular VO algorithms that are recently proposed include Direct Sparse
Odometry (DSO) [174] and Semidirect Visual Odometry (SVO) [173]. As their names
suggest, DSO uses a direct approach whereas SVO uses a semi-direct approach to monocular
VO. DSO also uses a sparse formulation thereby decreasing computation complexity, as
opposed to dense [177, 178] and semi-dense [179, 180] formulations of past proposals.
This meant that DSO is capable of achieving real-time computation, as it samples only
points of sufficient intensity gradient, and neglecting the geometric prior. DSO functions by
continuously optimising photometric parameters from the camera to achieve photometric
calibration. This optimisation was performed using a Gauss-Newton method through a
sliding window. DSO uses sparse technique whereby it samples data points that are of a
limited and equally distributed number across space and active frames, thereby reducing
sampling redundancy for data point management. Experimental results showed that DSO as
a direct approach is robust against photometric noise, and is able to achieve high accuracies
with proper calibration.

SVO was proposed to solve the slow computations and lack of optimality and consis-
tencies of direct methods by combining traits of direct and feature-based methods. This
algorithm performs a minimisation of photometric errors on features of the same 3D point,
where subpixel features are subsequently obtained through the relaxation of geometric con-
straints. The minimisation of photometric error is performed at the sparse image alignment

stage using a method of least squares, where it assumes that depth information is only known
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at corners and features that lie on intensity edges. A sparse method uses little depth infor-
mation and hence the authors enhanced its robustness by aggregating the photometric cost
for pixels surrounding the feature, with approximations similar to the feature depth. SVO
employs drift minimisation by relaxing geometric constraints and aligning corresponding
feature patches to an older reference patch, which is subsequently optimised for reprojection
errors using a bundle adjustment. To improve computation efficiency, SVO uses a second
thread for mapping, which initialises a new depth filter at FAST corners at every keyframe,
thereby estimating the pixel depth using a recursive Bayesian depth filter. Experiments
comparing SVO against ORB-SLAM and LSD-SLAM showed that SVO is more efficient at
tracking features due to its sparse approach while being robust to high-speed camera captures
without the need for outlier rejection methods such as RANSAC. For application requiring
high accuracies, the authors used iSAM?2 [181], which applies incremental smoothing for the
trajectory motion, thereby achieving the same accuracy as a batch estimation of the entire
trajectory in real-time. SVO can also be fused with inertial measurement to further increase

odometric accuracies.

3.2.1 Related Applications

Monocular VO algorithms are often tested as a benchmark on datasets such as MonoVO [182]
and KITTI’s monocular VO dataset [113]. Recent works that implement monocular VO
include the work by Sappa et al. [183], which uses fused images to achieve monocular
VO through a discrete wave transform (DWT) scheme where the characteristics of the
captured image determine the DWT parameters. Using an image fusion technique condenses
information from multiple image frames into one before it is used for motion estimation.
This method is compared against VISO2 [184], and experiments were performed on video
sequences captured on vehicles driving at different times of day and location. By comparing
this fusion approach with previous approaches, the authors noted that the algorithm performs
well in challenging environments such as low light drives. Results during daytime are similar
across all compared approaches.

The online supervised approach presented by Lee et al. [185] uses ground classification to
achieve monocular VO. The authors employed an appearance-based approach with RANSAC
over three successive frames to obtain the image flow. Online self-learning is achieved by
combining geometric estimates with the ground classifier, which uses a histogram of colour
labels. The authors tested their approach on the KITTI odometry dataset where it is compared
against the VISO2 algorithm and concluded that their approach was superior in terms

of stability and translation performance. While the exclusive use of ground information is
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adequate to achieve VO for autonomous driving, the authors noted that it could be worthwhile
to extend the work to estimate other object models.

Additionally, works that combine semantic segmentation and monocular VO include [186,
187]. An et al. [187] introduced a semantic-segmentation aided VO in order to identify and
compensate for dynamic visual obstructions in a camera frame. A modified version of
SegNet [110] is used to find visual cues that represent regions of actual motion. The VO
method is a semi-direct method whereby in the feature-based section, the authors employed
a k-nearest neighbour method to match keypoints from prior frames with its transformation
solved using a least-square minimisation method; in the direct (alignment-based) method, the
authors used a semi-dense method whereby the framework only utilises regions with certain
segmentation labels to ensure that planar objects that are not in motion are selected, which
are road and pavement regions, and road markings. Tests were performed on the KITTI
odometry dataset and the authors’ Beijing Wuhan dataset. The VO approach was compared
against the VISO [188], DSO and ORB-SLAM?2 algorithms, and concluded that a semantic
segmentation approach is able to compensate moving objects on the road, where the VISO,
DSO and ORB-SLAM?2 could not.

The approach by [187] ties into our requirements for our autonomous driving platform,
as we also employ semantic segmentation to achieve visual autonomous driving. Also, the
authors noted that ORB-SLAM?2 achieved the best accuracy on the KITTI dataset on low
traffic segments. This could also indicate that an ORB-SLAM-based method with semantic
segmentation could be implemented for autonomous driving if it’s properly optimised.
If performance cost is an issue, we hypothesise that using a ground-only approach such
as [185] could achieve adequate VO for autonomous driving, while neglecting dynamic
road objects. A robust day-night implementation could benefit from the implementation
of a fusion technique as in [183], but its overhead performance cost needs to be taken into
consideration. A summary of the monocular VO algorithms reviewed is given in Table 3.1,
which lists its approach type, descriptors/features, outlier rejection scheme, dataset evaluated,

and intended environment.

3.3 Stereoscopic Visual Odometry

Visual odometry is stereoscopic when a depth measurement is obtainable from a range
imaging/RGB-D camera, often through a stereoscopic camera which uses stereo triangulation
to measure depth. Other range imaging cameras that are used for stereoscopic VO include
structured-light cameras [202, 203] and time-of-flight cameras [204]. This depth measure-

ment enables the distance between the vehicle and its surrounding objects to be perceived,
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thereby simplifying VO calculations. It is also possible to rely solely on this depth mea-
surement to perform VO, as opposed to using an image-based (feature or appearance-based)
approach; this is known as a depth-based approach [205]. Applications for stereoscopic
VO are popular, having a list that includes the Mars rover [206] and autonomous aerial
drones [207]. Its popularity today can be attributed to the leaderboard on the KITTI VO
benchmark [113], whereby a great proportion of the most accurate methods are stereo-
scopic. As opposed to a monocular approach, stereo VO requires proper calibration and
synchronisation of the camera pair, as errors will directly affect VO performance [184]

Stereoscopic VO can also be classified from a combination of feature- or appearance-
based approaches. A review was presented by Fang and Zhang [205] in 2014, which
compares several stereoscopic VO methods according to their approaches. The authors
tested these methods empirically on the TUM RGB-D dataset [208], along with the authors’
dataset collected from an indoor environment. This dataset tests the algorithms in a variety
of environments with a combination of fast motion, illumination invariances and limited
features. Stereo VO algorithms were measured for their accuracies and computational
performances. Results showed that depth-based algorithms such as Rangeflow [209] is robust
in environments that lack features or illumination; an image-based algorithm is suitable for
feature-rich environments with adequate illumination.

It should be noted that the implementation simplicity of stereo VO, when compared to the
added computation complexity of monocular VO, could imply that the research advancements
made by monocular VO are more substantial than that of its stereo counterpart; this argument
was pointed out by Persson et al. [191], to which they have presented a stereo VO algorithm
dubbed the CV4X that leverages on monocular VO techniques. The authors selected a feature-
based method using FAST descriptors for corner extraction that is filtered with an Adaptive
Non-Maxima Suppression (ANMYS) filter, and tracking is performed on BRIEF descriptors.
The camera’s pose estimation was performed using RANSAC for the perspective-n-point
(PNP) problem. Stereo triangulation errors are minimised through an iterative minimising
function. CV4X was tested on the KITTI VO dataset and subsequently achieving first place
on the benchmark leaderboard at its time of publication. The performance of this algorithm
was optimised using OpenMP [210] and CUDA [211] for subtask parallelisation during its
experiments.

Monocular algorithms that are adapted into a stereo method also exist, with recent exam-
ples including the Stereo DSO [192], where the authors noted that both stereo approaches
are complementary, and that multi-view stereo is able to negate the limitation in depth
measurements that occur in direct stereoscopy. Multi-view stereoscopy captures stereo

images using two or more images [212], whereas direct stereoscopy achieves this using
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only an image pair. Direct stereo is used here for the initial depth estimation for multi-view
stereo. The tracking of features is achieved using direct image alignment [173] that is opti-
mised using a Gauss-Newton method. Experiments were performed on the KITTI VO and
Cityscapes [115] datasets to evaluate tracking and 3D reconstruction. Results showed that the
Stereo DSO yields low translational and rotational errors when compared to LSD-VO [180]
and ORB-SLAM?2 [172], with denser and more accurate 3D reconstructions.

The work by Wu et al. [193] is one that combines pruned Kanade-Lucas-Tomasi (KLT)
tracking [213] and Gauss-Netwon optimisation with RANSAC to achieve fast feature-based
stereo VO. The proposed pruning-based corner detector reduces redundancies while achieving
robust corner detections for feature tracking. The KLT tracker was subsequently optimised to
track these features through the addition of a pyramidal process. Evaluations on the KITTI
dataset showed that while the proposed method was not able to best the state-of-the-art on
the leaderboard, its fast estimation process is able to ensure that VO is performed with a
smaller computation footprint.

Methods that rely on time-of-flight or structured-light cameras such as the Kinect sensor
captures depth maps that are prone to noises that affect the accuracy of depth measurements.
Feature tracking on depth maps can be simplistic due to its reduced detail and colour as
compared to an RGB image. For example, Proenca and Gao [194] recently proposed a
minimalistic environmental representation that combines points, line and planes to achieve
VO. The authors noted that the limited field-of-view and the presence of noise on the depth
map, which prompted them to propose a method that performs noise reduction using the
missing depth measurement recovery technique with and depth uncertainty modelling. The
extraction of these features is done using SURF for points, LSD [214] for lines and the plane
model is fit through a segmented point cloud. Experiments were performed on the TUM
RGB-D dataset and the ICL-NUIM [215] dataset, as well as a dataset collected by the authors.
Results showed that this method outperforms the point and line VO methods, as well as DVO
and FOVIS [203], this method is unable to outperform methods such as [216, 217].

Holzmann, Fraundorfer and Bischof [195] proposed a line-based direct stereo VO method
using vertical lines. Limiting detections to vertical line enhances detection speed thereby
making it suitable for real-time applications. Line verticality is determined using an IMU
or a gravity-aligned camera. These lines are matched at every keyframe with direct pose
estimation to achieve fast VO. The authors noted that the algorithm performs well in man-
made environments, especially indoors with walls and fixtures, even in poorly textured
environments; this approach is also adequate for urban driving scenes with well-defined
buildings, vehicles and road edges, as experiments on the KITTI VO dataset revealed that

this method achieves results that are comparable to VISO2. However, the heavy presence
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of textures in outdoor drive scenes prevented the accuracy of this method to surpass that of
VISO2.

Another recent method to achieve fast VO is through geometric clustering. Using
geometric clustering solves the same problem with dynamic scenes as listed in [187], whereby
objects in the frame that are in motion are capable of distorting VO accuracies. The approach
presented by Jaimez et al. [197] applies k-means clustering on image points, in addition to
segmenting image regions where static objects such as road regions for VO. The authors
calculated VO through the minimisation of photometric and geometric residuals between the
stereo image pairs, which is then estimated using a Cauchy M-estimator. VO performances
were evaluated on the TUM RGB-D dataset and are compared against DIFODO [209],
DVO and SR-Flow [218]. Results showed that while this approach performs remarkably on
dynamic scenes, it is unable to outperform the accuracies of the other algorithms on static
scenes. Nevertheless, this method is capable of fast runtimes and real-time performances,
which was not achieved by the other compared algorithms.

In order to improve outlier rejection in dynamic environments, the work presented by
Liu et al. [198] presents a stereo VO method that aims to improve accuracies using an
improved outlier rejection method. The PASAC method is an improvement of RANSAC that
achieves higher accuracies through a series of procedure. The authors noted the degradation
of RANSAC’s accuracy on frames with many outliers, as well as its uniformly generated
hypothesis through the sampling of input data, thereby motivating the proposal of PASAC
though an enhancement to its hypothesis generation for increased outlier rejection speed and
accuracy. As a feature-based method, this method first extracts corner-like features from
a stereo image pair, which are then matched using a sum of absolute differences method.
Outliers from the image pair and its subsequent frames are then rejected through circle
matching to identify mismatched features before the features are tracked according to its
detection timestamp. Motion estimation is subsequently performed by an iterative solving of
the non-linear least square optimisation problem, with PASAC as the outlier rejection model.
This approach was tested on the KITTI VO and New Tsukuba [219] datasets, outperforming
RANSAC and PROSAC [220] in execution speed and accuracy.

3.3.1 Related Applications

An implementation of stereo VO was first described by Nistér et al. in 2006 [151], which
estimates the ego-motion of a camera mounted on an autonomous ground vehicle. Since
then, recent stereo VO methods are mostly applied in the robotics field, where they are
often implemented onto mobile robots and aerial drones. While datasets from KITTI and
TUM are often used to evaluate new stereo VO algorithms, real-world VO applications
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on-road vehicles are, to our knowledge, quite scarce. For example, while a recent thesis by
Aladem [221] described VO for autonomous driving, its evaluations of VO is limited to a
ground robot and datasets; an attempt was made to collect local data from a car-mounted
camera, but it resulted in unfavourable VO results. For these reasons, we will look into VO
methods that are implemented onto mobile ground robots, as its application is most similar
to that of a ground vehicle.

The application by Kunii, Kovacs and Hoshi [199] uses a feature-based stereo VO
method on a mobile robot through landmark tracking. The authors extracted FREAK [222]
descriptors using CenSurE [223] after comparing various extraction and descriptor methods
for its environment, and stereo-matching is performed using a sum of absolute differences;
RANSAC is used as the outlier rejection scheme. By using these VO parameters, the authors
compared VO performance against GPS data and deduced errors of less than 5% in both 2D
and 3D space. The VO method is enhanced using template matching to improve computation
footprint and accuracy, which returns the robot’s position relative to the obstacles ahead.
By comparing several methods against a laser scanner, the Zero-Mean Normalised Cross-
Correlation (ZNCC) method was used as it returns the least amount of deviation from the
laser scanner. Field experiments confirmed that the addition of template matching is able to
result in accurate localisation.

Noting that applying VO on background sections of a frame can result in better ac-
curacies in dynamic environments, the application by Kim and Kim [201] implements a
depth-based dense VO onto a differential drive robot. This background model-based dense-
visual-odometry (BaMVO) algorithm isolates moving objects in the foreground by using
a nonparametric model in [225], measuring the depth differences for objects in consecu-
tive frames. VO on the background model is performed similarly to DVO [226], using a
minimisation of the weighted sum of squares method. Outlier rejection of the background
model is performed using the method in [227], which filters outliers over a t-distribution.
The BaMVO was evaluated on the TUM RGB-D dataset before it was implemented for
trajectories captured on the mobile robot in a dynamic indoor environment with pedestrians.
The algorithm was compared against DVO and other state-of-the-art, which resulted in a
the BaM VO being the most accurate, especially in dynamic environments where the other
algorithms had erroneously calculated VO based on moving objects.

By evaluating the aforementioned methods with regards to autonomous driving, the
contributions made by [199] involve using a template matching method to enhance VO
accuracies can be adapted for autonomous driving whereby it can be used to estimate the
vehicle’s distance relative to its surrounding obstacles. By complementing ZNCC with

stereo VO techniques, a more robust VO solution can be applied for autonomous driving.
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The proposal in [200] which utilises stereo VO to ensure accurate motion trajectories can
be similarly applied for autonomous driving to complement the path planning module of
the autonomous car. This means that the adjustments in trajectories can be dynamically
adjusted using results from VO to result in added robustness for path planning. Finally, the
takeaway from Kim and Kim’s [201] application suggests that adopting a VO algorithm for
dynamic environment enables the vehicle to filter moving road objects such as other vehicles
to restrict VO calculations on static, background models, thereby increasing VO robustness.
A summary of the stereoscopic VO algorithms reviewed is given in Table 3.3, which lists its
approach type, descriptors/features, outlier rejection scheme, dataset evaluated, and intended

environment.

3.4 Visual-Inertial Odometry

Visual-inertial odometry (VIO) is a technique whereby a VO method is fused with the
output from an inertial measurement unit (IMU) in order to improve odometry accuracy.
Most VO algorithms can be adapted for VIO, resulting in VIO approaches that are either
stereoscopic or monocular; using direct, semi-direct or feature-based methods. The addition
of an IMU to VO effectively introduces a fusion pipeline that uses state estimation filters
such as the extended Kalman filter (EKF) or particle filters; this is a filtering-based VIO
approach, which encompasses most proposed VIO works [228]. Particularly, the EKF (and
its precursor, the Kalman Filter) is often more favoured in practical implementations due to
its lower computational complexity while ensuring high performances. EKFs are used in
state estimation by combining information (in this case, IMU and VO data) in the presence
of uncertainty. While a Kalman filter will work under the assumption that this uncertainty is
normally distributed, an EKF employs a Taylor series approximation to account for non-linear
functions, which include the angular measurements from VO and IMUs. In addition to using
a filter, the different sampling rates between the IMU and the camera (i.e. the fusion interval)
needs to be synchronised, as IMUs generally sample at a rate that is several times faster than
the camera’s frame rate. This synchronisation is typically achieved by the resampling of the
IMU data at the camera’s frame rate [229].

OKVIS [230], MSCKEF [231] and VINS-MONO [232] are few of the more popular
examples of filtering-based VIO methods in literature; additionally, new VIO methods that
are based off existing VO methods such as SVO [233, 234] are often proposed as well.
Delmerico and Scaramuzza [235] recently published a benchmark comparing monocular
applications of these VIO methods across several hardware platforms to measure their

performances for autonomous aerial drones. These methods were tested on the EuRoC



3.4 Visual-Inertial Odometry 47

MAV [236] dataset, which consists of visual-inertial sequences that were recorded off an
aerial drone. Results from these benchmarks concluded that algorithms which result in
higher accuracy and robustness generally require higher computation requirements, thereby
implying that VIO methods have to be carefully selected and optimised for their specific
applications. VIO methods are often applied to autonomous aerial drones as the addition of
an IMU sensor enables estimations up to the six degrees of freedom (6DoF) that is required
for their functions. Additionally, a recent method for stereo VIO was presented by Sun et
al. [237], which postdates this benchmark with the proposal of the stereo multistate constraint
Kalman filter (S-MSCKF) method. FAST features are tracked using KLT tracking with
RANSAC to remove outliers. Comparisons against OKVIS, ROVIO, VINS-MONO on the
EuRoC dataset and on an autonomous aerial drone resulted in the S-MSCKF was able to
achieve a balance between computation footprint and accuracy, which suggests that it can
be applied on cost-sensitive platforms. While applications on aerial drones are different
from autonomous ground vehicles, the benchmarks and works done by [235] and [237] can
certainly be used when choosing the proper VIO method for implementation.

A stereo application on mobile ground robots is described by Liu et al. [238], where they
have implemented a stereo VIO method onto a model remote controlled car. The VIO method
that was proposed utilises multiple Kalman filters for position, orientation and altitude for
increased robustness. As the IMU used in the application is considered to be low-cost, the
authors also proposed a cascading fusion architecture to estimate orientation measurements,
as well as using linear subfilters with low computational footprints with the intention of an
embedded computer application. The stereo VO method is a feature-based one whereby
SUREF descriptors are tracked from the feature pair from each camera, which is detected
using the CenSure detector; outlier removal is done using RANSAC. The proposed VIO
method was first tested on the KITTI dataset and noted that a pure VO approach will fail at
certain turning corners, which is thus rectified with a VIO approach. The second test was
performed in a real-world campus pedestrian environment using the mobile robot, where
the authors noted that their VIO approach has the least closed-loop error when compared
against other state-of-the-art methods, yielding high accuracies while reducing IMU drift
errors. While the authors stated that an implementation on an embedded computer with other
sensors such as the GPS is part of their future work, the relation to this and autonomous
driving is significant, whereby the same method can be adapted for urban road environments,
especially when it is benchmarked on the KITTI dataset.

More recently, the use of event cameras for VIO has been proposed by Vidal et al. [239].
These cameras are capable of high frame rates and are insusceptible to motion blur, as they

transmit pixel intensity changes and not the intensity itself. This method achieves VIO
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with both an event camera and a standard camera, by tracking FAST corners using the KLT
tracker, as well as using the Ceres Solver [240] for optimisation, which is a non-linear
optimiser that selects between the event camera and the standard camera for VO, based on its
current environmental conditions around the keyframe. This optimisation works by solving
non-linear least square problems, where in this context it accounts for the visual and inertial
measurements, resulting in the tight coupling of these measurements. Evaluations were
performed on the Event Camera Dataset [241] comparing results from using frames (standard
camera), events (event camera) and the IMU, whereby the combination of events, frames and
IMU yielded significantly better results. Real-world tests on an aerial drone were tested to be
resilient against sudden illumination changes, with accurate positioning even in low-light
conditions. The high frame rate and robustness achieved using this sensor combination yields
results that are real-time and accurate. These results will be highly beneficial to autonomous
driving where precise positioning and real-time frame calculations are required. However,
the lack of urban road testing by the authors implies that this method should be replicated to
assess its capabilities in an autonomous driving environment.

3.5 Discussions

This section discusses our overall observations and deductions with regards to the works
that were reviewed that are in-line with the current research trends in VO, as well as the
requirements for VO to be implemented in autonomous driving applications.

An application for autonomous driving will require that the implemented methods are
capable of running in real-time; in the case of visual algorithms such as VO, 10 Hz is the
minimum desired frame rate in order for the vehicle to sustain driving in urban environ-
ments [133], while some are explicitly optimised for real-time applications [195, 197], other
methods could be further optimised for real-time performances. It should also be noted that
the speed performances of VO algorithms can be further improved just through the use of
hardware with higher specifications such as high-performance GPUs. Additionally, in order
for a VO method to be accurately robust for autonomous driving, the method should account
for the various environmental dynamism that occurs on road scenes. This includes moving
obstacles, scene changes and illumination invariances. This was noted in [187, 201] where
dynamic changes in the road scene will affect the accuracies of VO. Through our studies, this
dynamic road scene problem can be addressed either through an outlier rejection model such
as RANSAC or PASAC [198], or through a semantic selection of classified objects [187].
We observed that while the object classification approach might yield higher accuracies due
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to its deep learning back-end, using an outlier rejection method is computationally simpler
and it is more capable of the real-time performance required for autonomous driving.

We observed an insufficiency in real-time VO methods that are explicitly implemented in
an autonomous vehicle. While there exist VO implementations on vehicles such as on the
parking camera [242], to the best of our knowledge VO implementations for autonomous
vehicles are unavailable. Most autonomous vehicle developments utilise the camera for
lane-keeping and obstacle detection/avoidance. However, effective autonomous driving will
require precise vehicle localisation and dead-reckoning in the order of centimetres for it to
navigate even in unmapped environments. This precision is unattainable through conventional
GPS receivers with accuracies of approximately 10 metres; expensive differential GPS
receivers are typically installed to achieve this but it introduces redundancy when VO
algorithms themselves can be utilised for accurate localisation. Another option to achieve
relative localisation is through the installation of an IMU, but unless the IMU is highly
precise, the drift errors introduced by an IMU will exponentially affect accuracies; hence
the proposals of visual initial odometry. The lack of real-world implementations can also be
credited to local legislation and the lack of development vehicles for autonomous drive tests.
Here we see that almost all of the recent VO works presented are tested on datasets, and
while public datasets such as KITTI or TUM is a great platform and yardstick for method
comparisons, it remains to see how these methods will eventually perform in the real world.
Testing on these datasets also limit the testing environments to the location where the dataset
is captured and is not an effective indicator of the performances of these algorithms in other
cities and countries, which will introduce different road scenes altogether. Another reason for
the lack of real-world implementation is likely due to the higher computation requirement of
VO, which implies that an on-line implementation will require a computer with dedicated and
adequate parallel processing hardware. Commercial autonomous driving computers such as
Nvidia’s DRIVE PX2 [243] are expensive and are generally unaffordable for developments
on a budget, whereas mobile computers such as laptops do not possess the parallel computing
capabilities of desktop GPUs. However, the recent availability of low-cost, high performance
embedded computers such as the Nvidia Jetson [121] and the optimisations of fast VO
methods [193, 197, 209, 226, 237] could catalyse these implementations.

VO methods are instead often tested on aerial drones and mobile robots, as they usually
provide better feasibility and cost-effectiveness as compared to an actual vehicle implementa-
tion. VO on an aerial drone is more complex and often fused with inertial measurements as it
has more DoF than a ground vehicle; however, VO on a mobile ground robot also differs
from an autonomous vehicle whereby it is difficult to replicate the dynamism of road scenes

outside of a simulated environment or in the real world.
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As we observed that many VO methods evaluated its performances against visual SLAM
(vSLAM) algorithms, this should suggest that VO is similar to vSLAM such that vSLAM
uses VO to achieve relative localisation. VO is however different from vSLAM whereby it
does not perform loop closures that are necessary for area mapping. Since an autonomous
vehicle does not rely on mapping for odometry nor localisation, vSLAM is therefore beyond

the scope of our applications.

3.6 Conclusion

The availability of recent works is greatly contributing towards the solution for the visual
odometry problem. We have reviewed the various types of visual odometry methods in
relation to their applications for autonomous driving. Both monocular and stereoscopic
VO are viable approaches for autonomous driving, whereby the hardware will only differ
according to its camera setup. The easy attainability of publicly available datasets for
autonomous driving such as the well-known KITTI dataset is also a major contributing factor
that encourages works in VO. By reviewing recent works pertaining to VO that are not
more than three years old, we can confirm that the current VO trend is steering towards a
low-cost, high accuracy model that encourages applications on low-powered hardware such
as embedded computers. Although the availability of datasets is promoting the proposal of
new VO algorithms, we have also observed a current shortage of real-world VO applications,
especially in autonomous road vehicles. Many proposed methods stop short of a practical
implementation, and only evaluated their algorithms on datasets. We have observed that
results from a dataset evaluation often deviates from a complete indication of how the
algorithm will perform in a local environment, thereby highlighting our necessity for a
practical VO application. We have deduced from our observations that a couple of factors
could attribute to this issue. Firstly, the attainability of testbeds for autonomous vehicles
is often associated with high costs and complex local legislation, as it usually involves the
purchase and retrofitting of an actual road vehicle, especially when considering the higher
probability of accidents when new algorithms are tested. On the other hand, while embedded
computers are now capable of efficient parallel processing, they are still often unable to
provide the necessary computing performance required for visual navigation on the test
bed, especially when we compare them against workstation-class GPUs that are typically
used to evaluate newly proposed algorithms. Nonetheless, forthcoming high-performance
mobile computers and an increasing public recognition towards autonomous vehicles will

undoubtedly encourage practical applications of visual odometry in the near future.



Chapter 4

Cooperative Multi-Robot Navigation —
SLLAM, Visual Odometry and Semantic
Segmentation

This chapter describes three systems for multi-robot navigation: multi-robot SLAM for large
environments, visual odometry for high odometric accuracy, and semantic segmentation for
dynamic scene understanding. Our multi-robot SLAM is capable of navigation, exploring
and mapping a large-scale urban environments. Environmental exploration and mapping are
achieved through wheel odometry and LiDAR, which interface through the Robot Operating
System (ROS) framework on each robot. This system is distributed and decentralised whereby
each robot performs localisation and mapping independently, while maintaining persistent
maps are being transmitted to a ground control centre that verifies the map data. Visual
navigation in the form of visual odometry is used with minimal changes to the existing
software and hardware framework. We use visual odometry as an alternative to wheel
odometry, which is affected by wheel slip, a persistent error that accumulates over time.
Semantic segmentation complements object detection data from the LiDAR by introducing a
pixel-based object recognition method that allows each robot and their visual odometry to
vary its reaction based on the detected object class. These visual navigation subroutines can

complement the existing mapping and localisation routines as an alternative solution.

4.1 Introduction

The University of Western Australia (UWA)’s multi-robot system (MRS) [244] comprises

seven Pioneer 3AT-based outdoor robots. It was designed to solve the multi-robot simultane-
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ous localisation and mapping (SLAM) problem through strongly coordinated behaviours with
task allocations that are performed explicitly whereby each task is divided into subtasks that
are dynamically allocated and re-allocated in response to changing conditions or failure [245].
In other words, this system is capable of structured communications while being aware of
one another.

For an MRS to properly navigate an environment and perform cooperative tasks, these
localisation estimates need to be robust. Our system uses a contained localisation system
to allow for rapid deployments in unstructured/mixed indoor/outdoor environments, which
is originally presented in [246]. Path planning and obstacle avoidance currently follow
our implementation in [247, 248]. We use a multi-robot SLAM (MR-SLAM) solution to
localise robots through the construction of a shared local map. The MR-SLAM problem
is complex, whereby localisation is achieved through the registration of each robot in a
consistent, global coordinate system, in which large amounts of sensor data fusion must
occur on-line. Additionally, these robots often rely on wireless communication that is often
lossy and subject to interferences with variations in latencies and bandwidth. Loop closures
that are predominant in SLAM problems become more challenging, as they create large
sequences of constraint cycles, which can cause a combinatorial increase in computational
complexity. This problem stems from the variations between the robots’ vantage points where
uncertainties in data association might arise due to the pairings between object detections
and sensor measurements.

MRS projects presented in the recent literature [249-251] demonstrated a combination of
low-level capabilities such as cooperative SLAM, exploration, object identification, object
tracking, and object manipulation. A comprehensive review is available in [252, 253].
These systems are off-line or on-line. Off-line systems collect the first sensor data that is
processed at a later stage, while on-line systems perform MR-SLAM and other tasks in
real time during deployment. It is worth noting that off-line systems are typically deployed
based on their ease of implementation and prototyping, while often relaxing limitations
imposed on computation and communication requirements. Additionally, many works are
often implemented in constrained environments, such as in indoor laboratories [254, 255],
thereby preventing the robots from exposure to environmental irregularities, including noise,
temperature, illumination, and seasonal variations. These systems can therefore be cheaper
and more convenient to implement, as they usually do not require long-range mobility and
sensors. Conversely, our MRS was designed for deployment in unconstrained, outdoor urban
environments, requiring higher performance sensors and more rugged robots.

The incorporation of visual navigation onto the MRS stems from our motivation to solve

problems relating to wheel slip in odometry and scene understanding. Works that implement
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visual odometry in robots [199-201] have proven that its ability to reduce the accumulating
error caused by wheel slip can lead to more robust SLAM solutions. Visual SLAM algorithms
such as ORB-SLAM [172] and LSD-SLAM [180] are often implemented on robots, with
favourable outcomes. Likewise, scene understanding can be applied alongside obstacle
detection from LiDAR measurements, such as classifying static and dynamic obstacles [256].
For our application, we have decided to apply semantic segmentation for scene understanding,
as it offers a pixel-wise classification of a captured scene while being versatile and compatible
with low-cost camera setups.

4.2 Robot Hardware Design

DataQ USB IO module
E-stop, general 10

Xsens MTi IMU
Odometry, orientation information

Ubiquity Pico Station 2HP
Wi-Fi mesh communications

Logitech Sphere PZT camera
Object tracking (not in photo)

Intel Core 2 Duo PC
CPU & GPU processing

SICK LMS 111 lidar
SLAM, obstacle avoidance

QStarz 5 Hz GPS
Global localization

Hokuyo URG lidar
Detecting ramps, curbs, obstacles

Axis IP camera
Sit. awareness, teleoperation

RF Innovations 900 MHz radio
Redundant communications link

IBEO LUX automotive lidar:
Tracking mobile OOIs

Pioneer AT3 all-terrain base
WAMbot UGV platform

Fig. 4.1 Photo illustrating an single MRS UGV with its hardware modules as labelled.

Each unmanned ground vehicle (UGV) in our MRS is fitted on top of a Pioneer AT3 [257]
base, which provides a chassis, differential drive wheels with motor controllers and encoders,
and batteries (see Fig. 4.1). High-level controls are performed through an Intel Core 2
Duo automotive PC that is connected to several sensors (see Figure 10.1). The sensors
comprise an ibeo LUX 4 LiDAR [258], a SICK LMS-111 LiDAR [259], a Hokuyo URG-
04LX LiDAR [260], an Xsens MTi inertial measurement unit (IMU) [261], a QStarz GPS
receiver [262], wheel odometry on the Pioneer base, and a Logitech Sphere PZT camera [263].
Communications are performed between UGVs and base station through a Ubiquity Pico
Station 2HP [264] over a Wi-Fi mesh, with an RF Innovations 900 MHz radio [265] as a
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redundant communications link. The Pico Station, LUX 4, and LMS-111 interface via 100
Mbps Ethernet, while the other sensors interface through USB 2.0.

The sensors perform LiDAR-based SLAM, whereby the LiDAR array maps the environ-
ment horizontally and has a 20 m, 270° range at 25 Hz; the URG-04LX is mounted vertically
and has a 4 m, 240° range at 10 Hz; and the LUX 4 is mounted horizontally and has a 50 m,
110° range that spans across four parallel, horizontal layers. The LMS-111 is used as the
main SLAM sensor, where is it placed 0.5 m above ground to scan a single-layer horizontal
plane. This results in 1080 measurements that translate to 2D “slices” of the environment
around a 20 m radius. The other LIDARs mounted on the UGV are used for object/obstacle

detection and tracking.

4.3 Cooperative Localisation and Navigation

We incorporate our hybrid-decentralised and distributed MR-SLAM system onto the UGVs,
which allows the decentralised UGV to build distributed global grid-maps and navigate large
urban areas [266, 267]. Using this system enables the system to be deployed rapidly while
allowing SLAM on the UGVs with minimal reliance on a ground control system (GCS).

4.3.1 Mapping

Unmanned Ground Vehicles (UGVs) Ground Control Station (GCS)

1
[B Local SLAM |

] .
[B Mapbuilder Back-end | ‘ [8 Mapbuilder Back-end
% | @ Mapbuilder GUT

[@ Local SLAM |
[ Mapbuilder Back-end |

X | [® Mapbuilder Back-end
Wireless Mesh, [® Mapbuilder GUI
DDS, UDP &

UDP Broadcast

Fig. 4.2 The MR-SLAM architecture and software development diagram showing the soft-
ware components run on the GCS and UGVs.

A typical deployment scenario of the MR-SLAM system is illustrated in Fig. 4.2, showing
that the back-end is executed across UGVs and GCSs. Each back-end instance stores a
local copy of all submaps and constraints, which are then optimised and fused, building
global maps; new loop closure constraints between submaps are also searched. Submaps are
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rectangular grid-maps with dynamically increasing dimensions determined by the LiDAR’s
maximum range R, the environment’s shape, and a threshold heuristic described later in this
section.

Local SLAM is performed independently on each UGV whereby a single-robot SLAM
algorithm builds its own submap by processing its sensor data, which is then broadcasted
across the mesh network. Graphical user interfaces (GUIs) are installed on GCS computers
to enable operators to view and manipulate global and submaps and interact with pose graphs
through a point-and-click interface.

A global grid-map is fused through several overlapping submaps that are obtained from
the SLAM algorithms running on each UGV, thereby achieving a distributed map-building
sequence. The fusion algorithm searches for overlaps in the grid-maps and subsequently
determines if the cells in the global grid-map are occupied, free, or unknown. Each submap
initialises with a local coordinate frame on the global frame with its submap pose p!’, which
is estimated through pose graph optimisation in a global Euclidean coordinate frame W.
Given the UGV pose r4 always broadcast relative to p¥, and that each submap is created
with the UGV at its origin, therefore r§ = [0,0,0]T, and the UGV’s time-varying pose in the
global frame is thus:

W =p¥ @ 4.1)

Each submap is assigned a 128-bit hexadecimal universally unique identifier (UUID) and
exists either in an “open” or “closed” state, where they are always created through an “open”
state to indicate that an occupied UGV is in the process of building it. Once map building
is complete, the submap changes to a “closed” state to render the area immutable and non-
traversable by any UGV, only allowing the back-end to update its pose, thereby fusing it onto
the global grid-map. Having these states increases the robustness of the MR-SLAM system
while ensuring its logic simplicity. A UGV can only occupy a single submap at any given
time, and these “open” submaps are often connected to an adjoining “closed” submap. At the
creation of a new submap, its map and pose uncertainty is reset. Using this approach enables
the system to minimise bandwidth, storage, and redundancy across the MR-SLAM back-end.

Using a ray tracing technique based on [268], the LiDAR scans obtained while navigating
a submap is aligned and fused into a single 2D occupancy grid-map, which maintains an
accurate representation of the environment. The LiDAR scans are aligned with scan matching
prior to ray tracing to circumvent the accumulation of minor quantisation noise, which is
done through a batch rounding of these LiDAR measurements to the nearest grid cell using

the grid-map representation.
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Aside from quantisation noises, UGV pose uncertainties are also prevalent while it
is building a submap. Although a UGV always initialises a new submap with no pose
uncertainties, this uncertainty will always accumulate whenever the UGV is manoeuvring,
with odometric noise as its main contributor. Therefore, it is more pronounced in larger areas.
To solve this problem, the algorithm initialises a new submap whenever this uncertainly
surpasses a set threshold, which is determined by comparing the current angular pose
uncertainty against the average distance to obstacles in the environment, estimating the
amount of “blurring” in distant grid-map cells. Current LiDAR scans will not be fused if a
new submap is triggered using this approach; using this heuristic thus minimises distortions
entering the submap grid-map, and large distortions that result in misaligned LiDAR scans
can be prevented. The algorithm then transfers this accumulated uncertainty’s covariance
into the new constraint’s covariance that is used to connect the old and new submaps through
a maximum likelihood estimation.

By assuming an average distance between submaps D, the maximum overlap between a

sequence of submaps separated by D is given by a ratio:

2R
2R+D

Maximum overlap = 4.2)

The MRS yields a maximum submap overlap of 93%, which implies that the same UGV
could create submaps that overlap the same area up to 15 times. This overlapping redundancy

is required to allow the distributed back-ends to compare and align map data.

4.3.2 MR-SLAM Architecture

With reference to Fig. 4.2, we have identified the functional roles of the software components
as Table 4.1, which illustrates a minimalistic logical design diagram that considers a single
UGV and GCS.
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Table 4.1 Functional requirements of software components
Component Input Behaviour Output
Local Sensor data (LiDAR, Performs local SLAM, Broadcasts submap
SLAM odometry, IMU, GPS) creates a sequence of data, constraints,
submaps real-time UGV pose
estimates
MR-SLAM Submap data from all Optimises pose graphs, Global or windowed
back-end UGVs, submap con- fuses submap data, maps, submap pose es-
straints, ground-truth searches for timates, submap con-
constraints straints
MR-SLAM All MR-SLAM mes- Displays global maps, Messages that alter
GUI sages, GUI events; for interprets operator com- graph structure; for

example, keystrokes

and mouse clicks

mands

example, ground-truth

constraints

The class diagram in Fig. 4.3 illustrates the various message types used by the system

for MR-SLAM, which are all derived from the Submap message class. All messages are

time-stamped with the source participant’s priority and the submap UUID.
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SubmapMessage GridmapMessage
+submap_uuid: uuid t +gridmap_data: char *
+timestamp: double +width: uint
+source_id_priority: uint +height: uint

+cells_per meter: uint
+origin offset: Vector2i

SubmapPoseMessage

+global pose: SE2
+is_anchored: bool
+is_deleted: bool

SubmapGridmapMessage GlobalGridmapMessage

+is_closed: bool +global pose: SE2

SubmapConstraintMessage

+target_submap uuid: uuid t
+measurement: SE2
+covariance: Matrix3d
+weight: double

+source: source t

GroundTruthMessage

+global_pose: SE2
+covariance: Matrix3d
+is_deleted: bool

UgvPoseMessage

+local_pose: SE2

Fig. 4.3 A class diagram showing the MR-SLAM system’s message types and their variables.

For the local SLAM front-end, we use a heuristic-driven EKF-SLAM [269] single-robot
algorithm that takes all sensor data and outputs submaps, constraints, and real-time pose
estimates, which are broadcasted over the mesh network. We have designed this front-end

based on the following requirements:

* To estimate UGV pose and broadcast in real-time at more than 10 Hz locally, or 1 Hz

globally.

* To build 10 cm submap grid-maps that are broadcasted at more than 1 Hz locally, or
0.2 Hz globally.

* To robustly handle moving objects including human gaits up to 6 km/h.

* To handle challenging sensing conditions such as sparse and/or featureless areas.
* To detect odometric errors to minimise submap corruption.

* To compress submap grid-maps before broadcasting.

* To use less than 25% of total computation and memory footprint.

Likewise, the back-end requirements of our MRS are:
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* To optimise pose graphs robustly and efficiently at less than 5 seconds per iteration.
* To output large (5000 x 5000) grid-maps to the local partition at more than 1 Hz.

* To match submaps to generate robust constraints at less than 5 seconds per match.

* To broadcast SubmapPose messages globally to maintain decentralised pose graph.

* To output SubmapPose updates to the local partition at more than 1 Hz.

4.3.3 SLAM Implementation

We apply EKF-SLLAM with scan matching which builds submaps by aggregating LiDAR
scans at every 20 cm of movement or 20° of rotation, where pose estimation is achieved
through an EKF. Scan matching was incorporated to reduce computation requirements by
using the described threshold heuristics to decide when a current submap should be closed,
which is augmented by a threshold on the percentage of LiDAR returns that are aligned
successfully. This method enables the detection of matching failures, especially in sparse
environments. EKF is used to estimate the UGV’s pose by initiating each cycle to predict its
current pose using the latest wheel odometry and IMU data, which aligns the LiDAR scan
against the current submap through scan matching [270]. RANSAC [160] is also incorporated
to reject outliers in the form of moving objects. The EKF and pose estimate is subsequently
updated using this scan matching alignment method. Odometric noises that are present in the
EKF update are adjusted according to the local ground slope gathered from the pitch and roll
measurements from the IMU. An increase in slope leads the module to assume an increase in
odometric noise due to wheel slip, thereby switching the filter preference for scan matching

over odometry.

Fig. 4.4 Lengths and angles used for calculating the local SLAM prefilter.
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To filter these errors using the IMU, we assume that (1) the terrain inclination is less than
Bmax, and (2) the terrain follows the “Manhattan World” [271] assumption. With reference to
Fig. 4.4, each LiDAR measurement range r is first corrected to account for the declination o
from the same measurement as rcos ¢, whereby an inequality is obtained referencing the
height of the LiDAR mounted above the ground 4.

0 <h—rsina —rcos - tan Byax 4.3)

To prevent any measurements from grazing the ground, any instance of r with declination o
that dissatisfies (4.3) is filtered. LiDAR measurements that are corrected and filtered will
then be passed to the SLAM algorithm.

4.3.4 UGV/GCS Communications

Communications between UGVs and GCSs are facilitated through a Wi-Fi mesh network
over the IEEE 802.11n standard in a multi-hop configuration over a data distribution system
(DDS), which provides a publisher-subscriber framework that provides robust real-time com-
munications. Publishers are separated into partitions which are either global (all participants)
or local (within a participant). Global partitions are mostly used to prevent network overloads,
as the local partition is used for high-rate inter-process communications, where messages are
passed over a shared memory between the front-end, back-end, and other high-level MRS
software components.

Messages are broadcasted by the front-end as submaps are closing in the form of com-
pressed grid-map data and the constraint that links the closed submap to the new one.
Incomplete grid-maps for open submaps are also broadcasted to visualise real-time global
maps; these maps are flagged to indicate that they are not yet immutable. The front-end
broadcasts three distinct, time-stamped message types with a fixed DDS buffer size n with
varying quality of service (QoS) priorities:

1. SubmapConstraint (» = 1000) defines the entire pose graph structure. A large buffer

size is allocated for the series of small yet vital messages.

2. SubmapGridmap encodes the actual shape of the environment, constituting most of
the MR-SLAM data, which are either open or closed.

(a) Open (n = 0) grid-maps are disposable as they are periodically broadcasted by

the front-end, these are sent to the local partition at the LiDAR’s scan rate.

(b) Closed (n = 100) grid-maps have higher priority as they are only transmitted

once.



4.3 Cooperative Localisation and Navigation 61

3. UGVPose (n = 0) are broadcasted frequently in real-time, which stales quickly and is
subsequently disposable. These are also sent to the local partition at the LIDAR’s scan

rate.

A rendering algorithm ray traces the accumulated LiDAR scans into an empty grid map
based on the methods described in [268]. The grid-map data is segregated into 32 x 32 cell
tiles that are broadcasted over UDP on a 50 : 1 compression ratio.

Likewise, the back-end’s publishing policies are:
1. SubmapPose:

(a) Global Partition (n = 0) does not require delivery guarantees since priority-

based filters synchronises this between participants.

(b) Local Partition (n = 0) does not require QoS as DDS uses shared memory to

delivery real-time submap pose estimates.

2. SubmapConstraint (n = 1000) is assigned with the highest priority as they define the

entire pose graph structure, hence a large buffer size is allocated.

3. GlobalGridmap (n = 0) are delivered through shared memory by DDS in real-time;

QoS is therefore not required.

4.3.5 Loop Closures

A loop closure is an event that occurs when a UGV revisits a location it has previously
threaded, thereby correcting its accumulated errors. The identification of loop closures occurs
between overlapping submap pairs and spatially similar grid maps, which are broadcasted as
new constraints that form cycles in the distributed pose graphs, bearing residual errors that
require optimisation. The back-end searches for local loop closures between “open” submaps
in real-time, especially when multiple UGVs are operating overlapping areas to ensure proper
localisation and prevent the accumulation of errors. Using this method enables our system to
efficiently accommodate high rates of loop closures and map changes in real-time.

The large number of loop closures generated by the system, as well as the distributed
algorithm design, prompted us to utilise the graphics processing unit (GPU) to search for
loop closures and merge submaps. Additionally, descriptive spatial relationships between
submaps are extracted using a grid-map correlation algorithm on the GPU that calculates
likelihood volumes and extracts multimodal Gaussian constraints. Using robust multimodal
constraints enables the algorithm to preemptively add loop closures to the pose graph and

perform outlier rejection by consensus.
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Fig. 4.5 Occupancy grid-map fusion illustrating two submap grid-maps with their origins p)’
and pZV to be fused onto the global output grid-map W shown as grey grids.

An overlapping submap pair also initiates an occupancy grid-map fusion algorithm. To
achieve the fusion described in Fig. 4.5, we use a GPU-based approach whereby the algorithm
checks for each overlapping cell in the output grid-map and performs a transformation of
that cell in its 2D coordinates into the submap’s coordinate frame, subsequently fusing it into
the output cell based on the corresponding submap cell value.

To optimise complex multimodal Gaussian constraints, we utilised a continuous mode
blending optimisation technique that is based on non-linear least-square approaches and ex-
hibits convergence properties that are representative of the underlying multimodal constraint

distributions.

4.3.6 SLAM Evaluation

For the evaluations described here, ten UGVs were deployed to explore an 80 x 40 m
environment. The total elapsed time was 36 minutes [246]. The SLAM routine was completed
with minimal user intervention whereby the UGVs autonomously explore the environment
while displaying their progress in real-time onto the MR-SLAM system’s GUI. This process
follows our approach in [272] and is illustrated in series across Figs. 4.6 through 4.8 with
timestamps on the upper right corner of the images in minutes and seconds; the total odometry
across all UGVs is presented in meters at the lower right corner; UGV are shown as dots with
colour-matched lines showing their trajectories; pose graphs are green with dots, lines, and
red triangles representing submap poses, submap constraints, and ground truth constraints,

respectively.
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The UGVs start at the southeast corner of the warehouse (see Fig. 4.6), where two teams
split to explore the west and north sections, respectively. Both teams explore independently
until a loop closure is evident, as illustrated in Fig. 4.7, where the first team is about to exit
via the southwestern corner. The exploration forms a total closed path length of 230 m that is
measured after the separation of the UGVs in the first room. The final result is presented in
Fig. 4.8. This corresponds to about 70 constraints in the pose graph. Based on 88 samples
collected across the surveyed area, the root-mean-square (RMS) error was calculated to be
~ 0.27 m.

The 2D correlation between each submap in Fig. 4.9 is represented by each slice, with a
£3 m translation variation along with x and y-axes at a fixed angular rotation. For example,
the middle row represents rotations of —6°, —3°, 0°, 3°, and 6°, respectively. The 2D ellipses
represent three-sigma covariance modes through a Gaussian mixture model that fits the
maximum likelihood volume. Occlusions have reduced the overlapping area of occupied
cells (black) between the submap pair, and the matcher’s output is mostly dominated by an

array of columns in the environment.

Fig. 4.6 SLAM output showing the UGVs starting at the southeastern corner of the environ-
ment.
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22:45.7 1.0x

Fig. 4.7 SLAM output showing loop closure between both teams, with the first team about to
exit via the southwestern corner.

36:05.0 1.0x

20m

Fig. 4.8 Completed global grid-map with ground truth overlaid in magenta.
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Fig. 4.9 Example of multimodal constraint output with perceptual aliasing. The correlation
results for a test area with perceptual aliasing that was caused by repetitive geometry. It shows
an overlapping submap pair (left) along with 15 slices through their constraint likelihood
volume.

4.4 Visual Odometry

While some effort was made to circumvent wheel slip accumulation in Section 4.3, other
works have demonstrated that visual odometry is often an effective solution to this prob-
lem [273]. In the case of the MRS, this can be incorporated with no hardware or sensor
modifications. Taking advantage of the system’s software scalability, this was programmed
on top of the existing software with minimal impact to the overall system.

4.4.1 Visual Odometry Method

As with most practical visual computing applications, the implementation of visual odometry
in the real world comes with its own sets of challenges [274]. Environmental dynamics,
including variations in seasons, light intensity, sensor occlusions, and motion blurs are
capable of distorting visual odometry results that will in turn affect its accuracy. Our
application will require that the algorithm is robust enough to withstand the environmental
variations present in an urban outdoor environment.

Visual odometry works by tracking either features or appearances in the image frame [152,
153] with appearance-based approaches usually resulting in more accurate tracking but at
the cost of computation complexity. The decentralised nature of the MRS dictates visual
odometry to be performed on each robot’s computer as a separate subroutine to MR-SLAM,
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thereby requiring a feature-based method to be implemented. While visual odometry can be
applied across different image features and many feature-based methods do exist [153, 175],
oriented FAST and rotated BRIEF (ORB) features [159] were found to be most compatible
for the system due to the following:

* ORB features achieve a compromise between accuracy and system footprint. In other
words, it is adequately accurate for the MRS application while having computation

requirements that are low enough to be run on the individual robots.

* ORB features were proposed and tested in urban environments, whereby the structured
appearance of urban environments enabled ORB features to be extracted effectively,
especially on the KITTI benchmark suite [113].

Based on these rationales, an algorithm based on ORB-SLAM [172] was implemented as
the visual odometry solution for this system. Once a camera has been corrected for radial
distortions, the algorithm tracks ORB features across each frame to determine the displace-
ment of each tracked pixel at every new frame, thereby localising the robot. It functions as
a separate thread and routine on the onboard computer to minimise any interference to the
other routines running on the robots.

As visual odometry is effectively a visual SLAM algorithm without loop closures, the
MRS’ implementation of ORB-SLLAM is hence used purely for odometry; loop closures and
SLAM are still managed by the LiDAR-based front-end, independent from visual odometry.

4.4.2 Visual Odometry Evaluation

Evaluations for visual odometry were performed on individual UGVs as the implementation
was fully decentralised. To optimise for performance and to reduce redundancy, a modified
version of ORB-SLAM?2 was proposed whereby all subroutines related to visual SLAM,
such as loop closure detection and mapping, are removed. By delegating all SLAM routines
to the LiDAR-based front-end, this modification yielded a 120% increase in performance
gain in terms of output frame-rate. Additionally, maps created through the LiDAR-based
front-end delivers more accurate point cloud measurements as compared to our monocular
camera setup, and a LiDAR-based map requires lower computation and storage requirements
than a vision-based solution.

ORB-SLAM?2 achieves visual odometry by tracking ORB features, as shown in Fig 4.10.
This evaluation was performed in an outdoor environment with unconstrained lighting
conditions using a calibrated monocular camera. Tests were carried out while driving along a

220 m path while generating its trajectory as shown in Fig. 4.11, where it is indicated in blue;
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the black dots represent previously tracked ORB features, whereas the red dots represent the

features that are currently tracked.

Fig. 4.11 Trajectory measured using ORB-SLAM?2 for dead reckoning (blue), previously
tracked ORB features (black) and presently tracked ORB features (red).

4.5 Semantic Segmentation

The incorporation of semantic segmentation into the MRS enables navigation to be supple-
mented with scene understanding and object classification. Semantic segmentation is a deep
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learning process that classifies each pixel in an image frame according to the object class it
belongs to. This is especially useful in complex environments with multiple objects, with

little uniformity in pose, features, and illumination.

4.5.1 Semantic Segmentation Method

For the semantic segmentation application of the MRS, SegNet [110] was selected based
on its high compatibility and ease of implementation. The architecture of SegNet uses a
convolution encoder and decoder setup that classifies objects from one of the following
classes: sky, building, column-pole, road-marking, road, pavement, tree, sign-symbol, fence,
vehicle, pedestrian and bicyclist; with a class average classification accuracy of 65.9% [110].
This MRS uses SegNet whereby pedestrians, vehicles, buildings, vegetation, and pathways
are classified as illustrated in Fig. 4.12, and are subsequently classified into static and dynamic
objects.

Static objects are stationary (with stationary positions), while dynamic objects are moving
(with time varying positions). It is important for an MR-SLAM system to differentiate static
and dynamic objects to devise proper navigational reactions to the environment. For example,
static objects such as buildings and vegetation are permanent placements in the environment;
these objects will be mapped by the MR-SLAM algorithm as part of the environment.
Conversely, dynamic objects such as pedestrians and vehicles are in motion or are temporary
placements in the environment; these will not be mapped by the MR-SLAM algorithm.
Overall, this process of differentiating object types will ultimately result in higher mapping
accuracy, especially when the ground truth does not contain dynamic objects.

The recognition of dynamic objects also enables the system to estimate the motion of a
specific moving object. In other words, by segregating moving vehicles or pedestrians within
an image frame, the LiDAR can then be utilised to estimate the motion and trajectory of
the said object. This enables the robot to actively perform obstacle avoidance according to
its motion, which can be implemented by comparing the robot’s current speed against the

LiDAR measurements on the classified dynamic object based on the image frame.

4.5.2 Semantic Segmentation Evaluation

Like visual odometry, semantic segmentation was also implemented in a decentralised
approach onto individual UGVs. A Caffe [117] implementation of SegNet is installed
onto the individual UGVs, which enables pixelwise object classification that corresponds to
LiDAR measurements at that time instance, which can be any of 12 classifiable classes. We

subsequently separate these classes into static and dynamic classes. For example, bicycles,
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pedestrians, and vehicles are dynamic, whereas buildings, fences, pavement, poles, road,
road markings, road signs, vegetation, and sky are static. By matching the position of the
classified pixel at the x-axis against that of the LiDAR on a fixed y-plane, dynamic objects
can therefore be segregated and tracked using the LiDAR for motion detection. Objects
in motion will be compared against the trajectory of the UGV to ensure that there is no
impending collision. These dynamic objects will also be ignored as part of the SLAM routine

so that it does not become mapped as part of the environment.

Fig. 4.12 SegNet output showing segmented pedestrian (olive), bicycles (light blue), pathway
(blue) and building (red).

Fig. 4.12 was captured while navigating along the path as described in Section 4.4.2. The
parked bicycles on the right side and the pedestrians in the distance were properly segmented
as dynamic objects, and the building and pavement as static objects. Several false detections
are present due to variations in lighting and image quality, which accounts for 2.83% of the
total pixels classified on the pavement region.

Fig. 4.13 SegNet output from a parking area showing segmented road regions (purple), road
markings (orange), and poles (yellow).

Fig. 4.13 was also captured on the same path. While driving on roads, the road region

and markings are properly classified along with the electric poles, vehicles, and pedestrians.
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Uniform lighting resulted in accurate classification accuracy with 0.69% of all pixels falsely

classified.

4.6 Conclusion

In this chapter, we have presented a decentralised multi-robot system for SLAM in urban
outdoor environments together with visual odometry and semantic segmentation techniques.
The vision-based methods can be used as an alternative to LiDAR-based localisation and
object classification and may lead an overall cheaper and more powerful environmental
perception system. We have presented an on-line, distributed, and decentralised MR-SLAM
system that has proven to be resilient against environmental dynamics such as variations in
lighting, terrain, pose, and moving objects. Evaluation results have confirmed the feasibility
of using visual odometry as a viable solution to the odometry problem in an MRS, while
semantic segmentation is a robust solution to object classification and scene understanding.
Practical applications of this system can include search-and-rescue or reconnaissance mis-
sions in uncharted or hazardous environments, where detailed maps can be built quickly and
accurately using a swarm of robots that are easily deployable, while being robust enough to

cater to changes in the environment and hardware setup.



Chapter 5

Implementation of Semantic
Segmentation for Road and Lane
Detection on an Autonomous Ground

Vehicle with LiDAR

While current implementations of LiDAR-based autonomous driving systems are capable
of road following and obstacle avoidance, they are still unable to detect road lane markings,
which is required for lane keeping during autonomous driving sequences. In this paper, we
present an implementation of semantic image segmentation to enhance a LiDAR-based au-
tonomous ground vehicle for road and lane marking detection, in addition to object perception
and classification. To achieve this, we installed and calibrated a low-cost monocular camera
onto a LiDAR-fitted Formula SAE Electric car as our test bench. Tests were performed first
on video recordings of local roads to verify the feasibility of semantic segmentation, and
then on the Formula SAE car with LiDAR readings. Results from semantic segmentation
confirmed that the road areas in each video frame were properly segmented, and that road
edges and lane markers can be classified. By combining this information with LiDAR
measurements for road edges and obstacles, distance measurements for each segmented
object can be obtained, thereby allowing the vehicle to be programmed to drive autonomously

within the road lanes and away from road edges.
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5.1 Introduction

The Renewable Energy Vehicle (REV) Project at the University of Western Australia con-
ducts research into electric vehicles, vehicle automation and autonomous driving systems.
Recent projects include the development of an Autonomous Formula SAE Electric car [275].
This vehicle is an open-wheeled, electric drive race car, with electronic drive-by-wire and
electromechanical brake/steering actuation. The vehicle serves as a compact, flexible test-bed
for sensor testing and the development of autonomous driving algorithms.

Prior research has been conducted on road and road edge detection through optical
systems [276], radar [277] as well as using Light Density and Ranging (LiDAR) sensors
such as in the winning entry in the 2007 DARPA Urban Challenge [278]. The methodology
described in [279] utilises a feature-extraction algorithm while other algorithms such as [280]
rely on the presence of curbs and seek to identify and track curbs as features in the LIDAR
data. More recently, there has been an increase in the use of cameras to achieve this [85],
giving rise to visual road detection. Methodologies to achieve this include feature extraction
and classification [85], horizon and vanishing point detections [48], and artificial neural
networks (ANNSs) [49].

The problem of path-finding can be described as: “Given a start state, a goal state, a
representation of the robot and a representation of the world, find a collision-free path that
connects the start with the goal satisfying the system constraints” [281]. In mobile robotics,
a proven method to obtain the requisite “representation of the world” is via the use of LiDAR
data to generate a virtual map in real-time both as the sole sensor [282] and in conjunction
with data from additional sensors [283]. Similar LiDAR based map building approaches
have been shown to be suitable for outdoor terrain [284]. These generated maps vary from
simple two-dimensional maps suitable for basic path planning consisting of traversable
regions, obstacles and unexplored regions [285] to more complex three-dimensional maps
from which sophisticated cost maps are generated [286]. A more detailed map can be built
by supplementing the camera in addition to LiDAR. These additional details can include a
combination of vehicle detection and classification [287], road sign recogn