
1 
 

 

 

 

 

End-to-End Learning for 

 Autonomous Driving Robots 
 

Anthony Ryan 

21713293 

 

 

Supervisor: Professor Thomas Bräunl 

 

GENG5511/GENG5512 Engineering Research Project  

 

Submitted: 25th May 2020 

Word Count: 8078 

 

 

Faculty of Engineering and Mathematical Sciences 

School of Electrical, Electronic and Computer Engineering 



2 
 

Abstract 
This thesis presents the development of a high-speed, low cost, end-to-end deep learning 

based autonomous robot driving system called ModelCar-2. This project builds on a previous 

project undertaken at the University of Western Australia called ModelCar, where a robotics 

driving system was first developed with a single LIDAR scanner as its only sensory input as a 

baseline for future research into autonomous vehicle capabilities with lower cost sensors. 

ModelCar-2 is comprised of a Traxxas Stampede RC Car, Wide-Angle Camera, Raspberry Pi 

4 running UWA’s RoBIOS software and a Hokuyo URG-04LX LIDAR Scanner.  

ModelCar-2 aims to demonstrate how the cost of producing autonomous driving robots can 

be reduced by replacing expensive sensors such as LIDAR with digital cameras and 

combining them with end-to-end deep learning methods and Convolutional Neural Networks 

to achieve the same level of autonomy and performance. 

ModelCar-2 is a small-scale application of PilotNet, developed by NVIDIA and used in the 

DAVE-2 system. ModelCar-2 uses TensorFlow and Keras to recreate the same neural 

network architecture as PilotNet which features 9 layers, 27,000,000 connections and 

252,230 parameters. The Convolutional Neural Network was trained to map the raw pixels 

from images taken with a single inexpensive front-facing camera to predict the speed and 

steering angle commands to control the servo and drive the robot.  

This end-to-end approach means that with minimal training data, the network learns to drive 

the robot without any human input or distance sensors. This eliminates the need for an 

expensive LIDAR scanner as an inexpensive camera is the only sensor required. This will 

also eliminate the need for any lane marking detection or path planning algorithms and 

improve the speed and performance of the embedded platform. 

 

 

 

 

 

 

 

 
 

 



3 
 

Declaration 
I, Anthony Ryan, declare that: 

This thesis is my own work and suitable references have been made to any sources that have 

been used in preparing it. 

This thesis does not infringe on any copyright, trademark, patent or any other rights for any 

material belonging to another person. 

This thesis does not contain any material which has been submitted under any other degree in 

my name at any other tertiary institution. 

 

 

 

Date: 25th May 2020 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



4 
 

Acknowledgements 
I would first like to thank my supervisor, Professor Thomas Bräunl, for his advice and 

guidance throughout the duration of this project as well as giving me the chance to carry out 

my research on this topic. 

I would also like to thank Omar Anwar for donating so much of his time and expertise to this 

project, Marcus Pham and Felix Wege for their support with the EyeBot software and Pierre-

Louis Constant for his help with CNC milling components for this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Contents 
Abstract ...................................................................................................................................... 2 

Declaration ................................................................................................................................. 3 

Acknowledgements .................................................................................................................... 4 

List of Figures ............................................................................................................................ 7 

List of Tables ............................................................................................................................. 7 

Acronyms ................................................................................................................................... 8 

1   Introduction ........................................................................................................................... 9 

1.1   Background .................................................................................................................... 9 

1.2   Problem Statement and Scope ...................................................................................... 10 

1.3   Document Structure...................................................................................................... 10 

2   Literature Review................................................................................................................ 11 

2.1   Levels of Autonomy ..................................................................................................... 11 

2.2   LIDAR .......................................................................................................................... 12 

2.3   Convolutional Neural Networks................................................................................... 12 

2.3.1   End-to-End Driving ............................................................................................... 13 

2.3.2   NVIDIA PilotNet ................................................................................................... 14 

3   Design ................................................................................................................................. 16 

3.1   Hardware ...................................................................................................................... 16 

3.1.1   Robot Chassis ........................................................................................................ 16 

3.1.2   Embedded Controller ............................................................................................. 17 

3.1.3   Camera ................................................................................................................... 17 

3.1.4   LIDAR Unit ........................................................................................................... 18 

3.1.5   Wireless Handheld Controller ............................................................................... 18 

3.1.6   Mounting Plate ...................................................................................................... 19 

3.2   Software ....................................................................................................................... 20 

3.2.1   RoBIOS ................................................................................................................. 20 

3.2.2   TensorFlow/Keras ................................................................................................. 20 

3.2.3   OpenCV ................................................................................................................. 20 

3.2.4   Pygame .................................................................................................................. 20 

3.2.5   ServoBlaster........................................................................................................... 21 

3.2.6   Breezy LIDAR/SLAM .......................................................................................... 21 

 



6 
 

3.3   ModelCar-2 .................................................................................................................. 22 

3.3.1   Manual Drive ......................................................................................................... 23 

3.3.2   Camera Drive ......................................................................................................... 24 

3.3.3   LIDAR Drive ......................................................................................................... 25 

3.3.4   Control Flow Diagram ........................................................................................... 27 

4   Method ................................................................................................................................ 28 

4.1   Simulation .................................................................................................................... 28 

4.2   Data Collection ............................................................................................................. 28 

4.3   Data Augmentation ...................................................................................................... 29 

4.4   Model Training ............................................................................................................. 31 

5   Results ................................................................................................................................. 32 

5.1   Losses and Accuracy .................................................................................................... 32 

5.2   Predictions .................................................................................................................... 33 

5.3   Autonomy ..................................................................................................................... 34 

5.4   Saliency ........................................................................................................................ 35 

5.5   Confusion Matrix ......................................................................................................... 36 

5.6   Processing Speeds ........................................................................................................ 37 

5.7   Cost............................................................................................................................... 39 

6   Conclusion .......................................................................................................................... 40 

6.1   Future Work ................................................................................................................. 41 

References ................................................................................................................................ 42 

 

  



7 
 

List of Figures 
Figure 1: NVIDIA DAVE-2 End-to-End Driving Pipeline ..................................................... 13 

Figure 2: NVIDIA PilotNet Architecture ................................................................................ 14 

Figure 3: Training the NVIDIA DAVE-2 Network ................................................................. 15 

Figure 4: Traxxas Stampede XL-5 ........................................................................................... 16 

Figure 5: Raspberry Pi 4 Model B ........................................................................................... 17 

Figure 6: 5MP OV5647 Digital Camera .................................................................................. 17 

Figure 7: Hokuyo URG-04LX-UG01 LIDAR ......................................................................... 18 

Figure 8: Logitech F710 Gamepad .......................................................................................... 18 

Figure 9: CAD Mounting Plate Design ................................................................................... 19 

Figure 10: CNC Produced Mounting Plate .............................................................................. 19 

Figure 11: ModelCar-2 Autonomous Driving Robot .............................................................. 22 

Figure 12: ModelCar-2 GUI Main Menu................................................................................. 22 

Figure 13: Manual Drive Mode Display .................................................................................. 23 

Figure 14: Image Processing Transformation .......................................................................... 25 

Figure 15: LIDAR Drive Scan Display Mode ......................................................................... 26 

Figure 16: LIDAR Drive Point Map Display Mode ................................................................ 27 

Figure 17: Simplified Control Flow for ModelCar-2 .............................................................. 27 

Figure 18: Simulation of Robot Avoiding Crate...................................................................... 28 

Figure 19: Steering Angle Data Distribution ........................................................................... 29 

Figure 20: Image Flip Augmentation ....................................................................................... 30 

Figure 21: Image Blur Augmentation ...................................................................................... 30 

Figure 22: Training and Validation Loss ................................................................................. 32 

Figure 23: Training and Validation Accuracy ......................................................................... 32 

Figure 24: Simulation Model Prediction Test .......................................................................... 33 

Figure 25: Simulation Saliency Map ....................................................................................... 35 

Figure 26: Steering Angle Confusion Matrix .......................................................................... 36 

Figure 27: Processing Times for All Driving Modes............................................................... 37 

Figure 28: LIDAR SLAM Map of EECE 4th Floor UWA ...................................................... 41 
 

List of Tables 
Table 1: Description of SAE Levels of Autonomy .................................................................. 11 

Table 2: End-to-End Driving Control Loop ............................................................................. 24 

Table 3: OpenCV Image Processing Function......................................................................... 24 

Table 4: NVIDIA PilotNet recreation with Keras ................................................................... 31 

Table 5: Driving Autonomy Scores ......................................................................................... 34 

Table 6: Frame Rates for All Driving Modes .......................................................................... 38 

Table 7: ModelCar-2 Bill of Materials .................................................................................... 39 

Table 8: Driving System Cost Comparison ............................................................................. 39 
 

 

 

file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285344
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285345
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285346
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285347
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285348
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285349
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285350
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285351
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285352
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285353
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285354
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285355
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285356
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285357
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285358
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285359
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285360
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285361
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285362
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285363
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285364
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285365
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285367
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285368
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285369
file:///C:/Users/Robot/Desktop/GENG5512%20Thesis/GENG5512%20Final%20Report.docx%23_Toc41285370


8 
 

Acronyms 
ALVINN Autonomous Land Vehicle in a Neural Network 

API Advanced Programming Interface 

AUD Australian Dollar 

CNC Computer Numerical Control 

CNN Convolution Neural Network 

CPU Central Processing Unit 

DARPA Defence Advanced Research Projects Agency 

DAVE DARPA Autonomous Vehicle 

EECE Electrical, Electronic and Computer Engineering 

ESC Electronic Speed Controller 

ELU Exponential Linear Unit 

GPIO General Purpose Input/Output 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

LIDAR Light Detection and Ranging 

LSTM Long Short-Term Memory 

PWM Pulse Width Modulation 

RC Radio Control 

RGB Red-Green-Blue 

RoBIOS Robotics Basic Input/Output System 

ROS Robot Operating System 

SAE Society of Automotive Engineers  

SLAM Simultaneous Localisation and Mapping 

UWA University of Western Australia 

VNC Virtual Network Computing 

 

 

 

 



9 
 

1   Introduction 
 

1.1   Background 

Autonomous vehicles have been increasing in popularity over the recent years as many 

companies are actively researching and developing new technologies that are leading to fully 

autonomous driving systems that require no human intervention. However, there is much 

debate in the industry over which of these technologies will be able to achieve full 

automation and make self-driving cars commercially feasible. The result of this debate could 

shape the path of autonomous vehicles forever. 

Currently, most autonomous systems rely heavily on forms of remote sensing such as LIDAR 

which uses pulses of electromagnetic radiation to calculate distances to nearby objects to 

generate a detailed map of the environment. While driving systems using LIDAR can be 

accurate and have large distance and angular ranges, they are incredibly expensive and 

require complex algorithms with finely tuned parameters. As a result, no LIDAR based 

autonomous vehicles are available on the market and the testing of these vehicles is limited to 

certain regions. 

A novel approach to producing autonomous vehicles has started to gain popularity within the 

industry that involves using cameras and machine learning. Neural networks are able to 

control vehicles by learning from data provided by human driving. Images provided from the 

cameras are recorded and labelled with their respective vehicle control values to serve as 

training and validation data for the neural network. If this neural network approach can match 

or improve on the autonomous driving performance of LIDAR based systems then the cost of 

self-driving cars is greatly reduced as inexpensive cameras are the only sensors required and 

expensive LIDAR sensors can be made redundant. The end-to-end control also eliminates the 

need for building any conditional driving algorithms and setting any pre-defined parameters. 

The NVIDIA Corporation has created their own end-to-end driving neural network 

architecture called PilotNet, which is a Convolution Neural Network that learns to control a 

vehicle by using pixels from images taken with a front-facing camera and map them directly 

to steering commands [1]. The network learns from data recorded by human drivers. 

Providing a fair comparison for both of these approaches could be very useful in supporting 

whether an end-to-end neural network such as NVIDIA’s PilotNet is a viable method for the 

future of autonomous vehicle design as reducing their production time and costs could bring 

them closer to commercial availability.  

In 2017, an autonomous robot called ModelCar was developed as part of a research project at 

the University of Western Australia and used a relatively expensive LIDAR scanner as input 

for a complex driving algorithm to navigate around corridors with impressive autonomy. The 

project aimed to provide a baseline for future research into autonomous driving with more 

cost-effective sensors [3]. The ModelCar also features a manual driving mode and possesses 

the necessary requirements for conducting a comparison between these two autonomous 

driving systems. 

 



10 
 

1.2   Problem Statement and Scope 

The aim of this thesis is to continue from the ModelCar project and develop a lower-cost 

autonomous robot driving system called ModelCar-2 that uses an end-to-end deep learning 

approach. The new system will use an inexpensive front-facing digital camera and use the 

NVIDIA PilotNet neural network architecture. With the robot running both driving systems 

on the same machine, a comparison between the two approaches will be balanced and 

hopefully provide insight into the validity of end-to-end neural network driving. 

Training data will be in the form of recorded images taken from the camera and labelled with 

the steering and speed servo values at the time of capture, these will be collected from both 

the manual and LIDAR driving modes. When sufficient data has been collected, the model 

will then be trained and be able to produce steering angle and speed commands in real-time 

based on the image that is being supplied by the camera to drive the robot autonomously.  

When an optimal model has been developed, the new end-to-end ModelCar-2 system will 

compete against the original LIDAR ModelCar driving system in the same environment that 

both of them used for development and training to limit any bias. The systems will be tested 

for their autonomy, processing speed and cost.  

All hardware and software used in the development of the ModelCar-2 robot will utilise 

common components and software used at the University of Western Australia, as to make 

further work on this project easier to extend and reproduce as well as support any educational 

uses of this project. 

 

1.3   Document Structure 

This thesis starts with a short review of autonomous vehicles and the uses of LIDAR and 

neural networks in their development, which is followed by a description of the hardware and 

software which will be used to assemble the ModelCar-2 robot. The final sections focus on 

how the end-to-end learning method operates and contains an analysis into the results of a 

comparison between the LIDAR and the neural network driving systems. 

 

 

 

 

 

 

 

 

 

 

 



11 
 

2   Literature Review 
 

2.1   Levels of Autonomy 

The Society of Automotive Engineers has developed a “Levels of Driving Automation” 

standard that describes six different levels of autonomy that rank from no automation to full 

automation [6].  

 

Table 1: Description of SAE Levels of Autonomy 

SAE Level of Autonomy Description  

 

Level 0 - No Automation 

 

Human in full control of all aspects of driving. 

Level 1 - Driver Assistance Vehicle assists driver with only one aspect of control at 

a time (e.g. Cruise Control, Lane Keeping, Brake 

Assistance). 

 

Level 2 – Partial Automation The control of speed and steering is controlled by the 

vehicle, but driver still performs all remaining tasks 

(e.g. Tesla Autopilot). 

 

Level 3 – Conditional 

Automation 

The driving system takes complete control over  

driving. Human driver is expected to intervene only 

when required. 

 

Level 4 – High Automation The driving system takes complete control over  

driving. Human driver is not required to intervene as 

vehicle is able to stop and park safety (e.g. Waymo 

Chrysler Pacifica). 

 

Level 5 – Full Automation The driving system takes complete control over  

Driving. Human driver does not need to be inside the 

vehicle. 

 

 

The aim for all autonomous driving research is to develop a vehicle that is classified as a 

Level 5, fully autonomous vehicle that is able drive without the need for any human input 

[18].  

As of yet, the highest level of automation that has been officially awarded is a Level 4, which 

belongs to the Waymo Chrysler Pacifica. The Waymo fleet of vehicles make extensive use of 

LIDAR technology [22]. 

 



12 
 

2.2   LIDAR  

LIDAR is a remote sensing method that involves using light in the form of pulsing lasers to 

measure the distances to elements in the surrounding environment. LIDAR data allows for a 

HD map of the surroundings to be generated in real-time which makes it perfect for 

applications in self-driving cars.  

LIDAR sensors feature heavily in early attempts at autonomous vehicle design and continue 

to be one of the most important components of the current wave as well. LIDAR sensors 

today are extremely accurate, reliable and can have large distance and angular ranges. 

However, LIDAR sensors are expensive and involve using complex algorithms and 

conditional logic structures to process the data for use in driving. 

The current industry leader in LIDAR based autonomous vehicles is Waymo, a subsidiary of 

Google. The main fleet of Waymo vehicles has been able to achieve Level 3 autonomy but 

their newest vehicle, the Chrysler Pacifica Hybrid has been classified as having Level 4 

autonomy. The Pacifica is fitted with 3 LIDAR sensors, each costing AUD $25,000 which 

contributes to almost half of the estimated total vehicle production cost of AUD $154,905 

which is incredibly expensive compared to other vehicles on the market [7]. As of today, No 

Waymo vehicles are currently available to the general public and there are no plans for this to 

change. They are also geo-fenced to California and can’t be driven autonomously outside the 

state.  

Tesla CEO Elon Musk has repeatedly suggested that “Anyone who relies on LIDAR is 

doomed” and that “Expensive sensors are unnecessary” [8]. Instead of LIDAR, Tesla vehicles 

use much less expensive cameras together with Convolutional Neural Networks. Contrast to 

any LIDAR based systems, Tesla vehicles are currently available to the public, have 

relatively low production costs and their autonomy performance is growing faster than any of 

their competitors [22].  

 

2.3   Convolutional Neural Networks 

Convolutional Neural Networks are a branch of deep neural networks that are primarily used 

in image classification. CNNs typically involve convolution layers which are designed to 

perform feature extraction on images to allow them to recognise patterns. This is usually 

performed in a process called supervised machine learning, where models learn to map 

features to labels based on training data examples [17]. 

Companies such as Tesla are beginning to implement CNNs into autonomous driving 

systems. 

 

 

 

 

 



13 
 

2.3.1   End-to-End Driving 

The standard approach to solving the challenge of autonomous driving has been to 

decompose the problem into several steps such as object, pedestrian and lane marking 

detection, path planning and motor control [4]. This approach is the reason for remote sensing 

technologies such as LIDAR being popular in the early stages of autonomous vehicle 

development.  

With end-to-end control, this pipeline is simplified by applying neural networks to directly 

produce control outputs from sensory inputs without having to process data through a series 

of algorithms [4]. 

 

 

 

Figure 1: NVIDIA DAVE-2 End-to-End Driving Pipeline [1] 

 

The use of neural networks for end-to-end driving and autonomous systems was first 

demonstrated in 1989, where the ALVINN system showed how an end-to-end trained neural 

network could steer a vehicle on public roads. ALVINN featured a 3-layer neural network 

that took images from a camera with a resolution of 30x32 and used only the blue channel, as 

it provided higher contrast between road and non-road pixels [10]. These images combined 

with distances from a laser scanner produced an output for vehicle direction. The system is 

considered primitive by today’s standards as it only consisted of fully connected layers, but 

more data and computational power over time has allowed for more complex networks that 

make use of convolution [4]. 

In 2004, a DARPA project called DAVE created a 1/10th scale autonomous car that was able 

to drive through an obstacle course featuring different terrains. DAVE featured a 6-layer 

Convolution Neural Network that was trained on hours of data supplied by manual driving. 

The training data included images from two cameras mapped to left and right steering 

commands [1]. DAVE achieved an average distance of 20 metres between collisions in a 

complex environment [1]. 

 

 

 



14 
 

2.3.2   NVIDIA PilotNet 

The DAVE project served as the groundwork for NVIDIA’s autonomous driving system 

called DAVE-2, where they implemented their state-of-the-art neural network architecture 

called PilotNet. In the paper End-to-End Learning for Self-Driving Cars [1], NVIDIA 

demonstrated how PilotNet was able to successfully drive a full-size vehicle on public roads 

by being trained on over 70 hours of human driving [1]. The DAVE-2 vehicle achieved an 

autonomy of 98% on flat roads with minimal traffic [2].  

 

 

The network consists of 9 layers; a normalisation layer, 5 convolutional layers and 3 fully 

connected layers. The normalisation layer operation is constant and not adjusted by training. 

Normalisation is performed as part of the network to benefit from GPU acceleration and is 

used to avoid model saturation and improve the quality of the gradients [1].  

Figure 2: NVIDIA PilotNet Architecture [1] 



15 
 

The first three convolution layers use filters of size (5x5) and stride (2x2) which are used to 

detect large shape features within the image such as road lines and edges. The last two layers 

use filters of size (3x3) and stride (1x1) which extract more nuance features in the image [3].  

The input into the network is a 3 channel YUV image of size 200x66 that produces a single 

output of steering angle [1]. NVIDIA has stated that these parameters are a result of extensive 

experimentation with multiple layering configurations [1].  

The neural network is trained through a process called backpropagation which calculates the 

weights of the model that minimise the loss or mean squared error between the steering 

commands from the manual driving and the model predictions [17].  

 

 

 

This continues until the loss is reasonably low and the model has learned to control the 

vehicle. This process is also called regression and is different from image classification as the 

output is a numerical value instead of a class type. 

 
 

 

 
 

 

 

Figure 3: Training the NVIDIA DAVE-2 Network [1] 



16 
 

3   Design 
This section provides an overview of the hardware and software components used in 

assembling the ModelCar-2 robot as well as the driving program. One the aims of this project 

is cost reduction and therefore most of the components used are relatively inexpensive and 

can be easily sourced from electronics stores and hobby shops. This project also aims to use 

open-source software to reduce cost but to also make reproducing and understanding the 

driving program easier. A full cost breakdown can be found in the results section.  

 

3.1   Hardware 
 

3.1.1   Robot Chassis 

The Traxxas Stampede XL-5 is a commercially available, 1/10th scale, Rear-Wheel Drive, 

RC Car that serves as the base for the ModelCar-2 robot. The Traxxas Stampede was made 

available to the UWA faculty as a result of the previous ModelCar project. 

 

 

The Stampede is perfect for use in this project as the ESC is separate from its signal receiver. 

For complete end-to-end control, the steering servo and motor needs to be connected directly 

to the embedded controller in order to receive commands from the neural network model.  

The steering needs to have an Ackermann setup that has a servo with very fine resolutions of 

steering angle. There are some inexpensive hobby vehicles that only have three discrete angle 

values such as left, right and straight which although could still achieve autonomous driving, 

greater control over the steering will reduce the margins of error and smooth many aspects of 

the driving [4]. 

 

Figure 4: Traxxas Stampede XL-5 



17 
 

3.1.2   Embedded Controller 

The Raspberry Pi is the most popular single board computer and although it may not be as 

powerful and as optimised for machine learning as others on the market such as the NVIDIA 

Jetson Nano or DRIVE PX (used in DAVE-2), the Raspberry Pi is cost-effective. The Pi also 

includes built-in Wi-Fi, Bluetooth and USB 3.0 for easy connectivity to peripherals.  

The Raspberry Pi was an obvious choice as the RoBIOS API was developed to be used with 

Raspberry Pi and is used in the ‘EyeBot’, the primary teaching robot at UWA. This makes 

further work involving the ModelCar-2 easier to implement.. 

 

3.1.3   Camera 

The resolution is not the most important detail when considering what camera to use, as the 

images will get resized down before they are inputted through the network. Having a larger 

field of view is more beneficial, as more information can be captured from the surroundings 

in a single image and as such a wide-angle camera lens is preferred.  

The 5MP OV5647 Camera Board with a LS-40180 Fisheye Lens was chosen as it is 

compatible with the Raspberry Pi and is cost-effective, especially compared to the LIDAR 

sensor that it aims to compete with. The fisheye lens also provides a 180˚ field of view as 

well as having an infrared filter. 

Figure 5: Raspberry Pi 4 Model B 

Figure 6: 5MP OV5647 Digital Camera 



18 
 

3.1.4   LIDAR Unit 

The Hokuyo URG-04LX-UG01 was the 2D LIDAR unit used for developing the original 

ModelCar project and therefore remains for the new ModelCar-2 project to allow the original 

LIDAR driving system to still operate. Although relatively expensive compared to the rest of 

the components listed, this sensor provides easy interfacing with the Raspberry Pi through the 

use of USB connections and open-source software.  

 

The sensor has a 10 Hz scan rate, 240˚ field of vision, 0.352˚ angular resolution and a range 

of 20-5600 mm [3]. 

 

3.1.5   Handheld Controller 

To be able to control the robot manually and navigate the program menu, a wireless handheld 

controller is required.  

The Logitech F710 Gamepad uses a wireless USB receiver which can be connected to the 

Raspberry Pi to allow inputs from the buttons and joysticks to be recognised by the driving 

program.  

Figure 8: Logitech F710 Gamepad 

Figure 7: Hokuyo URG-04LX-UG01 LIDAR 



19 
 

3.1.6   Mounting Plate  

As the robot can reach speeds of +35 km/h in all driving modes, a plastic mounting plate was 

made using CNC milling to replace the original ModelCar setup and to make sure all 

components are securely fitted to the robot. 

 

The plate has several supports which allow the Raspberry Pi, LIDAR and Battery Pack to be 

mounted. There are two access holes, the larger is to be able to reach the ESC power switch 

and the smaller is to allow the servo cable to connect to the ESC module. With only removing 

3 screws, the entire mounting plate can be taken off to allow easier maintenance on the robot. 

Along with the plate, a camera mount was also designed which can be adjusted to different 

angles. 

 

Figure 9: CAD Mounting Plate Design 

Figure 10: CNC Produced Mounting Plate 



20 
 

3.2   Software 
 

3.2.1   RoBIOS 

The RoBIOS-7 library is an API that is built on the latest distribution of Linux for Raspberry 

Pi called Raspbian Buster. The software was developed at the University of Western 

Australia for use with the ‘EyeBot’ family of mobile robots as well as the simulation package 

known as ‘EyeSim’. RoBIOS provides an extensive library that allows simple design of 

robotics programs that can be written in the C, C++ or Python languages [11]. The library 

provides a simple Graphical User Interface that can be displayed on either an external LCD 

touchscreen or on virtual desktop display software such as Microsoft Remote Desktop or 

VNC Viewer. Information on the RoBIOS library functions can be found at:  

https://robotics.ee.uwa.edu.au/eyebot/Robios7.html 

  

3.2.2   TensorFlow/Keras 

Keras is an open-source neural network library written for Python and acts as a backend for 

TensorFlow. Its API is simple, user-friendly and most importantly has versions that are 

compatible and optimised for Raspberry Pi, which should provide impressive processing 

speeds. Although Torch 7 was used to create the network used in NVIDIA’s DAVE-2 

system, Keras includes all the features required to replicate the PilotNet neural network 

architecture on a small-scale [1]. The repository can be found at: 

https://github.com/keras-team/keras 

 

3.2.3   OpenCV 

OpenCV is an open-source computer vision and image processing library that is available for 

multiple processing languages including Python. Images need to be processed in real-time to 

be available as inputs for the neural network. These processes include resizing the image to a 

resolution of 200x66 as well as converting them to the YUV colour space. Therefore, to 

achieve successful end-to-end driving, OpenCV is a necessity for inclusion in this project. 

The repository can be found at: 

https://github.com/opencv/opencv 

 

3.2.4   Pygame 

Pygame is an open-source Python API used for developing games and features a module for 

interacting with joysticks and gamepads such as the Logitech F710 Gamepad. This makes it 

perfect for allowing manual control of the robot through the joysticks. The repository can be 

found at: 

https://github.com/pygame/pygame 

 

https://robotics.ee.uwa.edu.au/eyebot/Robios7.html
https://github.com/keras-team/keras
https://github.com/opencv/opencv
https://github.com/pygame/pygame


21 
 

3.2.5   ServoBlaster 

The Traxxas Stampede originally used a 2.4GHz radio transmitter and receiver to send PWM 

signals to the ESC to control both the steering and speed of the vehicle. However, as the 

values for steering angle and speed will come from the driving program running on the 

Raspberry Pi, a new method of sending PWM signals to the ESC is required.  

ServoBlaster is an open-source software package for the Raspberry Pi that provides an 

interface to control servos via the GPIO pins. PWM signals can be generated on any of pins 

according to the timing value and pin specified by the user. This approach proved to be 

perfect as signals can be send through Python commands, allowing for the outputs for the 

vehicle control to come from the neural network. The repository can be found at: 

https://github.com/richardghirst/PiBits/tree/master/ServoBlaster  

 

3.2.6   Breezy LIDAR/SLAM 

Breezy is a collection of open-source libraries that supports many different LIDAR units 

including the Hokuyo URG-04LX [12]. BreezyLIDAR is used for receiving LIDAR scan 

data from the sensor and BreezySLAM is used for producing SLAM images. The API works 

with Python on Linux machines and is efficient on processing power, which makes it perfect 

for use on Raspberry Pi compared with other interfaces such as ROS. The original ModelCar 

used the URG library for interfacing with the LIDAR unit but this library is only available for 

the C language and therefore BreezyLIDAR was used instead. The repositories can be found 

at: 

https://github.com/simondlevy/BreezyLidar  

https://github.com/simondlevy/BreezySLAM   

 

 

 

 

 

 

 

 

 
 

 

 

 

 

https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/simondlevy/BreezyLidar
https://github.com/simondlevy/BreezySLAM


22 
 

3.3   ModelCar-2 

The complete robot features all the components that have been discussed as well as a USB 

Battery Pack to power both the Raspberry Pi and the LIDAR unit as well as a 3.5 Inch 

WaveShare LCD Touchscreen for displaying the user interface. 

The original ModelCar driving program was written in the C programming language, this 

proved problematic as Python is the main environment for machine learning applications. 

The entire LIDAR driving code was then converted to Python and compiled together with the 

new ModelCar-2 neural network driving code to form one driving program.  

The ModelCar-2 source code features two main Python programs, the driving program and 

the model training program. The driving program is called DriveModelCar-2.py and makes 

extensive use of the RoBIOS GUI. 

Figure 11: ModelCar-2 Autonomous Driving Robot 

Figure 12: ModelCar-2 GUI Main Menu 



23 
 

The main menu screen can be navigated by using the touchscreen or the Logitech F710 

Gamepad. The screen also provides live information on the robot including the IP address 

and network connectivity, the number of training images that have been recorded, the name 

of the currently loaded neural network model and if there is a LIDAR scanner connected. 

The program features 3 different robot driving modes: Manual Drive, Camera Drive and 

Lidar Drive. Each of these modes can be accessed by pressing the buttons at the bottom of the 

screen or using the corresponding coloured buttons on the handheld controller.  

 

3.3.1   Manual Drive 

The manual driving mode provides complete manual operation of the robot using the 

Logitech F710 controller with the speed and steering of the robot controlled by the right 

trigger and left thumb stick respectively.  

The mode includes a recording setting that when activated will begin saving images taken 

from the front-facing camera and stores them with the current steering angle and speed as 

labels. These images will be used later to train the neural network. There is also a cruise 

control feature that allows the user to set a certain speed that will be maintained by the robot 

until the setting is disabled, the brakes are manually applied, or the program is exited. 

 

 

The display in this mode shows the feed from the camera, the current steering angle and 

speed values, the current number of recorded images as well as the recording and cruise 

control indicators. The values for speed and steering are displayed as a Pulse Width Duration 

and are in units of microseconds.  

 

 

Figure 13: Manual Drive Mode Display 



24 
 

3.3.2   Camera Drive 

The camera driving mode uses the NVIDIA PilotNet neural network end-to-end driving 

approach that has been created for this project. When a neural network model has been 

transferred to the Raspberry Pi and placed in the correct directory, the driving program allows 

the user to load it and begin autonomous driving of the robot. 

For every control loop of the camera driving mode, an image is captured from the camera 

which then goes through the image processing function that is defined in Table 3. The image 

is then forward passed to the neural network model which based on its prior training will 

predict the optimal speed and steering angle values for that image. These values are then sent 

to the steering servo and motor to control the robot using the ServoBlaster library. This 

operation is continuously looped until the user exits the program or the power is 

disconnected.  

 

Table 2: Simplified End-to-End Driving Control Loop 

 

As discussed earlier, each image has to be processed before being accepted by the neural 

network. For this, a function that utilised the OpenCV library was created. 

 

Table 3: OpenCV Image Processing Function 

def Image_Processing(Image): 

    Image = Image[60:180, :, :] 

    #Crop Top and Bottom 25% of Image  

 

    Image = cv2.cvtColor(Image, cv2.COLOR_RGB2YUV) 

    #Convert RGB Image to YUV  

 

    Image = cv2.resize(Image, (200, 66)) 

    #Resize Image Resolution to 200x66  

 

    return Image 

while(True): 

    image = RoBIOS.CAMGet()    

    #Take Image from Camera  

 

    X = Image_Processing(image) 

    #Pass to Image Processing Function  

 

    Speed, Steering_Angle = int(model.predict(X)) 

    #Model Predicts Speed & Steering Angle using the Image 

 

    ServoBlaster.write(Steering_Angle) 

    ServoBlaster.write(Speed) 

    #Send Control Commands to Servo 



25 
 

The ModelCar-2 program captures images with a resolution of 340x240 in the RGB colour 

space. The image is first cropped to remove 60 pixels from the top and bottom which 

corresponds to 50% of the image. These pixels do not contain any useful information for the 

network and could introduce overfitting, the focus for driving should be placed on the middle 

section of the image [4]. The RGB image is converted to the YUV colour space and then 

resized to a resolution of 200x66. The normalisation of the images is taken care of inside the 

network.  

 

 

3.3.3   LIDAR Drive 

The LIDAR driving mode uses an algorithm developed in the original ModelCar project 

which as well as being converted to Python, has been largely adjusted throughout this project 

to achieve better performance.  

This mode allows the user to set a direction priority: Left, Right or Balanced, which can be 

selected using the D-pad of the Logitech controller that will tell the robot to prioritise its 

driving in the set direction [3]. The current priority setting is shown in the current mode 

display. For every control loop, a new LIDAR scan is captured from the sensor which along 

with the current direction priority and current speed is used as input for the algorithm [3].  

 

 

 

. 

Figure 14: Image Processing Transformation 



26 
 

The driving algorithm works by separating the scan data into sectors of 5˚ and the minimum 

and maximum horizontal and forward distances for each sector are calculated [3]. The 

algorithm then checks whether any of the minimum distances require the robot to avoid any 

obstacles and calculates the optimal speed and steering angle if this is the case. However, if 

the robot is in a straight corridor with walls running along both sides, the algorithm calculates 

the steering angle that allows the robot to align to the centre of the corridor and increments 

the speed to maximum. The algorithm also checks if there are any corners for which a major 

turn is required. This is achieved by using the horizontal and forward distances to detect gaps 

wider than a user-defined parameter and if one is found, the required steering angle and speed 

to make the turn are calculated [3]. The speed and steering angle values are then sent to the 

servo via ServoBlaster to control the robot. 

Although relatively simple to explain, this algorithm is quite complex in its implementation 

which is a result of having many pre-defined parameters that require experimentation to 

optimise and multiple calculations that are performed for each loop. This is why the idea of 

end-to-end driving with neural networks has the potential to simplify autonomous robot 

design. 

 

 

The display is similar to the other driving modes, except there are additional display options 

as a result of the LIDAR. The first new display is the raw scan data that is plotted in real-

time. 

 

 

Figure 15: LIDAR Drive Scan Display Mode 



27 
 

The second is the point map that shows the locations of the obstacles from the scan data 

relative to the position of the robot. The white points represent detected surfaces and objects 

and the robot is displayed as a red triangle. 

 
3.3.4   Control Flow Diagram 

The control flow diagram in Fig. 17 shows the direction of sensor or control data in each 

driving mode. 

Figure 16: LIDAR Drive Point Map Display Mode 

Figure 17: Simplified Control Flow for ModelCar-2 



28 
 

4   Method 
 

4.1   Simulation 

As with most robotics projects, a simulation was developed as a proof of concept using the 

EyeSim robotics simulation software which is developed and used for teaching at UWA. One 

of the main reasons for choosing the NVIDIA PilotNet model for this project was that it is 

also used for assignments in neural networks at UWA, where the same simulation software is 

used. A robot was trained in much the same way that the real robot will be, to drive around a 

small track and avoid obstacles along the way. 

The simulated robot successfully learned to stay on the left side of the track as well as 

recognising the obstacles along the track, avoiding them and then re-joining the track 

afterwards. The robot is also able to drive through small crossroad sections where there are 

limited lane markings. This is the behaviour that is desirable in the real ModelCar-2. The 

EyeSim software can be found at: 

https://robotics.ee.uwa.edu.au/eyesim/ 

 

4.2   Data Collection 

To collect training data for the real ModelCar-2, the robot will drive around the testing 

environment while constantly recording images and labelling them with the steering angle 

and speed values at the time of capture. The data is collected using a mix of both the manual 

and LIDAR driving modes. The reason for this is to increase the robustness of the model, 

manual driving allows training of very specific behaviour that is desired such as the obstacle 

avoidance and path following seen in the simulation. However, manual driving can be 

inconsistent as a result of human error, LIDAR driving is more consistent as it is following a 

structured algorithm. This means that the ModelCar-2 is hoping to use LIDAR driving to 

train the neural network which will be used to replace LIDAR driving. 

Figure 18: Simulation of Robot Avoiding Crate 

https://robotics.ee.uwa.edu.au/eyesim/


29 
 

The data also contains cases where the robot has made mistakes and driven off the course 

which are important as they allow the neural network to recover from its own mistakes, the 

robot needs to be able to adapt to new situations.  

56,100 images have been collected in total. Validation data is a subset of the data that is used 

as an unbiased comparison to the training data during the model fitting process.  

 

It is clear that steering angle values around 150 are prominent in the data, 150 is the value 

corresponding to a straight turn while 100 and 200 are full right and full left turns 

respectively. Bias towards producing straight steering outputs is a real concern with 

ModelCar-2 as the testing environment that was used for collecting data involved many 

straight corridors. Ideally, the plot would also be symmetrical about the 150 value to avoid 

bias towards turning in any given direction. These issues can all be addressed using data 

augmentation.  

 

4.3   Data Augmentation 

Data augmentation is the process of deliberately manipulating the training data sets to enrich 

its potential, not just to increase its size but to force the network to adapt to unusual situations 

[25]. Data augmentation helps increase the model’s robustness and achieve greater 

generalisation [4]. Augmentations are applied before the image processing function and only 

to the training data. For ModelCar-2, two data augmentation procedures were added to the 

training data.  

Figure 19: Steering Angle Data Distribution 



30 
 

The first augmentation involves a simple horizontal image flip, which is classified as a light 

augmentation. As discussed earlier, the distribution of steering angles preferably needs to be 

symmetrical to avoid any bias to one direction. The proportion of flipped augmentations can 

be changed to balance this bias in the data without collecting new examples. The steering 

angle of the flipped image needs to be adjusted accordingly.   

 

The second augmentation involves blurring the image, which is classified as a moderate 

augmentation. This is added to help the model make sense of the images even when the 

camera vision quality is low or being obstructed. A Gaussian blur with a random standard 

deviation ranging from 3 to 5 is applied to the image. 

 

For every batch in the training data, the augmentations are randomly assigned with a 

probability of 5% for each. No heavy augmentations were performed as they can alter the 

image too drastically and the model may have difficulty picking up on these changes [4]. 

Figure 20: Image Flip Augmentation 

Figure 21: Image Blur Augmentation 



31 
 

4.4   Model Training 

As stated earlier, the ModelCar-2 source code features two main Python programs, the 

driving program and the model training program. The model training program is called 

TrainModelCar-2.py and it recreates PilotNet as faithfully as possible. The training process 

involves performing back-propagation operations to update the weights of the model to 

reduce the mean squared error [17]. Table 4 shows a simplification of how the recreation of 

NVIDIA PilotNet is achieved using the Keras API.  

 

Table 4: NVIDIA PilotNet recreation with Keras 

def NVIDIA_PilotNet(): 

    input_shape=(66, 200, 3) 

    model = Sequential() 

    model.add(Lambda(lambda x: (x/127.5 - 1.0), input_shape)  

    model.add(Conv2D(24, (5, 5), activation='elu')) 

    model.add(Conv2D(36, (5, 5), activation='elu'))  

    model.add(Conv2D(48, (5, 5), activation='elu'))  

    model.add(Conv2D(64, (3, 3), activation='elu'))  

    model.add(Conv2D(64, (3, 3), activation='elu')) 

    model.add(Flatten()) 

    model.add(Dropout(0.2)) 

    model.add(Dense(100, activation='elu')) 

    model.add(Dense(50, activation='elu')) 

    model.add(Dense(10, activation='elu')) 

    model.add(Dense(1, name='Model_Speed')) 

    model.add(Dense(1, name='Model_Steering')) 

    model.compile(loss='mse', learning_rate=1e-3)) 

    return model 

 

There are only two changes from the original PilotNet: the addition of speed as an extra 

model output and the inclusion of dropout. 

Overfitting is when a model is too closely fitted to a set of data and can result in the model 

finding trends amongst the noise. Overfitting can be mitigated by increasing the size of the 

training data or by introducing dropout. Dropout is the process of randomly dropping units 

from the neural network to prevent them from co-adapting too much [9]. After a series of 

experiments, a dropout probability of 0.2 was determined to achieve the best results. Another 

method for preventing overfitting is early stopping, if the validation loss of the model doesn’t 

change with 10 epochs then model training is stopped.  

Once a satisfactory amount of training data has been collected, the model training is 

performed on a Linux machine running Ubuntu 19.04 using two NVIDIA 1080Ti GPUs. The 

Raspberry Pi’s CPU can’t be used for training as it is too small, a machine with greater 

graphics capabilities is required. When the model has been trained, it is then copied back to 

the Raspberry Pi to be tested against the LIDAR driving mode. 

 



32 
 

5   Results 
 

5.1   Losses and Accuracy 

Loss in a neural network refers to the residual sum of the squares for the errors made for each 

image within the training and validation data. Therefore, a model with a lower loss at the end 

of the training process will most likely be better at predicting outputs.  

Both the speed and steering losses quickly converge towards a very small loss value early in 

the training process and remain almost unchanged until the early stopping is engaged. This 

could be a sign of model overfitting but no evidence of this was observed in the on-track 

tests. 

Figure 22: Training and Validation Loss 

Figure 23: Training and Validation Accuracy 



33 
 

Accuracy is a percentage value that represents how many times the model has predicted the 

correct speed value. The model has guessed more than 80% of the speeds correctly.  

The steering accuracy is not as impressive with a final accuracy of 30%, again due to a larger 

variation of classes. This is not a large issue; a model needs to be 100% accurate to register as 

a correct prediction and as the values for steering as decimal values with a fine resolution, 

total accuracy is going to more difficult.  

The important aspect in this case is the severity of the error, which is why loss is a more 

reliable indicator of driving performance. Both loss and accuracy are functions of training 

steps which are called epochs 

 

5.2   Predictions 

In addition to the training and validation data sets, a separate testing data set was collected 

that hasn’t been used in any part of the model training and therefore the network hasn’t seen 

these examples. If these images are passed to the model, the outputs can be compared against 

the actual recorded outputs to determine if the model is learning correctly before any on-track 

tests are performed.  

 

 

Figure 24: Simulation Model Prediction Test 

 

For this simulation example, the speed was predicted correctly, and the actual recorded 

steering angle was 150 which represents a straight direction, but the image clearly shows that 

a left turn is required. This could be a result of human error when collecting data, but the 

model still predicts a left turning value of 173 that correctly follows the road pattern in the 

image.  

This demonstrates that at least for the simulation, the model is correctly learning. 

 

 

 



34 
 

5.3   Autonomy 

To measure the autonomy of both the LIDAR and camera drive systems, the method from 

NVIDIA was used [1]. This method calculates the percentage of time the robot can drive 

without any interventions. An intervention is defined in this case as any human involvement 

that was required to prevent or rectify any mistakes made by the robot that would result in a 

collision with an object, barrier or person. The autonomy can then be calculated using the 

following equation: 

 

𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦 = (1 −  
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠) × 5

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
) × 100 

 

Both driving systems were tested in 5 sessions each lasting 10 minutes on different days. The 

testing environment included both the 3rd and 4th floor of the Electrical Engineering Building 

at UWA. The autonomy scores for each of the runs were recorded and an average was 

calculated. 

 

Table 5: Driving Autonomy Scores 

Mode Trial 1 Trial 2  Trial 3 Trial 4 Trial 5 Mean 

LIDAR 96.51% 94.91% 98.68% 97.09% 96.42% 96.722% 

Camera 93.70% 90.53% 95.38% 95.26% 96.54% 94.282% 

 

The LIDAR driving system is consistently scoring higher than the neural network across 

every trial resulting in a higher average autonomy. The difference here is not drastic and there 

is a trend throughout the camera trials that seems to suggest that with each trial when more 

data was being collected and modifications to the model were made, the neural network was 

able to perform slightly better. This could indicate that as data continues to be collected, the 

neural network could be able to match the autonomy of the LIDAR system. 

Referring to the SAE levels of autonomy, both the LIDAR and camera driving systems can 

be classified as having Level 3 autonomy. In both systems, the vehicle has complete control 

over all aspects of driving including steering, accelerating, braking and reversing but manual 

interventions are still required for stopping completely and errors do still occur. 

 

 

 

 

 



35 
 

5.4   Saliency 

A saliency map is a form of image classification that is used to visualise the attention that the 

Convolutional Neural Network is primarily focussed on for determining the output class [15]. 

In the context of the ModelCar-2 project, saliency can be used for highlighting the pixels of 

the camera images that the model feels are most important in its decision for steering angle. 

As discussed earlier, the first convolution layer is responsible for detecting the larger shapes 

and patterns of the image and therefore performing saliency on this layer will give the 

greatest insight into what the model is learning.  

 

 

The pixels with the highest priority are shown in red and rank down to the lowest priority 

which are represented in blue. As you can see for the simulation, the model is correctly 

identifying the lanes and edges as being the focus of its analysis. 

 

 

 

 

 

Figure 25: Simulation Saliency Map 



36 
 

5.5   Confusion Matrix 

A confusion matrix shows whether the model is correctly predicting values and can identify 

the involvement of Type I and II errors in the data. A confusion matrix for the steering angles 

from the real ModelCar-2 can be seen in Fig. 26, the actual values are shown along the top 

and the model predicted values are run down the y-axis. 

 

 

 

The ideal situation would be to have only values along the diagonal, this would mean that all 

the model predictions would match the actual values and the model is correctly learning 

across all classes. 

The trend of the matrix does follow the diagonal but there are areas where the model is 

“confused”. There is a cluster around the value of 25 which represents gentle left turns, the 

model is predicting the same value for all classes in this region. This suggests that this is an 

area that requires further training. 

There is also quite significant error towards the middle of the trend where the steering values 

are close to straight. This could be a result of the straight bias discussed earlier, for further 

testing more gentle left and right curves should be introduced to balance out this discrepancy.  

 

 

Figure 26: Steering Angle Confusion Matrix 



37 
 

5.6   Processing Speeds 

For real-time control of any vehicle or robot, the control loop processing time must be 

sufficiently low enough so the vehicle can react quickly enough to new obstacles and 

changing environments [5]. In general, control performance of the vehicle improves when 

processing time decreases which makes it an important criterion when comparing the LIDAR 

and Camera drive systems. 

Fig. 27 shows the times taken for the processing of each control loop for all three driving 

modes. The Manual Drive processing times have been added in to serve as a baseline, 

showing a consistent pattern with a mean time of 0.033 s corresponding to a frame rate of 

30.3 Hz.  

The Camera Drive processing time appears to be as consistent as Manual Drive, with a 

slightly slower mean time of 0.042 s corresponding to a frame rate of 23.81 Hz. However, the 

LIDAR drive system is producing wildly inconsistent results that average to a 0.105 s 

processing time that corresponds to a frame rate of only 9.52 Hz.  

 

 

 

In the context of autonomous driving performance, this means that the camera drive system is 

able to react over twice as quickly in real-time to new changes in the environment as the 

LIDAR drive system which provides it a clear advantage.  

 

 

Figure 27: Processing Times for All Driving Modes 



38 
 

This large inconsistency is a result of how the LIDAR data is processed by the algorithm and 

how different sections are activated at different times. If the path is clear ahead, the LIDAR 

doesn’t do much processing and quickly produces a straight steering with an incrementing 

speed. However, if the vehicle comes across any obstructions or turns, the program has to 

calculate more information to decide its new path and therefore processing time for these 

loops will increase.  

 

This problem is not limited to this algorithm, all LIDAR and remote sensing driving 

implementations will involve forms of conditional logic that will reduce the processing speed 

capabilities of their systems. This is avoided in neural network driving approaches as the end-

to-end nature of the control makes any conditional logic structures redundant. As all control 

loops follow the same processing pipeline, the processing times are more consistent. 

 

 
Table 6: Frame Rates for All Driving Modes 

Mode  Frame Rate (Hz) 

Manual 30.303 

Camera 23.810 

LIDAR 9.524 

 

 

As for the discrepancy between average frame rates, the Hokuyo LIDAR scanner used in the 

ModelCar has a quoted maximum scan frequency of 10 Hz. For the LIDAR driving system, 

this scan rate acts as a limiting agent, meaning the control loop frequency can’t exceed 10 Hz 

which is why the average frame rate was measured to be 9.52 Hz. The camera drive system 

doesn’t use the LIDAR scanner and so doesn’t experience this limiting agent on its 

processing speed, instead the performance of the Raspberry Pi 4 embedded system is what 

limits the control frequency. 

 

For additional reference, NVIDIA have reported that their DAVE-2 system which uses the 

same PilotNet neural network architecture as ModelCar-2 has an average frame rate of 30 Hz 

[5]. GPU acceleration for TensorFlow is not available for the Raspberry Pi and instead only 

uses the CPU cores for processing which may explain how NVIDIA was able to achieve a 

slightly higher frame rate by using the DRIVE PX system. However, a frame rate of 23.81 Hz 

on the Raspberry Pi is still surprisingly impressive considering the complexity of the deep 

neural network. 

 

 

 

 

 

 

 

 



39 
 

5.7   Cost 

As cost reduction is a large focus of the ModelCar-2 project, the overall cost of both driving 

systems is important in their comparison.  

 

Table 7: ModelCar-2 Bill of Materials 

Item  Cost ($AUD) 

Traxxas Stampede R/C Car $ 304.43 

Raspberry Pi 4 Model B $ 94.60 

5MP OV5647 Camera $ 33.79 

Hokuyo URG-04LX LIDAR $ 1770 

Logitech F710 Gamepad $ 53.86 

Mounting Plate Plastic $ 12.99 

USB Battery Pack $ 31.95 

3.5 LCD Touchscreen $ 46.51 

Total $ 2348.13 

 

However, the total budget considers all the components for both driving systems, the LIDAR 

is not needed for neural network driving and the same for the camera with LIDAR driving. 
Table 8 shows the total cost for each individual driving system. 

 

Table 8: Driving System Cost Comparison 

Mode  Cost ($AUD) 

LIDAR $ 2314.34 

Camera $ 578.13 

 

The camera driving system is 4x more cost-efficient and can be considered well within the 

budget of a typical small-scale autonomous robotics project. The LIDAR sensor unit makes 

up over 76% of the budget for the LIDAR driving system, whereas the camera only makes up 

6% of the camera driving system. Clearly being able to replace sensors such as LIDAR with 

cameras is more cost-effective, especially for small-scale projects. 

This cost analysis does not include expenses that relate to model training on GPU accelerated 

machines such as the purchase and ongoing electricity costs which can also be quite 

significant for small-scale applications. However, the research and labour costs involved in 

developing the LIDAR driving algorithm have also been excluded which due to the large 

amount of time required for the task can be notable as well. 

 

 

 



40 
 

6   Conclusion 
This thesis has demonstrated that autonomous driving implementations using cameras and 

neural networks can be used as a successful alternative to classic approaches that use 

expensive LIDAR sensors. A Convolutional Neural Network was trained to control the 

steering and speed of a small-scale driving robot.  

While the autonomy of the neural network driving system was shown to be lower than that of 

a LIDAR driving system, this project aimed to find whether the end-to-end neural network 

approach could match the autonomy level of a LIDAR based system with a lower cost 

structure, which has been supported. Both driving systems are classified as having Level 3 

SAE autonomy. 

The processing speed of the end-to-end driving system is much more consistent and more 

than twice as quick as the LIDAR system on average which demonstrates how camera 

systems are not only more cost-effective but more efficient on processing power. 

The ModelCar-2 robot designed and constructed in this thesis can serve as a new platform for 

autonomous robotics research and teaching at the University of Western Australia. All tools 

and resources used in this project have been chosen to make any following work easy to 

append and recreate.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

6.1   Future Work 

There are countless ways to continue this project and plenty of room for improvement when 

it comes to model training.  

LIDAR driving does have a small advantage over end-to-end driving when it comes to 

knowledge of previous states, the LIDAR algorithm remembers the previous speeds and 

steering angles to help calculate the next iteration. The end-to-end driving method 

demonstrated in this thesis, only makes decisions on the current image and does not account 

for the previous and future images. As driving is a continuous task, a recurrent neural 

network approach such as LSTM to record the relationship between adjacent images could 

produce better results. In situations where the neural network is uncertain of the current 

image, information from past images can better estimate decisions for the future.  

A feature that was to be implemented but was restricted because of time, was LIDAR SLAM 

which could map out the environment that the robot drives through. The current ModelCar-2 

driving program does have BreezySLAM working but the results are disappointing, we were 

hoping to replicate the results of the map shown in Fig. 28. 

 

 

Another proposal is a camera SLAM feature that would be based on another UWA project 

called ORB-SLAM [13]. As this thesis compared the autonomy of LIDAR and camera 

driving systems, an interesting addition could explore the results of both LIDAR and camera 

SLAM implementations.   

There is also F1TENTH, which is a racing competition involving 1/10th scale autonomous 

vehicles that are built by students [16]. The ModelCar-2 robot is eligible to compete in this 

competition and future work on this project could involve adapting the robot for such as 

racing setting. 

Figure 28: LIDAR SLAM Map of EECE 4th Floor UWA [3] 



42 
 

References 
[1] M Bojarski, DD Testa, D Dworakowski, B Firner, B Flepp, P Goyal, LD Jackel, M 

Monfort, U Muller, J Zhang, X Zhang, J Zhao, K Zieba. NVIDIA Corporation. End 

to End Learning for Self-Driving Cars. (2016). 

[2] M Bojarski, P Yeres, A Choromanaska, K Choromanski, B Firner, LD Jackel, U 

Muller, J Zhang, X Zhang, J Zhao, K Zieba. NVIDIA Corporation. Explaining How 

a Deep Neural Network Trained with End Learning Steers a Car. (2017). 

[3] M Mollison. University of Western Australia, School of Electrical, Electronic and 

Computer Engineering. High Speed Autonomous Vehicle for Computer Vision 

Research and Teaching. (2017). 

[4] D Ungurean. Czech Technical University in Prague, Faculty of Information 

Technology. DeepRCar: An Autonomous Car Model. (2018). 

[5] MG Bechtel, E McEllhiney, M Kim, H Yun. University of Kansas, Indiana 

University. DeepPiCar: A Low-Cost Deep Neural Network-based Autonomous 

Car. (2018). 

[6] Society of Automotive Engineers. SAE International Releases Updated Visual 

Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles 

https://www.sae.org/standards/content/j3016_201806/. (2018). 

[7] A Kiulian. Medium. Let’s Talk About Self-Driving Cars. 

https://medium.com/swlh/lets-talk-about-self-driving-cars-387cd5adb834. (2017). 

[8] TopSpeed. Tesla Autonomy Day 2019 - Full Self-Driving Autopilot - Complete 

Investor Conference Event. https://www.youtube.com/watch?v=-b041NXGPZ8. 

(2019). 

[9] N Srivastara, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov. University of 

Toronto, Department of Computer Science. Dropout: A Simple Way to Prevent 

Neural Networks from Overfitting. (2014). 

[10] D Pomerleau. In Advances in Neural Information Processing Systems (NIPS), 

ALVINN: An Autonomous Land Vehicle in a Neural Network. (1989). 

[11] T Bräunl,  M Pham, F Hidalgo, R Keat, H Wahyu. University of Western Australia, 

School of Electrical, Electronic and Computer Engineering. EyeBot-7 User Guide. 

(2018). 

[12] Aerospace Robotics. Unravelling BreezySLAM. 

https://aerospacerobotics.com/blogs/learn/14881837-unraveling-breezyslam. (2014). 

[13] C Kahlefendt. University of Western Australia, Hamburg University of Technology. 

Implementation and Evaluation of Monocular SLAM for an Underwater Robot. 

(2018). 

[14]  N Burleigh, J King, T Bräunl. Conference on Digital Image Computing: Techniques 

and Applications (DICTA). Deep Learning for Autonomous Driving. (2019). 

https://www.sae.org/standards/content/j3016_201806/
https://medium.com/swlh/lets-talk-about-self-driving-cars-387cd5adb834
https://www.youtube.com/watch?v=-b041NXGPZ8
https://aerospacerobotics.com/blogs/learn/14881837-unraveling-breezyslam


43 
 

[15] K Simonyan, A Vedaldi, A Zisserman. University of Oxford. Deep Inside 

Convolutional Networks: Visualising Image Classification Models and Saliency 

Maps. (2014). 

[16] M O’Kelly, V Sukhil, H Abbas, J Harkins, C Kao, Y Vardhan-Pant, R Mangharam, D 

Agarwal, M Behl, P Burgio, M Bertogna. University of Pennsylvania, Oregon State 

University, University of Virginia, University of Modena & Reggio Emilia. F1/10: 

An Open-Source Autonomous Cyber-Physical Platform. (2019). 

[17] D Tian. Medium. DeepPiCar: How to Build a Deep Learning Driving Robotic Car 

on a Shoestring Budget. https://towardsdatascience.com/deeppicar-part-1-

102e03c83f2c. (2019).  

[18] N Burleigh. University of Western Australia, School of Electrical, Electronic and 

Computer Engineering. Autonomous Driving on a Model Vehicle: Lane Detection 

and Control. (2019). 

[19] S Karaman, Ariel Anders, Michael Boulet, J Connor, K Gregson, W Guerra, O 

Guldner, M Mohamoud, B Plancher, R Shin, J Vivilecchia. Massachusetts Institute of 

Technology. Project-based, Collaborative, Algorithmic Robotics for High School 

Students: Programming Self-Driving Race Vars at MIT. (2017). 

[20]  C Manliguez. University of the Philippines. Generalised Confusion Matrix for 

Multiple Classes. (2016). 

[21] D Clevert, T Unterthiner, S Hochreiter. Institute of Bioinformatics, Johannes Kepler 

University. Fast and Accurate Deep Network Learning by Exponential Linear 

Units (ELUs). (2016). 

[22] A Braylon. Wheels Joint. Tesla Could Beat Waymo in the Race to Self-Driving 

Future. https://www.wheelsjoint.com/tesla-could-beat-waymo-in-the-race-to-self-

driving-future/. (2019). 

[23] RR Selvaraju, A Das, R Vedantam, M Cogswell, D Parikh, D Batra. Virgina 

Technology. Grad-CAM: Why did you say that? Visual Explanations from Deep 

Networks via Gradient-based Localisation. (2016). 

[24] M Zeiler, R Fergus. Department of Computer Science, New York University. 

Visualising and Understanding Convolutional Networks. (2013). 

[25] S Wong, A Gatt, V Stamatescu. Defence Science and Technology, Edinburgh. 

Understanding Data Augmentation for Classification: When to Warp? (2015). 

 

 

 

 

 

https://towardsdatascience.com/deeppicar-part-1-102e03c83f2c
https://towardsdatascience.com/deeppicar-part-1-102e03c83f2c
https://www.wheelsjoint.com/tesla-could-beat-waymo-in-the-race-to-self-driving-future/
https://www.wheelsjoint.com/tesla-could-beat-waymo-in-the-race-to-self-driving-future/

