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Abstract 

With the leapfrog development of computing power, algorithm and sensor technology, the 

realisation of the comprehensive autonomous driving vehicle has been within the bounds 

of possibility. Vision-based processing, as the critical components for the autonomous 

driving system, shows its advantages of more abundant information with lower price 

compared with other sensor units. 

The thesis is proposed with the objective to establish an integrated vision processing system 

of semantic information and visual SLAM on REV vehicle platforms. With the application 

of Convolutional Neural Networks to replace the previous traditional methods, the object-

level semantic information can be acquired with doubled processing speed with the same 

accuracy level. And based on the sensor fusion approach, the visual SLAM system is able 

to achieve higher accuracy and robustness for real-time processing. 

Contrapose to the upgraded devices on different REV vehicle platforms, adaptive solutions 

are designed and applied with superior approaches. 
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1. Motivation 

The Autonomous Vehicles (AVs) refers to the intelligent vehicle system that is capable of 

sensing the environment and moving safely without the intervention from the human driver 

[1]. With the leapfrog development of computing power, algorithm and sensor technology 

during the past decade, the realisation of the comprehensive autonomous driving vehicle 

has been within the bounds of possibility, which can bring vast potential benefits to the 

public transport system. For example, it can significantly enhance the safety level of the 

driving process, which eliminates the human influence of improper operations, including 

drunk driving, drowsy driving and distracted driving. A report released in June 2015 by 

McKinsey & Co. said AVs would potentially prevent about 90% of road traffic accidents 

by the mid-21th century, which will save approximately 300,000 lives, reducing the 

healthcare and damage cost from road accidents by $19 billion per decade [2]. The 

advantages of AVs can be summarised into 4 points: 

• Reduce the possibility of traffic accidents. 

• Release the driving time. 

• Increase road capacity and reduce traffic congestion [3]. 

• Remove the restriction of driver condition. 

 

Figure 1. The Google Waymo autonomous vehicle project [4] 

There are many sensor technologies for AVs, which can be divided into five mainstream 

types, Camera, IMU, GPS, LiDAR and Radar. Among the information processing for the 

sensors, vision processing, as the critical components for the self-driving system, shows its 

unique advantages. On the one hand, compared with other sensors units like LiDAR, GPS 

and IMU, the visual sensors can provide more abundant information with lower prices [5], 

which attracts more attention from the industrial realisation. On the other hand, the 

similarity with human cognition makes it is easier to generate semantic information for the 

driving system, which is essential for the driving strategy in the real environment. 



Integration of Semantic SLAM for Autonomous Driving   The REV Project - 2020 

Hengyu Chen - 22446698      Page | 8 

 

2. Background 

The Renewable Energy Vehicle (REV) project aims to reshape the current transport system 

with clean-energy vehicle platforms and driverless system, which is established by 

Professor Thomas Bräunl at the University of Western Australia (UWA). Since the REV 

team designed a vision-based driver assistance system on BMW X5 in 2011[6], the 

development for an ultimate autonomous driving system becomes an essential part of the 

long-term vision for REV project. 

The high-level architecture of REV autonomous driving system consists mainly of six parts, 

including the LiDAR Processing, Vision Processing, Sensor Fusion, Simulation, Path 

Planning and Localisation. In this research project, the author focuses on vision processing 

to achieve higher real-time performance. Due to the influence of covid-19, the author had 

a half year gap during the project, which divided the personal contribution into two 

platforms, the SAE Electric car and nUWAy shuttle bus. 

The SAE Electric Car is based on the SAE competition car from UWA Motorsport Team, 

which was modified into a fully electric-driven car by REV team in 2010 [7]. The previous 

vision-based works on SAE have achieved the cone detection based on HOG+SVM, and 

the ORB SLAM2 without loop closing [8]. In order to achieve higher real-time 

performance, the team upgrade the hardware system of SAE with Jetson AGX, high-

precision GPS and IMU. With the support of the upgraded devices and the development of 

the visual algorithms, the integration with more efficient and robust methods becomes 

possible for SAE visual system. 

 

Figure 2. The Autonomous SAE Electric Car 

The nUWAy shuttle bus is rebuilt based on the hardware structure of EasyMile, whose 

driving system is fully redesigned in order to achieve a high-level autonomous driving. 

Currently, the bus is equipped with LiDAR, IMU, GPS and two greyscale cameras. The 
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application scenario will be in the on-road environment. Therefore, a well-adapted vision 

processing system needs to be designed in this project. 

 

Figure 3. The nUWAy Autonomous Shuttle Bus 

3. Objective 

The thesis is proposed by Hengyu Chen with the objective to establish an integrated vision 

processing system of semantic information and visual SLAM on REV vehicle platforms. 

 
Figure 4. The Objective Structure of the Vision-based Processing System 

3.1 Semantic Information 
The semantic information refers to information that is meaningful for human cognitive 

systems [9], which is essential to the AV system. It equips the AVs with a better 

understanding of the driving environment and the road traffic conditions, leading to a better 

driving decision. Since the project emphasises more on real-time performance, the 

semantic information will be generated by visual object detection. The project aims to find 
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out a most efficient object method to replace the previous machine-learning approach [8] 

on the SAE car platforms and adapt it on nUWAy platform. 

3.2 Visual SLAM 
SLAM refers to the simultaneous localisation and mapping process. Due to the cost-

effective feature of cameras, the project chooses the vision-based method to achieve this 

function. The previous work done on the SAE car have completed the field test of ORB 

SLAM2 [8], but the result is not satisfactory. The project aims to investigate the negative 

factor of the previous method and find an advanced SLAM approach fused with other 

sensor devices like IMU, to achieve higher accuracy on the mapping process. 

4. Literature review 

4.1 Object Detection 
Object Detection is the visual technique processing the locating and classification of the 

target objects [10], which is a critical research topic for computer vision. As the semantic 

information generator in this project, object detection has higher real-time performance 

compared with other approaches such as semantic segmentation [11] and instance 

segmentation [12]. During the past decade, with the development of computing units, the 

object detection algorithm transfers the focus point from the machine learning method 

based on Support Vector Machine (SVM) to the deep learning method based on 

Convolutional Neural Network (CNN). 

4.1.1 Machine Learning Method 

The machine learning method, as the traditional approach, can be divided into two steps, 

the feature extraction and classification.  

The first step is using a sliding window to generate the candidate region for the bounding 

box and applying the feature extraction method to this area. The feature extraction has two 

levels. The low-level feature is manually designed features based on texture, colour and 

shape, such as the SIFT [13], SURF [14] and HOG [15], which reduce the influence of the 

change of object size and direction in images. The mid-level feature based on the 

dimension-reduction algorithm, such as the PCA [16] and LDA [17], which can extract 

higher-level features to reduce the calculation and noisy. The second step is using an SVM 

for the classification, which uses the extracted feature to determine whether the target area 

is objects or background. 

The previous work on SAE is using the HOG+SVM structure [8], which shows the 

drawback of traditional approaches, including the high-time consuming and bounding box 

redundancy due to an untargeted area selection strategy based on sliding windows.  

javascript:;
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4.1.2 Deep Learning Method 

For the deep learning method, since Ross b. Girshick designed the Region Proposal + CNN 

structure [18] to replace the traditional manual designed feature extraction, the CNN-based 

framework started the boom of object detection with deep learning, which can be divided 

into two-stage and one-stage methods. 

For two-stage methods, it divides the detection problem into region proposal and the 

classification. Firstly, candidate regions are proposed by selective searching [18] or pre-

trained CNN networks [19], and then the candidate region is classified by CNN networks. 

A representative implementation is Faster R-CNN [19]. Although this approach has a low 

error rate, the processing speed of two-stage methods is relatively slow, which is not 

suitable for real-time monitoring scenarios in this project. 

For one-stage methods, instead of region proposal, it can use the whole image as the input 

to CNN, only applying CNN network once to directly generate the probability and position 

coordinate value of the target objects. Although the accuracy is not as high as two-stage 

methods, the processing speed is much faster. Representative algorithms are SSD series 

[20] and YOLO series [21] network. 

Here is the comparison of deep learning method for object detection on the embedded 

system given by VCA Technology Ltd and Kingston University [22]. 

 

Figure 5. Summary of the Accuracy (AP) and Throughput (FPS) of Various CNN Models [22] 

As observed from Fig.5, the YOLO v3 [23] series keeps the best balance between average 

precision and throughput. Since the project emphasises more on the inference time of visual 

system, YOLO v3 tiny, which is the lightweight version of YOLO v3 network, show its 

outstanding real-time performance while keeping a reasonable accuracy. 

4.2 Visual SLAM 
Simultaneous localisation and Mapping (SLAM) is an algorithmic process combining 

mapping and self-positioning in an unknown environment [24]. Since the concept of 

SLAM was put forward in the 1980s [25], SLAM technology has been developing more 

than 30 years, expanding the range of sensors applied from sonar and radar in the early 
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stage, to LiDAR, optical camera, RGB-D camera, Etc. Compared with other acquisition 

methods for the environmental information, the visual sensor has the advantage of compact 

size, low power consumption, low price and rich data for SLAM system, which makes the 

visual SLAM become a popular research topic in recent years. The processing structure of 

visual SLAM can be divided into three critical parts, the front-end processing, back-end 

processing and the loop closing [26]. 

4.2.1 Front-end Processing 

The front-end processing is responsible for matching and comparing two or more adjacent 

image frames in time sequence, and primarily calculating the changes of pose and position 

between the adjacent time, in order to track the same subjects with particular features 

between frames. The current mainstream methods of front-end modules are based on the 

extraction and matching of feature points. The feature points in the early stage are 

represented by Harris [27], Förstner [28] corners, while the optical flow [29] or template 

matching method is used in the tracking process. However, this structure shows poor 

performance during the sudden perspective change of camera, which cannot achieve stable 

tracking in a complex environment. Then SIFT [13] descriptor is invented, which has the 

invariance feature on scale and rotation, significantly improving the robustness of the 

tracking system. However, the calculation of SIFT descriptor is time-consuming, limiting 

the real-time application. Therefore, based on SIFT, there are some more efficient 

descriptors raised, such as SURF [14], BRISK [30], ORB [31], Etc. Among these features, 

the ORB descriptor has the lowest inference time, which is ten times faster than the original 

SIFT, making real-time SLAM a reality. 

4.2.2 Back-end Processing 

The back-end processing is responsible for optimising the primary results from the front-

end, using the filter-based or optimisation-based method to obtain the optimal pose 

estimation. The early methods were mainly filter-based. It relies on the Bayesian rules to 

construct the probability model of the system state, combining with observation data of 

robot movement and environmental information to achieve the optimal estimation, such as 

Particle Filter [32], Kalman filter [33] and its derivative methods Extended Kalman filter 

[34], Unscented Kalman Filter [35], Etc. The main problem of filter-based methods is the 

heavy calculation burden. With the expansion of mapping, the storage space and the 

amount of calculation can increase exponentially, which is not suitable for real-time SLAM 

of large area. 

Therefore, the graph-optimisation algorithm became a better choice in recent years, which 

reduces the errors with global estimation with Bundle Adjustment (BA). Since the proposal 

of the Sparse BA [36], the sparse characteristics of graph optimisation is used for 

acceleration, which provides a good real-time performance. Series of current SLAM 

methods, such as ORB SLAM, use this graph-optimisation structure. 
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4.2.3 Loop Closing 

Loop closing is to eliminate the accumulated error during the long-time running of the 

SLAM system. By moving back to past places and comparing with historical data, the 

closed-loop constraint can be established to finish the optimisation with global consistency. 

One approach is directly using the localisation result to judge whether the camera has 

returned to a historical place. However, the existence of cumulative errors leads this 

method to poor performance. Another approach is directly matching the current image with 

previous data, which is accelerated by Bag of Words(BoW) [37]. It can perform fast 

matching by feature points compressed into word vectors, which avoid the influence of 

accumulated errors. 

4.2.3 Scenario Analysis 

In consideration of accuracy and speed, the author compares mainstream solutions based 

on the actual scenarios of the REV platforms. For the monocular solution, the monocular 

ORB SLAM2 was tested last year [8], which shows the defect of scale drift. The stereo 

solution has high accuracy. However, for mobile systems, the burden of calculation is too 

heavy. The RGB-D solution performs well in close-range SLAM, but the current REV 

platform does not have such equipment. The deep learning solution uses neural networks 

to extract high-level features for pose estimation, which has great potential, but the real-

time requirements cannot be met. Sensor fusion with IMU can solve the monocular scale 

problem while ensuring good real-time performance for monocular SLAM, especially the 

tightly coupled method of IMU fusion has higher accuracy, such as Vins Mono SLAM [38], 

VI ORB SLAM [39] and the newly proposed ORB SLAM3 [40]. 

  



Integration of Semantic SLAM for Autonomous Driving   The REV Project - 2020 

Hengyu Chen - 22446698      Page | 14 

 

5. Object Detection 

5.1 Problem Identification 
To achieve higher real-time performance, the designed system will generate the semantic 

formation by object detection. Last year, Chao developed an object detection approach for 

cones with SVM+HOG [8], which is a traditional machine-learning algorithm based on 

extracted descriptors. Here is the problem analysis of the previous work: 

 
Figure 6. The Previous Detection Work with HOG+SVM 

5.1.1 HOG Descriptors 

The HOG descriptors can generate structural features of the target edges, which is 

insensitive to light to a limited extent. But the generation process of this descriptor is 

complex, which leads to slow speed and poor real-time performance. And due to the nature 

of gradient, the descriptor is quite sensitive to some noises, causing lower accuracy. 

5.1.2 Sliding Windows 
The implementation of HOG+SVM detection involves the sliding window process, which 

slides a box with pre-set size on the image as the input of SVM classifier. During this 

process, it significantly increases the calculation burden on the processor and the inference 

time of detection. And the box is restricted to a specific size, which means if the object size 

on the image is too small or larger than the box, the classifier will be able to work correctly. 

Both the FPS and accuracy are limited due to this method. 

5.1.3 Repeated Detection 
The previous work with HOG+SVM did not apply any filtering algorithm to remove the 

overlapping boxes. As shown in fig.6, some cones can be recognised three times with 

overlapping box. In this project, the NMS method is added to filter out the repeat detections. 
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5.1.4 Detection Target 

For the SAE Formula Car platform, since the project is designed for the racing competition, 

the main task will be the detection of cones used in the track. For the nUWAy shuttle bus, 

the application scenario is the on-road environment, which is more complex. Here the 

project for the bus focuses on the dynamic objects such as cars, pedestrians and cyclists. 

5.1.5 Implementation on ROS system 
After finishing the training and validation, the detection system will be transplanted into 

the Robot Operating System (ROS) to ensure efficient data transmission with other 

modules on the vehicle platform. 

To solve the problems above, the author chooses the YOLO network structure for object 

detection, which is an end-end and one-stage method. Instead of the structure with sliding 

windows, it uses the whole image as the input of the neural network. 

5.2 YOLO Network 
YOLO is the abbreviation of You Only Look Once. Different from the two-stage method 

with sliding windows structure, the core idea of the YOLO algorithm is to use the entire 

image as the input of the network. By applying only one CNN network, it will directly 

generate the final class probability and the position coordinate value of objects in the output 

layer. Therefore, its processing speed is sufficiently fast. 

5.2.1 Detection Structure 

The structure of the YOLO neural network is shown in fig.7, which can be divided into 

three steps [21]. 

 

Figure 7. The Detection Structure of YOLO v1 Network [21] 

1) It will resize the image into 416*416 and divided them into an S*S grid of square cells 

as the input of the network. Each grid cell has to predict B bounding boxes. 
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2) It will use the CNN network for feature extraction and box prediction on each grid cell, 

whose output can be divided into three parts. 

• The prediction generates the coordinates position (x, y, w, h) of each bounding 

boxes, where x and y represent the relative value of the box centre point regarding 

the grid boundary, w and h represent the ratios of the width and height of the 

prediction box to the width and height of the entire input image. Therefore, the size 

of these four values will be limited between 0-1, which is easier to process.  

• The prediction generates confidence information for each predicted bounding box. 

The calculation of confidence score is defined as the multiplication of two aspects, 

the possibility of the existence of the target in this box and the position accuracy of 

this bounding box. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ 

For the former value, the system records it as 𝑃𝑟 (𝑜𝑏𝑗𝑒𝑐𝑡), which means whether 

there is a target object in the grid. If there is no target in the box, 𝑃𝑟 (𝑜𝑏𝑗𝑒𝑐𝑡)  =  0. 

If the box contains the target, 𝑃𝑟 (𝑜𝑏𝑗𝑒𝑐𝑡)  = 1. In order to judge the accuracy of 

the position of the bounding box, the system uses Intersection over Union (IOU) 

for evaluation. The higher confidence value means the candidate frame is closer to 

the real position. 

• The prediction generates the possibilities for C classes during the classification. In 

YOLO v1, all predicted bounding boxes in one grid use a common class probability, 

which constructs a class possibility graph. However, since YOLO v2, the neural 

network generates the prediction on each predicted bounding boxes instead of each 

grid cell. It means that it will have B*C classification predictions for each grid, 

which increase the detection accuracy. 

Finally, the prediction result for each grid will generate an S*S*B*(4+1+C) tensor 

through the CNN network. 

3) Apply Non-Maximum Suppression to filter the best bounding box. 

After step 2, the system can get the S*S*B bounding box for each receptive field and 

need to use NMS to remove the repeated neighbour box.  
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Figure 8. The Non-Maximum Suppression 

Firstly, YOLO will filter the prediction by applying a confidence threshold. Then, the 

box score is calculated by multiplication of the confidence value and the highest 

possibility for classes. The bounding box with maximum score can be obtained by 

sorting, which is chosen to calculate the IOU with the rest boxes. If the IOU value is 

higher than the threshold, it will remove the corresponding box and pick up the box 

with the second-highest score to calculate the IOU with rest box. The NMS will repeat 

this step until all the repeated bounding box has been filtered out. 

5.2.2 YOLO v3-Tiny 

YOLO v3-tiny is chosen as the prediction network, which has 24 layers and emphasis more 

on real-time performance. It has two different receptive fields, which divides the image 

into 13x13 and 26x26 grids. For each grid, it will generate three bounding boxes based on 

the pre-set anchors. Compared with YOLO v3, it removes the residual structure to achieve 

higher processing speed while keeping sufficient accuracy. The network structure of Cone 

Detection is shown in fig.9 as an example. 

 

Figure 9. The Network Structure of YOLO v3 tiny for Cone Detection 
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5.2.3 Loss Function 

YOLO v3-Tiny network uses the summed squared error between the network prediction 

and the actual object data as the loss function to optimise model parameters. The loss 

function unified three aspects: position loss, classification loss and confidence loss. As 

shown below, S represents the grid size, B is the different bounding boxes, 1𝑖,𝑗
𝑜𝑏𝑗

  is 1 for 

containing the target and 0 for no target inside, 1𝑖,𝑗
𝑛𝑜𝑜𝑏𝑗

 is the opposite of  1𝑖,𝑗
𝑜𝑏𝑗

.  

 

Figure 10. The Loss Function of YOLO v3 Series[23] 

1) Position Loss 

The position loss lbox is calculated by the bounding box information (x, y, w, h). The 

square of the difference between the bounding boxes predicted by each grid cell and its 

corresponding ground-truth box position are summed together to generate the lbox loss. 

2) Classification Loss 

The classification loss lcls is calculated by the possibility for each class on predicted 

bounding boxes.  

3) Confidence Loss 

Confidence loss lobj is calculated by the confidence product of the possibility of the 

existence of the target in this box and the position accuracy of this bounding box. 

It should be noted that different task has different emphasises and should be given different 

loss weights λ. For the SAE cone detection, the coordinate position of the predicted 

bounding box of cones is relatively more important since there is only one class for this 

task. Therefore, the 𝜆𝑐𝑜𝑜𝑟𝑑is set higher. For the nUWAy on-road detection, the loss weight 

is the same setting in original YOLO v3-tiny. 

5.2.3 Average Precision 

For the evaluation of the result, the final accuracy is represented by the Average Precision 

(AP). In this project, the calculation uses 11-point interpolated method in PASCAL VOC 

CHALLENGE 2008, which is the average value of 11 points on the Precision-Recall curve 

for each possible threshold for the same class. 
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5.3 SAE Cone Detection 

5.3.1 Data Generation 

The dataset of cone images is generated from the FLIR camera on SAE Formula car. The 

team record the image rosbag under different environmental conditions. By image capture 

program, the image topic /right_image is subscribed and saved into jpg format with 

OpenCV library. As shown in fig.11, the image data is manually labelled with the LabelImg 

tool, which generates the original xml files containing the bounding box information. 

Finally, with the Python library VOC_devkit, the dataset is transformed into VOC format 

to fit the Darknet training structure. 

The labelled dataset contains 400 images in total, including cone images under two light 

condition (normal/shadow), two moving speed (clear/fuzzy) and two landforms 

(road/grass), which is divided into the training and validation dataset in a ratio of 8:2. 

 

Figure 11. The Cone Labelling with LabelImg Library 

5.3.2 Network Training 

For the training process, the network uses the Darknet as the backbone, which is the 

original implementation on a C++ based framework. It can be accelerated by CUDA toolkit 

and supports the interface for OpenCV processing. The training platform is on TITAN X 

in Lab3.13. The training strategy is Multi-Scale Training, which enhances the 

generalisation ability of the trained model. And here are the main training parameters. 

Table 1. Main Training Parameters of YOLO v3 Tiny in SAE Cone Detection 

Width  

 

416 

 

The input image size for the batch validation and network 

application. Since YOLO uses Multi-Scale Training, these 

two values are not really functional during the training 

process. 
Height 416 
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Channels 3 RGB format has 3 channels. 

Momentum 0.9 Momentum coefficient, which is for speeding up the 

convergence progress. 

Decay 0.0005 Global weight decay rate, which is for avoiding the 

overfitting problem.  

Batch 64 Image samples per training batch. The network parameter 

will update for each batch. 

Subdivision 4 It will put Batch/Subdivision images into the network at 

one time. It is used for the training on the limited device. 

Max Batches  2000 Training the dataset with 2000 iterations. 

Final Conv 

layer size  

18 (class + confidence number + position) * anchors boxes = 

(1+1+4) *3=18, the final output tensor of YOLO network. 
 

5.3.3 Training Result 

Figure 12 shows the change of loss value and the Average Precision (AP) on the validation 

dataset over training iteration. It is obvious to see that the loss keeps dropping with the 

growth of iterations. The training achieves about 90% AP after 1500 iteration while the 

loss reaches the lowest point, and then turns into fluctuations. It means that after 1500 

iterations, the system has reached the local optimum and start overfitting. Therefore, the 

1500 iteration weight is chosen as the final weight for the deployment. 

 

Figure 12. The Training Result of Cone Detection 
The detection demo is shown on the right side of Figure 12. The detection system will 

generate the possibility for each detected object in the image. The final AP on the test 

dataset is about 91.7%, while the processing time per frame is about 4-20 ms on both Titan 

X and Jetson AGX, which means the speed can reach about 50~250 fps. Compared with 

the previous method with HOG+SVM, the speed increases by 3 to 15 times under the same 

accuracy level. 

Meanwhile, the overlapping problem is solved by the NMS filter in the YOLO detection 

process. For one object in the scene, the detection system only provides one bounding box 

for counting, which also increases the accuracy. 
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5.3.4 Implementation on ROS System 

The YOLO v3-tiny ROS system is established based on the Darknet ROS package. With 

the CUDA acceleration, the field test can ensure about 30 FPS on SAE Formula car, which 

means the speed of detection is no longer limited by the YOLO network but the image 

capture speed of the camera. As shown in fig.13, the ROS topic structure is generated with 

the rqt-graph library. 

 
Figure 13. The Rqt Graph of Darknet ROS Node Structure for Cone Detection 

The darknet_ros node subscribes the image topic from the target camera. For SAE cone 

detection, it subscribes the topic /right_image from FILR camera, using the /darknet_ros 

node to process the object detection. The ROS node publishes the detection result into 3 

topics. Topic /darknet_ros/found_object shows the number of detected objects in the scene. 

The topic /darknet_ros/bounding_boxes generates the information of bounding boxes, 

including box position, box size, object class and the corresponding possibility. Topic 

/darknet_ros/detection_image generate the final image with detected bounding boxes. In 

fig.13 and fig.14, the rostopic echo command is used to demonstrate the topic structure.  

 
Figure 14. The ROS Implementation of Cone Detection 

/darknet_ros/bounding_box

es 

/darknet_ros  Node 

/darknet_ros/found_object 

/darknet_ros/detection_image 

SAE Field test Rosbag 
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The field test is executed on the Jetson AGX of SAE, which can ensure about 30 FPS. The 

accuracy is a little bit lower than the tested accuracy during the training, which is about 90% 

AP during the field test. 

5.4 nUWAy On-road Detection 

5.4.1 Data Generation 

For detection function on nUWAy shuttle bus, the detection objects focus more on the real 

on-road scene. Since the nUWAy team decided to replace the current MONO-8 greyscale 

cameras with RGB-8 coloured cameras at the end of this semester, instead of using current 

greyscale images, the KITII dataset is chosen as the training dataset, which contains ten 

thousand images of the normal on-road objects. The dataset is divided into nine classes, 

including Car, Van, Truck, Standing Pedestrian, Sitting Pedestrian, Cyclist, Tram, Misc 

and Unspecified. 

 

Figure 15. The KITTI 2D Object Detection Dataset [41] 

For the training part, the object detection KITTI dataset is transferred from original xml 

position files into the VOC format used in the Darknet structure, divided into training and 

validation dataset in a ratio of 8:2. For the on-road simulation test, the on-road test rosbag 

is generated from the KITTI image dataset with time sequence files, which is transformed 

with the ROS python library. 

5.4.2 Network Training 

Since this part of research is done remotely, the workstation in Lab3.13 is not accessible. 

Therefore, the training and testing platform is on the personal computer with the MX150 

GPU, which is a limited device with low computing power. In order to reduce the 

computing burden to avoid the core dump problem of training, the batch size is set to 16 

while the subdivision is set to 8, which means only 2 images is inputted into the training 

network at one time. The training uses checkpoints to finish the whole training process for 

one week. And here are the training parameters different from the Cone detection. 

Table 2. Partial Training Parameters of YOLO v3 Tiny in nUWAy On-road Detection 

Batch 16 Image samples per training batch. The network parameter 

will update for each batch. 

Max Batches  13000 Training the dataset with 13000 iterations. 

Subdivision 8 During each batch, it will input Batch/Subdivision images 

into the network. It is used for the training on the limited 

GPU. 

Conv filter size before 

YOLO output 

42 (class + confidence number + position) * anchors boxes = 

(9+1+4) * 3=42, the final output tensor of YOLO network. 
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5.4.3 Training Result: 

Table 3. Average Precision for Different Classes in Training Results 

Class Average Precision 

(AP) 

Class Average Precision 

(AP) 
Car 85.54% Van 82.95% 

Truck 87.99% Pedestrian Standing  46.26% 

Pedestrian Sitting 57.39% Cyclist 57.92% 

Tram 82.94% Misc 71.53% 

As shown in the table above, the mean average precision (mAP) of the on-road detection 

with the final trained network is about 71.57%. Among different classes, the detection for 

cars, vans, trucks and trams shows high performance in the validation dataset, where the 

highest AP is the detection for trucks, reaching about 88%. The lowest AP is the detection 

for standing pedestrians, which is only about 46%. The reason can be divided into two 

parts. On the one hand, the dataset has more labelled data of the vehicles, while including 

less dataset about pedestrians. On the other hand, the pedestrian is relatively small 

compared to vehicles, which increase the difficulty of the detection. 

 

Figure 16. The Test for On-road Detection 

5.4.4 Implementation on ROS System 

For nUWAy on-road detection, it subscribes the topic /camera/image_raw from KITTI 

rosbag. The published topics structure is the same as Cone detection, including the object 

numbers, bounding boxes with class and the final prediction image. 

 

Figure 17. The Rqt Graph of Darknet ROS Node Structure for Cone Detection 
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Even though the ROS node is tested on a limited personal device with MX150 GPU, the 

detection system is still able to keep the fluctuation within 25 fps to 35 fps. If the node can 

be tested on the Jetson AGX, the performance can be ensured to be limited only by the 

current capture FPS on nUWAy shuttle bus. 

 

Figure 18. The ROS Implementation of On-road Detection 

 

  

/darknet_ros/detection_image 

/darknet_ros/bounding_boxes 

KITTI  Rosbag /darknet_ros/found_object 

/darknet_ros 
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6. Visual SLAM 

6.1 Problem Identification 
The previous work in SAE project has finished a mapping process with monocular ORB-

SLAM2, but the result is not satisfactory. 

 

Figure 19. Previous SAE Result of ORB-SLAM2 without Loop Closing [8] 

From the previous result in fig.19, it is obvious to see the accumulated drift during the 

SLAM processing. In order to meet the needs of the real-time SLAM function on SAE and 

nUWAy platform, the project is required to enhance the accuracy while ensuring low 

processing time. Since the processing time of stereo and RGB-D camera is too long, which 

can sufficiently increase the burden on the mobile processor, the focus point in this project 

is still on the improvement of monocular SLAM. After investigation and research, the low 

accuracy factors of previous work are mainly inferred as follows: 

6.1.1 No Loop-closing Test for ORB SLAM2 

According to the result in fig.19, the loop closing process was not finished during the field 

test last year. Since the monocular SLAM has the problem of scale drift, loop closing step 

is critical for the optimisation of vision-based SLAM. 

6.1.2 No Association with Other Sensors 

Last year, the sensor fusion work on SAE was at the starting stage, where the SLAM system 

has not been fused with other sensors like IMU and GPS. The Accumulates drift can be 

significantly reduced with the data association between different sensors. 

6.1.3 Lost Tracking  

During the ORB SLAM2 processing, if the system lost the tracking due to the image 

blurring, it means that the vehicle needs to go back to the previous position to restart, which 

is not efficient enough and cannot use the old map data to increase accuracy. 
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The project aims to determine the influence of each factor on accuracy enhancement. If 

finishing the loop closing is not enough to meet the mapping requirements of our new 

vehicle system, a suitable solution will be found based on factor 2 and 3. 

6.2 ORB SLAM2 

 

6.2.1 Monocular ORB SLAM2 

ORB SLAM2 is a complete SLAM solution based on monocular, stereo and RGB-D visual 

devices, which can realise the functions of mapping, tracking, loop closure detection and 

localisation. Since the project emphasises more on real-time performance, the project 

focuses on the monocular-based process. 

 

Figure 20. The Structure of ORB SLAM2 [42] 

ORB SLAM2 has three threads, Tracking, Local Mapping, Loop Closing. The tracking 

process is responsible for extracting feature points for inter-frame matching, primary pose 

estimation, and primary selection of keyframes. Local Mapping performs the filtering of 

keyframes and map point in order to construct a local optimisation. Loop Closing is 

responsible for global optimisation. The unique process for the monocular ORB SLAM2 

is mainly in the tracking and loop closing threads. 

1) Monocular Initialisation 
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At the beginning of the tracking thread, the ORB SLAM system needs to be initialised first, 

including the initial pose estimation, map establishing, keyframe generation, etc. For 

monocular process, the initialisation process of monocular is shown below. 

• Find matching points and perform feature point matching after extracting ORB 

features from the first two frames. 

• Recover the pose from the matching points, use the Eight-Point algorithm [43] to 

calculate the homography matrix and the fundamental matrix at the same time. Select 

the best result as the initial pose by calculating the score ratio. 

• Create the initial map and use the triangulation method to restore the 3D map points 

based on the poses of the first two frames. Set these two frames as keyframes, perform 

a BA on the two keyframes above and the map point, and select the median of the 

depth of the map point as the unit to initialise the size of the map. 

2) Monocular Loop Closing 

During the operation of the monocular SLAM, the accumulated errors are not only 

generated from the rotation and translation but also causes by the scale drift. In ORB-

SLAM2, for reducing scale drift, a special process will be done during loop closing 

optimisation, namely Sim3 optimisation. In the loop closing process, the Sim3 pose can be 

converted to SE3 pose and then perform pose correction on the current keyframe, which 

reduces the influence of scale drift, but still not able to achieve higher accuracy.  
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6.2.2 Loop-closing Test 

Since the accuracy after loop closing in ORB SLAM2 system was not tested on SAE car 

last year, a test is necessary to determine whether ORB SLAM2 is sufficient enough for 

the REV platforms. In order to evaluate the influence of factor 1, a rosbag data of nUWAy 

bus is recorded by the REV lab teammates in the parking lot nearby Lab 2.50. 

The test platform is on the personal computer with MX150. By setting up the ORB SLAM2 

ROS node, the SLAM system will subscribe to front camera from nUWAy bus rosbag. 

 

Figure 21. The Loop Closing Test for ORB SLAM2 on nUWAy Bus 

As shown in fig.21, an obvious error occurs during the forward-moving, which can be 

caused by the light condition and the burry image during the bus turning. While the car is 

moving in a constant speed according to the video, but the density of keyframes changed a 

lot, which means a scale drift occurs during the forward movement. 

 

Figure 22. The comparison of ORB SLAM2 without Loop Closing (left) and with Loop Closing (right) 

With the loop closing process finished during the round trip, the drift error is eliminated to 

some extent. When the nUWAy bus return to the initial position, the loop closing thread 

recognised the position with the DBoW2, optimised the map and finish the relocalisation 

for the current pose. 
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Even though the error is reduced, the result obtained in fig.22 shows that the problem of 

monocular scale drift is still pronounced. The actual ground truth is hard to get due to the 

remote study, so here cannot give detailed comparison data result. However, by direct 

observation of the video and the saved trajectory result, it is easy to realise the differences 

from the actual trajectory. The scale of the estimated trajectory is nearly double the scale 

of parking lot length measured by Google map, while the shape of the trajectory on the x-

y plane is also not accurate enough. 

The conclusion is that the closed-loop ORB SLAM2 based only on visual odometry cannot 

meet the requirements. Therefore, a further investigation is done for factor 2 and 3. Based 

on the comparison, the project selected ORB SLAM3 as the final approach, which 

introduced the concept of Atlas map structure and the integration with IMU data in order 

to enhance accuracy. 

6.3 ORB SLAM3 

6.3.1 Monocular ORB SLAM3: 

In order to achieve higher accuracy for monocular SLAM, ORB SLAM3 is chosen as the 

mapping and localisation solution for REV vehicles. The main improvements made by 

ORB SLAM3 relative to ORB SLAM2 can be divided into 2 points: 

1) Visual-inertial Odometry 

ORB SLAM3 introduces IMU information, which integrates Maximum a Posteriori (MAP) 

estimation into each thread and realises a tightly-coupled SLAM system based on visual 

features and inertial data [40]. Since the monocular SLAM system does not directly 

generate depth information from a single frame, there is often a problem of scale drift. The 

introduction of IMU data can sufficiently solve this problem. 

Visual-inertial Odometry (VIO) can align the pose sequence estimated by the IMU data 

with the pose sequence estimated by the camera data in order to generate the true scale of 

trajectory. It improves the accuracy of the pose and has the ability to predict the next 

position, which increases the matching speed. In ORB SLAM3, the idea of MAP is also 

introduced in the initialisation stage of the IMU, which not only improves the initialisation 

speed but also greatly improves the accuracy and robustness of the SLAM system. 

2) Atlas System 

Atlas is a multi-map system, which employs a new structure for the localisation and loop 

closing detection. It ensures that ORB-SLAM3 can operate effectively in an environment 

with poor feature points for the long duration of the run. 

Atlas system saves a lot of trivial disconnected maps, including one active map and many 

non-active maps. The active map is used in tracking thread for the localisation of the current 
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frame, and in the local mapping thread for the optimisation and the new keyframe insertion. 

When the tracking thread is in lost status, instead of going back to the original location for 

relocalisation in ORB SLAM2, the ORB SLAM3 will try to match the small maps in Atlas. 

If the matching successes, it continues the tracking thread for the matched map. If the 

matching fails, it will restart a new map as the active map. The previous map will be saved 

as a non-active map. 

When the camera revisits the place in the old maps, the loop closing thread will recognise 

the overlapped part and seamlessly merge the active map with the corresponding non-

active map. In this way, ORB SLAM3 greatly improves the robustness of the system when 

visual information is lacking or even lost. 

 

6.3.2 Test for ORB SLAM3 

In order to verify the improvement of ORB SLAM3 after adding IMU information, the 

project conducted a comparative test between ORB SLAM3 and ORB SLAM2. Since this 

research project is processed remotely, it is hard to get the precise ground truth data for the 

recorded rosbag on REV car platform. The exterior parameter matrix for calibration 

between IMU and camera pose is also not accessible, which could significantly reduce the 

final test accuracy. In order to compare the result accuracy between the ORB SLAM 

method with and without IMU, the EuRoC dataset is used for the comparison. European 

Robotics Challenge (EuRoC) [44] is a popular dataset for VIO SLAM systems, which 

collects camera images and inertial data from an aerial vehicle, providing accurate ground 

truth data for algorithm evaluation. 

 
Figure 23. The Monocular ORB SLAM2 without IMU on EuRoC MH01 Dataset 
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Figure 24. The Monocular ORB SLAM3 with IMU on EuRoC MH01 Dataset 

For the experiment, the EuRoC Machine Hall 01 is chosen to do the accuracy test. By apply 

different ORB SLAM method, the system generates the predicted trajectories with 

timestamps and save into text files. After transforming the trajectories data into TUM 

format, the EVO Python package is used to generate the comparison result between the 

predicted result and the ground truth data, including the trajectories image and the results 

of absolute errors. 

6.4 Comparison Results 

After the alignment of the rotation and translation with Umeyama method, the comparison 

result of the camera pose in keyframes is shown in fig.25 and fig.26. The left column shows 

the estimated 3D trajectories compared with the ground truth data. The coloured line shows 

the real trajectories, mapping a gradient colour bar with the range of errors to indicate the 

pose error at each position, while the grey dash line indicates the ground truth. The right 

column shows the Absolute Pose Errors (APE) with the time sequence in grey line, which 

also calculates and labels the mean error, median error, root mean square error(RMSE) and 

the standard deviation (STD). 

6.4.1 Scale Drift Comparison 

In figure.25, it is obvious to see the enormous scale drift problem caused by Monocular 

ORB SLAM2. The maximum error can reach about 5.5 m, while the RMSE is around 3.5 

m compared with the ground truth. It is because the single monocular method does not 

have the scale invariance. The estimated scale is about 6.5 times smaller than the real one. 
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Since the camera is not moving at the start while the ORB SLAM2 system generate the 

scale information by the first several frames, the error significantly influences the accuracy. 

However, with the optimisation based on IMU in ORB SLAM3, the scale problem is 

sufficiently reduced, whose RMSE of monocular ORB SLAM3 is only 0.016 m, which is 

a hundred times smaller than ORB SLAM2.  

 

Figure 25. The Comparison Result of Scale Shift 

6.4.2 Relative Trajectory Comparison 

In order to compare the relative trajectory error about shape accuracy, the scale correction 

is applied to the result of ORB SLAM2. As shown in fig.25, after the scale correction, the 

RMSE error of ORB SLAM is about 0.047292 m, while the ORB SLAM3 is about 

0.016647 m, which is nearly three times larger. 

In a word, compared with the Monocular ORB SLAM2, the Inertial-Monocular ORB 

SLAM3 triple the accuracy of trajectory while eliminating the scale drift, which perfectly 

solves the identified problems in chapter 6.1. 
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Figure 26. The Result of Relative Trajectory Comparison 

 

  



Integration of Semantic SLAM for Autonomous Driving   The REV Project - 2020 

Hengyu Chen - 22446698      Page | 34 

 

7. Conclusion 

In this project, an integrated vision-based processing system for semantic information and 

visual SLAM is established on REV vehicle platforms. Contrapose to the upgraded device 

on different platforms, including new computing units, inertial sensors and cameras, 

adaptive solutions are proposed and applied with advanced approaches. Compared with the 

previous work, the algorithms on each vision-based function is greatly improved now. 

For the cone detection on SAE, the new system replaces the old machine learning method 

with YOLOv3-Tiny neural network, which highly increases the FPS with same accuracy 

level about 92% mAP and shows excellent performance on real-time processing. The end-

to-end structure of YOLO makes it possible to raise the processing speed to at least 30 FPS, 

only limited by the camera capture speed in the field test. For the detection work on 

nUWAy shuttle bus, a well-trained YOLO network is designed for the coming coloured 

camera, aiming for the dynamic objects in the actual on-road scenes, which has the classes 

AP ranging from 46% to 85%. For this part of work, it is still in the pre-training stage, 

which requires a further fine-tuning with the field image data from the coming installed 

camera. In a word, for the similar detection task on mobile terminals, the YOLO tiny 

structure is a balanced solution with good accuracy and speed. 

For the SLAM system, the previous work is based on the Monocular ORB SLAM2, which 

is not satisfactory. The author analyses the negative factors and chooses the Monocular 

ORB SLAM3 with IMU as the improvement solution. The scale drift issue is remarkably 

diminished by involving the inertial information with MAP estimation. Meanwhile, the 

Atlas structure unifies the mapping structure, which increases the robustness and efficiency 

for the environment with lacking visual information. 

In conclusion, the vision-based function has been sufficiently improved and integrated for 

REV vehicle platforms in this project, which is able to generate semantic information from 

YOLO network object detection with higher speed and perform a high-precision visual 

SLAM with IMU data fusion. 

8. Future work 

The current work in this project has integrated the semantic information of object detection 

and the visual SLAM system optimised with IMU with the ROS system on the REV vehicle 

platform. However, these two is functional separately in real processing. In order to achieve 

a deeper integration between the semantic information and the visual SLAM system, a data 

association method need to be found due to following two reasons. 

The dynamic environment can influence the vision-based SLAM. For example, when the 

vehicle is slowly following a bulky truck during the SLAM process, the feature points on 
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the truck can occupy most of the camera scene, influencing the accuracy of the mapping 

and localisation. 

Meanwhile, the semantic information can positively influence the driving decision for 

autonomous vehicles, such as the priority of obstacle avoidance when the accident happens. 

Therefore, the generation of the semantic map is also a good direction, which unifies the 

three-dimension semantic information in the dense mapping process. 

Based on two points above, the author comes up with a detection mask structure as the 

work in the next stage. 

                      

Figure 27. The Design Structure of Detection Mask SLAM 

The on-road detection will generate the bounding box of the dynamic objects. The structure 

will mark the corresponding ORB feature points with depth information for objects with 

classes labels, which can be used for further driving decision. When the area of the 

bounding box is larger than the pre-set threshold, which means that it can influence the 

accuracy of SLAM, the system will use the bounding box as a filter to mask the ORB 

feature point in the scene and continue the rest SLAM process. Since the YOLO network 

is much faster than ORB SLAM, the synchronisation can be a challenge. 

Overall, the field of self-driving is continuously evolving with the development of sensor 

units, computing power and algorithms. Through constant experimentation and innovation 

by researchers, the author believes the ultimate autonomous vehicle will eventually come 

true. 
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10. Appendix 

 

Figure 28. The 11-point Average Precision Method[45] 

Table 4. The Detailed Result of ORB SLAM 2 and ORB SLAM 3 Comparison 

Absolute 

error 

(m) 

Monocular 

ORB 

SLAM3 

with IMU 

Monocular 

ORB SLAM2 

without 

IMU(Original) 

Monocular 

ORB SLAM2 

without 

IMU(Aligned) 

Max 0.041036 5.532862 0.078948 

Mean 0.015515 3.121013 0.042695 

Median 0.014999 3.136336 0.040829 

Min 0.000553 0.637108 0.005365 

RMSE 0.016647 3.490481 0.047292 

SSE 0.077042 2168.655 0.398096 

STD 0.006034 1.562924 0.020338 

 


