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Abstract 

Simultaneous localization and mapping technologies play an important role in the 

autonomous driving task. Laser-based systems are preferred choices among a number 

of solutions to the SLAM problem due to its capability of giving a robust result in 

outdoor environments. This thesis firstly introduces the project background and project 

scope, and then summarizes the issues existing in the practical SLAM scenario, that is, 

the scenario related to the nUWAy project and the terrain of the UWA campus. After 

that, the author further investigates the recent work related to Lidar-based SLAM, 

focusing on the presented approaches, achieved outcomes and how these can be used 

for problems in the nUWAy project. According to the design requirements, a SLAM 

framework is proposed underpinned by Google cartographer. The mapping result for 

the UWA main campus and further discussion demonstrates this expanded approach 

partially addressed the identified problems in this specific scenario. 
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Nomenclature 

UWA          The University of Western Australia 

 

REV           Renewable Energy Vehicle 

 

nUWAy        UWA autonomous bus 

 

SLAM         Simultaneous Localization and Mapping 

 

GPS           Global Positioning System 

 

IMU           Inertial Measurement Unit 

 

ROS           Robot Operating System 

 

PCL           Point Cloud Library 

 

KITTI          A popular benchmark autonomous driving dataset 

 

CARLA        Open-source simulator for autonomous driving research 

 

EKF           Extended Kalman Filter 

 

UKF           Unscented Kalman Filter 

 

LOAM         Lidar Odometry and Mapping 

 

SBPL          Search-based path planner 

 

RTK           Real-time kinematic 
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1. Introduction 

1.1 Overview 

With the rapid development of automobile electronization and advanced assisted 

driving technology, autonomous driving, as an advanced stage of assisted driving 

technology, has become an important way to solve transportation problems in the future, 

and has become a new research focus in the world. Self-driving vehicles have the 

potential to reshape mobility by enhancing the safety, accessibility, efficiency, and 

convenience of automotive transportation. 

 

One task of a self-driving vehicle is to navigate itself from an initial place to the 

destination autonomously. This task normally requires the map of the environment 

where the autonomous vehicle operates, and the localization information within this 

map. Figure 1[1] is a typical architecture of the autonomy system of self-driving cars, 

which demonstrates the importance of the localization information and the map of the 

operation area. This system consists of two components, a perception system and a 

decision-making system. The path planner in the decision-making system is able to 

generate a path to a given destination without hitting any obstacle based on the drivable 

areas recorded in the map. To get the car to move along the path, the localizer should 

estimate where the vehicle is timely. Based on the localization information from the 

localizer and the path created before, the motion planner can accordingly derive the 

correct control command which allows the self-driving car to follow the path. 

 

In order to obtain the map required by the autonomous driving system, the mapping 

process shall record environmental features within a coordinate frame. If the accurate 

poses (position and orientation) of the vehicle at any time are known, there are various 

and effective methods to build the map[3][4][5]. Although GPS can give the pose 

information, its signal cannot be guaranteed “in occluded areas, such as under trees, in 
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urban canyons (roads surrounded by large buildings) or in tunnels.”[1] In these 

circumstances, the vehicle usually cannot get its position and orientation directly when 

it is operating in an unknown environment. This requires autonomous vehicles to 

estimate the poses using onboard sensors while driving, and incrementally create the 

map at the same time. In other words, drive-less cars need simultaneous localization 

and mapping (SLAM) technology to address these issues.  

 

Figure 1. Overview of the typical hierarchical architecture of self-driving cars[1] 

 

1.2 Project background 

The nUWAy is a newly launched project by the Renewable Energy Vehicle team (REV) 

of the University of Western Australia (UWA), aiming to integrate autonomous driving 

technologies developed by REV to an electric shuttle bus platform without any of the 

high-level driving and navigation systems from its manufactory EasyMile[16]. The goal 

of nUWAy autonomous bus focuses on smooth driving around roads between locations 
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in the Crawley campus of UWA, which requires a map for global path planning. Also, 

this EZ10 electric shuttle bus platform is equipped with various LiDARs which is able 

to cover almost all the surrounding environment as shown in Figure 2[6]. Based on this 

situation, the Lidar-based SLAM scheme is given a higher priority to assist the task of 

nUWAy bus because of the strong performance of these laser range finders.  

 

Figure 2. Summary of the EZ10 V2.3 localization and detection technologies[6] 

 

1.3 Project scope 

As mentioned before, SLAM plays an important role in autonomous driving. This 

research is intended to supply a SLAM system suitable for our nUWAy project in 

Crawly campus. To be specific, it provides an offline grid map of the campus essential 

for path planning, and the localization information during navigation. 
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2. Problem identification 

Laser-based systems are preferred choices among a number of solutions to the SLAM 

problem due to its capability of giving a robust result in outdoor environments[7]. 

However, when applying the Lidar-based solution to nUWAy project some difficulties 

arise. 

 

As mentioned previously, several Lidars are mounted on the autonomous shuttle bus, 

including four SICK 2D Lidars, two Velodyne 3D Lidars and two Ibeo Lux Lidars. 

From Figure 2, it can be observed that SICK Lidars only scan the environment at a 

lower height while Ibeo Lux Lidars do it at a higher height. If only lidars at one altitude 

are used for SLAM, the obstruction at other height would not be recorded in the map. 

The path planner may thus treat a place with obstacles as a possible route. Therefore, 

under the condition that a total of eight Lidars are loaded on nUWAy, the way how 

these 2D and 3D Lidars are combined to gain a better grid map result is the first problem. 

 

Also, in the process of SLAM, the map is gradually created as the autonomous vehicle 

moves in the environment, so the accurate pose estimation holds the key to the mapping 

process. However, if the pose estimation only relies on the frontend odometry, the drift 

issue comes about, which refers to the accumulation of the estimation errors. Concretely, 

the frontend odometry estimates the current pose based on the pose of one previous step, 

so the error in earlier estimated pose would accumulate as the estimation process goes. 

In other words, the longer the driving time is, the more distorted the map will be. 

Therefore, how the drift phenomenon is handled is another issue. 

 

In addition, some certain circumstances make pose estimation more difficult. For 

example, James Oval in UWA campus is an open space which lacks geometric features. 

If the vehicle is on the road across the oval, it hardly collects the information of the 

surroundings using lidars since most of lasers would not be reflected from the open 
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space. This lack of the environmental information makes it difficult to estimate 

vehicle’s trajectory from observing the landmarks. Also, the slopes in the environment 

would make negative impacts on the estimation result if the vehicle only depends on 

the lidar data. More specifically, the vehicle with solely lidar data available cannot 

distinguish whether it’s moving on a flat ground or a slope. Accordingly, these 

circumstances need to be taken into account as well.   

 

Furthermore, many subsystems in autonomy system need real-time localization 

information, such as the motion planner that calculates commands to control 

autonomous cars to operate as expected. This requires the localization system to provide 

required pose information in real-time as well. Nevertheless, general SLAM 

technologies consume high computing resources so the mapping process is normally 

performed offline. Therefore, configuring the SLAM technology to achieve online 

localization is a key problem in autonomous driving. 
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3. Literature survey 

“Simultaneous Localization And Mapping (SLAM) has been a hugely popular topic 

among the mobile robotics community for more than 25 years now”[8]. Lidar-based 

SLAM is one of the most reliable SLAM solutions in this field as it is not sensitive to 

the changes in light conditions and can give robust outcomes compared to SLAM 

approaches based on other sensors. This section reviews recent work related to Lidar-

based SLAM, focusing on the presented approaches, achieved outcomes and how these 

can be used for problems stated in the last section. 

 

Grisetti G et al. presented Gmapping based on Rao-Blackwellized particle filters in 

2007[9]. In traditional Rao-Blackwellized particle filters, the large number of particles 

required to build an accurate map consumes a lot of memory resources, and particle 

impoverishment effect arises as the resampling step can potentially eliminate the correct 

particle. In order to solve the serious memory consumption problem and keep the 

number of particles in a relatively small number, Gampping samples a proposal 

distribution, and then optimizes the pose based on the optimized scan-matching. For 

relieving the particle depletion problem, the approach sets a threshold to determine 

whether the resampling is performed or not. When the number of particles exceeds the 

threshold, it stops resampling, otherwise performs resampling again. This approach 

reduces the number of unnecessary resampling actions in the particle filter and thus 

slows down particle depletion. Gmapping is the most used SLAM package in robots, 

and it can be used for indoor and outdoor environment. However, as the scene grows, 

the number of particles increases and the requirement for memory and computational 

resources go up as well, so it’s not suitable for building a large map. Also, due to the 

lack of loop closure detection, the map may be misaligned when a visited place is 

reached. Therefore, Gmapping is hardly applied to the nUWAy project. 

 

Kohlbrecher S et al. introduce Hector SLAM for Urban Search and Rescue scenarios 
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in 2011[11]. This system provides a loosely coupled IMU-Lidar SLAM solution, and it 

consists of two relatively independent subsystems as shown in Figure 3[11]. 2D SLAM 

subsystem provides position and heading information within the ground plane. It only 

relies on scan-matching algorithm, which estimates translation and rotation of the robot 

between two adjacent Lidar scans. The scan-matching problem is solved by Gaussian-

Newton method and this may result in a local minimum. In order to achieve global 

optimality, multi-resolution maps are considered. 3D navigation subsystem supplies 3D 

motion estimation based on IMU. Extended Kalman Filter is used to improve IMU 

drifting by fusing other sensor data such as GPS. This 3D estimate result can also 

contribute to the performance of 2D SLAM subsystem by projecting pose estimate of 

the EKF on the xy-plane as start estimate for the optimization process of the scan 

matcher. The main advantage of this approach is that it requires low computational 

resources, thus there is no loop closure detection in the process. Therefore, it may not 

work well for a large scenario.  

 

Figure 3. Overview of the mapping and navigation system (dashed lines depict 

optional information) [11] 

 

Google Cartographer SLAM system is proposed by Hess W et al. in 2016[12]. The 

main contribution of the approach is to achieve real-time localization and mapping with 

loop closure detection at 5cm resolution. The system consists of local SLAM and global 

SLAM as depicted in Figure 4[14]. In order to reduce accumulative error in scan-
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matching step of local SLAM, a graph-based pose optimization is adopted in global 

SLAM. 

The SLAM process is listed as follow: 

1. IMU gives a good start estimate to the Ceres-based scan matcher in local SLAM, 

so that the current pose can be estimated and the corresponding scan is inserted into 

the local submap; 

2. After a submap finished, it along with previous finished submaps would takes part 

in loop closure; 

3. If the current pose given by local SLAM is close enough to some submaps, i.e. 

visited places, a scan matcher in global SLAM tries to find the corresponding 

observation in the submap. In this step, a branch-and-bound approach is used to 

speed up scan-to-submap matching in loop closure process; 

4. If a good match is found in a search window around the currently estimated pose, it 

is added as a loop closing constraint to the optimization problem; 

5. Based on constraints from previous steps, we run a pose optimization every few 

seconds so that an accurate localization and mapping can be achieved. 

This technology enables us to mapping the very large environment up to tens-of-

thousands of square meters, which may be applied to our project. This system is able to 

fuse data from multiple sensors, which fits the case of the shuttle bus with multiple 

Lidars. 

 
Figure 4. Overview of Google Cartographer[14] 
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In 2018, Ji Zhang et al. presented a real-time SLAM algorithm called LOAM, that is, 

Lidar Odometry and Mapping. LOAM method performs the frontend odometry which 

gives a low-drift result with low-computational complexity. This outcome is achieved 

by dividing the complicated SLAM problem[17], which seeks to optimize a large 

number of variables simultaneously, into motion estimation problem and mapping 

problem. As shown in Figure 5[13], one algorithm running at a high frequency is 

intended to estimate the motion of the Lidar. This fast-running algorithm is able to 

reduce the effect of mis-registration of point cloud caused by motion of Lidars, so that 

it allows accurate motion estimation. Another Lidar mapping algorithm runs in parallel 

with the motion estimation algorithm and performs fine processing to create maps at a 

lower frequency. Combination of the two algorithms results in low-drift motion 

estimation and mapping in real-time. Also, the scan-matching part of these two 

algorithms are based on feature points instead of normal scan-to-scan approach, which 

reduces computational complexity. 

 

Figure 5. Block diagram of the lidar odometry and mapping software system[13] 

 

Tim Stahl et al. introduced an improved Adaptive Monte Carlo Localization (AMCL) 

method for a race vehicle at high-speed in 2019[18]. Several challenges shall be 

addressed in this racing scenario. Firstly, the low computation time is essential for the 

race vehicle to locate itself at high velocities. Without a decent update frequency, the 

high-speed vehicle would lose its position and orientation over a large distance even 

though it drives for a short period of time. Another one is that inaccurate localizations 

at high velocities should be detected and handled timely to avoid severe results. In order 

to improve computation time, one way is to reduce the amount of the Lidar beams 

processed in measurement update of AMCL. The default AMCL algorithm samples 
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Lidar measurements at an equal angular displacement from all the Lidar beams. In the 

racing track, “most of the extracted beams hit the wall right next to the vehicle in a 

similar spot, which does not provide a substantial information gain,” as shown in Figure 

6. This improved approach determines the angular displacement based on equal 

distances on the borderline of a surrounding rectangle, which can obtain more 

information with less amount of Lidar beams.  

 
Figure 6. Default measurements and improved measurements[18] 

 

Apart from this, the original AMCL generates a large spread in particles to represent 

possible poses. However, high velocities limit the change in orientations of consecutive 

poses, since the upper bound of the lateral tire force is easily exceeded at high speeds. 

The proposed approach controls the spread of the particles in a velocity-dependent way 

so that generated particles maintain the same heading tendency, as illustrated in Figure 

7. Therefore, the elimination of unlikely particles results in a lower computational effort. 

For detecting the inaccurate localization estimate, the paper introduces the introspective 

performance evaluation which generates a localization status, a map dependent status 

and the variance of the pose estimation to indicate the validity of the result. 

 

Figure 7. Hedaing tendency for original and modified methods[18] 
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Mariano Jaimez et al. in 2016 proposed a range flow-based approach to implement a 

planar odometry from radial laser scanner[19]. Based on the Taylor expansion and the 

rigidity hypothesis, the range flow constraint equation shown below is transformed into 

a constraint for the lidar velocity: 

 

 

 

From this equation, it can be observed that only 3 independent restrictions are sufficient 

to estimate the  2D sensor velocity ξ𝑠 = (𝑣𝑥,𝑠, 𝑣𝑦,𝑠, 𝜔𝑠) . However, due to the noise 

from the measurements and the errors caused by linearization approximation, this 

velocity estimation problem in this paper is transformed into an optimization problem 

which tries to minimizing all the geometric residuals. In order to further overcome these 

limitations, the pre-weighting strategy and the coarse-to-fine scheme are adopted to 

compute the optimal motion estimation. “Compared to point-to-line iterative closest 

point (PL-ICP)[27] and the polar scan matching approach (PSM), the RF2O approach 

demonstrates the superior performance”[19], as shown in Figure 8. In our nUWAy 

project, this method can be considered as the front end lidar odometry in the lidar-based 

localization system. 

 

Figure 8. Comparison among three different laser odometry[19] 
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4. Design process 

This section introduces four requirements of the mapping and localization system in 

nUWAy shuttle bus, the design method used to arrive at the final design and the design 

tools that contribute to the system. 

4.1 Requirements 

As mentioned in section 2, four requirements are summarized for this design. 

1. The obstacles that may affect the operation of the nUWAy bus in the environment 

may be at different height, and the lidars at one level are likely to miss these obstacles 

at different height. In order to record all the information in the map, all eight lidars need 

to be used for perception. The meriging of the point cloud data from all lidars is the 

first requirement. 

 

2. Only using frontend odometry (dead reckoning) in the mapping process results in the 

drift issue which would cause the distortion in the created map. The final design should 

be able to handle the accumulated error. 

 

3. Certain circumstances such as open spaces and slopes negatively impact the pose 

estimation from the frontend odometry if the state estimation only depends on lidars. 

Combining other sensors suck as GPS or IMU in the estimation process is the third 

requirement. 

 

4. Autonomy system requires real-time localization information for driving the vehicle 

safely. However, general SLAM technologies need high computing resources. When it 

is running with other subsystems, the localizer may give a state estimation with a time 

delay, giving rise to severe safety issues. Thereby, the fourth requirement is to reduce 

the computational load for the localization system. 
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4.2 Methodology 

The nUWAy project is launched at the beginning of 2020, so the first stage of this 

project focused on the hardware configuration for the nUWAy bus. Since shuttle bus 

cannot operate in the campus, the main goal at this stage is to research present SLAM 

algorithms and evaluate their performance. Several SLAM algorithms are open source 

and integrated as ROS packages, including Gmapping, Karto SLAM, Hector SLAM 

and Google Cartographer. Also, an alternative method for localization is 

‘robot_localization’ ROS package, which provides an EKF node for fusing data from 

IMU, GPS and odometry[15]. The performance of these algorithms can be tested on the 

KITTI dataset and CARLA simulator. 

Once the low-level work is done, it is possible to drive the bus for collecting the sensor 

data from the campus. According to the requirements and the landscape of the campus, 

the researched SLAM and localization methods may be expanded and refined to fit in 

the real scenario. 

 

4.3 Evaluation 

Two evaluation metrics are listed below: 

A. Relative pose error (APE) 

“The relative pose error measures the local accuracy of the trajectory over a fixed time 

interval ∆.”[20] In other words, the drift of the trajectory can be described by this metric. 

Therefore, APE contributes to the evaluation of frontend odometry. The relative pose 

error at time step i is defined as  

 

Where P is the estimated trajectory and Q is the ground truth trajectory. 

 

The root mean squared error (RMSE) over all time steps for the translational 

components can computed by 
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B. Absolute trajectory error (ATE) 

The absolute trajectory error can be used to measure the global consistency of the 

estimated trajectory. The definition of ATE is given by 

 

Where S is a rigid-body transformation corresponding to the least-squares solution that 

maps the estimated trajectory onto the ground truth trajectory.[21] 

 

Similarly, the root mean squared error (RMSE) over all time steps for the translational 

components can computed by 

 

 

In addition, the collected data includes GPS information, and this can be treated as the 

reference data for the comparison with the lidar SLAM result. 

 

4.4 Design tools 

This section introduces the main design tools used for sensor data collection, lidar data 

processing, mapping, localization and result visualization. 

 

Robot Operating System (ROS) 

Robot Operating System ROS is an open source framework suitable for robot 

programming. This framework couples the originally loose parts together and provides 

them with a communication framework. It connects the operating system and the ROS 

application developed, so it can be regarded as a middleware. In this environment, the 

robot's perception, decision-making, and control algorithms can be better organized and 
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run. 

ROS has following features: 

1. Distributed framework 

ROS adopts a distributed framework. Through this design, the processes of the robot 

can be run separately, which is convenient for the modification and customization of 

modules. Also, this framework improves the fault tolerance of the system. 

2. Multi-language support 

ROS supports multiple programming languages. C++ and Python are currently the most 

widely used ROS development languages. In order to support multi-language 

programming, ROS uses a language-independent interface definition to implement 

message transmission between modules. In other words, the communication 

mechanism of ROS has nothing to do with the programming language used. It uses a 

set of communication interfaces defined by itself. 

3. Community 

ROS has a huge community that provide debug and visualization tools, packages, and 

technical supports. There are currently tens of millions of software packages developed 

using ROS. In addition, ROS complies with the BSD protocol that is completely free 

for personal and commercial applications and modifications, which also promotes the 

development of ROS. 

In this project, the Rosbag tool are used to record the data from lidars, GPS, IMU and 

cameras. 

 

Point Cloud Library (PCL)[22] 

PCL (The Point Cloud Library) is a large open source C++ library for depth image and 

point cloud processing. PCL is composed of many advanced algorithms, including 

filtering, feature estimation, surface reconstruction, registration, model stitching and 

segmentation. These algorithms have many applications such as filtering outliers in 

noisy data, combining multiple sets of 3D point clouds, segmenting relevant parts in 

the scene, extracting key points and calculating geometric shape descriptors for 
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identifying objects, using point clouds to create and Visualize the surface of objects, etc. 

PCL has been successfully compiled and configured on Linux, MacOS, Windows, and 

Android/iOS platforms. To simplify development, PCL is divided into a series of small 

code libraries that can be compiled separately. 

In this project, several filters in PCL are used to process the point cloud data collected 

in the UWA campus. 

 

Google Cartographer[23] 

Google developed a real-time positioning and map building library called cartographer, 

which developers can use to realize robot positioning and mapping functions in 2D or 

3D conditions. Cartographer is designed to obtain relatively high-precision 2D maps in 

real time when computing resources are limited. Considering that the particle filter 

method based on simulation strategy has a higher demand for memory and computing 

resources in a larger environment, cartographer adopts an optimization method based 

on graph network. Also, it builds a global map based on submap submaps, which can 

effectively avoid the interference of moving objects in the environment during the 

mapping process. Cartographer is very suitable for commercial application and 

redevelopment due to standardized and engineered code. At present cartographer 

supports multi-sensor data (odometry, IMU and laser scaner etc.) mapping. Google 

hopes to add more new functions, and support more sensors and robot platforms 

through subsequent development and community contributions. 

 

KITTI Dataset 

The KITTI dataset is jointly founded by Karlsruhe Institute of Technology in Germany 

and Toyota’s American Institute of Technology. It is currently the world’s largest 

evaluation dataset for computer vision algorithms in autonomous driving scenarios. 

This data set is used to evaluate the performance of computer vision technologies such 

as stereo, optical flow, visual odometry, 3D object detection and 3D tracking in a car 

environment . KITTI contains real image data collected from urban, rural and highway 
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scenes, with up to 15 vehicles and 30 pedestrians in each image, as well as various 

degrees of occlusion and truncation. The entire data set consists of 389 pairs of 

stereoscopic images and optical flow maps, a 39.2 km visual ranging sequence and 

images of objects labeled with more than 200k 3D, which are sampled and 

synchronized at a frequency of 10 Hz. In general, the original data set is classified into 

‘Road’, ’City’, ’Residential’, ’Campus’ and ’Person’. For 3D object detection, labels 

are subdivided into car, van, truck, pedestrian, cyclist, tram, and misc.[24] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LiDAR-based Simultaneous Localization and Mapping System for nUWAy 

22 

 

5. Final design 

This section presents the framework of the mapping and localization system, 

demonstrating thereafter the mapping results for the UWA campus. Ending up with the 

discussion about the requirement verification. 

 

5.1 Framework 

 

Figure 9. The framework of the mapping and localization system 

 

The mapping and localization system for nUWAy mainly consists of the input module, 

data preprocessing module and SLAM module. 

The input module includes four single-layer lidars, four multi-layer lidars, one Inertial 

Measurement Unit and one NovAtel GPS. Eight lidars perceive different areas of the 

environment and provide corresponding point cloud data. Xsens MTi-G-710 IMU can 

provide angular velocities and accelerations in three dimensions, as well as a filtered 

GPS signal. NovAtel GPS module is able to work along with a base station and output 

the RTK-GPS with high precision. 

 

The data preprocessing module is mainly composed of a PCL merger and a PCL filter. 

The function of this PCL merger is to transform the coordinates of the point sets with 

respect to respective lidar frame to that with respect to a common base frame, 

combining then all point clouds within this common frame. This action makes it easy 
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for the obstacle avoidance module and the SLAM module to process the point cloud. 

The PCL merger is followed by a PCL filter which can be divided into two components, 

a bandpass filter and a voxel filter. The bandpass filter serves to filter out the points 

outside a certain min and max range, because the lidar which is partially covered by the 

vehicle may generate some hit points close to the it, and some far hit points may be 

noisy and irrelevant to the mapping process. The voxel filter is responsible for 

“downsampling raw points into cubes of a constant size and only keeping the centroid 

of each cube.”[14] This action is able to reduce the density of the original point cloud 

while keeping the geometric features of it, so that the computational load can 

significantly decrease. One example of the PCL filter for nUWAy shuttle bus is shown 

in Figure 10. 

 

Figure 10. An example of the PCL filter 

 

The SLAM module is implemented “Cartographer_ros” package developed by Google. 

This module consists of the pose extrapolator, the scan matcher, loop closure and 

backend optimization. 

The pose extrapolator fuses the previous estimated pose from the scan matcher and the 

IMU data based on Unscented Kalman Filter in order to update the pose. This updated 

pose will be regarded as a decent initial estimate for the scan matcher.[25] 

The scan matcher serves to estimate the pose of the autonomous car based on the scan-

to-map method. Once the optimal pose is found, the probabilities of grids in the submap 

will be updated accordingly. In the pose estimation, the scan matcher tries to solve a 

nonlinear least squares problem as follow: 
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Where T represents a transform between the scan frame and the submap frame, ℎ𝑘 is 

the 𝑘𝑡ℎ scan point. M is a function mapping coordinates to probability values.[12] 

 

After the optimal pose of a scan is determined, the probability of the submap grid x is 

updated as below: 

 

 

Where 𝑝ℎ𝑖𝑡 is the initial probability for the grid which contains the hit points.[12] 

 

The created submaps would be stored in the memory for loop closure and the backend 

graph optimization. When the current estimated pose is close to a visited submap, a 

scan matcher tries to find the corresponding observation in a search window around the 

submap. In this step, a variant branch-and-bound approach is used to speed up loop 

closure process. Once a good solution is found, it is added as a loop closing constraint 

to the sparse pose adjustment (SPA) problem.[10] Also, as shown in the Figure 9, GPS 

is also added as a constraint to the global optimization problem. The graph optimization 

process is able to “re-arrange submaps between each other so that they form a coherent 

global map by solving this global optimization problem.”[14] 

Finally, the offline generated map along with the real-time localization information feed 

into the path planner for the navigation task. 

 

5.2 Results 

Two maps generated from the presented framework are listed below, including the main 

campus, and the place outside our REV lab. 
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Figure 11. The map of UWA campus 

 

 

Figure 12. Google map for UWA campus 

 

 

Figure 13. Maps outside the REV lab 
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5.3 Discussion 

This section discusses the traceability of the final design and several aspects which 

should be paid attention to. 

The map resolution is an important parameter which affects the performance of the 

autonomy system. It is a trade off between the localization accuracy and running time 

for the localizer and the path planner. To be specific, if the localizer uses a map with 

the high resolution (the pixel dimension is lower than 10cm), the estimated pose would 

be more accurate since the detailed information of the environment is recorded in the 

map. However, It takes more time for both the localizer and the path planner to give the 

results, since their running time both depends on the number of the pixels. If the 

resolution is low (the pixel dimension is larger than 50cm), the localization accuracy 

and the drivable area drops although the computational load decreases, as shown in 

Figure 14. By experiments, an appropriate pixel dimension is around 20cm, bringing in 

the acceptable positioning accuracy and running time. 

 

 

Figure 14. The same map with different resolution[12] 

 

Also, the presented framework has the capability resistant to the effect of the moving 

objects in the environment. The map takes the form of probability grids, which means 

each grid in the map accommodates a changeable probability value to represent the 

odds of being occupied[12]. During the mapping process, the system continuously 

perceives the environment and updates the probability values in the grids. The 

probability of occupancy of the cell increases only if a moving object passes through it, 
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and then the value will be updated to a lower value. 

 

In addition, four requirements mentioned before are partially satisfied.  

1. The PCL merger is able to combine point clouds from eight lidars.  

2. The SLAM framework contains the loop closure and global optimization process, 

which can handle the accumulated error. The mapping result also demonstrates the drift 

issue is addressed in the large scene given the proposed framework. 

3. Multiple sensors such as IMU, GPS and Lidars can be fused in the framework. When 

one sensor is restricted for some reasons, the other can complement it. In this project, 

the lidar mapping ran into issues when the shuttle bus was moving on route across 

James Oval. The mapping result demonstrates this problem is fixed if adding the IMU 

into the framework. However, this requirement is not fully satisfied. The GPS for now 

cannot be integrated in cartographer for 2D mode. The slope information cannot be 

recorded in the 2D map neither. 

4. Three aspects contribute to the real-time localization. A variant branch-and-bound 

approach is used to speed up loop closure process. Also, an acceptable map resolution 

and the PCL voxel filter aid to reduce the computational load. 

 

 

 

 

 

 

 

 

 



LiDAR-based Simultaneous Localization and Mapping System for nUWAy 

28 

 

6. Future work 

According to above contents, the requirements are not fully satisfied. Firstly, in 

dynamic environment the localizer may be unable to give the estimated pose with 

sufficient accuracy due to the differences between the environment and the static map. 

In this case, The RTK-GPS can be considered to be added into the SLAM framework. 

The high-precision GPS signal can be treated as a decent initial pose to be further 

processed, and it can significantly reduce the drift. Secondly, the present map takes the 

form of 2D grids in which the slope information cannot be recorded. This would heavily 

impact the localization accuracy if there are many slopes in the environment. Therefore, 

creating 3D map is a topic for further investigation. 

 

Sematic SLAM is another topic which is worthy to research. Adding sematic 

information can benefit to both localization and mapping. For example, dynamic 

objects can be identified according to semantic information, and then removed from the 

map. Objects with semantic tags can be associated with data, which then works in 

conjunction with geometric information to improve the mapping accuracy.[26] 
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7. Conclusion 

In conclusion, this thesis firstly introduces the project background and scope, and then 

focuses on the existing issues under this background. Four main problems are identified 

in the nUWAy project, which are relevant to the drift issue, computational load, sensor 

fusion and point cloud merging. After that, the author further investigates the recent 

work related to Lidar-based SLAM, focusing on the presented approaches, achieved 

outcomes and how these can be used for problems in the nUWAy project. From 

researching, cartographer SLAM developed by Google holds promise for reaching the 

goal of this research project. According to the design requirements, a SLAM framework 

based on Google cartographer is presented. The mapping result for the UWA main 

campus and further discussion related to the map resolution and moving objects 

demonstrates this expanded approach has its own advantages against the problems 

identified in this specific scenario. 
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