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Abstract 

At the start of 2020, the University of Western Australia acquired an electric vehicle (termed 

nUWAy) with the hardware capability for autonomous movement but without the software to 

achieve this. This vehicle was planned to be used on campus pathways with students, 

bicycles, and vehicles in its vicinity.  Due to the constant changing and unstructured 

environment this vehicle will be operating in, nUWAy will need to actively react to its ever-

changing environment. The purpose of this paper is to research and alter current path 

planning algorithms to fit the niche between small robotic autonomous path planning and 

structured road vehicle path planning by merging both behaviours. The paths will have to be 

created on-demand between selectable waypoints which lie on a pre-recorded map. Using the 

Robot Operating System (ROS) to run and test out different open-source planners was key to 

choosing a path planner that would best suit nUWAy. Search-based Planning Library (SBPL) 

lattice planner package, provided in ROS, is an open-source path planner which was chosen 

for its ability to take into account the kinematic movements and limitations of the vehicle. 

Testing was carried out on a ROS simulation environment termed StageROS whilst then 

being used on the actual vehicle to test out the paths created with live readings. The 

movement of the bus was optimised by refining the motion primitives and tuning the 

planner’s parameters to create smooth paths. With the current software infrastructure, the user 

can select a waypoint through a UI, and a safe path connecting nUWAy to its destination will 

be created and displayed. 
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Nomenclature 

 

SAE Society of Automotive Engineers 

ROS Robot Operating System 

nUWAy UWA’s Autonomous Shuttle Bus 

SBPL Search Based Planning Algorithm 

TEB Timed-Elastic-Band 

DWA Dynamic Window Approach 

PRM Probabilistic Roadmap 

CAN Controller Area Network 

UAV Unmanned Autonomous Vehicle 

UWA  University of Western Australia 

REV  Renewable Energy Vehicle 

RViz  ROS Visualization 

SLAM  Simultaneous Localization and Mapping 

TF  Transform 

CARLA  Car Learning to Act 

LiDAR  Light Detection and Ranging 

AV  Autonomous Vehicle 

3D  Three Dimensional 

GPS  Global Positioning System 

IMU  Inertial Measurement Unit 

DOF Degrees of Freedom 
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1 Introduction 

 

1.1 Background 

Autonomous vehicles have recently gained market penetration in different industries. 

Transitioning from Tesla’s Autopilot mode to the current interest in contactless delivery 

using autonomous delivery during the Coronavirus epidemic. This increased interest in 

autonomous vehicles has allowed for more widespread research on the topic resulting in 

multiple new ways to approach the topic and apply it to different scenarios. Using current 

navigation technology and combining it with known LiDAR object avoidance methods will 

be key to the navigation of autonomous vehicles in pedestrian areas.  

Autonomous road vehicles can navigate in a structured environment with predictable 

environmental objects that are clearly labelled such as lane markings, cars, and signs. When 

operating in a pedestrian area, these vehicles don’t have identifiers like these and thus 

navigation isn’t as simple as following the known rules between two waypoints. Robotic 

platforms currently have planners for unstructured environment navigation using LiDAR.  

Finding the best selection of currently designed navigation planners for vehicles sized robots 

will be key to using vehicles in unstructured environments such as sidewalks with cyclists 

and pedestrians. These planners are key to adopting autonomous vehicles near humans since 

these environments are too chaotic/unpredictable for current autonomous navigation methods. 

After research, choosing a planner , and getting it functional on the vehicle, the next process 

would be to tune the planner to not only take into account the vehicle’s size and capabilities 

but to adjust the behaviour. This includes designing a behaviour for the vehicle which is 

suitable for pathways and ensuring safe operations no matter what. 

1.1.1 EasyMile Cybercar  

The REV Project at UWA acquired an autonomous capable EasyMile v2 Cybercar Shuttle 

bus termed nUWAy. This vehicle was delivered to UWA in late February of 2020 with all of 

the software for autonomy wiped but still containing most of the hardware which is required 

for said autonomy.  Students were then given projects to program the software and other tasks 

for their research projects to get the vehicle moving on campus by the end of the year.  
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Figure 1: nUWAy Shuttle Bus 

Table 1: Important nUWAy Navigation Components [1] 

Sensor/Electronic Device Importance 

Rear and Forward Steering 

(Rack and Pinion)  

The vehicle is a non-holonomic dual-drive Ackerman system 

which enables a lot more flexibility in terms of navigation 

and symmetrical forward and reverse driving capability thus 

can be operated in both directions without hindrances in 

functionality. 

IMU Important for dead reckoning (predicting the vehicle’s 

position when GPS isn’t available)   

LiDAR Important for these reasons: 

• Creating a map to help the vehicle locate itself 

• Use for a live view of moving objects in the vehicle’s 

way 

• Map created from LiDAR will be used to generate the 

global path the vehicle will navigate on. 

GPS Global positioner which is very important when locating the 

vehicle on the larger MAP 

CAN bus controlled 

motors and joystick 

controller [1] 

Due to the inability to communicate with the CAN controlled 

motors, a secondary board and accompanying driver is used 

to communicate with the vehicle to give it drive commands 



Kyle Armando Monteiro Carvalho - 21881544 

 

11 

1.3 Problem Statement 

 

The major problem is to develop a safe and predictable navigation system for nUWAy such 

that it can navigate to a waypoint, suggested by the user, on a LiDAR map whilst avoiding 

new obstacles to the map which were not previously recorded thus actively avoiding 

obstacles. This navigation system will be compromised of ROS packages which in turn are 

based on basic motion planning robotic methods. Testing will occur on optimising the speed 

and behaviour of the packages on the vehicle. 

 

Navigation of any AV relies on its current location, current and past free space, and the 

destination. Using a prebuilt global map of free space and known obstacles, nUWAy will 

need to be able to form a path to a given GPS/map coordinate destination. The navigation of 

the bus will work in a waypoint based system where the bus will navigate through multiple 

known waypoints before its destination to keep it centred inside the free area and away from 

the edges. This means the software will make multiple local (smaller paths) paths using 

spline functions or local costed trajectories to connect these waypoints. 

 

The GPS system will be used both to localise the vehicle and as an updating feature of where 

the current vehicle is. Dead reckoning (the process of calculating the estimated location by 

using the last known location and advancing it with the known speed over the course of time) 

will then be used with the IMU for slow GPS responses, due to poor connections, to make 

sure the device always has an estimation of where it is. 

 

The following assumptions were made for the navigation of the vehicle: 

• The vehicle will have a LiDAR map for global path planning 

• The vehicle will always have an active LiDAR view and IMU data 

• nUWAy will correctly localised using another SLAM localisation package 

• Obstacle avoidance will not include actively moving obstacles since it is out of scope 

of this report but instead will come to a safe stop distance and will try to navigate 

around the object instead of predicting the item’s path 

• The vehicle can be represented as a unicycle in terms of motion primitives since both 

sets of wheels can turn independently  
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2 Literature Review 

2.1 Path Creation and Vehicle Control 

Before approaching and deconstructing the navigation packages available it was important 

for me to look at the current method for robotic navigation and truly understand it’s 

technique. The following are the basics about how the paths are generated. 

 

2.1.1 Hermite Spline  

Creating a path between waypoints is tricky as you must allow for no erratic movements. The 

best method to connect all points in a smooth manner is to use polynomials to connect each 

point. Hermite Spline can be used to create a spline which passes through every control point. 

The equation for creating a Hermite Spline is as follows: [2][3]  

 

 

 

Where p1 and p2 are your starting and ending points and t1 and t2 are your tangents 

and s is your interpolation factor  

2.1.2 Steering Angle  

After knowing the path, you will be taking figuring out where to point to stay on the path is 

your next step. It’s a simple matter of figuring the angle with the direction you are going 

versus the angle you need to head. The hard part will be the conversion from GPS 

coordinates to a global base frame. V is the vehicle’s direction vector whilst W is the desired 

direction given by the direction you need to head to be on the predetermined path. [5]  
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                                                 Figure 2: Steering Angle Using GPS [6] 

2.2 Object Avoidance  

2.2.1 Virtual Points  

There are multiple ways to approach object avoidance. The main way is to when an object is 

detected and a collision is detected the program needs to run multiple different potential 

alternate paths through alternate or virtual waypoints to get around the object. This new 

virtual waypoint will need its own generated path calculated and then it needs to be checked 

if it will still collide with the object. (See Figure 4)  

 

Figure 3: Virtual Point Explanation [8] 

There are two methods of generating paths the Voronoi Cell and Cubic Polynomial method. 

The Voronoi Cell method prevents long detours when multiple obstacles are nearby causing 

the vehicle to continuously go further from the base frame. Due to the time taken to 

calculate the Voronoi Cell path it is not feasible to do in the nUWAy Scenario. A simple Cubic 

Polynomial method will work.  
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2.2.2 Path Planning According to distance to Base Frame  

To prevent the vehicle from veering to one side of the road it is important that the base frame 

(the initial path calculated at the start of the journey) be located at the centre of the free space 

area that the vehicle navigates through. This gives it the most room in case of bigger 

obstacles later thus allowing for more area for manoeuvring. The best example is illustrated 

in Figure 4 where the best path is chosen because it passes through no obstacles but also 

because it is the closes to the originally base frame bath in black. This path selection also 

accounts for smoothness of the curve. These variables are weighted and the most ideal path is 

selected [4].  

 

Figure 4: Path Selection Considering Object (red) Avoidance[4] 

2.3 Move Base 

Move base is the process by which robots on ROS’s navigation program operates in terms of 

information flow (inputs and outputs). This navigation standard is core to all ROS motion 

planning and will be required software architecture for the navigation stack on nUWAy[13]. 

When looking at move base you can see after a goal is given as an input the process is as 

such: 

 

1. Input goal/pose has come as a geometry message (X, Y, Z, theta) on the map 

2. Global planner receives destination information and access costmap information. 

Costmap information is the LiDAR map information with an additional safety factor 
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added increasing the size of the objects to prevent the vehicle from operating too close to 

any object.  

3. The global planner generates a generic path using the map and destination 

4. The path is then passed to the local planner to break down into achievable motions which 

the vehicle will receive as a command velocity messages. The local planner will also use 

the local costmap to avoid active moving obstacles whilst still trying to stick as close to 

the generated global path as possible. 

 

 

Figure 5: Move Base Break Down[13] 

The global planner works with the total map information but the local planner works with 

what the vehicle currently sees and interpolates that with the direction given by the global 

planner’s path to give the vehicle drive commands[13]. 

 

2.4 Planner Types Literature Research 

Sampling-based planners work by randomly exploring the space available to try and find the 

best path. It will generate a random tree that explores the space and produces a varied but still 

poor quality path since there the main metric is to measure is the absence of collision. When 

run for shorter intervals the problems gets worse since it can not fully explore the free space 

area thus it will not be the planner of choice for a vehicle which knows where it wants to go. 

[15] 
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Variation planners work by attaching a cost to the to a path and velocity function and 

functions successfully only when there is a finite small amount of possible outcomes 

otherwise the computational load becomes too high. The path created is judged according to 

multiple different variables including, vehicles possible kinematics, closeness to a collision, 

etc… This type of planner will be used for the local planner to decide what immediate 

motions are needed either when turning or avoiding a smaller obstacle[12][9]. 

 

Search-Based Lattice Planner starts by discretising the total free space area and creates a list 

of possible moves that are feasible which are called motion primitives. From then onwards 

the paths created will consist of multiple motion primitives connected. By simplifying the 

system down to a set of possible moves the searching algorithm can work much faster than 

the Sampling method. A searching method will be needed to speed up the time needed for the 

planning and each path will still best costed to find the most cost-effective path. [15] 

 

 

 

 

Figure 6: Discretising and Constructing a Primitive Path for Search-Based Lattice planners[19][15] 
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3 Design Process 

 

3.1 Requirements 

The program created will need to be able to take in a final destination, map of the navigable 

area, live LiDAR reading and create a path which can is kinematically feasible, time-

efficient, and has a predictable safe behaviour. The programmed system needs to output ROS 

Twist messages for velocity and it needs to work as part of the Move Base ROS package's 

Navigation Stack. It needs to be self-contained such that it can easily be replaced and altered 

such that during agile development. 

 

3.2 Constraints  

The following limitation controlled the final design of the program created: 

• The computer available on the bus was not up to the processing required for 

Navigation and Simultaneous Localisations and Mapping (SLAM). Moving other 

processes to the Xavier (secondary computer) helped speed up the problem. A larger 

resolution map was required to speed up the path generation causing less accurate 

paths to be created. 

• The X-Sens IMU produced a lot of noise thus producing a lot of error in the dead 

reckoning. The solution was to disregard the IMU readings and rely purely on the 

RTK GPS unit due to its high accuracy. This is only a solution due to the vehicles 

very slow speed and will eventually require a heartbeat safety connection to prevent 

the vehicle from driving when GPS connection is lost. 

• The fusion of GPS to waypoint was not yet possible. It is still in the works but the 

current system works purely off pre-registered map coordinates. 

• The LiDAR on the vehicle prevents scans of items below 30 cm which prevents 

accurate maps of drivable terrain to be 
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3.3 External Effects on the Project 

There were a few major external factors which effected the completion of this project and due 

to time constraints narrowed the scope of the program. 

 

• The COVID-19 Pandemic: Straight after the onset of acquiring the vehicle the 

pandemic and it’s lockdown hit. This prevented any physical work on the bus for a 

long time. This slow down not only effected my thesis (since I had less time to get the 

sensors operational) but also due to other students not being able to access the vehicle 

thus delaying their work too. Other work including the SLAM, Pose Determination, 

and Mapping was part of the critical path for my thesis thus delays to all of these 

research projects cause delays to my testing. 

 

• Lack of control over motors: Due to the motors being controlled by a non-

decipherable CAN network, control of the vehicle directly to the motors was not 

possible this year. Instead, another student-designed, developed, tested, and produced 

a communication board which could send messages from the computer straight 

through the joystick controller input to the vehicle. Developing testing and creating a 

ROS driver for controlling this board took time and was only completed in November 

of 2020 thus not allowing for autonomous testing till December of 2020. 

 

• Since this project relies on multiple student’s projects, multiple delays were incurred 

due to sharing the vehicles. Delays such as the vehicle being used on other tests, 

errors causing loss of functionality in the bus, and the continuous changing of settings 

and programs in the bus. This is natural in a group project but this in combination 

with the COVID pandemic cost months of progress at the start of the year since the 

vehicle wasn’t operational for navigation till the end of the year. 
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3.4 Basics of ROS Navigation Explained 

3.4.1 ROS 

Robot Operating System (ROS) 1.0 is the system by which communication between ethernet-

based electronic components is hosted on nUWAy. Even thou it is termed an operating 

system it is a misnomer since the system runs on a Linux operating system. nUWAy itself is 

running ROS Kinetic Kame on Ubuntu 16.04 Xenial on two different computers which is an 

older version of ROS. One being the main nUWAy based computer and the other being a 

Xavier external computer. Every sensor’s output (LiDAR, GPS, Camera and IMU) can then 

be connected to a computer network to allow the main computer to run ROS base packages to 

access said data and manipulate it. These packages range from drivers to pre-built 

manipulation programs which accomplish a range of different tasks.[25] 

 

ROS has an open-source library consisting of many previously worked on packages. These 

packages are specialised for robotic vehicles and ranges from reading in and interpreting data 

to movement and mapping. ROS’s libraries were heavily used to interact with nUWAy for 

both readings in data and controlling the vehicle. 

 

3.4.5 ROS Navigation Stack Move Base 

 

 

Figure 7: ROS's Navigation Block Diagram (Highlighted in Red are the planners) [25] 
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Move base is part of the navigation stack set up by the ROS environment. The navigation 

stack is a term that describes all the programs that determine the motion planning of the 

vehicle. The base layout, see figure above for illustration, requires 3 major inputs which are 

sensory inputs, a map, and the transfer of the vehicles which in combination can be used to 

design a path and output velocity commands (in the translational and rotational directions). 

The parts this paper will cover is the selection and alteration of the global planner and local 

planner whilst using all the other components from the Move Base package unaltered. [16] 

 

Move base requires both the current position of the robot and the map of the surroundings to 

actively track the position of the vehicle compared to its path on a Lidar Map. These two 

functions (pose determination and mapping) will need to be fully developed before vehicle 

testing can occur and thus are part of the critical path for testing this system on the vehicle. 

Both of these programs are being developed by another student and thus working closely with 

him was core to developing my system. Until SLAM and pose estimation is fully developed 

rigorous testing will occur in simulation using prototype maps and test environments to 

source the best planners. 
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4 Final Design  

This section goes through the information required and tools used to test and integrate ROS’s 

navigation stack to the vehicle. 

 

4.1 Design Process 

After the research phase of the project, it was clear that it would be inefficient to design 

program a navigation system using robotic motion planning programs from scratch. Instead, 

the project was turned into a research and application study on how to optimise current 

motion planning methods on smaller robots for actively changing and unstructured pathways 

on a shuttle vehicle sized robotic platform. 

4.2 Design Tools: ROS Packages 

The selection process took into account a range of motion planning methods and weighed 

their positives and negatives and the final tests in the results selection measure their 

efficiency and reliability. 

 

4.2.1 Planner Selection 

The measurements for a successful planner setup are the following: 

• Quickest path generation time 

• The fewest amount of recalculations of path 

• Customisability of behaviour for safety purposes 

• The overall time that is taken to complete path 

• Reaction time and behaviour to new obstacles 

• The smoothness of the curve to prevent harsh turns 

• Distance from objects and their costmap 

 

Two planners needed to be selected. The global planner for planning the whole route and a 

local planner will act to reach points on that global path by sending it commands for motion 

and avoiding new obstacles. The path generated will consist of X-Y coordinates and a final 

direction constrained to Ackermann (non-holonomic) kinematics. Notice that the path created 

by the global planner does not consider the direction or pose of the robot and purely 
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determines the points the vehicle should navigate through however the local planner’s path 

will have the desired direction as well as the X, Y coordinates to navigate through. 

 

4.2.2 Global Planner 

The global planner works by calculating the best route off the map information alone. There 

are multiple methods for achieving this. The major difference when selecting them is in terms 

of computational speed. The majority of the considered global planners work in the same 

overall process[15][18]: 

1. Break the maps down into multiple different cells 

2. Generates trees which are paths that will explore the available area either randomly or 

using a searching algorithm (A*, Djikstra, or Weighted A*) creating nodes which will 

have the cost of navigating through that area in it. 

3. Each node’s cost on a successful goal path will be totalled to obtain a complete path 

cost 

4. Finally, the path with the lowest cost will be selected either after a time out or when 

the first viable path is found. 

 

The carrot planner is the simplest form of a global planner since all it does is directs itself 

towards the goal without much regard to the map as a whole. The planner essentially finds 

free space on the way to the goal and places a waypoint there. This form of waypoint 

management works well to speed up the processing as it doesn’t consider kinematics, map 

layout as a whole, or multiple paths. The local planner will then solely direct the vehicle 

when close to obstacles and manoeuvring. It passes all the computation to the local planner to 

handle whilst making the vehicle essentially start searching randomly for the final location. 

The Search-Based Planning Library package works in the following method is a much more 

intensive planner in terms of computational load. To see its process see Figure Discretising 

and Constructing a Primitive Path. 

 

 

4.2.3 TEB Planner Local Planner 

 

Time Elastic Bands (TEB) will create a new global path with vehicle poses making up the list 

of intermediate nodes on the path. It uses the kinematics of the vehicles by using the full 
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range of both the vehicle’s velocity and acceleration to give the vehicle command velocity in 

both the forward translation and yaw rotational axis. This method of local planning will 

encounter problems when a moving object comes into view and keeps getting in the way of 

the newly created collision avoidance path. This newly generated path will keep recalculating 

whenever the same object moves into the path of the vehicle. The problem is solved by 

generating multiple paths simultaneously. The first using the newly created avoidance path, 

the second as an offshoot of the original path and finally a new path not taking into account 

any of the previously generated maps. These created paths are termed elastic bands which 

occur at certain time intervals[14] 

 

4.2.4 DWA Planner 

The Dynamic Window Approach(DWA) works in much the same way in terms of calculating 

the kinematic trajectory of the vehicle. Instead of finding the first available path of three 

choices the planner runs multiple trajectory calculations and scores each trajectory according 

to multiple different variables. The highest scoring path would then be used to control the 

vehicle[17]. 

 

4.2.5 Goal Passer Planner 

The goal passer planner is the simplest form of a local planner. It estimates the pose needed 

for the vehicle to stay on the path. Any deviation or interruptions in the path will send out a 

call to recreate the global path. The slowest and least adaptable planner and should only be 

used when computational power is limited[11]. 

 

4.4 Simulation 

Stage ROS is a very simple simulation environment used to input a custom environment’s 

LiDAR readings and location reading. It was used when testing the code in simulation as it 

allows us to input test environments and see how the vehicle reacts to different kinds of 

situations. It even has the ability to add mobile obstacles and actively move it. It was core to 

developing the brains and tuning the vehicles navigation stack[16]. 



Kyle Armando Monteiro Carvalho - 21881544 

 

24 

 

Figure 8: Stage ROS Simulation Environment 

CARLA is a system by which autonomous vehicles are trained to operate in cities and urban 

environments. This system would be great in designing a vehicle behavioural algorithm. 

Unfortunately creating a CARLA simulation uses a unity based engine and time to create a 

bridging communication program to use ROS programs. This task was undertaken by a group 

of students this year but due to the difficulty of the project, it wouldn’t be fully functioning 

until next year thus disabling testing for this paper.[16] 

 

4.5 Real Life Board 

A communication board was created to take in ROS’s vehicle command messages and 

translate them into voltage inputs for the joystick controller to then send CAN bus messages 

to the vehicle’s motors. This was done because the team didn’t have access to the decoding 

method of the CAN Bus messages used by EasyMile. 

 

4.6 Project Management (Semi-Agile and Waterfall) 

This project will range from a research phase, simulation phase, to implementation on 

nUWAy phase. A waterfall method of full completion will be required before transitioning 

between each phase since the information from the previous section is core to proceeding into 

the next phase of the project. Without research into the availability and usage of planners, a 

proper simulation cannot be developed and tuned. Without a proper working simulation, the 

vehicle’s behaviour cannot be trusted. An agile approach was undertaken in the latter two 
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phases since in each phase since new problems would be discovered causing the whole 

simulating/vehicle testing phase to restart with the newly altered program. 

 

4.7 Other nUWAy Work 

NUWAY was a very large project with a lot of active components needing replacement, 

calibration, or setup. Due to the scale of the project, a lot of time was invested in parts outside 

of this paper that will be documented in this section. 

 

4.7.1 GPS and IMU 

Originally starting with the vehicle’s OEM Novatel GPS, a lot of time was invested in 

calibrating the GPS and trying to read the out. The GPS was an older model NOVATEL 

PwrPck 6 prevented the sue of ROS drivers. I started by creating a custom driver and tried 

deciphering the communication protocol. Eventually, after consultation with a PhD student 

who specialises in autonomous vehicles, another driver was suggested. In the end, the system 

was working using an NMEA NAVSAT ROS driver as was much more reliable than the 

current driver in development. 

 

After obtaining an Xsens IMU device to add to the vehicle, testing occurred to obtain the 

IMU's base setting. Integration to enables its input in Move Base took time due to the 

inaccurate data it was producing. After testing and calibration, it was found to be caused by a 

combination of an improper mounting axis and due to the fact it was in close vicinity to a 

metallic object. After creating a custom mount the Xsens produced much more stable results. 

 

4.7.2 SAE Brake System 

Part of my duties as a member of the REV team was to acquire and test a new pneumatic 

braking system for the SAE self-driving car. The current electric power braking system 

would not run if power was cut thus a spring-loaded pneumatic breaking system was 

designed. I was in charge of acquiring the parts testing the pressure and making sure the 

design would meet the specification set out by the design. 
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4.7 Design Process Evaluation 

After research and creating the motion primitives and specify the motions costing for the 

vehicle, the design process will go as follows: 

 

1. Initial phase on getting the simulation functioning with a basic carrot planner and the 

simple goal passer local planner in a basic environment 

2. Test the grading criteria, stated in section 4.2.1, of the basic layout whenever a new 

planner is added the criteria must be tested 

3. Change the major control variables as per the tuning guide specified earlier in the paper 

4. Change the map to that of the parking lot behind engineering at UWA where the bus will 

be tested 

5. Change the searching algorithm to see what would best work in a defined area that is not 

very large 

6. Install and configure the SBPL planner with a basic Goal Passer local planner and test 

accordingly 

7. Install the remaining DWA and TEB Local Planners and test out their speed and 

functionalities. 

8. After final testing, select the best option for the planner and proceed to install packages 

on the bus and run the navigation stack on the bus and measure changes in speed and see 

if there are any changes in characteristics in path generation. 

9. Test in an open area with the custom communication board and limit the speed 

10. Gradually bring the vehicle to a more diverse environment in the parking lot and slowly 

allow it to navigate around with two safety operators always looking out to make sure 

they can stop the vehicle remotely. 
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5 Final Design, Results, and Analysis 

5.1 Final Simulation Results 

5.1.1 Initial Testing 

The figure below illustrates the base SBPL planning algorithm’s path with basic 

customisation given a simple straight navigation command. 

 

 

Figure 9: R-Viz view of Initial testing with Little Customisation 

The major problems with the programs are as follows: 

• Erroneous errors in a very simple straight-line navigation task. Unexpected turns 

placed the vehicle in contact with the sidewalk and its behaviours are not 

understandable or predictable. 

• Small errors in mapping caused the vehicle to overreact and cut off the program early. 

• Instead of turning in place or using a small amount of space, the vehicle used all 

available area to make a small turn which is not ideal for navigation in pedestrian 

areas. 

 

5.1.2 Motion Primitives and Behavioural choices 

Motion primitives are customised precalculated motions that are kinematically feasible for 

the vehicle to take which have costs associated with them. These must be generated for use in 
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the SBPL planning algorithm such that the planner can attach theses kinematic motions 

together to create a path [15]. 

 

When designing the motion primitives of the system the costing and biasing of certain 

motions was a key design decision to the behaviour of the vehicle. The motion primitives are 

generated with the use of MATLAB and are stored as a table for quick look up by the planner 

when required.  

 

 

Figure 10: Example of behavioural choices made 

 

The following decision was made when designing the motion primitives: 

• Assume that the vehicle’s kinematics can be simulated as a non-holonomic unicycle. 

This is due to dual-axis Ackermann steering that is active when the vehicle is in 

operation 

• Cost reversing motions much higher and try biasing forward motions since the vehicle 

shouldn’t be reversing in populated areas as it will put pedestrians in a state of unease. 

This mean reversing will only occur as a last case scenario and at failure states. 

• Bias left-hand side drive motions by costing it lower. This is to mimic current 

Australian road vehicles thus making sure if the vehicle has a new obstacle car or 

human it will reliable stick to the left-hand side when navigating around it. 

• Cost turn in place much lower than what is recommended. The vehicle is much larger 

than planned for this program thus it will not have a lot of places to turn. So the 

vehicle should bias turning in place rather than movement. This is also a much safe 

behaviour since it will take up less space doing it. For example, see figure 10. 
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An example of the final motion primitives are listed below accompanied with a combination 

of how all the motion would look overlayed: 

 

Figure 11: 3 of the 8 Motion Primitives generated by MATLAB Graphed 

 

Figure 12: Combined Motion Primitives achieved with a unicycle model [15] 

 

 

5.1.3 SBPL and Carrot Planner 

Then deciding which global planner to use the following data was collected to confirm that 

SBPL was the correct choice. Note: These tests are the average of 10 runs each. The map-

wide metric contains hallway and short tight turns whilst the short steps consist of simple 

turns or movement from one room to another. All testing was done in ROS Stage using a 

standard street layout out the map with walls surrounding the vehicle’s free space. 

 

 

 

 



Kyle Armando Monteiro Carvalho - 21881544 

 

30 

Table 2: Global Planner Evaluation 

Evaluation Metric 

Base SBPL Carrot Planner 

Map-Wide 

Navigation(s) 

Short 

Navigation 

Steps 

Map Wide 

Navigation 

Short 

Navigation 

Steps 

Time For Generation 6.42 1.28 6.12 1.22 

Path Accuracy 
High 

Low (due to poor kinematic 

planning) 

Recalculations Necessary 4 0 12 2 

Turn Radius  Relatively small and more 

feasible turns 

Very high due to imprecise 

path connection 

Smoothness off Path Path generated with quadratic 

approximation thus it was 

smooth 

Jagged and imprecise at 

discontinuation points 

Customisability  Well documented and thus 

much easier 

Documented but doesn’t give 

much option for expansion 

 

It is evident with regards to almost every metric expect time that the SBPL planner is the 

obvious choice. The lack of complexity in the carrot planner assists with the initial planning 

phase but due to the lack of kinematic planning, the SBPL planner creates much more 

feasible paths which requires fewer path recalculations. 

  

5.1.4 SBPL Optimisation and tuning 

There are three major available searching algorithms. Without going into the specificity of 

each algorithm the breakdown is as such. Dijkstra spreads out and tests all possible nodes in 

the discretised area starting at the base point. It keeps searching all free space nodes and 

evaluating them in an orderly emitting method. Eventually getting to the goal. A* uses the 

known location of the goal as a sense of direction to search in that direction. Weighted A* 

goes one farther by costing nodes closer to the goal on a gradient such that the nodes closer to 

the goal is not only favoured but also fully explored. The Figure below shows how ineffective 

Dijkstra is and how much more effective (measured in terms of total nodes counted) the 

Weighted A* method is thus it was the chose algorithm.[23] 
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Figure 13: Different Searching Algorithms [15] 

When tuning the simulation settings for this vehicle the following were chosen: 

• Allowing quadratic approximation to increase the speed of the searching algorithm 

• Turn off-grid path to allow for softer turns and smoother paths as this enables curve 

smoothening. 

• Use the rated acceleration and velocity as the input maximum and minimums since in 

simulation the vehicle must be fully tested 

• Restructured the behavioural timer to prevent too long planning times 

 

5.1.5 SBPL Cost Tuning 

The costing factor for vehicles is an important part of behavioural analysis since it determines 

how the vehicle approaches obstacles. A range of 1-233 for the cost factor is the given range 

available. Post testing it was discovered a cost of 66 allowed for near-wall operations without 

the approach to the said wall being disturbed as illustrated in the Initial Testing Section 

above. 

 

The costmap is a bubble which surrounds objects in a simulated environment which 

essentially inflates the size of objects as a form of additional security to prevent vehicles from 

operating too close to objects or turning into them. The initial simulation had very small 

inflation radius which caused the vehicle to operate dangerously close to structures. However 

too high inflation radius will prevent finite motions. The decay rate determines by which the 

costing scales down when close to objects. When ideally tuned, the vehicle will cost when 

navigating tight spaces correctly and always stick to the middle of said space. Finally, the 
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resolution of said costmap will be determined by either your map’s resolution or the LiDAR’s 

resolution. The following variables were tested and chosen[11]: 

 

Costmap resolution: 0.03 (determined by the map) 

Cost scaling factor: 2.2 

Inflation Radius: 1.2 

 

5.1.6 Local Planner Tuning 

Using the DWA local planner the following tolerances were required to prevent the vehicle 

over adjusting itself to the path and instead uses the global path as a guide. The following 

parameters were set[10][11] 

 

• Translation Tolerance: 0.1 

• Latch Tolerance:  False (leads to the robot trying to match the goal pose to closely 

leading to delays and unpredictable pactions) 

• Yaw Tolerance: 0.05 

 

 

Sim-Time is the given time for an operation to occur at a max set velocity 

• Sim-Time: 3.4 (set between 2 to 5 for feasible results) 

 

Simulation granularity: Step size for each path trajectory. This can create a lot of 

computational loads thus not minimising this variable is key to decreasing computational run 

time 

• Simulation granularity: 0.04 
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Figure 14: Rviz view demonstrating Obstacle avoidance and tight maneuvering working correctly

 

 

The figure above illustrates the obstacle avoidance and created by the local planner. It 

functions slower and with only slight adjustments to make sure the vehicle narrowly 

navigates the free space. 
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5.2 Final Simulation Results Discussion 

 

 

Figure 15: Path generated in a sensible predictable manner with a safe distance maintained 

 

 

 

Figure 16: Final Prototype Simulation Path Generation     Figure 17: Error Recovery Behaviour in Action 

 

When looking at the images above and comparing it to the initial testing images at the start of 

section 5.1 its is evident that tuning and behaviour alteration testing worked. The following 

are the outcomes from this Simulation Design phase: 

• Paths formed have very large turning radii thus creating smoother paths 

• Paths formed are logical and no longer overreact to stimuli 

• Vehicle biases the left side of the Road 

• Reliable distance between objects and the vehicle is held unless in an error state 

• In error states, the vehicle operates slowly and does not go too close to any walls 

• At goal, vehicles terminate predictably and in the correct pose 
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• Recalculates according to effectively if the surrounding changes as compared to that 

of the vehicle’s recorded map 

 

The simulation stage of the project was a rounding success as it produced a solution which 

should be able integrated on to the vehicle through ROS. The only major concerns are that 

fact that the system did not operate on a low-end computer when simulating thus 

computational power might be a problem whilst on nUWAy. 

5.2 Vehicle Testing Results   

5.2.1 Initial Vehicle Path Generation Testing 

The vehicle was initially tested by displaying the path it would hypothetically follow on R-

Viz. ROS Vision is used to display what the vehicle sees concerning the vehicle’s placement 

in 3D space thus it is perfect for displaying the path created. Upon first software migration 

from simulation to hardware, there were a lot of integration problems. When on the simulator 

the there was little to the limitation in terms of computational power. Unfortunately, after the 

transition from simulation to the vehicle, a lot of processing and unpredictable errors 

occurred. Errors/Loss of functionality include the following: 

Table 3: Initial Testing Failure Analysis 

Loss in Functionality Causes  Consequences 

Time taken to generate 

path varied from 40 

seconds for simpler paths 

to 2 minutes for complex 

paths 

 

Slower computer in 

combination with 

more sensors slowed 

down the processing 

speed of the planner. 

The planner was also 

initially set to a very 

low resolution 

The vehicle was non-operable or 

testable due to long wait times 

preventing a proper localisation to 

initialise a full path 

Loss of continuous R-

Viz view due to the 

computer freezing and 

crashing 

 

User feedback was completely 

removed thus all testing information 

would be lost  
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Vehicle’s behaviour 

didn’t resemble what was 

predicted recorded in 

simulation 

 

Simulation made 

assumptions that were 

not true in real life 

such as using a 

unicycle model for the 

motion primitives 

Programs would need to be 

individually tested to find out the 

failure point. 

When a path was 

generated the vehicle’s 

sensors wouldn’t allow 

for the vehicle to remain 

stationary for long 

enough to test if the local 

planner was functioning 

adequately 

Sensors were not 

calibrated correctly 

giving erroneous data 

preventing SLAM 

from outputting a 

proper initial pose. 

Navigation couldn’t even start 

processing or begin the Search-Based 

Planning process without an initial 

location and pose estimate 

Navigation stack not 

recalculating after the 

initial path is generated 

Vehicle is not 

stationary for long 

enough to allow for a 

recalculation and thus 

the whole path must 

be recreated 

Excessively slow local planning and 

remapping 

 

5.2.2 Fixes from Initial Tests 

Majority of the problems caused were due to the speed of the vehicle’s processor being to 

slow thus fixing this was the primary issue. The first part to change was the planners 

themselves. The local planner was downgraded to the simple goal passer local planner. The 

SLAM algorithm was changed to a more widely supported and faster cartographer package 

then the base G-mapping program. The SBPL and SLAM mapping resolution was changed 

from an original 5 cm to 30cm. This includes recalculating the motion primitives for the 

current resolution map. 

 

All other Programs were moved over to the secondary computer leaving the base computer 

only for communication, navigation, and SLAM. The SBPL settings were tuned for speed. 
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Grid Path behaviour, reduced inflation size, and use of A* algorithm all sped up the 

processing of the navigation stack. 

 

New RTK GPS antennae were ordered to replace the indoor Xsens GPS antennae and the 

IMU readings from said Xsens were disregarded. The vehicle would use the LiDAR’s 

odometer for detecting motion and predicting the vehicle’s pose instead of the IMU. 

 

5.6.3 Subsequent Vehicle Path Generation Testing 

With the new system path generating occurred at much faster speeds. Sometimes taking up to 

a maximum of 4 seconds. The reasons the speeds were so high were because the complexity 

of the system was reduced. This includes using a simpler local planner, reducing the sensory 

inputs, and running the system a high-resolution system. Increasing the resolution reduced the 

amount and type of movements available to the vehicle. 

 

As seen in the figure below the paths generated with the simplified system were much more 

ridged. This was mainly due to the tuning and resolution change of the base SBPL package. 

These paths remained feasibly possible but started to suffer when close to objects. The local 

planner would purely keep the vehicle on track and refrain from recalculating the whole path 

when a new object came into view thus effectively losing its function. 

 

Figure 18: RVIZ view of Secondary Path Generation Testing in Working Condition 



Kyle Armando Monteiro Carvalho - 21881544 

 

38 

5.2.4 Fixes from Subsequent Testing 

The following trade-offs occurred to get the vehicle ready for actual autonomous driving: 

• The basic local planner, Goal Passer, was replaced by a custom planner named the 

desired direction. This custom planner was used by another student’s thesis to help 

assist with localisation. It would replace all the other function of the local planner and 

purely remain on the path. This eliminated the active obstacle avoidance from the 

navigation stack. 

• The maximum speed was capped to half the simulations speed to make sure all 

manoeuvres can be seen by riders in case the autonomy fails and requires human 

intervention. 

5.2.5 Autonomous Driving Final Testing 

The final section of testing occurred just before this paper was written. It consisted of the 

vehicle operating purely off the navigation commands created by ROS’ navigation stack. 

After final testing occurred, no other changes to the vehicle’s behaviour occurred due to the 

need for all other students to record data thus the project reached its completed stage 

 

Table 4: Autonomy Testing Results 

Flaws in Function Causes 

Paths generated did not function when in tight 

environments 

Resolution of the generated motion primitives 

was too high 

Vehicle would navigate into off road areas Poor mapping in high resolution missed some 

low lying barriers causing undrivable areas to 

come up as free space. 

Speed varied highly and wasn’t as continuous as the 

simulation 

The custom local planner requires a proper 

speed controller with a PID system 

Vehicle would sway on straights  Higher tolerance for goal acceptance required to 

stop the vehicle over correcting its direction on 

straights 

Limited to no recalculation occurred when the vehicle 

fell off its path 

The local planner did not communicate error 

states to the global planner. A separate function 

needs to be created to notify the global planner a 

recalculation is needed. 
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6 Discussion and Conclusion 

6.1 Improvements 

Improvements to the project can be narrowed down to increasing the speed of the path 

generated whilst bringing over the complexity of the simulation’s navigation stack to the 

vehicle. The major suggested improvement would be the upgrade of the computer in the 

vehicle or the transition of the navigation stack on to a more capable device such as the 

secondary computer. This upgrade would remove half of the issues that were created when 

transitioning the package from simulation to the vehicle as listed in section 5.6.1. This new 

computer would generate much more accurate path and would be able to run the TEB and 

DWA customised local path planner advised earlier in this report to see which will run better. 

 

Mapping of the area needs to be done at a lower but more precise resolution. This will enable 

more complex and finite motion by the navigation stack and remove a lot of the 

overcorrection errors seen in Section 5.6.5. This would also enable the use of a larger array of 

error recovery motions when the vehicle is stuck in an error state. These maps need to also be 

cordoned off by hand to prevent the vehicle from driving paths that it sees as flat but we 

know is not advisable to drive on such as dirt sidewalks. 

 

Testing in a CARLA simulator is a very important step which was skipped in this paper due 

to the simulation not being ready in time for this project. The simulation should test all the 

behaviours in a 3D space with speed taken into account. It can also test the active object 

avoidance such as humans and cars moving in the vehicle’s way. 

 

 The time difference spent simulating the system versus the testing done on the is the vehicle 

was very high. This was mainly caused by external sources such as COVID—19 and the 

nature of a group project causing unpredictable delays but a lot more testing needed to occur 

on the vehicle to fix a lot of the current glaring issues with the project. 
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6.2 Future Work 

The following future work is advised as an outcome of this report: 

• A rigorous study into the range of local planners available. This was briefly covered 

by this report, but this report mainly focussed on perfecting the global planner. Thus 

there needs to be better testing in terms of speed, behaviour, and safety on the local 

planner. An exploratory and design research paper on the use of a TEB or DWA local 

planner is advised. The outcome of the report should determine the planner that needs 

to replace the current desire direction planner on the vehicle and the optimal tuning 

for computational time. 

 

• The vehicle has no formal method of recording and discovering risks and mitigating 

risks. A proper risk registry to an industry ISO 31000 standard is highly 

recommended due to the complexity of the vehicle. A formal process can analyse all 

available risks and can help design future projects to develop risk mitigation and 

safety schemes for the vehicle. 

 

• Update the motion primitives of the vehicle such that we use bicycle simplification of 

the vehicle. The current unicycle assumption of the vehicle isn’t quite right since 

vehicles dual axis steering doesn’t quite allow for unicycle movement thus a 

kinematic study into what motion primitive model best represent the bus must be 

undertaken. 

• Testing must occur on CARLA to refine the behaviour of the vehicle in active 

environments since the local planner originally tested in the basic ROS stage 

simulation wasn’t tested with actively moving object which is highly recommended if 

this bus should operate around people. 

 

• Move the current navigation and SLAM system to the other computer to allow for 

much better computational loads followed by installation of the planned SBPL Low 

Resolution and TEB local planner package to be run on the vehicle. 

 

• A psychological study on human comfort and awareness would be a great study to 

determine whether the current behaviour state of the vehicle would be comfortable 
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around pedestrians or is still too foreign for people to be comfortable with it in 

pedestrian areas. 

 

6.3 Conclusion 

The project itself did design a Navigation Stack which worked behaviourally well in 

simulation and designed a navigation stack which worked on the vehicle thus it did succeed 

in proving that ROS motion planning can be used for complex large vehicle navigation in 

urban unstructured environments. Unfortunately the due to hardware limitations the perfected 

simulation solution wasn’t able to be installed in its full form thus it couldn’t be proven 

currently. The current state of the vehicle very basic autonomy is available, but it isn’t up to 

the complexity and results achieved in simulation. Migration of the original software on to 

another computer will solve this issue and fully prove that ROS’s navigation stack can be 

used for true navigational autonomy.   
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